Properties

Label 875.2.bb.a.143.12
Level $875$
Weight $2$
Character 875.143
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 143.12
Character \(\chi\) \(=\) 875.143
Dual form 875.2.bb.a.257.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0406780 + 0.776182i) q^{2} +(0.872864 + 0.706831i) q^{3} +(1.38824 - 0.145910i) q^{4} +(-0.513123 + 0.706254i) q^{6} +(-1.24404 + 2.33503i) q^{7} +(0.412900 + 2.60695i) q^{8} +(-0.361454 - 1.70051i) q^{9} +(1.29854 + 0.276014i) q^{11} +(1.31488 + 0.853891i) q^{12} +(0.912442 + 1.79077i) q^{13} +(-1.86302 - 0.870614i) q^{14} +(0.724094 - 0.153911i) q^{16} +(0.868077 + 0.333224i) q^{17} +(1.30520 - 0.349728i) q^{18} +(-0.550884 + 5.24131i) q^{19} +(-2.73635 + 1.15884i) q^{21} +(-0.161415 + 1.01913i) q^{22} +(-1.14388 + 0.0599482i) q^{23} +(-1.48227 + 2.56736i) q^{24} +(-1.35285 + 0.781066i) q^{26} +(2.41619 - 4.74204i) q^{27} +(-1.38631 + 3.42310i) q^{28} +(4.04060 + 5.56140i) q^{29} +(-3.98545 - 8.95147i) q^{31} +(1.51519 + 5.65478i) q^{32} +(0.938356 + 1.15877i) q^{33} +(-0.223331 + 0.687341i) q^{34} +(-0.749906 - 2.30797i) q^{36} +(-4.17386 + 6.42719i) q^{37} +(-4.09062 - 0.214381i) q^{38} +(-0.469333 + 2.20804i) q^{39} +(-0.0622653 - 0.0202312i) q^{41} +(-1.01078 - 2.07676i) q^{42} +(3.34331 + 3.34331i) q^{43} +(1.84296 + 0.193703i) q^{44} +(-0.0930614 - 0.885420i) q^{46} +(-0.0668935 - 0.174263i) q^{47} +(0.740824 + 0.377469i) q^{48} +(-3.90475 - 5.80972i) q^{49} +(0.522180 + 0.904443i) q^{51} +(1.52798 + 2.35288i) q^{52} +(7.02928 - 8.68044i) q^{53} +(3.77898 + 1.68251i) q^{54} +(-6.60097 - 2.27900i) q^{56} +(-4.18557 + 4.18557i) q^{57} +(-4.15230 + 3.36247i) q^{58} +(3.22860 + 3.58572i) q^{59} +(-3.39928 - 3.06073i) q^{61} +(6.78585 - 3.45756i) q^{62} +(4.42040 + 1.27148i) q^{63} +(-2.91943 + 0.948580i) q^{64} +(-0.861248 + 0.775472i) q^{66} +(3.04412 - 7.93020i) q^{67} +(1.25372 + 0.335933i) q^{68} +(-1.04082 - 0.756203i) q^{69} +(8.72491 - 6.33902i) q^{71} +(4.28389 - 1.64443i) q^{72} +(1.38114 - 0.896926i) q^{73} +(-5.15845 - 2.97823i) q^{74} +7.35658i q^{76} +(-2.25993 + 2.68877i) q^{77} +(-1.73293 - 0.274469i) q^{78} +(4.24463 - 9.53360i) q^{79} +(0.696236 - 0.309984i) q^{81} +(0.0131703 - 0.0491522i) q^{82} +(-6.17863 + 0.978599i) q^{83} +(-3.62962 + 2.00801i) q^{84} +(-2.45902 + 2.73102i) q^{86} +(-0.404083 + 7.71037i) q^{87} +(-0.183385 + 3.49920i) q^{88} +(-10.5019 + 11.6635i) q^{89} +(-5.31661 - 0.0971966i) q^{91} +(-1.57923 + 0.250126i) q^{92} +(2.84842 - 10.6304i) q^{93} +(0.132539 - 0.0590102i) q^{94} +(-2.67442 + 6.00684i) q^{96} +(-17.1820 - 2.72136i) q^{97} +(4.35057 - 3.26713i) q^{98} -2.30795i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0406780 + 0.776182i 0.0287637 + 0.548844i 0.974566 + 0.224101i \(0.0719445\pi\)
−0.945802 + 0.324743i \(0.894722\pi\)
\(3\) 0.872864 + 0.706831i 0.503948 + 0.408089i 0.847297 0.531119i \(-0.178228\pi\)
−0.343349 + 0.939208i \(0.611561\pi\)
\(4\) 1.38824 0.145910i 0.694120 0.0729549i
\(5\) 0 0
\(6\) −0.513123 + 0.706254i −0.209482 + 0.288327i
\(7\) −1.24404 + 2.33503i −0.470201 + 0.882559i
\(8\) 0.412900 + 2.60695i 0.145982 + 0.921695i
\(9\) −0.361454 1.70051i −0.120485 0.566836i
\(10\) 0 0
\(11\) 1.29854 + 0.276014i 0.391525 + 0.0832213i 0.399468 0.916747i \(-0.369195\pi\)
−0.00794259 + 0.999968i \(0.502528\pi\)
\(12\) 1.31488 + 0.853891i 0.379572 + 0.246497i
\(13\) 0.912442 + 1.79077i 0.253066 + 0.496670i 0.982233 0.187666i \(-0.0600923\pi\)
−0.729167 + 0.684336i \(0.760092\pi\)
\(14\) −1.86302 0.870614i −0.497912 0.232681i
\(15\) 0 0
\(16\) 0.724094 0.153911i 0.181023 0.0384777i
\(17\) 0.868077 + 0.333224i 0.210540 + 0.0808186i 0.461352 0.887217i \(-0.347364\pi\)
−0.250813 + 0.968036i \(0.580698\pi\)
\(18\) 1.30520 0.349728i 0.307639 0.0824316i
\(19\) −0.550884 + 5.24131i −0.126382 + 1.20244i 0.729027 + 0.684485i \(0.239973\pi\)
−0.855408 + 0.517954i \(0.826694\pi\)
\(20\) 0 0
\(21\) −2.73635 + 1.15884i −0.597120 + 0.252880i
\(22\) −0.161415 + 1.01913i −0.0344138 + 0.217280i
\(23\) −1.14388 + 0.0599482i −0.238515 + 0.0125001i −0.171219 0.985233i \(-0.554771\pi\)
−0.0672962 + 0.997733i \(0.521437\pi\)
\(24\) −1.48227 + 2.56736i −0.302566 + 0.524060i
\(25\) 0 0
\(26\) −1.35285 + 0.781066i −0.265315 + 0.153180i
\(27\) 2.41619 4.74204i 0.464996 0.912607i
\(28\) −1.38631 + 3.42310i −0.261989 + 0.646905i
\(29\) 4.04060 + 5.56140i 0.750320 + 1.03273i 0.997958 + 0.0638742i \(0.0203456\pi\)
−0.247638 + 0.968853i \(0.579654\pi\)
\(30\) 0 0
\(31\) −3.98545 8.95147i −0.715808 1.60773i −0.791915 0.610631i \(-0.790916\pi\)
0.0761073 0.997100i \(-0.475751\pi\)
\(32\) 1.51519 + 5.65478i 0.267851 + 0.999634i
\(33\) 0.938356 + 1.15877i 0.163347 + 0.201716i
\(34\) −0.223331 + 0.687341i −0.0383009 + 0.117878i
\(35\) 0 0
\(36\) −0.749906 2.30797i −0.124984 0.384662i
\(37\) −4.17386 + 6.42719i −0.686179 + 1.05662i 0.308259 + 0.951302i \(0.400254\pi\)
−0.994438 + 0.105321i \(0.966413\pi\)
\(38\) −4.09062 0.214381i −0.663587 0.0347771i
\(39\) −0.469333 + 2.20804i −0.0751534 + 0.353569i
\(40\) 0 0
\(41\) −0.0622653 0.0202312i −0.00972421 0.00315959i 0.304151 0.952624i \(-0.401627\pi\)
−0.313875 + 0.949464i \(0.601627\pi\)
\(42\) −1.01078 2.07676i −0.155967 0.320452i
\(43\) 3.34331 + 3.34331i 0.509850 + 0.509850i 0.914480 0.404630i \(-0.132600\pi\)
−0.404630 + 0.914480i \(0.632600\pi\)
\(44\) 1.84296 + 0.193703i 0.277837 + 0.0292018i
\(45\) 0 0
\(46\) −0.0930614 0.885420i −0.0137212 0.130548i
\(47\) −0.0668935 0.174263i −0.00975741 0.0254189i 0.928615 0.371044i \(-0.121000\pi\)
−0.938373 + 0.345625i \(0.887667\pi\)
\(48\) 0.740824 + 0.377469i 0.106929 + 0.0544829i
\(49\) −3.90475 5.80972i −0.557822 0.829961i
\(50\) 0 0
\(51\) 0.522180 + 0.904443i 0.0731199 + 0.126647i
\(52\) 1.52798 + 2.35288i 0.211892 + 0.326286i
\(53\) 7.02928 8.68044i 0.965546 1.19235i −0.0157564 0.999876i \(-0.505016\pi\)
0.981302 0.192474i \(-0.0616510\pi\)
\(54\) 3.77898 + 1.68251i 0.514254 + 0.228960i
\(55\) 0 0
\(56\) −6.60097 2.27900i −0.882092 0.304544i
\(57\) −4.18557 + 4.18557i −0.554392 + 0.554392i
\(58\) −4.15230 + 3.36247i −0.545224 + 0.441514i
\(59\) 3.22860 + 3.58572i 0.420327 + 0.466821i 0.915702 0.401859i \(-0.131636\pi\)
−0.495374 + 0.868680i \(0.664969\pi\)
\(60\) 0 0
\(61\) −3.39928 3.06073i −0.435233 0.391886i 0.422182 0.906511i \(-0.361264\pi\)
−0.857415 + 0.514625i \(0.827931\pi\)
\(62\) 6.78585 3.45756i 0.861804 0.439111i
\(63\) 4.42040 + 1.27148i 0.556919 + 0.160192i
\(64\) −2.91943 + 0.948580i −0.364929 + 0.118573i
\(65\) 0 0
\(66\) −0.861248 + 0.775472i −0.106012 + 0.0954540i
\(67\) 3.04412 7.93020i 0.371899 0.968829i −0.612120 0.790765i \(-0.709683\pi\)
0.984019 0.178064i \(-0.0569835\pi\)
\(68\) 1.25372 + 0.335933i 0.152036 + 0.0407379i
\(69\) −1.04082 0.756203i −0.125300 0.0910361i
\(70\) 0 0
\(71\) 8.72491 6.33902i 1.03546 0.752303i 0.0660625 0.997815i \(-0.478956\pi\)
0.969393 + 0.245513i \(0.0789563\pi\)
\(72\) 4.28389 1.64443i 0.504862 0.193798i
\(73\) 1.38114 0.896926i 0.161651 0.104977i −0.461279 0.887255i \(-0.652609\pi\)
0.622929 + 0.782278i \(0.285942\pi\)
\(74\) −5.15845 2.97823i −0.599658 0.346213i
\(75\) 0 0
\(76\) 7.35658i 0.843857i
\(77\) −2.25993 + 2.68877i −0.257543 + 0.306414i
\(78\) −1.73293 0.274469i −0.196216 0.0310775i
\(79\) 4.24463 9.53360i 0.477558 1.07261i −0.500775 0.865577i \(-0.666952\pi\)
0.978333 0.207036i \(-0.0663817\pi\)
\(80\) 0 0
\(81\) 0.696236 0.309984i 0.0773596 0.0344427i
\(82\) 0.0131703 0.0491522i 0.00145442 0.00542796i
\(83\) −6.17863 + 0.978599i −0.678193 + 0.107415i −0.486022 0.873946i \(-0.661553\pi\)
−0.192170 + 0.981362i \(0.561553\pi\)
\(84\) −3.62962 + 2.00801i −0.396024 + 0.219092i
\(85\) 0 0
\(86\) −2.45902 + 2.73102i −0.265163 + 0.294493i
\(87\) −0.404083 + 7.71037i −0.0433223 + 0.826638i
\(88\) −0.183385 + 3.49920i −0.0195489 + 0.373016i
\(89\) −10.5019 + 11.6635i −1.11320 + 1.23633i −0.144125 + 0.989559i \(0.546037\pi\)
−0.969073 + 0.246773i \(0.920630\pi\)
\(90\) 0 0
\(91\) −5.31661 0.0971966i −0.557332 0.0101890i
\(92\) −1.57923 + 0.250126i −0.164646 + 0.0260774i
\(93\) 2.84842 10.6304i 0.295367 1.10233i
\(94\) 0.132539 0.0590102i 0.0136704 0.00608644i
\(95\) 0 0
\(96\) −2.67442 + 6.00684i −0.272957 + 0.613071i
\(97\) −17.1820 2.72136i −1.74457 0.276312i −0.798902 0.601461i \(-0.794586\pi\)
−0.945663 + 0.325149i \(0.894586\pi\)
\(98\) 4.35057 3.26713i 0.439474 0.330030i
\(99\) 2.30795i 0.231958i
\(100\) 0 0
\(101\) −3.07011 1.77253i −0.305487 0.176373i 0.339418 0.940636i \(-0.389770\pi\)
−0.644905 + 0.764262i \(0.723103\pi\)
\(102\) −0.680771 + 0.442098i −0.0674064 + 0.0437742i
\(103\) 5.94199 2.28092i 0.585482 0.224745i −0.0475531 0.998869i \(-0.515142\pi\)
0.633035 + 0.774123i \(0.281809\pi\)
\(104\) −4.29169 + 3.11810i −0.420835 + 0.305755i
\(105\) 0 0
\(106\) 7.02354 + 5.10290i 0.682186 + 0.495637i
\(107\) 9.52075 + 2.55108i 0.920406 + 0.246622i 0.687759 0.725939i \(-0.258595\pi\)
0.232647 + 0.972561i \(0.425261\pi\)
\(108\) 2.66234 6.93564i 0.256184 0.667382i
\(109\) 8.04882 7.24719i 0.770937 0.694155i −0.186609 0.982434i \(-0.559750\pi\)
0.957546 + 0.288279i \(0.0930831\pi\)
\(110\) 0 0
\(111\) −8.18615 + 2.65984i −0.776995 + 0.252461i
\(112\) −0.541411 + 1.88225i −0.0511586 + 0.177856i
\(113\) −5.89008 + 3.00115i −0.554092 + 0.282324i −0.708533 0.705678i \(-0.750643\pi\)
0.154440 + 0.988002i \(0.450643\pi\)
\(114\) −3.41903 3.07851i −0.320221 0.288328i
\(115\) 0 0
\(116\) 6.42078 + 7.13100i 0.596154 + 0.662096i
\(117\) 2.71541 2.19890i 0.251040 0.203288i
\(118\) −2.65184 + 2.65184i −0.244122 + 0.244122i
\(119\) −1.85801 + 1.61245i −0.170323 + 0.147813i
\(120\) 0 0
\(121\) −8.43897 3.75727i −0.767179 0.341570i
\(122\) 2.23741 2.76297i 0.202565 0.250147i
\(123\) −0.0400491 0.0616702i −0.00361110 0.00556061i
\(124\) −6.83886 11.8453i −0.614148 1.06374i
\(125\) 0 0
\(126\) −0.807091 + 3.48276i −0.0719014 + 0.310269i
\(127\) −16.4754 8.39463i −1.46195 0.744903i −0.471387 0.881927i \(-0.656246\pi\)
−0.990568 + 0.137023i \(0.956246\pi\)
\(128\) 3.34093 + 8.70343i 0.295299 + 0.769281i
\(129\) 0.555099 + 5.28141i 0.0488737 + 0.465003i
\(130\) 0 0
\(131\) 16.6657 + 1.75164i 1.45609 + 0.153041i 0.799255 0.600992i \(-0.205228\pi\)
0.656836 + 0.754033i \(0.271894\pi\)
\(132\) 1.47174 + 1.47174i 0.128098 + 0.128098i
\(133\) −11.5533 7.80671i −1.00180 0.676928i
\(134\) 6.27911 + 2.04021i 0.542433 + 0.176247i
\(135\) 0 0
\(136\) −0.510268 + 2.40062i −0.0437551 + 0.205852i
\(137\) −3.29801 0.172842i −0.281768 0.0147669i −0.0890717 0.996025i \(-0.528390\pi\)
−0.192697 + 0.981258i \(0.561723\pi\)
\(138\) 0.544613 0.838630i 0.0463605 0.0713889i
\(139\) 2.66592 + 8.20486i 0.226120 + 0.695927i 0.998176 + 0.0603721i \(0.0192287\pi\)
−0.772055 + 0.635555i \(0.780771\pi\)
\(140\) 0 0
\(141\) 0.0647859 0.199391i 0.00545596 0.0167917i
\(142\) 5.27514 + 6.51426i 0.442680 + 0.546665i
\(143\) 0.690568 + 2.57723i 0.0577482 + 0.215519i
\(144\) −0.523454 1.17570i −0.0436211 0.0979747i
\(145\) 0 0
\(146\) 0.752360 + 1.03553i 0.0622658 + 0.0857015i
\(147\) 0.698176 7.83110i 0.0575846 0.645898i
\(148\) −4.85653 + 9.53148i −0.399205 + 0.783483i
\(149\) 0.0342344 0.0197652i 0.00280459 0.00161923i −0.498597 0.866834i \(-0.666151\pi\)
0.501402 + 0.865215i \(0.332818\pi\)
\(150\) 0 0
\(151\) 4.89690 8.48169i 0.398504 0.690230i −0.595037 0.803698i \(-0.702863\pi\)
0.993542 + 0.113468i \(0.0361960\pi\)
\(152\) −13.8913 + 0.728012i −1.12673 + 0.0590496i
\(153\) 0.252879 1.59662i 0.0204441 0.129079i
\(154\) −2.17890 1.64475i −0.175581 0.132537i
\(155\) 0 0
\(156\) −0.329372 + 3.13377i −0.0263709 + 0.250902i
\(157\) 12.7152 3.40702i 1.01478 0.271910i 0.287156 0.957884i \(-0.407290\pi\)
0.727626 + 0.685974i \(0.240624\pi\)
\(158\) 7.57247 + 2.90680i 0.602434 + 0.231253i
\(159\) 12.2712 2.60832i 0.973170 0.206854i
\(160\) 0 0
\(161\) 1.28304 2.74557i 0.101118 0.216381i
\(162\) 0.268926 + 0.527797i 0.0211288 + 0.0414676i
\(163\) −2.92862 1.90187i −0.229387 0.148966i 0.424828 0.905274i \(-0.360334\pi\)
−0.654216 + 0.756308i \(0.727001\pi\)
\(164\) −0.0893911 0.0190007i −0.00698027 0.00148370i
\(165\) 0 0
\(166\) −1.01091 4.75594i −0.0784615 0.369132i
\(167\) −2.99626 18.9176i −0.231857 1.46389i −0.779092 0.626910i \(-0.784319\pi\)
0.547235 0.836979i \(-0.315681\pi\)
\(168\) −4.15088 6.65503i −0.320247 0.513447i
\(169\) 5.26691 7.24928i 0.405147 0.557637i
\(170\) 0 0
\(171\) 9.11202 0.957712i 0.696813 0.0732380i
\(172\) 5.12914 + 4.15350i 0.391093 + 0.316701i
\(173\) 0.259502 + 4.95159i 0.0197296 + 0.376462i 0.990594 + 0.136833i \(0.0436925\pi\)
−0.970865 + 0.239629i \(0.922974\pi\)
\(174\) −6.00109 −0.454941
\(175\) 0 0
\(176\) 0.982748 0.0740774
\(177\) 0.283626 + 5.41192i 0.0213187 + 0.406785i
\(178\) −9.48023 7.67694i −0.710573 0.575411i
\(179\) 20.1419 2.11700i 1.50548 0.158232i 0.684424 0.729085i \(-0.260054\pi\)
0.821052 + 0.570853i \(0.193387\pi\)
\(180\) 0 0
\(181\) 2.67679 3.68429i 0.198965 0.273851i −0.697863 0.716231i \(-0.745866\pi\)
0.896828 + 0.442380i \(0.145866\pi\)
\(182\) −0.140827 4.13061i −0.0104388 0.306181i
\(183\) −0.803693 5.07431i −0.0594107 0.375104i
\(184\) −0.628589 2.95728i −0.0463402 0.218014i
\(185\) 0 0
\(186\) 8.36704 + 1.77847i 0.613501 + 0.130404i
\(187\) 1.03526 + 0.672306i 0.0757058 + 0.0491639i
\(188\) −0.118291 0.232159i −0.00862725 0.0169319i
\(189\) 8.06700 + 11.5412i 0.586788 + 0.839495i
\(190\) 0 0
\(191\) 15.1405 3.21821i 1.09553 0.232861i 0.375510 0.926818i \(-0.377468\pi\)
0.720016 + 0.693957i \(0.244134\pi\)
\(192\) −3.21875 1.23556i −0.232293 0.0891690i
\(193\) −7.57383 + 2.02940i −0.545176 + 0.146080i −0.520887 0.853625i \(-0.674399\pi\)
−0.0242890 + 0.999705i \(0.507732\pi\)
\(194\) 1.41334 13.4470i 0.101472 0.965442i
\(195\) 0 0
\(196\) −6.26843 7.49555i −0.447745 0.535396i
\(197\) 2.55912 16.1577i 0.182330 1.15119i −0.711469 0.702718i \(-0.751970\pi\)
0.893799 0.448469i \(-0.148030\pi\)
\(198\) 1.79139 0.0938827i 0.127308 0.00667196i
\(199\) 13.6561 23.6530i 0.968053 1.67672i 0.266874 0.963731i \(-0.414009\pi\)
0.701179 0.712985i \(-0.252657\pi\)
\(200\) 0 0
\(201\) 8.26242 4.77031i 0.582786 0.336472i
\(202\) 1.25092 2.45507i 0.0880144 0.172738i
\(203\) −18.0127 + 2.51634i −1.26424 + 0.176613i
\(204\) 0.856878 + 1.17939i 0.0599935 + 0.0825739i
\(205\) 0 0
\(206\) 2.01212 + 4.51928i 0.140191 + 0.314873i
\(207\) 0.515402 + 1.92351i 0.0358229 + 0.133693i
\(208\) 0.936312 + 1.15625i 0.0649216 + 0.0801715i
\(209\) −2.16202 + 6.65402i −0.149550 + 0.460268i
\(210\) 0 0
\(211\) 4.53761 + 13.9653i 0.312382 + 0.961413i 0.976819 + 0.214068i \(0.0686715\pi\)
−0.664437 + 0.747345i \(0.731328\pi\)
\(212\) 8.49176 13.0762i 0.583216 0.898075i
\(213\) 12.0963 + 0.633938i 0.828823 + 0.0434367i
\(214\) −1.59282 + 7.49361i −0.108883 + 0.512253i
\(215\) 0 0
\(216\) 13.3599 + 4.34090i 0.909027 + 0.295361i
\(217\) 25.8600 + 1.82978i 1.75549 + 0.124214i
\(218\) 5.95255 + 5.95255i 0.403158 + 0.403158i
\(219\) 1.83953 + 0.193342i 0.124304 + 0.0130648i
\(220\) 0 0
\(221\) 0.195344 + 1.85857i 0.0131402 + 0.125021i
\(222\) −2.39752 6.24575i −0.160911 0.419187i
\(223\) −19.2642 9.81559i −1.29003 0.657301i −0.331809 0.943346i \(-0.607659\pi\)
−0.958216 + 0.286046i \(0.907659\pi\)
\(224\) −15.0891 3.49672i −1.00818 0.233634i
\(225\) 0 0
\(226\) −2.56903 4.44970i −0.170890 0.295989i
\(227\) −5.12019 7.88440i −0.339839 0.523306i 0.626891 0.779107i \(-0.284327\pi\)
−0.966729 + 0.255801i \(0.917661\pi\)
\(228\) −5.19986 + 6.42129i −0.344369 + 0.425260i
\(229\) 2.84380 + 1.26614i 0.187923 + 0.0836689i 0.498541 0.866866i \(-0.333869\pi\)
−0.310618 + 0.950535i \(0.600536\pi\)
\(230\) 0 0
\(231\) −3.87312 + 0.749537i −0.254833 + 0.0493159i
\(232\) −12.8299 + 12.8299i −0.842326 + 0.842326i
\(233\) 22.6587 18.3487i 1.48442 1.20206i 0.555644 0.831420i \(-0.312472\pi\)
0.928777 0.370640i \(-0.120862\pi\)
\(234\) 1.81720 + 2.01821i 0.118794 + 0.131934i
\(235\) 0 0
\(236\) 5.00526 + 4.50675i 0.325814 + 0.293365i
\(237\) 10.4436 5.32129i 0.678386 0.345655i
\(238\) −1.32713 1.37656i −0.0860252 0.0892292i
\(239\) −3.05660 + 0.993150i −0.197715 + 0.0642416i −0.406201 0.913784i \(-0.633147\pi\)
0.208485 + 0.978025i \(0.433147\pi\)
\(240\) 0 0
\(241\) −19.9300 + 17.9451i −1.28381 + 1.15594i −0.304733 + 0.952438i \(0.598567\pi\)
−0.979074 + 0.203506i \(0.934766\pi\)
\(242\) 2.57305 6.70302i 0.165402 0.430886i
\(243\) −14.5955 3.91085i −0.936301 0.250881i
\(244\) −5.16561 3.75303i −0.330694 0.240263i
\(245\) 0 0
\(246\) 0.0462382 0.0335940i 0.00294804 0.00214188i
\(247\) −9.88862 + 3.79589i −0.629198 + 0.241527i
\(248\) 21.6904 14.0859i 1.37734 0.894457i
\(249\) −6.08480 3.51306i −0.385609 0.222631i
\(250\) 0 0
\(251\) 13.7541i 0.868150i 0.900877 + 0.434075i \(0.142925\pi\)
−0.900877 + 0.434075i \(0.857075\pi\)
\(252\) 6.32210 + 1.12014i 0.398255 + 0.0705625i
\(253\) −1.50192 0.237881i −0.0944250 0.0149555i
\(254\) 5.84558 13.1294i 0.366784 0.823811i
\(255\) 0 0
\(256\) −12.2281 + 5.44431i −0.764257 + 0.340269i
\(257\) −2.39177 + 8.92621i −0.149195 + 0.556802i 0.850338 + 0.526237i \(0.176397\pi\)
−0.999533 + 0.0305651i \(0.990269\pi\)
\(258\) −4.07676 + 0.645695i −0.253808 + 0.0401992i
\(259\) −9.81526 17.7418i −0.609890 1.10242i
\(260\) 0 0
\(261\) 7.99672 8.88126i 0.494985 0.549736i
\(262\) −0.681663 + 13.0069i −0.0421133 + 0.803569i
\(263\) 0.439194 8.38032i 0.0270819 0.516752i −0.951085 0.308930i \(-0.900029\pi\)
0.978167 0.207822i \(-0.0666376\pi\)
\(264\) −2.63341 + 2.92470i −0.162075 + 0.180003i
\(265\) 0 0
\(266\) 5.58947 9.28504i 0.342712 0.569303i
\(267\) −17.4109 + 2.75761i −1.06553 + 0.168763i
\(268\) 3.06887 11.4532i 0.187461 0.699615i
\(269\) −4.02317 + 1.79123i −0.245297 + 0.109213i −0.525703 0.850668i \(-0.676198\pi\)
0.280406 + 0.959882i \(0.409531\pi\)
\(270\) 0 0
\(271\) −1.39604 + 3.13556i −0.0848035 + 0.190472i −0.950970 0.309285i \(-0.899910\pi\)
0.866166 + 0.499756i \(0.166577\pi\)
\(272\) 0.679856 + 0.107679i 0.0412223 + 0.00652898i
\(273\) −4.57197 3.84278i −0.276708 0.232576i
\(274\) 2.56689i 0.155072i
\(275\) 0 0
\(276\) −1.55525 0.897924i −0.0936150 0.0540487i
\(277\) −6.45697 + 4.19321i −0.387962 + 0.251945i −0.723851 0.689956i \(-0.757630\pi\)
0.335889 + 0.941901i \(0.390963\pi\)
\(278\) −6.26003 + 2.40300i −0.375451 + 0.144122i
\(279\) −13.7815 + 10.0128i −0.825076 + 0.599453i
\(280\) 0 0
\(281\) 19.6291 + 14.2614i 1.17097 + 0.850761i 0.991125 0.132934i \(-0.0424398\pi\)
0.179847 + 0.983695i \(0.442440\pi\)
\(282\) 0.157399 + 0.0421749i 0.00937296 + 0.00251148i
\(283\) −2.59792 + 6.76781i −0.154430 + 0.402304i −0.988868 0.148798i \(-0.952459\pi\)
0.834437 + 0.551103i \(0.185793\pi\)
\(284\) 11.1873 10.0731i 0.663846 0.597730i
\(285\) 0 0
\(286\) −1.97231 + 0.640843i −0.116625 + 0.0378939i
\(287\) 0.124701 0.120223i 0.00736086 0.00709655i
\(288\) 9.06833 4.62055i 0.534357 0.272268i
\(289\) −11.9909 10.7967i −0.705350 0.635100i
\(290\) 0 0
\(291\) −13.0740 14.5201i −0.766410 0.851185i
\(292\) 1.78649 1.44667i 0.104546 0.0846599i
\(293\) −22.0206 + 22.0206i −1.28645 + 1.28645i −0.349529 + 0.936925i \(0.613658\pi\)
−0.936925 + 0.349529i \(0.886342\pi\)
\(294\) 6.10676 + 0.223359i 0.356154 + 0.0130265i
\(295\) 0 0
\(296\) −18.4787 8.22726i −1.07405 0.478200i
\(297\) 4.44640 5.49084i 0.258006 0.318611i
\(298\) 0.0167340 + 0.0257681i 0.000969375 + 0.00149271i
\(299\) −1.15108 1.99372i −0.0665684 0.115300i
\(300\) 0 0
\(301\) −11.9659 + 3.64755i −0.689705 + 0.210241i
\(302\) 6.78253 + 3.45587i 0.390291 + 0.198863i
\(303\) −1.42691 3.71722i −0.0819738 0.213549i
\(304\) 0.407803 + 3.87999i 0.0233891 + 0.222533i
\(305\) 0 0
\(306\) 1.24955 + 0.131333i 0.0714322 + 0.00750783i
\(307\) −2.33566 2.33566i −0.133303 0.133303i 0.637307 0.770610i \(-0.280048\pi\)
−0.770610 + 0.637307i \(0.780048\pi\)
\(308\) −2.74501 + 4.06240i −0.156412 + 0.231477i
\(309\) 6.79877 + 2.20905i 0.386768 + 0.125669i
\(310\) 0 0
\(311\) 1.28441 6.04267i 0.0728321 0.342648i −0.926611 0.376022i \(-0.877292\pi\)
0.999443 + 0.0333736i \(0.0106251\pi\)
\(312\) −5.95003 0.311828i −0.336854 0.0176538i
\(313\) 6.10018 9.39345i 0.344802 0.530949i −0.623144 0.782107i \(-0.714145\pi\)
0.967946 + 0.251158i \(0.0808115\pi\)
\(314\) 3.16170 + 9.73071i 0.178425 + 0.549136i
\(315\) 0 0
\(316\) 4.50152 13.8542i 0.253230 0.779362i
\(317\) 5.65947 + 6.98886i 0.317867 + 0.392534i 0.910888 0.412654i \(-0.135398\pi\)
−0.593021 + 0.805187i \(0.702065\pi\)
\(318\) 2.52370 + 9.41859i 0.141522 + 0.528168i
\(319\) 3.71186 + 8.33698i 0.207824 + 0.466781i
\(320\) 0 0
\(321\) 6.50714 + 8.95630i 0.363193 + 0.499892i
\(322\) 2.18326 + 0.884192i 0.121668 + 0.0492741i
\(323\) −2.22474 + 4.36630i −0.123788 + 0.242947i
\(324\) 0.921313 0.531920i 0.0511840 0.0295511i
\(325\) 0 0
\(326\) 1.35707 2.35051i 0.0751610 0.130183i
\(327\) 12.1481 0.636653i 0.671790 0.0352070i
\(328\) 0.0270324 0.170676i 0.00149262 0.00942401i
\(329\) 0.490129 + 0.0605914i 0.0270217 + 0.00334051i
\(330\) 0 0
\(331\) 0.755353 7.18671i 0.0415180 0.395017i −0.953953 0.299955i \(-0.903028\pi\)
0.995471 0.0950622i \(-0.0303050\pi\)
\(332\) −8.43463 + 2.26005i −0.462910 + 0.124036i
\(333\) 12.4381 + 4.77456i 0.681606 + 0.261644i
\(334\) 14.5616 3.09517i 0.796777 0.169360i
\(335\) 0 0
\(336\) −1.80301 + 1.26026i −0.0983624 + 0.0687531i
\(337\) 4.60585 + 9.03950i 0.250897 + 0.492413i 0.981763 0.190108i \(-0.0608838\pi\)
−0.730866 + 0.682521i \(0.760884\pi\)
\(338\) 5.84101 + 3.79320i 0.317709 + 0.206323i
\(339\) −7.26254 1.54370i −0.394447 0.0838423i
\(340\) 0 0
\(341\) −2.70455 12.7239i −0.146459 0.689038i
\(342\) 1.11402 + 7.03363i 0.0602392 + 0.380335i
\(343\) 18.4235 1.89023i 0.994778 0.102063i
\(344\) −7.33539 + 10.0963i −0.395498 + 0.544356i
\(345\) 0 0
\(346\) −3.83278 + 0.402841i −0.206051 + 0.0216569i
\(347\) −6.22958 5.04462i −0.334422 0.270809i 0.447370 0.894349i \(-0.352361\pi\)
−0.781792 + 0.623540i \(0.785694\pi\)
\(348\) 0.564054 + 10.7628i 0.0302365 + 0.576946i
\(349\) −8.82065 −0.472158 −0.236079 0.971734i \(-0.575862\pi\)
−0.236079 + 0.971734i \(0.575862\pi\)
\(350\) 0 0
\(351\) 10.6965 0.570939
\(352\) 0.406747 + 7.76119i 0.0216797 + 0.413673i
\(353\) 13.0839 + 10.5951i 0.696387 + 0.563923i 0.910814 0.412817i \(-0.135455\pi\)
−0.214427 + 0.976740i \(0.568789\pi\)
\(354\) −4.18910 + 0.440292i −0.222648 + 0.0234012i
\(355\) 0 0
\(356\) −12.8773 + 17.7241i −0.682497 + 0.939376i
\(357\) −2.76151 + 0.0941494i −0.146155 + 0.00498292i
\(358\) 2.46251 + 15.5477i 0.130148 + 0.821720i
\(359\) 2.87394 + 13.5208i 0.151681 + 0.713602i 0.986590 + 0.163215i \(0.0521865\pi\)
−0.834910 + 0.550387i \(0.814480\pi\)
\(360\) 0 0
\(361\) −8.58309 1.82439i −0.451742 0.0960206i
\(362\) 2.96857 + 1.92781i 0.156024 + 0.101323i
\(363\) −4.71031 9.24451i −0.247227 0.485211i
\(364\) −7.39491 + 0.640814i −0.387599 + 0.0335878i
\(365\) 0 0
\(366\) 3.90590 0.830225i 0.204165 0.0433966i
\(367\) −0.970143 0.372403i −0.0506410 0.0194393i 0.332916 0.942957i \(-0.391968\pi\)
−0.383557 + 0.923517i \(0.625301\pi\)
\(368\) −0.819049 + 0.219464i −0.0426959 + 0.0114403i
\(369\) −0.0118973 + 0.113195i −0.000619350 + 0.00589272i
\(370\) 0 0
\(371\) 11.5244 + 27.2124i 0.598319 + 1.41280i
\(372\) 2.40320 15.1732i 0.124600 0.786695i
\(373\) −21.9752 + 1.15167i −1.13783 + 0.0596314i −0.611930 0.790912i \(-0.709606\pi\)
−0.525904 + 0.850544i \(0.676273\pi\)
\(374\) −0.479720 + 0.830899i −0.0248057 + 0.0429648i
\(375\) 0 0
\(376\) 0.426675 0.246341i 0.0220041 0.0127041i
\(377\) −6.27237 + 12.3102i −0.323044 + 0.634009i
\(378\) −8.62989 + 6.73093i −0.443874 + 0.346202i
\(379\) 17.8299 + 24.5408i 0.915862 + 1.26058i 0.965125 + 0.261790i \(0.0843129\pi\)
−0.0492625 + 0.998786i \(0.515687\pi\)
\(380\) 0 0
\(381\) −8.44719 18.9727i −0.432762 0.972000i
\(382\) 3.11380 + 11.6209i 0.159316 + 0.594575i
\(383\) 13.4576 + 16.6188i 0.687652 + 0.849179i 0.994733 0.102504i \(-0.0326855\pi\)
−0.307081 + 0.951683i \(0.599352\pi\)
\(384\) −3.23567 + 9.95838i −0.165120 + 0.508186i
\(385\) 0 0
\(386\) −1.88327 5.79612i −0.0958562 0.295015i
\(387\) 4.47688 6.89379i 0.227572 0.350431i
\(388\) −24.2498 1.27088i −1.23110 0.0645190i
\(389\) −4.37542 + 20.5847i −0.221842 + 1.04369i 0.716395 + 0.697695i \(0.245791\pi\)
−0.938238 + 0.345992i \(0.887543\pi\)
\(390\) 0 0
\(391\) −1.01295 0.329128i −0.0512271 0.0166447i
\(392\) 13.5334 12.5783i 0.683539 0.635301i
\(393\) 13.3088 + 13.3088i 0.671340 + 0.671340i
\(394\) 12.6454 + 1.32909i 0.637066 + 0.0669583i
\(395\) 0 0
\(396\) −0.336752 3.20399i −0.0169224 0.161006i
\(397\) 1.83661 + 4.78454i 0.0921770 + 0.240129i 0.971916 0.235327i \(-0.0756162\pi\)
−0.879739 + 0.475457i \(0.842283\pi\)
\(398\) 18.9145 + 9.63744i 0.948100 + 0.483081i
\(399\) −4.56645 14.9804i −0.228608 0.749960i
\(400\) 0 0
\(401\) −17.1661 29.7326i −0.857235 1.48477i −0.874556 0.484924i \(-0.838847\pi\)
0.0173216 0.999850i \(-0.494486\pi\)
\(402\) 4.03873 + 6.21910i 0.201433 + 0.310180i
\(403\) 12.3935 15.3047i 0.617364 0.762382i
\(404\) −4.52068 2.01273i −0.224912 0.100137i
\(405\) 0 0
\(406\) −2.68586 13.8788i −0.133297 0.688792i
\(407\) −7.19393 + 7.19393i −0.356590 + 0.356590i
\(408\) −2.14223 + 1.73474i −0.106056 + 0.0858825i
\(409\) −17.5576 19.4997i −0.868168 0.964198i 0.131464 0.991321i \(-0.458032\pi\)
−0.999632 + 0.0271225i \(0.991366\pi\)
\(410\) 0 0
\(411\) −2.75655 2.48201i −0.135970 0.122428i
\(412\) 7.91610 4.03345i 0.389998 0.198714i
\(413\) −12.3893 + 3.07812i −0.609635 + 0.151464i
\(414\) −1.47203 + 0.478291i −0.0723462 + 0.0235067i
\(415\) 0 0
\(416\) −8.74388 + 7.87302i −0.428704 + 0.386007i
\(417\) −3.47247 + 9.04608i −0.170047 + 0.442989i
\(418\) −5.25268 1.40745i −0.256917 0.0688407i
\(419\) −20.8379 15.1396i −1.01800 0.739617i −0.0521248 0.998641i \(-0.516599\pi\)
−0.965871 + 0.259023i \(0.916599\pi\)
\(420\) 0 0
\(421\) −9.53283 + 6.92601i −0.464602 + 0.337553i −0.795334 0.606172i \(-0.792704\pi\)
0.330732 + 0.943725i \(0.392704\pi\)
\(422\) −10.6551 + 4.09009i −0.518680 + 0.199103i
\(423\) −0.272158 + 0.176741i −0.0132328 + 0.00859345i
\(424\) 25.5318 + 14.7408i 1.23994 + 0.715877i
\(425\) 0 0
\(426\) 9.41470i 0.456144i
\(427\) 11.3757 4.12978i 0.550510 0.199854i
\(428\) 13.5893 + 2.15233i 0.656864 + 0.104037i
\(429\) −1.21890 + 2.73769i −0.0588489 + 0.132177i
\(430\) 0 0
\(431\) −14.2385 + 6.33937i −0.685842 + 0.305357i −0.719914 0.694063i \(-0.755819\pi\)
0.0340723 + 0.999419i \(0.489152\pi\)
\(432\) 1.01970 3.80556i 0.0490602 0.183095i
\(433\) 0.766591 0.121416i 0.0368400 0.00583489i −0.137987 0.990434i \(-0.544063\pi\)
0.174827 + 0.984599i \(0.444063\pi\)
\(434\) −0.368312 + 20.1465i −0.0176796 + 0.967063i
\(435\) 0 0
\(436\) 10.1163 11.2352i 0.484481 0.538070i
\(437\) 0.315938 6.02845i 0.0151134 0.288380i
\(438\) −0.0752404 + 1.43567i −0.00359512 + 0.0685991i
\(439\) −7.06803 + 7.84984i −0.337339 + 0.374653i −0.887817 0.460197i \(-0.847779\pi\)
0.550478 + 0.834850i \(0.314445\pi\)
\(440\) 0 0
\(441\) −8.46810 + 8.74002i −0.403243 + 0.416191i
\(442\) −1.43464 + 0.227225i −0.0682391 + 0.0108080i
\(443\) 7.03490 26.2546i 0.334238 1.24739i −0.570455 0.821329i \(-0.693233\pi\)
0.904693 0.426064i \(-0.140100\pi\)
\(444\) −10.9762 + 4.88694i −0.520909 + 0.231924i
\(445\) 0 0
\(446\) 6.83506 15.3518i 0.323650 0.726929i
\(447\) 0.0438526 + 0.00694557i 0.00207416 + 0.000328514i
\(448\) 1.41691 7.99703i 0.0669426 0.377824i
\(449\) 39.0168i 1.84131i 0.390372 + 0.920657i \(0.372346\pi\)
−0.390372 + 0.920657i \(0.627654\pi\)
\(450\) 0 0
\(451\) −0.0752701 0.0434572i −0.00354433 0.00204632i
\(452\) −7.73894 + 5.02573i −0.364009 + 0.236390i
\(453\) 10.2694 3.94207i 0.482501 0.185215i
\(454\) 5.91145 4.29492i 0.277438 0.201571i
\(455\) 0 0
\(456\) −12.6398 9.18334i −0.591912 0.430049i
\(457\) −22.2310 5.95677i −1.03992 0.278646i −0.301840 0.953359i \(-0.597601\pi\)
−0.738080 + 0.674713i \(0.764268\pi\)
\(458\) −0.867075 + 2.25881i −0.0405158 + 0.105547i
\(459\) 3.67760 3.31133i 0.171656 0.154560i
\(460\) 0 0
\(461\) −23.0880 + 7.50175i −1.07532 + 0.349391i −0.792556 0.609799i \(-0.791250\pi\)
−0.282760 + 0.959191i \(0.591250\pi\)
\(462\) −0.739328 2.97576i −0.0343967 0.138445i
\(463\) 5.49284 2.79874i 0.255274 0.130069i −0.321671 0.946851i \(-0.604245\pi\)
0.576945 + 0.816783i \(0.304245\pi\)
\(464\) 3.78173 + 3.40509i 0.175563 + 0.158077i
\(465\) 0 0
\(466\) 15.1636 + 16.8409i 0.702441 + 0.780140i
\(467\) −22.7963 + 18.4601i −1.05489 + 0.854231i −0.989630 0.143637i \(-0.954120\pi\)
−0.0652571 + 0.997868i \(0.520787\pi\)
\(468\) 3.44880 3.44880i 0.159421 0.159421i
\(469\) 14.7303 + 16.9736i 0.680182 + 0.783767i
\(470\) 0 0
\(471\) 13.5068 + 6.01362i 0.622361 + 0.277093i
\(472\) −8.01470 + 9.89733i −0.368906 + 0.455561i
\(473\) 3.41863 + 5.26423i 0.157189 + 0.242050i
\(474\) 4.55512 + 7.88970i 0.209224 + 0.362386i
\(475\) 0 0
\(476\) −2.34409 + 2.50956i −0.107441 + 0.115026i
\(477\) −17.3019 8.81577i −0.792200 0.403646i
\(478\) −0.895202 2.33208i −0.0409456 0.106667i
\(479\) −0.950688 9.04519i −0.0434380 0.413285i −0.994536 0.104395i \(-0.966709\pi\)
0.951098 0.308890i \(-0.0999574\pi\)
\(480\) 0 0
\(481\) −15.3180 1.60999i −0.698441 0.0734091i
\(482\) −14.7394 14.7394i −0.671360 0.671360i
\(483\) 3.06058 1.48961i 0.139261 0.0677798i
\(484\) −12.2635 3.98466i −0.557433 0.181121i
\(485\) 0 0
\(486\) 2.44182 11.4878i 0.110763 0.521099i
\(487\) −0.530438 0.0277991i −0.0240364 0.00125970i 0.0403139 0.999187i \(-0.487164\pi\)
−0.0643504 + 0.997927i \(0.520498\pi\)
\(488\) 6.57559 10.1255i 0.297663 0.458361i
\(489\) −1.21199 3.73011i −0.0548080 0.168682i
\(490\) 0 0
\(491\) 1.98288 6.10267i 0.0894861 0.275410i −0.896291 0.443466i \(-0.853749\pi\)
0.985777 + 0.168056i \(0.0537489\pi\)
\(492\) −0.0645960 0.0797694i −0.00291221 0.00359628i
\(493\) 1.65436 + 6.17415i 0.0745086 + 0.278070i
\(494\) −3.34855 7.52097i −0.150658 0.338384i
\(495\) 0 0
\(496\) −4.26357 5.86830i −0.191440 0.263494i
\(497\) 3.94772 + 28.2589i 0.177079 + 1.26758i
\(498\) 2.47926 4.86582i 0.111098 0.218043i
\(499\) −5.43364 + 3.13711i −0.243243 + 0.140437i −0.616666 0.787225i \(-0.711517\pi\)
0.373423 + 0.927661i \(0.378184\pi\)
\(500\) 0 0
\(501\) 10.7562 18.6303i 0.480553 0.832343i
\(502\) −10.6757 + 0.559489i −0.476479 + 0.0249712i
\(503\) −0.780151 + 4.92568i −0.0347852 + 0.219625i −0.998957 0.0456521i \(-0.985463\pi\)
0.964172 + 0.265277i \(0.0854634\pi\)
\(504\) −1.48951 + 12.0488i −0.0663480 + 0.536695i
\(505\) 0 0
\(506\) 0.123544 1.17544i 0.00549220 0.0522548i
\(507\) 9.72131 2.60482i 0.431739 0.115684i
\(508\) −24.0966 9.24984i −1.06912 0.410395i
\(509\) 22.1320 4.70429i 0.980982 0.208514i 0.310609 0.950538i \(-0.399467\pi\)
0.670374 + 0.742024i \(0.266134\pi\)
\(510\) 0 0
\(511\) 0.376159 + 4.34082i 0.0166403 + 0.192027i
\(512\) 3.74158 + 7.34327i 0.165356 + 0.324530i
\(513\) 23.5235 + 15.2763i 1.03859 + 0.674467i
\(514\) −7.02566 1.49335i −0.309889 0.0658688i
\(515\) 0 0
\(516\) 1.54122 + 7.25087i 0.0678484 + 0.319202i
\(517\) −0.0387649 0.244752i −0.00170488 0.0107642i
\(518\) 13.3716 8.34013i 0.587513 0.366444i
\(519\) −3.27343 + 4.50548i −0.143687 + 0.197769i
\(520\) 0 0
\(521\) 30.6917 3.22582i 1.34463 0.141326i 0.595287 0.803513i \(-0.297038\pi\)
0.749339 + 0.662187i \(0.230372\pi\)
\(522\) 7.21877 + 5.84564i 0.315957 + 0.255857i
\(523\) 1.60327 + 30.5923i 0.0701062 + 1.33771i 0.776603 + 0.629990i \(0.216941\pi\)
−0.706497 + 0.707716i \(0.749726\pi\)
\(524\) 23.3916 1.02187
\(525\) 0 0
\(526\) 6.52252 0.284395
\(527\) −0.476838 9.09861i −0.0207714 0.396342i
\(528\) 0.857805 + 0.694637i 0.0373312 + 0.0302302i
\(529\) −21.5691 + 2.26701i −0.937789 + 0.0985656i
\(530\) 0 0
\(531\) 4.93056 6.78633i 0.213968 0.294502i
\(532\) −17.1778 9.15184i −0.744754 0.396783i
\(533\) −0.0205840 0.129963i −0.000891594 0.00562930i
\(534\) −2.84865 13.4018i −0.123273 0.579954i
\(535\) 0 0
\(536\) 21.9306 + 4.66148i 0.947256 + 0.201345i
\(537\) 19.0775 + 12.3891i 0.823254 + 0.534628i
\(538\) −1.55398 3.04985i −0.0669966 0.131488i
\(539\) −3.46693 8.62194i −0.149331 0.371373i
\(540\) 0 0
\(541\) −38.7310 + 8.23253i −1.66518 + 0.353944i −0.941712 0.336419i \(-0.890784\pi\)
−0.723463 + 0.690363i \(0.757451\pi\)
\(542\) −2.49056 0.956035i −0.106979 0.0410652i
\(543\) 4.94065 1.32384i 0.212023 0.0568115i
\(544\) −0.569001 + 5.41369i −0.0243957 + 0.232110i
\(545\) 0 0
\(546\) 2.79672 3.70500i 0.119689 0.158559i
\(547\) −5.86395 + 37.0235i −0.250724 + 1.58301i 0.465440 + 0.885079i \(0.345896\pi\)
−0.716164 + 0.697932i \(0.754104\pi\)
\(548\) −4.60365 + 0.241267i −0.196658 + 0.0103064i
\(549\) −3.97611 + 6.88682i −0.169696 + 0.293922i
\(550\) 0 0
\(551\) −31.3750 + 18.1143i −1.33662 + 0.771697i
\(552\) 1.54162 3.02561i 0.0656159 0.128778i
\(553\) 16.9808 + 21.7715i 0.722097 + 0.925817i
\(554\) −3.51735 4.84122i −0.149438 0.205684i
\(555\) 0 0
\(556\) 4.89811 + 11.0013i 0.207726 + 0.466560i
\(557\) 1.55832 + 5.81572i 0.0660280 + 0.246420i 0.991050 0.133495i \(-0.0426200\pi\)
−0.925021 + 0.379915i \(0.875953\pi\)
\(558\) −8.33239 10.2896i −0.352738 0.435595i
\(559\) −2.93652 + 9.03767i −0.124201 + 0.382253i
\(560\) 0 0
\(561\) 0.428435 + 1.31859i 0.0180885 + 0.0556708i
\(562\) −10.2709 + 15.8159i −0.433253 + 0.667152i
\(563\) −30.1805 1.58169i −1.27196 0.0666604i −0.595628 0.803260i \(-0.703097\pi\)
−0.676329 + 0.736600i \(0.736430\pi\)
\(564\) 0.0608453 0.286255i 0.00256205 0.0120535i
\(565\) 0 0
\(566\) −5.35873 1.74116i −0.225244 0.0731863i
\(567\) −0.142319 + 2.01137i −0.00597682 + 0.0844694i
\(568\) 20.1280 + 20.1280i 0.844552 + 0.844552i
\(569\) 4.95634 + 0.520932i 0.207781 + 0.0218386i 0.207847 0.978161i \(-0.433354\pi\)
−6.62580e−5 1.00000i \(0.500021\pi\)
\(570\) 0 0
\(571\) 0.255295 + 2.42897i 0.0106837 + 0.101649i 0.998564 0.0535674i \(-0.0170592\pi\)
−0.987880 + 0.155216i \(0.950393\pi\)
\(572\) 1.33472 + 3.47706i 0.0558073 + 0.145383i
\(573\) 15.4903 + 7.89270i 0.647117 + 0.329722i
\(574\) 0.0983877 + 0.0919002i 0.00410662 + 0.00383584i
\(575\) 0 0
\(576\) 2.66831 + 4.62165i 0.111180 + 0.192569i
\(577\) 13.2368 + 20.3829i 0.551057 + 0.848553i 0.998963 0.0455274i \(-0.0144968\pi\)
−0.447906 + 0.894081i \(0.647830\pi\)
\(578\) 7.89244 9.74635i 0.328282 0.405395i
\(579\) −8.04537 3.58203i −0.334354 0.148864i
\(580\) 0 0
\(581\) 5.40137 15.6447i 0.224087 0.649052i
\(582\) 10.7384 10.7384i 0.445123 0.445123i
\(583\) 11.5237 9.33174i 0.477264 0.386481i
\(584\) 2.90851 + 3.23023i 0.120355 + 0.133668i
\(585\) 0 0
\(586\) −17.9877 16.1962i −0.743066 0.669060i
\(587\) 8.03430 4.09368i 0.331611 0.168964i −0.280255 0.959926i \(-0.590419\pi\)
0.611866 + 0.790961i \(0.290419\pi\)
\(588\) −0.173399 10.9733i −0.00715085 0.452532i
\(589\) 49.1130 15.9578i 2.02366 0.657528i
\(590\) 0 0
\(591\) 13.6545 12.2946i 0.561671 0.505731i
\(592\) −2.03306 + 5.29629i −0.0835581 + 0.217676i
\(593\) −24.7752 6.63849i −1.01740 0.272610i −0.288679 0.957426i \(-0.593216\pi\)
−0.728716 + 0.684816i \(0.759883\pi\)
\(594\) 4.44277 + 3.22786i 0.182289 + 0.132441i
\(595\) 0 0
\(596\) 0.0446416 0.0324340i 0.00182859 0.00132855i
\(597\) 28.6386 10.9933i 1.17210 0.449926i
\(598\) 1.50067 0.974545i 0.0613669 0.0398521i
\(599\) −23.1803 13.3832i −0.947123 0.546822i −0.0549370 0.998490i \(-0.517496\pi\)
−0.892186 + 0.451668i \(0.850829\pi\)
\(600\) 0 0
\(601\) 3.83116i 0.156276i −0.996943 0.0781382i \(-0.975102\pi\)
0.996943 0.0781382i \(-0.0248975\pi\)
\(602\) −3.31791 9.13938i −0.135228 0.372493i
\(603\) −14.5857 2.31015i −0.593975 0.0940764i
\(604\) 5.56051 12.4891i 0.226254 0.508175i
\(605\) 0 0
\(606\) 2.82720 1.25875i 0.114847 0.0511332i
\(607\) 8.71399 32.5210i 0.353690 1.31999i −0.528435 0.848974i \(-0.677221\pi\)
0.882125 0.471015i \(-0.156112\pi\)
\(608\) −30.4732 + 4.82648i −1.23585 + 0.195740i
\(609\) −17.5013 10.5355i −0.709187 0.426921i
\(610\) 0 0
\(611\) 0.251029 0.278796i 0.0101555 0.0112789i
\(612\) 0.118095 2.25339i 0.00477370 0.0910877i
\(613\) −2.32439 + 44.3520i −0.0938813 + 1.79136i 0.394666 + 0.918825i \(0.370860\pi\)
−0.488547 + 0.872537i \(0.662473\pi\)
\(614\) 1.71789 1.90791i 0.0693284 0.0769970i
\(615\) 0 0
\(616\) −7.94261 4.78134i −0.320017 0.192646i
\(617\) 34.5246 5.46815i 1.38991 0.220140i 0.583794 0.811902i \(-0.301568\pi\)
0.806112 + 0.591762i \(0.201568\pi\)
\(618\) −1.43807 + 5.36695i −0.0578476 + 0.215890i
\(619\) −12.2138 + 5.43792i −0.490913 + 0.218568i −0.637237 0.770668i \(-0.719923\pi\)
0.146324 + 0.989237i \(0.453256\pi\)
\(620\) 0 0
\(621\) −2.47955 + 5.56917i −0.0995011 + 0.223483i
\(622\) 4.74246 + 0.751132i 0.190155 + 0.0301176i
\(623\) −14.1700 39.0321i −0.567709 1.56379i
\(624\) 1.67106i 0.0668960i
\(625\) 0 0
\(626\) 7.53917 + 4.35274i 0.301326 + 0.173971i
\(627\) −6.59042 + 4.27987i −0.263196 + 0.170921i
\(628\) 17.1546 6.58503i 0.684543 0.262771i
\(629\) −5.76493 + 4.18846i −0.229863 + 0.167005i
\(630\) 0 0
\(631\) 11.1996 + 8.13699i 0.445849 + 0.323928i 0.787955 0.615733i \(-0.211140\pi\)
−0.342106 + 0.939662i \(0.611140\pi\)
\(632\) 26.6062 + 7.12911i 1.05834 + 0.283581i
\(633\) −5.91041 + 15.3972i −0.234918 + 0.611982i
\(634\) −5.19442 + 4.67707i −0.206297 + 0.185750i
\(635\) 0 0
\(636\) 16.6548 5.41147i 0.660405 0.214579i
\(637\) 6.84101 12.2935i 0.271051 0.487088i
\(638\) −6.32003 + 3.22021i −0.250212 + 0.127489i
\(639\) −13.9332 12.5455i −0.551189 0.496293i
\(640\) 0 0
\(641\) −1.56927 1.74285i −0.0619824 0.0688384i 0.711356 0.702832i \(-0.248081\pi\)
−0.773339 + 0.633993i \(0.781415\pi\)
\(642\) −6.68703 + 5.41505i −0.263916 + 0.213715i
\(643\) −16.5284 + 16.5284i −0.651816 + 0.651816i −0.953430 0.301614i \(-0.902475\pi\)
0.301614 + 0.953430i \(0.402475\pi\)
\(644\) 1.38057 3.99872i 0.0544020 0.157572i
\(645\) 0 0
\(646\) −3.47954 1.54919i −0.136901 0.0609521i
\(647\) 7.37948 9.11290i 0.290117 0.358265i −0.611161 0.791507i \(-0.709297\pi\)
0.901278 + 0.433242i \(0.142630\pi\)
\(648\) 1.09559 + 1.68706i 0.0430388 + 0.0662739i
\(649\) 3.20276 + 5.54735i 0.125719 + 0.217752i
\(650\) 0 0
\(651\) 21.2789 + 19.8758i 0.833986 + 0.778994i
\(652\) −4.34313 2.21293i −0.170090 0.0866652i
\(653\) 7.45920 + 19.4319i 0.291901 + 0.760429i 0.998599 + 0.0529133i \(0.0168507\pi\)
−0.706698 + 0.707515i \(0.749816\pi\)
\(654\) 0.988318 + 9.40322i 0.0386463 + 0.367695i
\(655\) 0 0
\(656\) −0.0481998 0.00506600i −0.00188188 0.000197794i
\(657\) −2.02445 2.02445i −0.0789813 0.0789813i
\(658\) −0.0270925 + 0.382894i −0.00105618 + 0.0149268i
\(659\) −30.5370 9.92209i −1.18955 0.386510i −0.353646 0.935379i \(-0.615058\pi\)
−0.835908 + 0.548870i \(0.815058\pi\)
\(660\) 0 0
\(661\) 2.10304 9.89402i 0.0817988 0.384833i −0.918136 0.396266i \(-0.870306\pi\)
0.999935 + 0.0114328i \(0.00363925\pi\)
\(662\) 5.60892 + 0.293951i 0.217997 + 0.0114247i
\(663\) −1.14319 + 1.76035i −0.0443977 + 0.0683665i
\(664\) −5.10231 15.7033i −0.198008 0.609406i
\(665\) 0 0
\(666\) −3.19997 + 9.84849i −0.123996 + 0.381621i
\(667\) −4.95535 6.11935i −0.191872 0.236942i
\(668\) −6.91979 25.8250i −0.267735 0.999199i
\(669\) −9.87704 22.1842i −0.381868 0.857691i
\(670\) 0 0
\(671\) −3.56931 4.91273i −0.137792 0.189654i
\(672\) −10.6991 13.7176i −0.412727 0.529167i
\(673\) 5.12781 10.0639i 0.197663 0.387935i −0.770806 0.637070i \(-0.780146\pi\)
0.968469 + 0.249135i \(0.0801463\pi\)
\(674\) −6.82894 + 3.94269i −0.263041 + 0.151867i
\(675\) 0 0
\(676\) 6.25399 10.8322i 0.240538 0.416624i
\(677\) 24.4201 1.27981i 0.938542 0.0491869i 0.423074 0.906095i \(-0.360951\pi\)
0.515469 + 0.856908i \(0.327618\pi\)
\(678\) 0.902768 5.69985i 0.0346706 0.218901i
\(679\) 27.7294 36.7350i 1.06416 1.40976i
\(680\) 0 0
\(681\) 1.10371 10.5011i 0.0422943 0.402404i
\(682\) 9.76605 2.61681i 0.373961 0.100203i
\(683\) 15.3920 + 5.90842i 0.588957 + 0.226079i 0.634552 0.772881i \(-0.281185\pi\)
−0.0455944 + 0.998960i \(0.514518\pi\)
\(684\) 12.5099 2.65907i 0.478329 0.101672i
\(685\) 0 0
\(686\) 2.21659 + 14.2231i 0.0846299 + 0.543042i
\(687\) 1.58730 + 3.11525i 0.0605593 + 0.118854i
\(688\) 2.93544 + 1.90630i 0.111913 + 0.0726770i
\(689\) 21.9585 + 4.66741i 0.836550 + 0.177814i
\(690\) 0 0
\(691\) 5.84621 + 27.5043i 0.222400 + 1.04631i 0.937687 + 0.347480i \(0.112963\pi\)
−0.715287 + 0.698831i \(0.753704\pi\)
\(692\) 1.08274 + 6.83613i 0.0411594 + 0.259870i
\(693\) 5.38914 + 2.87117i 0.204716 + 0.109067i
\(694\) 3.66214 5.04050i 0.139013 0.191335i
\(695\) 0 0
\(696\) −20.2674 + 2.13019i −0.768233 + 0.0807445i
\(697\) −0.0473096 0.0383106i −0.00179198 0.00145112i
\(698\) −0.358806 6.84643i −0.0135810 0.259141i
\(699\) 32.7474 1.23862
\(700\) 0 0
\(701\) −35.1051 −1.32590 −0.662951 0.748663i \(-0.730696\pi\)
−0.662951 + 0.748663i \(0.730696\pi\)
\(702\) 0.435113 + 8.30246i 0.0164223 + 0.313356i
\(703\) −31.3876 25.4172i −1.18381 0.958627i
\(704\) −4.05282 + 0.425969i −0.152747 + 0.0160543i
\(705\) 0 0
\(706\) −7.69154 + 10.5865i −0.289475 + 0.398428i
\(707\) 7.95823 4.96372i 0.299300 0.186680i
\(708\) 1.18339 + 7.47165i 0.0444746 + 0.280802i
\(709\) 10.9224 + 51.3859i 0.410200 + 1.92984i 0.365421 + 0.930842i \(0.380925\pi\)
0.0447789 + 0.998997i \(0.485742\pi\)
\(710\) 0 0
\(711\) −17.7462 3.77207i −0.665534 0.141464i
\(712\) −34.7425 22.5620i −1.30203 0.845548i
\(713\) 5.09550 + 10.0005i 0.190828 + 0.374521i
\(714\) −0.185410 2.13961i −0.00693879 0.0800728i
\(715\) 0 0
\(716\) 27.6529 5.87780i 1.03344 0.219664i
\(717\) −3.36999 1.29362i −0.125854 0.0483110i
\(718\) −10.3777 + 2.78070i −0.387293 + 0.103775i
\(719\) 0.289532 2.75471i 0.0107977 0.102733i −0.987796 0.155756i \(-0.950219\pi\)
0.998593 + 0.0530223i \(0.0168854\pi\)
\(720\) 0 0
\(721\) −2.06603 + 16.7123i −0.0769430 + 0.622398i
\(722\) 1.06692 6.73625i 0.0397066 0.250697i
\(723\) −30.0803 + 1.57644i −1.11870 + 0.0586286i
\(724\) 3.17846 5.50525i 0.118126 0.204601i
\(725\) 0 0
\(726\) 6.98382 4.03211i 0.259194 0.149646i
\(727\) −2.70831 + 5.31536i −0.100446 + 0.197136i −0.935761 0.352636i \(-0.885285\pi\)
0.835315 + 0.549772i \(0.185285\pi\)
\(728\) −1.94184 13.9003i −0.0719695 0.515178i
\(729\) −11.3195 15.5799i −0.419239 0.577033i
\(730\) 0 0
\(731\) 1.78818 + 4.01632i 0.0661383 + 0.148549i
\(732\) −1.85611 6.92710i −0.0686038 0.256033i
\(733\) −18.9592 23.4127i −0.700275 0.864768i 0.295618 0.955306i \(-0.404475\pi\)
−0.995893 + 0.0905384i \(0.971141\pi\)
\(734\) 0.249589 0.768156i 0.00921250 0.0283532i
\(735\) 0 0
\(736\) −2.07219 6.37755i −0.0763820 0.235080i
\(737\) 6.14177 9.45749i 0.226235 0.348371i
\(738\) −0.0883442 0.00462993i −0.00325200 0.000170430i
\(739\) 9.39272 44.1893i 0.345517 1.62553i −0.371472 0.928444i \(-0.621147\pi\)
0.716989 0.697084i \(-0.245520\pi\)
\(740\) 0 0
\(741\) −11.3145 3.67629i −0.415648 0.135052i
\(742\) −20.6530 + 10.0520i −0.758194 + 0.369021i
\(743\) −23.4363 23.4363i −0.859793 0.859793i 0.131520 0.991313i \(-0.458014\pi\)
−0.991313 + 0.131520i \(0.958014\pi\)
\(744\) 28.8891 + 3.03637i 1.05913 + 0.111319i
\(745\) 0 0
\(746\) −1.78782 17.0099i −0.0654566 0.622778i
\(747\) 3.89741 + 10.1531i 0.142599 + 0.371482i
\(748\) 1.53529 + 0.782267i 0.0561356 + 0.0286025i
\(749\) −17.8010 + 19.0576i −0.650434 + 0.696351i
\(750\) 0 0
\(751\) 19.3994 + 33.6008i 0.707894 + 1.22611i 0.965637 + 0.259895i \(0.0836881\pi\)
−0.257742 + 0.966214i \(0.582979\pi\)
\(752\) −0.0752582 0.115887i −0.00274438 0.00422598i
\(753\) −9.72182 + 12.0054i −0.354283 + 0.437503i
\(754\) −9.81013 4.36775i −0.357264 0.159064i
\(755\) 0 0
\(756\) 12.8829 + 14.8448i 0.468546 + 0.539901i
\(757\) −2.63808 + 2.63808i −0.0958825 + 0.0958825i −0.753421 0.657538i \(-0.771598\pi\)
0.657538 + 0.753421i \(0.271598\pi\)
\(758\) −18.3229 + 14.8376i −0.665516 + 0.538924i
\(759\) −1.14283 1.26924i −0.0414821 0.0460706i
\(760\) 0 0
\(761\) 29.5054 + 26.5668i 1.06957 + 0.963044i 0.999405 0.0344912i \(-0.0109811\pi\)
0.0701640 + 0.997535i \(0.477648\pi\)
\(762\) 14.3827 7.32833i 0.521029 0.265477i
\(763\) 6.90941 + 27.8100i 0.250138 + 1.00679i
\(764\) 20.5490 6.67679i 0.743438 0.241558i
\(765\) 0 0
\(766\) −12.3518 + 11.1216i −0.446287 + 0.401839i
\(767\) −3.47528 + 9.05342i −0.125485 + 0.326900i
\(768\) −14.5217 3.89107i −0.524006 0.140407i
\(769\) 0.563611 + 0.409487i 0.0203243 + 0.0147665i 0.597901 0.801570i \(-0.296002\pi\)
−0.577577 + 0.816336i \(0.696002\pi\)
\(770\) 0 0
\(771\) −8.39701 + 6.10079i −0.302411 + 0.219714i
\(772\) −10.2182 + 3.92239i −0.367760 + 0.141170i
\(773\) 27.4809 17.8463i 0.988421 0.641888i 0.0541802 0.998531i \(-0.482745\pi\)
0.934241 + 0.356643i \(0.116079\pi\)
\(774\) 5.53295 + 3.19445i 0.198878 + 0.114822i
\(775\) 0 0
\(776\) 45.9162i 1.64829i
\(777\) 3.97304 22.4239i 0.142532 0.804452i
\(778\) −16.1555 2.55878i −0.579202 0.0917365i
\(779\) 0.140339 0.315207i 0.00502817 0.0112935i
\(780\) 0 0
\(781\) 13.0793 5.82329i 0.468015 0.208374i
\(782\) 0.214258 0.799623i 0.00766186 0.0285945i
\(783\) 36.1353 5.72327i 1.29137 0.204533i
\(784\) −3.72159 3.60580i −0.132914 0.128779i
\(785\) 0 0
\(786\) −9.78868 + 10.8714i −0.349151 + 0.387771i
\(787\) 1.39588 26.6351i 0.0497579 0.949438i −0.853701 0.520763i \(-0.825647\pi\)
0.903459 0.428674i \(-0.141019\pi\)
\(788\) 1.19511 22.8041i 0.0425741 0.812363i
\(789\) 6.30682 7.00444i 0.224529 0.249365i
\(790\) 0 0
\(791\) 0.319693 17.4871i 0.0113670 0.621768i
\(792\) 6.01670 0.952952i 0.213794 0.0338617i
\(793\) 2.37940 8.88006i 0.0844951 0.315340i
\(794\) −3.63897 + 1.62017i −0.129142 + 0.0574978i
\(795\) 0 0
\(796\) 15.5067 34.8286i 0.549620 1.23447i
\(797\) −16.3812 2.59453i −0.580252 0.0919030i −0.140593 0.990067i \(-0.544901\pi\)
−0.439660 + 0.898165i \(0.644901\pi\)
\(798\) 11.4418 4.15377i 0.405035 0.147042i
\(799\) 0.173565i 0.00614027i
\(800\) 0 0
\(801\) 23.6299 + 13.6427i 0.834921 + 0.482042i
\(802\) 22.3796 14.5335i 0.790252 0.513196i
\(803\) 2.04104 0.783481i 0.0720267 0.0276484i
\(804\) 10.7742 7.82790i 0.379976 0.276069i
\(805\) 0 0
\(806\) 12.3834 + 8.99706i 0.436186 + 0.316908i
\(807\) −4.77777 1.28020i −0.168186 0.0450652i
\(808\) 3.35324 8.73549i 0.117967 0.307314i
\(809\) −32.1490 + 28.9471i −1.13030 + 1.01773i −0.130645 + 0.991429i \(0.541705\pi\)
−0.999654 + 0.0262968i \(0.991628\pi\)
\(810\) 0 0
\(811\) 24.7816 8.05202i 0.870198 0.282745i 0.160317 0.987066i \(-0.448748\pi\)
0.709881 + 0.704321i \(0.248748\pi\)
\(812\) −24.6388 + 6.12152i −0.864652 + 0.214823i
\(813\) −3.43487 + 1.75015i −0.120466 + 0.0613805i
\(814\) −5.87644 5.29117i −0.205969 0.185455i
\(815\) 0 0
\(816\) 0.517311 + 0.574532i 0.0181095 + 0.0201127i
\(817\) −19.3651 + 15.6816i −0.677500 + 0.548629i
\(818\) 14.4211 14.4211i 0.504223 0.504223i
\(819\) 1.75643 + 9.07607i 0.0613745 + 0.317144i
\(820\) 0 0
\(821\) 24.2885 + 10.8140i 0.847676 + 0.377410i 0.784151 0.620571i \(-0.213099\pi\)
0.0635253 + 0.997980i \(0.479766\pi\)
\(822\) 1.81436 2.24055i 0.0632830 0.0781480i
\(823\) −1.32048 2.03336i −0.0460290 0.0708785i 0.814907 0.579592i \(-0.196788\pi\)
−0.860936 + 0.508713i \(0.830121\pi\)
\(824\) 8.39968 + 14.5487i 0.292617 + 0.506827i
\(825\) 0 0
\(826\) −2.89315 9.49111i −0.100666 0.330238i
\(827\) 5.66953 + 2.88877i 0.197149 + 0.100452i 0.549778 0.835311i \(-0.314712\pi\)
−0.352629 + 0.935763i \(0.614712\pi\)
\(828\) 0.996160 + 2.59509i 0.0346190 + 0.0901855i
\(829\) 1.85268 + 17.6271i 0.0643462 + 0.612213i 0.978414 + 0.206653i \(0.0662570\pi\)
−0.914068 + 0.405561i \(0.867076\pi\)
\(830\) 0 0
\(831\) −8.59994 0.903890i −0.298329 0.0313556i
\(832\) −4.36250 4.36250i −0.151242 0.151242i
\(833\) −1.45369 6.34445i −0.0503674 0.219822i
\(834\) −7.16266 2.32729i −0.248023 0.0805875i
\(835\) 0 0
\(836\) −2.03052 + 9.55283i −0.0702269 + 0.330391i
\(837\) −52.0778 2.72928i −1.80007 0.0943379i
\(838\) 10.9034 16.7898i 0.376653 0.579995i
\(839\) −7.84911 24.1571i −0.270981 0.833995i −0.990255 0.139268i \(-0.955525\pi\)
0.719273 0.694727i \(-0.244475\pi\)
\(840\) 0 0
\(841\) −5.64130 + 17.3621i −0.194528 + 0.598695i
\(842\) −5.76362 7.11748i −0.198627 0.245284i
\(843\) 7.05313 + 26.3226i 0.242923 + 0.906600i
\(844\) 8.33697 + 18.7251i 0.286970 + 0.644546i
\(845\) 0 0
\(846\) −0.148254 0.204054i −0.00509708 0.00701553i
\(847\) 19.2717 15.0311i 0.662184 0.516474i
\(848\) 3.75384 7.36733i 0.128908 0.252995i
\(849\) −7.05132 + 4.07108i −0.242001 + 0.139719i
\(850\) 0 0
\(851\) 4.38910 7.60214i 0.150456 0.260598i
\(852\) 16.8850 0.884906i 0.578471 0.0303164i
\(853\) 3.15894 19.9447i 0.108160 0.682895i −0.872711 0.488237i \(-0.837640\pi\)
0.980871 0.194658i \(-0.0623597\pi\)
\(854\) 3.66821 + 8.66164i 0.125523 + 0.296395i
\(855\) 0 0
\(856\) −2.71941 + 25.8734i −0.0929475 + 0.884336i
\(857\) −3.59245 + 0.962594i −0.122716 + 0.0328816i −0.319654 0.947534i \(-0.603567\pi\)
0.196938 + 0.980416i \(0.436900\pi\)
\(858\) −2.17453 0.834723i −0.0742372 0.0284970i
\(859\) −21.6111 + 4.59358i −0.737361 + 0.156731i −0.561258 0.827641i \(-0.689682\pi\)
−0.176103 + 0.984372i \(0.556349\pi\)
\(860\) 0 0
\(861\) 0.193824 0.0167960i 0.00660552 0.000572408i
\(862\) −5.49970 10.7938i −0.187320 0.367637i
\(863\) 33.0348 + 21.4531i 1.12452 + 0.730270i 0.966373 0.257146i \(-0.0827820\pi\)
0.158145 + 0.987416i \(0.449449\pi\)
\(864\) 30.4762 + 6.47792i 1.03682 + 0.220383i
\(865\) 0 0
\(866\) 0.125424 + 0.590076i 0.00426210 + 0.0200516i
\(867\) −2.83502 17.8996i −0.0962823 0.607903i
\(868\) 36.1669 1.23305i 1.22758 0.0418525i
\(869\) 8.14324 11.2082i 0.276240 0.380212i
\(870\) 0 0
\(871\) 16.9787 1.78454i 0.575303 0.0604667i
\(872\) 22.2164 + 17.9905i 0.752343 + 0.609235i
\(873\) 1.58281 + 30.2017i 0.0535699 + 1.02217i
\(874\) 4.69203 0.158710
\(875\) 0 0
\(876\) 2.58191 0.0872347
\(877\) 1.17820 + 22.4814i 0.0397851 + 0.759145i 0.943573 + 0.331164i \(0.107441\pi\)
−0.903788 + 0.427980i \(0.859225\pi\)
\(878\) −6.38042 5.16677i −0.215329 0.174370i
\(879\) −34.7858 + 3.65613i −1.17329 + 0.123318i
\(880\) 0 0
\(881\) 1.48864 2.04893i 0.0501535 0.0690304i −0.783204 0.621765i \(-0.786416\pi\)
0.833357 + 0.552735i \(0.186416\pi\)
\(882\) −7.12831 6.21726i −0.240023 0.209346i
\(883\) −6.64738 41.9699i −0.223702 1.41240i −0.802366 0.596833i \(-0.796426\pi\)
0.578664 0.815566i \(-0.303574\pi\)
\(884\) 0.542368 + 2.55164i 0.0182418 + 0.0858209i
\(885\) 0 0
\(886\) 20.6645 + 4.39238i 0.694238 + 0.147565i
\(887\) −26.6711 17.3204i −0.895528 0.581563i 0.0127551 0.999919i \(-0.495940\pi\)
−0.908283 + 0.418356i \(0.862606\pi\)
\(888\) −10.3141 20.2426i −0.346120 0.679298i
\(889\) 40.0977 28.0274i 1.34483 0.940008i
\(890\) 0 0
\(891\) 0.989652 0.210357i 0.0331546 0.00704723i
\(892\) −28.1755 10.8156i −0.943385 0.362132i
\(893\) 0.950220 0.254611i 0.0317979 0.00852022i
\(894\) −0.00360720 + 0.0343202i −0.000120643 + 0.00114784i
\(895\) 0 0
\(896\) −24.4790 3.02618i −0.817787 0.101098i
\(897\) 0.404492 2.55386i 0.0135056 0.0852710i
\(898\) −30.2841 + 1.58712i −1.01059 + 0.0529630i
\(899\) 33.6791 58.3340i 1.12326 1.94555i
\(900\) 0 0
\(901\) 8.99448 5.19297i 0.299650 0.173003i
\(902\) 0.0306689 0.0601911i 0.00102116 0.00200414i
\(903\) −13.0228 5.27409i −0.433373 0.175511i
\(904\) −10.2558 14.1160i −0.341104 0.469490i
\(905\) 0 0
\(906\) 3.47751 + 7.81061i 0.115532 + 0.259490i
\(907\) −5.62950 21.0096i −0.186924 0.697611i −0.994210 0.107451i \(-0.965731\pi\)
0.807286 0.590160i \(-0.200936\pi\)
\(908\) −8.25846 10.1983i −0.274067 0.338444i
\(909\) −1.90450 + 5.86143i −0.0631681 + 0.194411i
\(910\) 0 0
\(911\) 1.19819 + 3.68765i 0.0396978 + 0.122177i 0.968941 0.247290i \(-0.0795401\pi\)
−0.929244 + 0.369468i \(0.879540\pi\)
\(912\) −2.38654 + 3.67495i −0.0790263 + 0.121690i
\(913\) −8.29332 0.434634i −0.274469 0.0143843i
\(914\) 3.71923 17.4976i 0.123021 0.578769i
\(915\) 0 0
\(916\) 4.13261 + 1.34277i 0.136545 + 0.0443663i
\(917\) −24.8229 + 36.7359i −0.819724 + 1.21313i
\(918\) 2.71979 + 2.71979i 0.0897665 + 0.0897665i
\(919\) 7.89240 + 0.829525i 0.260346 + 0.0273635i 0.233802 0.972284i \(-0.424883\pi\)
0.0265440 + 0.999648i \(0.491550\pi\)
\(920\) 0 0
\(921\) −0.387796 3.68963i −0.0127783 0.121578i
\(922\) −6.76190 17.6154i −0.222691 0.580131i
\(923\) 19.3127 + 9.84030i 0.635684 + 0.323897i
\(924\) −5.26745 + 1.60566i −0.173286 + 0.0528224i
\(925\) 0 0
\(926\) 2.39577 + 4.14960i 0.0787299 + 0.136364i
\(927\) −6.02647 9.27996i −0.197935 0.304794i
\(928\) −25.3262 + 31.2753i −0.831375 + 1.02666i
\(929\) −44.5122 19.8181i −1.46040 0.650211i −0.485779 0.874082i \(-0.661464\pi\)
−0.974619 + 0.223870i \(0.928131\pi\)
\(930\) 0 0
\(931\) 32.6017 17.2656i 1.06848 0.565856i
\(932\) 28.7785 28.7785i 0.942670 0.942670i
\(933\) 5.39226 4.36656i 0.176535 0.142955i
\(934\) −15.2557 16.9432i −0.499182 0.554398i
\(935\) 0 0
\(936\) 6.85360 + 6.17101i 0.224017 + 0.201706i
\(937\) −36.8319 + 18.7668i −1.20325 + 0.613085i −0.936495 0.350680i \(-0.885950\pi\)
−0.266752 + 0.963765i \(0.585950\pi\)
\(938\) −12.5754 + 12.1238i −0.410601 + 0.395858i
\(939\) 11.9642 3.88740i 0.390437 0.126861i
\(940\) 0 0
\(941\) 33.6343 30.2845i 1.09645 0.987246i 0.0964808 0.995335i \(-0.469241\pi\)
0.999967 + 0.00808856i \(0.00257470\pi\)
\(942\) −4.11824 + 10.7284i −0.134179 + 0.349549i
\(943\) 0.0724368 + 0.0194094i 0.00235887 + 0.000632057i
\(944\) 2.88969 + 2.09948i 0.0940513 + 0.0683323i
\(945\) 0 0
\(946\) −3.94694 + 2.86762i −0.128326 + 0.0932344i
\(947\) −7.46435 + 2.86529i −0.242559 + 0.0931095i −0.476611 0.879115i \(-0.658135\pi\)
0.234052 + 0.972224i \(0.424801\pi\)
\(948\) 13.7218 8.91106i 0.445664 0.289418i
\(949\) 2.86640 + 1.65492i 0.0930472 + 0.0537208i
\(950\) 0 0
\(951\) 10.1006i 0.327535i
\(952\) −4.97074 4.17795i −0.161102 0.135408i
\(953\) −1.51399 0.239793i −0.0490430 0.00776765i 0.131865 0.991268i \(-0.457904\pi\)
−0.180908 + 0.983500i \(0.557904\pi\)
\(954\) 6.13884 13.7881i 0.198752 0.446405i
\(955\) 0 0
\(956\) −4.09839 + 1.82472i −0.132551 + 0.0590156i
\(957\) −2.65289 + 9.90071i −0.0857556 + 0.320044i
\(958\) 6.98204 1.10585i 0.225580 0.0357283i
\(959\) 4.50644 7.48595i 0.145520 0.241734i
\(960\) 0 0
\(961\) −43.5019 + 48.3137i −1.40329 + 1.55851i
\(962\) 0.626538 11.9551i 0.0202004 0.385447i
\(963\) 0.896813 17.1122i 0.0288994 0.551433i
\(964\) −25.0493 + 27.8201i −0.806783 + 0.896024i
\(965\) 0 0
\(966\) 1.28071 + 2.31497i 0.0412062 + 0.0744830i
\(967\) 19.6701 3.11543i 0.632547 0.100186i 0.168076 0.985774i \(-0.446245\pi\)
0.464471 + 0.885588i \(0.346245\pi\)
\(968\) 6.31056 23.5513i 0.202829 0.756969i
\(969\) −5.02813 + 2.23867i −0.161527 + 0.0719163i
\(970\) 0 0
\(971\) −12.0980 + 27.1725i −0.388242 + 0.872007i 0.608665 + 0.793427i \(0.291705\pi\)
−0.996908 + 0.0785798i \(0.974961\pi\)
\(972\) −20.8327 3.29957i −0.668208 0.105834i
\(973\) −22.4751 3.98212i −0.720519 0.127661i
\(974\) 0.412847i 0.0132285i
\(975\) 0 0
\(976\) −2.93248 1.69307i −0.0938663 0.0541938i
\(977\) 26.8835 17.4584i 0.860080 0.558542i −0.0375488 0.999295i \(-0.511955\pi\)
0.897629 + 0.440752i \(0.145288\pi\)
\(978\) 2.84595 1.09246i 0.0910033 0.0349329i
\(979\) −16.8565 + 12.2469i −0.538735 + 0.391414i
\(980\) 0 0
\(981\) −15.2332 11.0676i −0.486358 0.353360i
\(982\) 4.81745 + 1.29083i 0.153731 + 0.0411921i
\(983\) −13.8198 + 36.0017i −0.440782 + 1.14828i 0.515774 + 0.856725i \(0.327504\pi\)
−0.956555 + 0.291550i \(0.905829\pi\)
\(984\) 0.144235 0.129870i 0.00459803 0.00414009i
\(985\) 0 0
\(986\) −4.72497 + 1.53524i −0.150474 + 0.0488919i
\(987\) 0.384988 + 0.399326i 0.0122543 + 0.0127107i
\(988\) −13.1739 + 6.71245i −0.419118 + 0.213551i
\(989\) −4.02477 3.62392i −0.127980 0.115234i
\(990\) 0 0
\(991\) 3.12017 + 3.46530i 0.0991154 + 0.110079i 0.790662 0.612253i \(-0.209737\pi\)
−0.691546 + 0.722332i \(0.743070\pi\)
\(992\) 44.5799 36.1001i 1.41541 1.14618i
\(993\) 5.73911 5.73911i 0.182125 0.182125i
\(994\) −21.7735 + 4.21366i −0.690613 + 0.133649i
\(995\) 0 0
\(996\) −8.95976 3.98914i −0.283901 0.126401i
\(997\) 10.2537 12.6622i 0.324737 0.401017i −0.588466 0.808522i \(-0.700268\pi\)
0.913203 + 0.407505i \(0.133601\pi\)
\(998\) −2.65600 4.08988i −0.0840743 0.129463i
\(999\) 20.3931 + 35.3220i 0.645210 + 1.11754i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.143.12 288
5.2 odd 4 875.2.bb.c.857.7 288
5.3 odd 4 175.2.x.a.17.12 yes 288
5.4 even 2 875.2.bb.b.143.7 288
7.5 odd 6 inner 875.2.bb.a.768.12 288
25.3 odd 20 875.2.bb.b.507.7 288
25.4 even 10 175.2.x.a.3.7 288
25.21 even 5 875.2.bb.c.493.12 288
25.22 odd 20 inner 875.2.bb.a.507.12 288
35.12 even 12 875.2.bb.c.607.12 288
35.19 odd 6 875.2.bb.b.768.7 288
35.33 even 12 175.2.x.a.117.7 yes 288
175.47 even 60 inner 875.2.bb.a.257.12 288
175.54 odd 30 175.2.x.a.103.12 yes 288
175.96 odd 30 875.2.bb.c.243.7 288
175.103 even 60 875.2.bb.b.257.7 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.7 288 25.4 even 10
175.2.x.a.17.12 yes 288 5.3 odd 4
175.2.x.a.103.12 yes 288 175.54 odd 30
175.2.x.a.117.7 yes 288 35.33 even 12
875.2.bb.a.143.12 288 1.1 even 1 trivial
875.2.bb.a.257.12 288 175.47 even 60 inner
875.2.bb.a.507.12 288 25.22 odd 20 inner
875.2.bb.a.768.12 288 7.5 odd 6 inner
875.2.bb.b.143.7 288 5.4 even 2
875.2.bb.b.257.7 288 175.103 even 60
875.2.bb.b.507.7 288 25.3 odd 20
875.2.bb.b.768.7 288 35.19 odd 6
875.2.bb.c.243.7 288 175.96 odd 30
875.2.bb.c.493.12 288 25.21 even 5
875.2.bb.c.607.12 288 35.12 even 12
875.2.bb.c.857.7 288 5.2 odd 4