Properties

Label 875.2.bb.b.143.10
Level $875$
Weight $2$
Character 875.143
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(82,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([27, 50]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 143.10
Character \(\chi\) \(=\) 875.143
Dual form 875.2.bb.b.257.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.00196093 + 0.0374168i) q^{2} +(0.0849253 + 0.0687711i) q^{3} +(1.98765 - 0.208910i) q^{4} +(-0.00240666 + 0.00331248i) q^{6} +(1.46457 + 2.20341i) q^{7} +(0.0234370 + 0.147975i) q^{8} +(-0.621252 - 2.92276i) q^{9} +(-1.34592 - 0.286085i) q^{11} +(0.183169 + 0.118951i) q^{12} +(0.730661 + 1.43400i) q^{13} +(-0.0795726 + 0.0591203i) q^{14} +(3.90435 - 0.829896i) q^{16} +(4.07660 + 1.56486i) q^{17} +(0.108142 - 0.0289766i) q^{18} +(0.00716074 - 0.0681299i) q^{19} +(-0.0271520 + 0.287846i) q^{21} +(0.00806510 - 0.0509210i) q^{22} +(5.63942 - 0.295550i) q^{23} +(-0.00818604 + 0.0141786i) q^{24} +(-0.0522229 + 0.0301509i) q^{26} +(0.297076 - 0.583044i) q^{27} +(3.37137 + 4.07364i) q^{28} +(-3.88840 - 5.35192i) q^{29} +(1.42674 + 3.20452i) q^{31} +(0.116261 + 0.433891i) q^{32} +(-0.0946285 - 0.116856i) q^{33} +(-0.0505580 + 0.155602i) q^{34} +(-1.84543 - 5.67963i) q^{36} +(-4.21599 + 6.49205i) q^{37} +(0.00256324 + 0.000134334i) q^{38} +(-0.0365664 + 0.172031i) q^{39} +(9.12263 + 2.96412i) q^{41} +(-0.0108235 - 0.000451493i) q^{42} +(-3.38639 - 3.38639i) q^{43} +(-2.73499 - 0.287459i) q^{44} +(0.0221170 + 0.210429i) q^{46} +(-2.55469 - 6.65520i) q^{47} +(0.388651 + 0.198028i) q^{48} +(-2.71005 + 6.45412i) q^{49} +(0.238589 + 0.413248i) q^{51} +(1.75187 + 2.69765i) q^{52} +(-1.86647 + 2.30489i) q^{53} +(0.0223982 + 0.00997230i) q^{54} +(-0.291725 + 0.268362i) q^{56} +(0.00529350 - 0.00529350i) q^{57} +(0.192627 - 0.155986i) q^{58} +(-6.88713 - 7.64893i) q^{59} +(5.62046 + 5.06069i) q^{61} +(-0.117105 + 0.0596680i) q^{62} +(5.53018 - 5.64947i) q^{63} +(7.57643 - 2.46173i) q^{64} +(0.00418683 - 0.00376984i) q^{66} +(-3.18113 + 8.28713i) q^{67} +(8.42975 + 2.25874i) q^{68} +(0.499255 + 0.362730i) q^{69} +(5.52909 - 4.01712i) q^{71} +(0.417936 - 0.160431i) q^{72} +(0.359648 - 0.233558i) q^{73} +(-0.251179 - 0.145018i) q^{74} -0.136914i q^{76} +(-1.34084 - 3.38461i) q^{77} +(-0.00650856 - 0.00103085i) q^{78} +(3.70296 - 8.31698i) q^{79} +(-8.12386 + 3.61697i) q^{81} +(-0.0930190 + 0.347152i) q^{82} +(-4.19080 + 0.663758i) q^{83} +(0.00616537 + 0.577808i) q^{84} +(0.120067 - 0.133348i) q^{86} +(0.0378344 - 0.721923i) q^{87} +(0.0107891 - 0.205868i) q^{88} +(5.38706 - 5.98294i) q^{89} +(-2.08959 + 3.71015i) q^{91} +(11.1474 - 1.76558i) q^{92} +(-0.0992118 + 0.370263i) q^{93} +(0.244007 - 0.108639i) q^{94} +(-0.0199657 + 0.0448436i) q^{96} +(16.3848 + 2.59509i) q^{97} +(-0.246806 - 0.0887454i) q^{98} +4.11154i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 2 q^{2} + 6 q^{3} + 10 q^{4} - 10 q^{7} + 64 q^{8} + 10 q^{9} - 6 q^{11} - 6 q^{12} + 20 q^{14} - 30 q^{16} - 12 q^{17} - 14 q^{18} + 30 q^{19} - 12 q^{21} - 8 q^{22} + 30 q^{23} - 48 q^{26} - 58 q^{28}+ \cdots + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.00196093 + 0.0374168i 0.00138659 + 0.0264576i 0.999235 0.0391025i \(-0.0124499\pi\)
−0.997849 + 0.0655602i \(0.979117\pi\)
\(3\) 0.0849253 + 0.0687711i 0.0490316 + 0.0397050i 0.653523 0.756907i \(-0.273290\pi\)
−0.604491 + 0.796612i \(0.706624\pi\)
\(4\) 1.98765 0.208910i 0.993824 0.104455i
\(5\) 0 0
\(6\) −0.00240666 + 0.00331248i −0.000982515 + 0.00135232i
\(7\) 1.46457 + 2.20341i 0.553556 + 0.832812i
\(8\) 0.0234370 + 0.147975i 0.00828623 + 0.0523172i
\(9\) −0.621252 2.92276i −0.207084 0.974254i
\(10\) 0 0
\(11\) −1.34592 0.286085i −0.405811 0.0862578i 0.000483800 1.00000i \(-0.499846\pi\)
−0.406295 + 0.913742i \(0.633179\pi\)
\(12\) 0.183169 + 0.118951i 0.0528762 + 0.0343382i
\(13\) 0.730661 + 1.43400i 0.202649 + 0.397721i 0.969856 0.243679i \(-0.0783542\pi\)
−0.767207 + 0.641399i \(0.778354\pi\)
\(14\) −0.0795726 + 0.0591203i −0.0212667 + 0.0158006i
\(15\) 0 0
\(16\) 3.90435 0.829896i 0.976088 0.207474i
\(17\) 4.07660 + 1.56486i 0.988720 + 0.379534i 0.798360 0.602180i \(-0.205701\pi\)
0.190360 + 0.981714i \(0.439035\pi\)
\(18\) 0.108142 0.0289766i 0.0254893 0.00682984i
\(19\) 0.00716074 0.0681299i 0.00164279 0.0156301i −0.993670 0.112340i \(-0.964165\pi\)
0.995313 + 0.0967102i \(0.0308320\pi\)
\(20\) 0 0
\(21\) −0.0271520 + 0.287846i −0.00592504 + 0.0628131i
\(22\) 0.00806510 0.0509210i 0.00171949 0.0108564i
\(23\) 5.63942 0.295550i 1.17590 0.0616263i 0.545647 0.838015i \(-0.316284\pi\)
0.630254 + 0.776389i \(0.282951\pi\)
\(24\) −0.00818604 + 0.0141786i −0.00167097 + 0.00289420i
\(25\) 0 0
\(26\) −0.0522229 + 0.0301509i −0.0102418 + 0.00591308i
\(27\) 0.297076 0.583044i 0.0571722 0.112207i
\(28\) 3.37137 + 4.07364i 0.637129 + 0.769846i
\(29\) −3.88840 5.35192i −0.722058 0.993827i −0.999453 0.0330712i \(-0.989471\pi\)
0.277395 0.960756i \(-0.410529\pi\)
\(30\) 0 0
\(31\) 1.42674 + 3.20452i 0.256251 + 0.575549i 0.995161 0.0982550i \(-0.0313261\pi\)
−0.738911 + 0.673804i \(0.764659\pi\)
\(32\) 0.116261 + 0.433891i 0.0205522 + 0.0767017i
\(33\) −0.0946285 0.116856i −0.0164727 0.0203421i
\(34\) −0.0505580 + 0.155602i −0.00867063 + 0.0266855i
\(35\) 0 0
\(36\) −1.84543 5.67963i −0.307571 0.946606i
\(37\) −4.21599 + 6.49205i −0.693104 + 1.06729i 0.300436 + 0.953802i \(0.402868\pi\)
−0.993540 + 0.113485i \(0.963799\pi\)
\(38\) 0.00256324 0.000134334i 0.000415813 2.17918e-5i
\(39\) −0.0365664 + 0.172031i −0.00585531 + 0.0275471i
\(40\) 0 0
\(41\) 9.12263 + 2.96412i 1.42472 + 0.462918i 0.917097 0.398664i \(-0.130526\pi\)
0.507618 + 0.861582i \(0.330526\pi\)
\(42\) −0.0108235 0.000451493i −0.00167010 6.96669e-5i
\(43\) −3.38639 3.38639i −0.516420 0.516420i 0.400067 0.916486i \(-0.368987\pi\)
−0.916486 + 0.400067i \(0.868987\pi\)
\(44\) −2.73499 0.287459i −0.412315 0.0433360i
\(45\) 0 0
\(46\) 0.0221170 + 0.210429i 0.00326098 + 0.0310261i
\(47\) −2.55469 6.65520i −0.372640 0.970761i −0.983803 0.179256i \(-0.942631\pi\)
0.611162 0.791505i \(-0.290702\pi\)
\(48\) 0.388651 + 0.198028i 0.0560970 + 0.0285828i
\(49\) −2.71005 + 6.45412i −0.387151 + 0.922016i
\(50\) 0 0
\(51\) 0.238589 + 0.413248i 0.0334091 + 0.0578663i
\(52\) 1.75187 + 2.69765i 0.242941 + 0.374097i
\(53\) −1.86647 + 2.30489i −0.256379 + 0.316601i −0.889042 0.457826i \(-0.848628\pi\)
0.632663 + 0.774427i \(0.281962\pi\)
\(54\) 0.0223982 + 0.00997230i 0.00304800 + 0.00135706i
\(55\) 0 0
\(56\) −0.291725 + 0.268362i −0.0389835 + 0.0358614i
\(57\) 0.00529350 0.00529350i 0.000701141 0.000701141i
\(58\) 0.192627 0.155986i 0.0252931 0.0204820i
\(59\) −6.88713 7.64893i −0.896627 0.995806i −0.999999 0.00116291i \(-0.999630\pi\)
0.103372 0.994643i \(-0.467037\pi\)
\(60\) 0 0
\(61\) 5.62046 + 5.06069i 0.719626 + 0.647954i 0.945283 0.326253i \(-0.105786\pi\)
−0.225656 + 0.974207i \(0.572453\pi\)
\(62\) −0.117105 + 0.0596680i −0.0148723 + 0.00757784i
\(63\) 5.53018 5.64947i 0.696737 0.711767i
\(64\) 7.57643 2.46173i 0.947053 0.307716i
\(65\) 0 0
\(66\) 0.00418683 0.00376984i 0.000515363 0.000464035i
\(67\) −3.18113 + 8.28713i −0.388637 + 1.01243i 0.590103 + 0.807328i \(0.299087\pi\)
−0.978740 + 0.205106i \(0.934246\pi\)
\(68\) 8.42975 + 2.25874i 1.02226 + 0.273913i
\(69\) 0.499255 + 0.362730i 0.0601032 + 0.0436675i
\(70\) 0 0
\(71\) 5.52909 4.01712i 0.656182 0.476744i −0.209189 0.977875i \(-0.567082\pi\)
0.865372 + 0.501131i \(0.167082\pi\)
\(72\) 0.417936 0.160431i 0.0492543 0.0189069i
\(73\) 0.359648 0.233558i 0.0420936 0.0273359i −0.523421 0.852074i \(-0.675344\pi\)
0.565514 + 0.824738i \(0.308678\pi\)
\(74\) −0.251179 0.145018i −0.0291989 0.0168580i
\(75\) 0 0
\(76\) 0.136914i 0.0157051i
\(77\) −1.34084 3.38461i −0.152803 0.385713i
\(78\) −0.00650856 0.00103085i −0.000736949 0.000116721i
\(79\) 3.70296 8.31698i 0.416616 0.935734i −0.576336 0.817213i \(-0.695518\pi\)
0.992952 0.118521i \(-0.0378153\pi\)
\(80\) 0 0
\(81\) −8.12386 + 3.61697i −0.902651 + 0.401886i
\(82\) −0.0930190 + 0.347152i −0.0102722 + 0.0383365i
\(83\) −4.19080 + 0.663758i −0.460000 + 0.0728569i −0.382134 0.924107i \(-0.624811\pi\)
−0.0778662 + 0.996964i \(0.524811\pi\)
\(84\) 0.00616537 + 0.577808i 0.000672697 + 0.0630440i
\(85\) 0 0
\(86\) 0.120067 0.133348i 0.0129472 0.0143793i
\(87\) 0.0378344 0.721923i 0.00405627 0.0773983i
\(88\) 0.0107891 0.205868i 0.00115012 0.0219456i
\(89\) 5.38706 5.98294i 0.571027 0.634190i −0.386584 0.922254i \(-0.626345\pi\)
0.957611 + 0.288064i \(0.0930116\pi\)
\(90\) 0 0
\(91\) −2.08959 + 3.71015i −0.219049 + 0.388929i
\(92\) 11.1474 1.76558i 1.16220 0.184075i
\(93\) −0.0992118 + 0.370263i −0.0102878 + 0.0383945i
\(94\) 0.244007 0.108639i 0.0251674 0.0112052i
\(95\) 0 0
\(96\) −0.0199657 + 0.0448436i −0.00203774 + 0.00457684i
\(97\) 16.3848 + 2.59509i 1.66362 + 0.263492i 0.916159 0.400814i \(-0.131273\pi\)
0.747461 + 0.664306i \(0.231273\pi\)
\(98\) −0.246806 0.0887454i −0.0249312 0.00896464i
\(99\) 4.11154i 0.413225i
\(100\) 0 0
\(101\) −3.41526 1.97180i −0.339831 0.196202i 0.320366 0.947294i \(-0.396194\pi\)
−0.660197 + 0.751092i \(0.729527\pi\)
\(102\) −0.0149945 + 0.00973757i −0.00148468 + 0.000964164i
\(103\) −7.16976 + 2.75221i −0.706457 + 0.271184i −0.684955 0.728585i \(-0.740178\pi\)
−0.0215022 + 0.999769i \(0.506845\pi\)
\(104\) −0.195072 + 0.141728i −0.0191284 + 0.0138976i
\(105\) 0 0
\(106\) −0.0899016 0.0653174i −0.00873202 0.00634418i
\(107\) −10.4235 2.79297i −1.00768 0.270006i −0.283019 0.959114i \(-0.591336\pi\)
−0.724659 + 0.689108i \(0.758003\pi\)
\(108\) 0.468678 1.22095i 0.0450986 0.117486i
\(109\) −2.14125 + 1.92799i −0.205094 + 0.184668i −0.765277 0.643702i \(-0.777398\pi\)
0.560182 + 0.828369i \(0.310731\pi\)
\(110\) 0 0
\(111\) −0.804510 + 0.261401i −0.0763607 + 0.0248111i
\(112\) 7.54681 + 7.38746i 0.713107 + 0.698049i
\(113\) −9.05056 + 4.61149i −0.851405 + 0.433812i −0.824524 0.565826i \(-0.808557\pi\)
−0.0268803 + 0.999639i \(0.508557\pi\)
\(114\) 0.000208446 0 0.000187685i 1.95227e−5 0 1.75783e-5i
\(115\) 0 0
\(116\) −8.84684 9.82541i −0.821408 0.912266i
\(117\) 3.73732 3.02642i 0.345516 0.279793i
\(118\) 0.272693 0.272693i 0.0251034 0.0251034i
\(119\) 2.52244 + 11.2743i 0.231232 + 1.03351i
\(120\) 0 0
\(121\) −8.31934 3.70401i −0.756303 0.336728i
\(122\) −0.178333 + 0.220223i −0.0161455 + 0.0199381i
\(123\) 0.570896 + 0.879102i 0.0514759 + 0.0792660i
\(124\) 3.50532 + 6.07139i 0.314787 + 0.545227i
\(125\) 0 0
\(126\) 0.222229 + 0.195843i 0.0197978 + 0.0174471i
\(127\) −18.8553 9.60727i −1.67314 0.852507i −0.992824 0.119588i \(-0.961843\pi\)
−0.680316 0.732919i \(-0.738157\pi\)
\(128\) 0.428922 + 1.11738i 0.0379117 + 0.0987634i
\(129\) −0.0547042 0.520476i −0.00481644 0.0458253i
\(130\) 0 0
\(131\) −1.73179 0.182019i −0.151307 0.0159030i 0.0285719 0.999592i \(-0.490904\pi\)
−0.179879 + 0.983689i \(0.557571\pi\)
\(132\) −0.212501 0.212501i −0.0184958 0.0184958i
\(133\) 0.160606 0.0840031i 0.0139263 0.00728400i
\(134\) −0.316315 0.102777i −0.0273255 0.00887859i
\(135\) 0 0
\(136\) −0.136017 + 0.639911i −0.0116634 + 0.0548719i
\(137\) 6.36074 + 0.333352i 0.543435 + 0.0284802i 0.322079 0.946713i \(-0.395618\pi\)
0.221356 + 0.975193i \(0.428952\pi\)
\(138\) −0.0125932 + 0.0193918i −0.00107200 + 0.00165074i
\(139\) 6.65731 + 20.4891i 0.564665 + 1.73786i 0.668944 + 0.743313i \(0.266747\pi\)
−0.104278 + 0.994548i \(0.533253\pi\)
\(140\) 0 0
\(141\) 0.240728 0.740884i 0.0202729 0.0623937i
\(142\) 0.161150 + 0.199003i 0.0135234 + 0.0167000i
\(143\) −0.573166 2.13909i −0.0479306 0.178879i
\(144\) −4.85118 10.8959i −0.404265 0.907993i
\(145\) 0 0
\(146\) 0.00944423 + 0.0129989i 0.000781610 + 0.00107579i
\(147\) −0.674009 + 0.361744i −0.0555913 + 0.0298361i
\(148\) −7.02364 + 13.7847i −0.577340 + 1.13309i
\(149\) −16.9996 + 9.81475i −1.39266 + 0.804055i −0.993610 0.112871i \(-0.963995\pi\)
−0.399055 + 0.916927i \(0.630662\pi\)
\(150\) 0 0
\(151\) 4.56259 7.90264i 0.371299 0.643108i −0.618467 0.785811i \(-0.712246\pi\)
0.989766 + 0.142703i \(0.0455793\pi\)
\(152\) 0.0102494 0.000537147i 0.000831334 4.35684e-5i
\(153\) 2.04111 12.8871i 0.165014 1.04186i
\(154\) 0.124012 0.0568068i 0.00999317 0.00457762i
\(155\) 0 0
\(156\) −0.0367420 + 0.349577i −0.00294171 + 0.0279885i
\(157\) −17.8330 + 4.77834i −1.42323 + 0.381353i −0.886628 0.462483i \(-0.846959\pi\)
−0.536601 + 0.843836i \(0.680292\pi\)
\(158\) 0.318456 + 0.122244i 0.0253350 + 0.00972519i
\(159\) −0.317020 + 0.0673847i −0.0251413 + 0.00534396i
\(160\) 0 0
\(161\) 8.91056 + 11.9931i 0.702250 + 0.945190i
\(162\) −0.151266 0.296876i −0.0118846 0.0233248i
\(163\) 2.89908 + 1.88268i 0.227073 + 0.147463i 0.653162 0.757218i \(-0.273442\pi\)
−0.426088 + 0.904682i \(0.640109\pi\)
\(164\) 18.7518 + 3.98582i 1.46427 + 0.311240i
\(165\) 0 0
\(166\) −0.0330535 0.155505i −0.00256545 0.0120695i
\(167\) −2.07246 13.0850i −0.160372 1.01255i −0.928251 0.371954i \(-0.878688\pi\)
0.767879 0.640595i \(-0.221312\pi\)
\(168\) −0.0432304 + 0.00272842i −0.00333530 + 0.000210502i
\(169\) 6.11871 8.42168i 0.470670 0.647822i
\(170\) 0 0
\(171\) −0.203576 + 0.0213967i −0.0155679 + 0.00163625i
\(172\) −7.43840 6.02350i −0.567173 0.459287i
\(173\) −0.531152 10.1350i −0.0403828 0.770549i −0.941508 0.336990i \(-0.890591\pi\)
0.901125 0.433559i \(-0.142742\pi\)
\(174\) 0.0270862 0.00205340
\(175\) 0 0
\(176\) −5.49238 −0.414003
\(177\) −0.0588656 1.12322i −0.00442461 0.0844266i
\(178\) 0.234426 + 0.189834i 0.0175710 + 0.0142287i
\(179\) −8.97496 + 0.943306i −0.670820 + 0.0705060i −0.433814 0.901002i \(-0.642833\pi\)
−0.237006 + 0.971508i \(0.576166\pi\)
\(180\) 0 0
\(181\) 9.31589 12.8222i 0.692445 0.953069i −0.307554 0.951531i \(-0.599510\pi\)
0.999999 0.00153805i \(-0.000489576\pi\)
\(182\) −0.142919 0.0709105i −0.0105939 0.00525623i
\(183\) 0.129290 + 0.816306i 0.00955740 + 0.0603430i
\(184\) 0.175905 + 0.827568i 0.0129679 + 0.0610091i
\(185\) 0 0
\(186\) −0.0140486 0.00298612i −0.00103009 0.000218953i
\(187\) −5.03910 3.27243i −0.368495 0.239304i
\(188\) −6.46817 12.6945i −0.471740 0.925841i
\(189\) 1.71978 0.199330i 0.125095 0.0144991i
\(190\) 0 0
\(191\) −21.8970 + 4.65434i −1.58441 + 0.336776i −0.914158 0.405358i \(-0.867147\pi\)
−0.670251 + 0.742135i \(0.733813\pi\)
\(192\) 0.812726 + 0.311976i 0.0586535 + 0.0225150i
\(193\) −11.7643 + 3.15224i −0.846814 + 0.226903i −0.656036 0.754730i \(-0.727768\pi\)
−0.190779 + 0.981633i \(0.561101\pi\)
\(194\) −0.0649705 + 0.618153i −0.00466461 + 0.0443808i
\(195\) 0 0
\(196\) −4.03830 + 13.3947i −0.288450 + 0.956762i
\(197\) 2.08757 13.1804i 0.148734 0.939067i −0.794579 0.607161i \(-0.792308\pi\)
0.943313 0.331906i \(-0.107692\pi\)
\(198\) −0.153841 + 0.00806244i −0.0109330 + 0.000572973i
\(199\) −9.16969 + 15.8824i −0.650022 + 1.12587i 0.333095 + 0.942893i \(0.391907\pi\)
−0.983117 + 0.182978i \(0.941426\pi\)
\(200\) 0 0
\(201\) −0.840074 + 0.485017i −0.0592542 + 0.0342104i
\(202\) 0.0670813 0.131654i 0.00471982 0.00926318i
\(203\) 6.09765 16.4060i 0.427971 1.15148i
\(204\) 0.560562 + 0.771548i 0.0392472 + 0.0540192i
\(205\) 0 0
\(206\) −0.117038 0.262872i −0.00815444 0.0183152i
\(207\) −4.36732 16.2991i −0.303550 1.13286i
\(208\) 4.04283 + 4.99248i 0.280320 + 0.346166i
\(209\) −0.0291287 + 0.0896490i −0.00201488 + 0.00620115i
\(210\) 0 0
\(211\) −2.94624 9.06760i −0.202828 0.624239i −0.999796 0.0202178i \(-0.993564\pi\)
0.796968 0.604022i \(-0.206436\pi\)
\(212\) −3.22836 + 4.97124i −0.221725 + 0.341426i
\(213\) 0.745822 + 0.0390869i 0.0511029 + 0.00267819i
\(214\) 0.0840641 0.395490i 0.00574650 0.0270352i
\(215\) 0 0
\(216\) 0.0932387 + 0.0302951i 0.00634409 + 0.00206132i
\(217\) −4.97131 + 7.83695i −0.337474 + 0.532007i
\(218\) −0.0763379 0.0763379i −0.00517026 0.00517026i
\(219\) 0.0466053 + 0.00489841i 0.00314929 + 0.000331004i
\(220\) 0 0
\(221\) 0.734597 + 6.98923i 0.0494144 + 0.470146i
\(222\) −0.0113584 0.0295896i −0.000762324 0.00198592i
\(223\) −22.3918 11.4092i −1.49946 0.764015i −0.504421 0.863458i \(-0.668294\pi\)
−0.995043 + 0.0994426i \(0.968294\pi\)
\(224\) −0.785768 + 0.891634i −0.0525013 + 0.0595748i
\(225\) 0 0
\(226\) −0.190294 0.329600i −0.0126582 0.0219246i
\(227\) −6.73926 10.3775i −0.447300 0.688782i 0.541048 0.840992i \(-0.318028\pi\)
−0.988348 + 0.152210i \(0.951361\pi\)
\(228\) 0.00941575 0.0116275i 0.000623573 0.000770048i
\(229\) −13.4922 6.00710i −0.891587 0.396960i −0.0907719 0.995872i \(-0.528933\pi\)
−0.800815 + 0.598912i \(0.795600\pi\)
\(230\) 0 0
\(231\) 0.118893 0.379650i 0.00782256 0.0249791i
\(232\) 0.700820 0.700820i 0.0460111 0.0460111i
\(233\) 0.943130 0.763731i 0.0617865 0.0500337i −0.597930 0.801549i \(-0.704010\pi\)
0.659716 + 0.751515i \(0.270676\pi\)
\(234\) 0.120568 + 0.133904i 0.00788175 + 0.00875357i
\(235\) 0 0
\(236\) −15.2871 13.7646i −0.995107 0.895998i
\(237\) 0.886443 0.451665i 0.0575807 0.0293388i
\(238\) −0.416900 + 0.116490i −0.0270236 + 0.00755090i
\(239\) 24.4748 7.95235i 1.58314 0.514395i 0.620280 0.784380i \(-0.287019\pi\)
0.962864 + 0.269986i \(0.0870189\pi\)
\(240\) 0 0
\(241\) −10.1804 + 9.16652i −0.655780 + 0.590467i −0.928367 0.371664i \(-0.878787\pi\)
0.272587 + 0.962131i \(0.412121\pi\)
\(242\) 0.122278 0.318546i 0.00786035 0.0204769i
\(243\) −2.83487 0.759601i −0.181857 0.0487284i
\(244\) 12.2287 + 8.88469i 0.782864 + 0.568784i
\(245\) 0 0
\(246\) −0.0317737 + 0.0230849i −0.00202582 + 0.00147184i
\(247\) 0.102931 0.0395113i 0.00654931 0.00251405i
\(248\) −0.440751 + 0.286227i −0.0279877 + 0.0181754i
\(249\) −0.401552 0.231836i −0.0254473 0.0146920i
\(250\) 0 0
\(251\) 24.5816i 1.55158i 0.630992 + 0.775789i \(0.282648\pi\)
−0.630992 + 0.775789i \(0.717352\pi\)
\(252\) 9.81182 12.3845i 0.618087 0.780148i
\(253\) −7.67477 1.21556i −0.482509 0.0764219i
\(254\) 0.322499 0.724344i 0.0202354 0.0454494i
\(255\) 0 0
\(256\) 14.5142 6.46215i 0.907140 0.403885i
\(257\) −5.30267 + 19.7898i −0.330772 + 1.23446i 0.577610 + 0.816313i \(0.303986\pi\)
−0.908381 + 0.418143i \(0.862681\pi\)
\(258\) 0.0193672 0.00306747i 0.00120575 0.000190972i
\(259\) −20.4793 + 0.218520i −1.27252 + 0.0135782i
\(260\) 0 0
\(261\) −13.2267 + 14.6898i −0.818713 + 0.909273i
\(262\) 0.00341463 0.0651550i 0.000210956 0.00402529i
\(263\) −0.666689 + 12.7212i −0.0411098 + 0.784422i 0.897830 + 0.440341i \(0.145143\pi\)
−0.938940 + 0.344080i \(0.888191\pi\)
\(264\) 0.0150741 0.0167414i 0.000927744 0.00103036i
\(265\) 0 0
\(266\) 0.00345806 + 0.00584462i 0.000212027 + 0.000358357i
\(267\) 0.868951 0.137628i 0.0531790 0.00842272i
\(268\) −4.59170 + 17.1365i −0.280483 + 1.04678i
\(269\) −18.1556 + 8.08338i −1.10696 + 0.492852i −0.877070 0.480363i \(-0.840505\pi\)
−0.229895 + 0.973215i \(0.573838\pi\)
\(270\) 0 0
\(271\) 3.28374 7.37540i 0.199473 0.448024i −0.785918 0.618331i \(-0.787809\pi\)
0.985391 + 0.170307i \(0.0544760\pi\)
\(272\) 17.2151 + 2.72661i 1.04382 + 0.165325i
\(273\) −0.432610 + 0.171382i −0.0261828 + 0.0103725i
\(274\) 0.238652i 0.0144175i
\(275\) 0 0
\(276\) 1.06812 + 0.616679i 0.0642933 + 0.0371197i
\(277\) 3.39560 2.20513i 0.204022 0.132493i −0.438584 0.898690i \(-0.644520\pi\)
0.642606 + 0.766197i \(0.277853\pi\)
\(278\) −0.753580 + 0.289272i −0.0451968 + 0.0173494i
\(279\) 8.47968 6.16085i 0.507665 0.368840i
\(280\) 0 0
\(281\) 1.03849 + 0.754506i 0.0619510 + 0.0450100i 0.618330 0.785919i \(-0.287810\pi\)
−0.556379 + 0.830929i \(0.687810\pi\)
\(282\) 0.0281935 + 0.00755443i 0.00167890 + 0.000449860i
\(283\) 0.112220 0.292342i 0.00667076 0.0173779i −0.930205 0.367041i \(-0.880371\pi\)
0.936875 + 0.349663i \(0.113704\pi\)
\(284\) 10.1507 9.13970i 0.602331 0.542342i
\(285\) 0 0
\(286\) 0.0789137 0.0256406i 0.00466627 0.00151616i
\(287\) 6.82957 + 24.4421i 0.403137 + 1.44277i
\(288\) 1.19593 0.609358i 0.0704709 0.0359067i
\(289\) 1.53639 + 1.38337i 0.0903759 + 0.0813748i
\(290\) 0 0
\(291\) 1.21301 + 1.34719i 0.0711081 + 0.0789735i
\(292\) 0.666061 0.539365i 0.0389783 0.0315640i
\(293\) 13.9434 13.9434i 0.814584 0.814584i −0.170733 0.985317i \(-0.554614\pi\)
0.985317 + 0.170733i \(0.0546137\pi\)
\(294\) −0.0148570 0.0245099i −0.000866476 0.00142944i
\(295\) 0 0
\(296\) −1.05947 0.471708i −0.0615806 0.0274175i
\(297\) −0.566641 + 0.699743i −0.0328798 + 0.0406032i
\(298\) −0.400571 0.616825i −0.0232045 0.0357317i
\(299\) 4.54432 + 7.87099i 0.262805 + 0.455191i
\(300\) 0 0
\(301\) 2.50200 12.4212i 0.144213 0.715948i
\(302\) 0.304638 + 0.155221i 0.0175300 + 0.00893196i
\(303\) −0.154439 0.402327i −0.00887228 0.0231131i
\(304\) −0.0285827 0.271946i −0.00163933 0.0155972i
\(305\) 0 0
\(306\) 0.486196 + 0.0511012i 0.0277940 + 0.00292126i
\(307\) 14.7442 + 14.7442i 0.841499 + 0.841499i 0.989054 0.147555i \(-0.0471404\pi\)
−0.147555 + 0.989054i \(0.547140\pi\)
\(308\) −3.37219 6.44730i −0.192149 0.367369i
\(309\) −0.798166 0.259340i −0.0454061 0.0147533i
\(310\) 0 0
\(311\) 1.78340 8.39025i 0.101128 0.475768i −0.898217 0.439553i \(-0.855137\pi\)
0.999344 0.0362144i \(-0.0115299\pi\)
\(312\) −0.0263134 0.00137903i −0.00148970 7.80720e-5i
\(313\) −13.2447 + 20.3951i −0.748636 + 1.15280i 0.234888 + 0.972022i \(0.424528\pi\)
−0.983524 + 0.180776i \(0.942139\pi\)
\(314\) −0.213759 0.657884i −0.0120631 0.0371265i
\(315\) 0 0
\(316\) 5.62268 17.3048i 0.316300 0.973472i
\(317\) 2.87966 + 3.55609i 0.161738 + 0.199730i 0.851572 0.524238i \(-0.175650\pi\)
−0.689834 + 0.723968i \(0.742316\pi\)
\(318\) −0.00314297 0.0117297i −0.000176249 0.000657771i
\(319\) 3.70238 + 8.31568i 0.207293 + 0.465589i
\(320\) 0 0
\(321\) −0.693143 0.954029i −0.0386875 0.0532487i
\(322\) −0.431271 + 0.356922i −0.0240338 + 0.0198905i
\(323\) 0.135805 0.266533i 0.00755640 0.0148303i
\(324\) −15.3917 + 8.88642i −0.855097 + 0.493690i
\(325\) 0 0
\(326\) −0.0647591 + 0.112166i −0.00358667 + 0.00621230i
\(327\) −0.314436 + 0.0164789i −0.0173884 + 0.000911285i
\(328\) −0.224810 + 1.41939i −0.0124130 + 0.0783729i
\(329\) 10.9226 15.3761i 0.602184 0.847710i
\(330\) 0 0
\(331\) −0.248393 + 2.36330i −0.0136529 + 0.129899i −0.999225 0.0393560i \(-0.987469\pi\)
0.985572 + 0.169255i \(0.0541360\pi\)
\(332\) −8.19117 + 2.19482i −0.449549 + 0.120456i
\(333\) 21.5939 + 8.28913i 1.18334 + 0.454241i
\(334\) 0.485535 0.103204i 0.0265673 0.00564705i
\(335\) 0 0
\(336\) 0.132871 + 1.14638i 0.00724872 + 0.0625404i
\(337\) −9.69727 19.0320i −0.528244 1.03674i −0.988820 0.149117i \(-0.952357\pi\)
0.460575 0.887621i \(-0.347643\pi\)
\(338\) 0.327110 + 0.212428i 0.0177925 + 0.0115546i
\(339\) −1.08576 0.230785i −0.0589703 0.0125345i
\(340\) 0 0
\(341\) −1.00352 4.72120i −0.0543438 0.255667i
\(342\) −0.00119979 0.00757520i −6.48774e−5 0.000409620i
\(343\) −18.1902 + 3.48115i −0.982176 + 0.187964i
\(344\) 0.421735 0.580469i 0.0227384 0.0312968i
\(345\) 0 0
\(346\) 0.378177 0.0397480i 0.0203309 0.00213686i
\(347\) −20.3955 16.5160i −1.09489 0.886624i −0.100770 0.994910i \(-0.532130\pi\)
−0.994120 + 0.108286i \(0.965464\pi\)
\(348\) −0.0756157 1.44283i −0.00405342 0.0773439i
\(349\) 16.7152 0.894745 0.447373 0.894348i \(-0.352360\pi\)
0.447373 + 0.894348i \(0.352360\pi\)
\(350\) 0 0
\(351\) 1.05315 0.0562129
\(352\) −0.0323484 0.617243i −0.00172417 0.0328992i
\(353\) 22.3839 + 18.1261i 1.19138 + 0.964758i 0.999860 0.0167319i \(-0.00532618\pi\)
0.191516 + 0.981489i \(0.438660\pi\)
\(354\) 0.0419119 0.00440512i 0.00222759 0.000234130i
\(355\) 0 0
\(356\) 9.45769 13.0174i 0.501256 0.689920i
\(357\) −0.561125 + 1.13094i −0.0296979 + 0.0598558i
\(358\) −0.0528947 0.333964i −0.00279557 0.0176505i
\(359\) −0.933188 4.39030i −0.0492518 0.231711i 0.946636 0.322304i \(-0.104457\pi\)
−0.995888 + 0.0905925i \(0.971124\pi\)
\(360\) 0 0
\(361\) 18.5802 + 3.94935i 0.977906 + 0.207860i
\(362\) 0.498034 + 0.323427i 0.0261761 + 0.0169989i
\(363\) −0.451793 0.886694i −0.0237130 0.0465394i
\(364\) −3.37829 + 7.81100i −0.177070 + 0.409408i
\(365\) 0 0
\(366\) −0.0302900 + 0.00643833i −0.00158328 + 0.000336537i
\(367\) 30.6289 + 11.7573i 1.59882 + 0.613728i 0.984508 0.175339i \(-0.0561023\pi\)
0.614307 + 0.789067i \(0.289436\pi\)
\(368\) 21.7730 5.83406i 1.13500 0.304121i
\(369\) 2.99597 28.5047i 0.155964 1.48390i
\(370\) 0 0
\(371\) −7.81221 0.736911i −0.405590 0.0382585i
\(372\) −0.119846 + 0.756679i −0.00621374 + 0.0392320i
\(373\) 37.6781 1.97463i 1.95090 0.102242i 0.964239 0.265033i \(-0.0853830\pi\)
0.986661 + 0.162791i \(0.0520496\pi\)
\(374\) 0.112562 0.194964i 0.00582046 0.0100813i
\(375\) 0 0
\(376\) 0.924931 0.534009i 0.0476997 0.0275394i
\(377\) 4.83357 9.48641i 0.248941 0.488575i
\(378\) 0.0108306 + 0.0639575i 0.000557067 + 0.00328962i
\(379\) 2.24596 + 3.09129i 0.115367 + 0.158789i 0.862795 0.505553i \(-0.168712\pi\)
−0.747428 + 0.664343i \(0.768712\pi\)
\(380\) 0 0
\(381\) −0.940591 2.11260i −0.0481879 0.108232i
\(382\) −0.217089 0.810186i −0.0111072 0.0414527i
\(383\) −10.1248 12.5030i −0.517351 0.638876i 0.449784 0.893137i \(-0.351501\pi\)
−0.967135 + 0.254262i \(0.918168\pi\)
\(384\) −0.0404172 + 0.124391i −0.00206253 + 0.00634782i
\(385\) 0 0
\(386\) −0.141016 0.434001i −0.00717751 0.0220901i
\(387\) −7.79381 + 12.0014i −0.396182 + 0.610066i
\(388\) 33.1093 + 1.73518i 1.68087 + 0.0880906i
\(389\) 3.20212 15.0648i 0.162354 0.763815i −0.819334 0.573317i \(-0.805656\pi\)
0.981688 0.190498i \(-0.0610103\pi\)
\(390\) 0 0
\(391\) 23.4521 + 7.62006i 1.18603 + 0.385363i
\(392\) −1.01857 0.249756i −0.0514453 0.0126146i
\(393\) −0.134555 0.134555i −0.00678742 0.00678742i
\(394\) 0.497262 + 0.0522644i 0.0250517 + 0.00263304i
\(395\) 0 0
\(396\) 0.858943 + 8.17229i 0.0431635 + 0.410673i
\(397\) 4.19748 + 10.9348i 0.210665 + 0.548802i 0.997676 0.0681376i \(-0.0217057\pi\)
−0.787011 + 0.616939i \(0.788372\pi\)
\(398\) −0.612248 0.311956i −0.0306892 0.0156369i
\(399\) 0.0194165 + 0.00391105i 0.000972040 + 0.000195797i
\(400\) 0 0
\(401\) 6.37349 + 11.0392i 0.318277 + 0.551271i 0.980129 0.198363i \(-0.0635626\pi\)
−0.661852 + 0.749635i \(0.730229\pi\)
\(402\) −0.0197951 0.0304818i −0.000987289 0.00152029i
\(403\) −3.55282 + 4.38737i −0.176979 + 0.218550i
\(404\) −7.20026 3.20576i −0.358226 0.159493i
\(405\) 0 0
\(406\) 0.625817 + 0.195983i 0.0310588 + 0.00972649i
\(407\) 7.53167 7.53167i 0.373331 0.373331i
\(408\) −0.0555587 + 0.0449906i −0.00275057 + 0.00222736i
\(409\) −6.77254 7.52166i −0.334880 0.371922i 0.552061 0.833803i \(-0.313841\pi\)
−0.886942 + 0.461881i \(0.847175\pi\)
\(410\) 0 0
\(411\) 0.517262 + 0.465745i 0.0255147 + 0.0229735i
\(412\) −13.6760 + 6.96826i −0.673768 + 0.343302i
\(413\) 6.76705 26.3776i 0.332985 1.29796i
\(414\) 0.601294 0.195372i 0.0295520 0.00960203i
\(415\) 0 0
\(416\) −0.537253 + 0.483745i −0.0263410 + 0.0237175i
\(417\) −0.843684 + 2.19787i −0.0413154 + 0.107630i
\(418\) −0.00341149 0.000914107i −0.000166862 4.47104e-5i
\(419\) 2.20460 + 1.60174i 0.107702 + 0.0782499i 0.640333 0.768098i \(-0.278797\pi\)
−0.532631 + 0.846348i \(0.678797\pi\)
\(420\) 0 0
\(421\) 27.0480 19.6515i 1.31824 0.957756i 0.318286 0.947995i \(-0.396893\pi\)
0.999952 0.00976112i \(-0.00310711\pi\)
\(422\) 0.333503 0.128020i 0.0162347 0.00623190i
\(423\) −17.8645 + 11.6013i −0.868600 + 0.564075i
\(424\) −0.384812 0.222171i −0.0186881 0.0107896i
\(425\) 0 0
\(426\) 0.0279829i 0.00135577i
\(427\) −2.91921 + 19.7959i −0.141270 + 0.957993i
\(428\) −21.3017 3.37386i −1.02966 0.163082i
\(429\) 0.0984310 0.221080i 0.00475230 0.0106738i
\(430\) 0 0
\(431\) −28.4527 + 12.6680i −1.37052 + 0.610194i −0.954240 0.299043i \(-0.903332\pi\)
−0.416278 + 0.909237i \(0.636666\pi\)
\(432\) 0.676023 2.52295i 0.0325252 0.121386i
\(433\) 5.27787 0.835932i 0.253638 0.0401723i −0.0283205 0.999599i \(-0.509016\pi\)
0.281959 + 0.959427i \(0.409016\pi\)
\(434\) −0.302982 0.170642i −0.0145436 0.00819110i
\(435\) 0 0
\(436\) −3.85327 + 4.27949i −0.184538 + 0.204950i
\(437\) 0.0202467 0.386330i 0.000968530 0.0184807i
\(438\) −9.18930e−5 0.00175342i −4.39082e−6 8.37818e-5i
\(439\) −17.8883 + 19.8670i −0.853763 + 0.948200i −0.999152 0.0411749i \(-0.986890\pi\)
0.145389 + 0.989375i \(0.453557\pi\)
\(440\) 0 0
\(441\) 20.5475 + 3.91121i 0.978451 + 0.186248i
\(442\) −0.260074 + 0.0411916i −0.0123704 + 0.00195929i
\(443\) −7.64058 + 28.5150i −0.363015 + 1.35479i 0.507077 + 0.861901i \(0.330726\pi\)
−0.870092 + 0.492889i \(0.835941\pi\)
\(444\) −1.54447 + 0.687643i −0.0732974 + 0.0326341i
\(445\) 0 0
\(446\) 0.382986 0.860200i 0.0181349 0.0407317i
\(447\) −2.11867 0.335564i −0.100210 0.0158717i
\(448\) 16.5204 + 13.0886i 0.780517 + 0.618379i
\(449\) 16.6858i 0.787450i −0.919228 0.393725i \(-0.871186\pi\)
0.919228 0.393725i \(-0.128814\pi\)
\(450\) 0 0
\(451\) −11.4304 6.59932i −0.538235 0.310750i
\(452\) −17.0259 + 11.0568i −0.800832 + 0.520067i
\(453\) 0.930953 0.357359i 0.0437400 0.0167902i
\(454\) 0.375079 0.272511i 0.0176033 0.0127896i
\(455\) 0 0
\(456\) 0.000907371 0 0.000659243i 4.24915e−5 0 3.08719e-5i
\(457\) 10.2464 + 2.74552i 0.479308 + 0.128430i 0.490380 0.871509i \(-0.336858\pi\)
−0.0110724 + 0.999939i \(0.503525\pi\)
\(458\) 0.198309 0.516612i 0.00926637 0.0241397i
\(459\) 2.12344 1.91195i 0.0991136 0.0892423i
\(460\) 0 0
\(461\) 19.5350 6.34729i 0.909833 0.295623i 0.183544 0.983012i \(-0.441243\pi\)
0.726290 + 0.687389i \(0.241243\pi\)
\(462\) 0.0144384 + 0.00370411i 0.000671736 + 0.000172331i
\(463\) 2.59137 1.32037i 0.120431 0.0613628i −0.392737 0.919651i \(-0.628472\pi\)
0.513168 + 0.858288i \(0.328472\pi\)
\(464\) −19.6232 17.6688i −0.910985 0.820255i
\(465\) 0 0
\(466\) 0.0304258 + 0.0337912i 0.00140945 + 0.00156535i
\(467\) 5.69972 4.61554i 0.263752 0.213582i −0.488318 0.872666i \(-0.662389\pi\)
0.752069 + 0.659084i \(0.229056\pi\)
\(468\) 6.79623 6.79623i 0.314156 0.314156i
\(469\) −22.9190 + 5.12776i −1.05830 + 0.236778i
\(470\) 0 0
\(471\) −1.84309 0.820595i −0.0849249 0.0378110i
\(472\) 0.970439 1.19839i 0.0446681 0.0551605i
\(473\) 3.58902 + 5.52661i 0.165023 + 0.254114i
\(474\) 0.0186381 + 0.0322821i 0.000856077 + 0.00148277i
\(475\) 0 0
\(476\) 7.36903 + 21.8823i 0.337759 + 1.00297i
\(477\) 7.89620 + 4.02332i 0.361542 + 0.184215i
\(478\) 0.345545 + 0.900174i 0.0158048 + 0.0411730i
\(479\) −0.617027 5.87062i −0.0281927 0.268235i −0.999533 0.0305441i \(-0.990276\pi\)
0.971341 0.237691i \(-0.0763907\pi\)
\(480\) 0 0
\(481\) −12.3901 1.30225i −0.564939 0.0593774i
\(482\) −0.362945 0.362945i −0.0165317 0.0165317i
\(483\) −0.0680487 + 1.63131i −0.00309632 + 0.0742271i
\(484\) −17.3097 5.62427i −0.786805 0.255649i
\(485\) 0 0
\(486\) 0.0228628 0.107561i 0.00103708 0.00487907i
\(487\) 17.3674 + 0.910186i 0.786991 + 0.0412444i 0.441597 0.897213i \(-0.354412\pi\)
0.345394 + 0.938458i \(0.387745\pi\)
\(488\) −0.617130 + 0.950297i −0.0279362 + 0.0430179i
\(489\) 0.116731 + 0.359261i 0.00527875 + 0.0162463i
\(490\) 0 0
\(491\) −1.67096 + 5.14268i −0.0754092 + 0.232086i −0.981655 0.190665i \(-0.938936\pi\)
0.906246 + 0.422751i \(0.138936\pi\)
\(492\) 1.31839 + 1.62808i 0.0594377 + 0.0733995i
\(493\) −7.47643 27.9024i −0.336721 1.25666i
\(494\) 0.00168022 + 0.00377385i 7.55969e−5 + 0.000169793i
\(495\) 0 0
\(496\) 8.22993 + 11.3275i 0.369535 + 0.508621i
\(497\) 16.9491 + 6.29951i 0.760272 + 0.282572i
\(498\) 0.00788715 0.0154794i 0.000353432 0.000693648i
\(499\) 2.08554 1.20409i 0.0933616 0.0539023i −0.452592 0.891718i \(-0.649501\pi\)
0.545954 + 0.837815i \(0.316167\pi\)
\(500\) 0 0
\(501\) 0.723867 1.25377i 0.0323400 0.0560145i
\(502\) −0.919765 + 0.0482028i −0.0410511 + 0.00215140i
\(503\) −3.80370 + 24.0156i −0.169599 + 1.07080i 0.745184 + 0.666859i \(0.232362\pi\)
−0.914783 + 0.403946i \(0.867638\pi\)
\(504\) 0.965593 + 0.685924i 0.0430109 + 0.0305535i
\(505\) 0 0
\(506\) 0.0304328 0.289549i 0.00135290 0.0128720i
\(507\) 1.09880 0.294423i 0.0487995 0.0130758i
\(508\) −39.4848 15.1568i −1.75185 0.672474i
\(509\) 17.7343 3.76954i 0.786058 0.167082i 0.202639 0.979253i \(-0.435048\pi\)
0.583419 + 0.812172i \(0.301715\pi\)
\(510\) 0 0
\(511\) 1.04136 + 0.450390i 0.0460668 + 0.0199241i
\(512\) 1.35700 + 2.66325i 0.0599713 + 0.117700i
\(513\) −0.0375954 0.0244148i −0.00165988 0.00107794i
\(514\) −0.750870 0.159602i −0.0331194 0.00703976i
\(515\) 0 0
\(516\) −0.217465 1.02309i −0.00957338 0.0450392i
\(517\) 1.53447 + 9.68824i 0.0674858 + 0.426088i
\(518\) −0.0483347 0.765840i −0.00212371 0.0336491i
\(519\) 0.651886 0.897245i 0.0286146 0.0393847i
\(520\) 0 0
\(521\) 15.4005 1.61866i 0.674708 0.0709147i 0.239023 0.971014i \(-0.423173\pi\)
0.435685 + 0.900099i \(0.356506\pi\)
\(522\) −0.575580 0.466095i −0.0251924 0.0204004i
\(523\) −1.03294 19.7096i −0.0451673 0.861843i −0.923454 0.383709i \(-0.874647\pi\)
0.878287 0.478134i \(-0.158687\pi\)
\(524\) −3.48022 −0.152034
\(525\) 0 0
\(526\) −0.477293 −0.0208110
\(527\) 0.801639 + 15.2962i 0.0349199 + 0.666312i
\(528\) −0.466442 0.377717i −0.0202993 0.0164380i
\(529\) 8.84171 0.929301i 0.384422 0.0404044i
\(530\) 0 0
\(531\) −18.0774 + 24.8813i −0.784490 + 1.07976i
\(532\) 0.301679 0.200521i 0.0130794 0.00869368i
\(533\) 2.41499 + 15.2476i 0.104605 + 0.660448i
\(534\) 0.00685356 + 0.0322435i 0.000296582 + 0.00139531i
\(535\) 0 0
\(536\) −1.30085 0.276503i −0.0561880 0.0119431i
\(537\) −0.827073 0.537107i −0.0356908 0.0231779i
\(538\) −0.338056 0.663472i −0.0145746 0.0286043i
\(539\) 5.49395 7.91143i 0.236641 0.340770i
\(540\) 0 0
\(541\) 26.7198 5.67947i 1.14877 0.244179i 0.406098 0.913830i \(-0.366889\pi\)
0.742677 + 0.669650i \(0.233556\pi\)
\(542\) 0.282403 + 0.108404i 0.0121302 + 0.00465636i
\(543\) 1.67295 0.448267i 0.0717933 0.0192370i
\(544\) −0.205030 + 1.95073i −0.00879058 + 0.0836368i
\(545\) 0 0
\(546\) −0.00726086 0.0158508i −0.000310736 0.000678352i
\(547\) 1.58597 10.0134i 0.0678111 0.428143i −0.930305 0.366787i \(-0.880458\pi\)
0.998116 0.0613554i \(-0.0195423\pi\)
\(548\) 12.7125 0.666236i 0.543053 0.0284602i
\(549\) 11.2995 19.5712i 0.482249 0.835280i
\(550\) 0 0
\(551\) −0.392470 + 0.226593i −0.0167198 + 0.00965317i
\(552\) −0.0419740 + 0.0823786i −0.00178653 + 0.00350627i
\(553\) 23.7490 4.02168i 1.00991 0.171019i
\(554\) 0.0891673 + 0.122728i 0.00378836 + 0.00521423i
\(555\) 0 0
\(556\) 17.5128 + 39.3343i 0.742706 + 1.66815i
\(557\) 0.0898136 + 0.335189i 0.00380552 + 0.0142024i 0.967802 0.251711i \(-0.0809932\pi\)
−0.963997 + 0.265913i \(0.914327\pi\)
\(558\) 0.247147 + 0.305201i 0.0104626 + 0.0129202i
\(559\) 2.38179 7.33039i 0.100739 0.310042i
\(560\) 0 0
\(561\) −0.202898 0.624456i −0.00856637 0.0263646i
\(562\) −0.0261948 + 0.0403364i −0.00110496 + 0.00170149i
\(563\) −15.1129 0.792034i −0.636933 0.0333803i −0.268863 0.963178i \(-0.586648\pi\)
−0.368070 + 0.929798i \(0.619981\pi\)
\(564\) 0.323704 1.52291i 0.0136304 0.0641259i
\(565\) 0 0
\(566\) 0.0111585 + 0.00362563i 0.000469029 + 0.000152397i
\(567\) −19.8677 12.6029i −0.834363 0.529271i
\(568\) 0.724020 + 0.724020i 0.0303792 + 0.0303792i
\(569\) 8.99190 + 0.945086i 0.376960 + 0.0396201i 0.291114 0.956688i \(-0.405974\pi\)
0.0858458 + 0.996308i \(0.472641\pi\)
\(570\) 0 0
\(571\) −1.93251 18.3867i −0.0808732 0.769457i −0.957529 0.288338i \(-0.906897\pi\)
0.876655 0.481119i \(-0.159769\pi\)
\(572\) −1.58613 4.13201i −0.0663194 0.172768i
\(573\) −2.17969 1.11061i −0.0910579 0.0463963i
\(574\) −0.901151 + 0.303469i −0.0376133 + 0.0126666i
\(575\) 0 0
\(576\) −11.9019 20.6147i −0.495914 0.858947i
\(577\) 14.4031 + 22.1789i 0.599610 + 0.923318i 0.999976 + 0.00696286i \(0.00221637\pi\)
−0.400366 + 0.916355i \(0.631117\pi\)
\(578\) −0.0487485 + 0.0601994i −0.00202767 + 0.00250397i
\(579\) −1.21587 0.541341i −0.0505299 0.0224974i
\(580\) 0 0
\(581\) −7.60026 8.26194i −0.315312 0.342763i
\(582\) −0.0480288 + 0.0480288i −0.00199086 + 0.00199086i
\(583\) 3.17151 2.56824i 0.131351 0.106366i
\(584\) 0.0429899 + 0.0477451i 0.00177893 + 0.00197571i
\(585\) 0 0
\(586\) 0.549060 + 0.494376i 0.0226815 + 0.0204225i
\(587\) 17.2602 8.79450i 0.712404 0.362988i −0.0599321 0.998202i \(-0.519088\pi\)
0.772336 + 0.635215i \(0.219088\pi\)
\(588\) −1.26412 + 0.859827i −0.0521314 + 0.0354587i
\(589\) 0.228540 0.0742572i 0.00941683 0.00305971i
\(590\) 0 0
\(591\) 1.08372 0.975787i 0.0445783 0.0401385i
\(592\) −11.0730 + 28.8461i −0.455097 + 1.18557i
\(593\) 39.8994 + 10.6910i 1.63847 + 0.439027i 0.956353 0.292215i \(-0.0943924\pi\)
0.682118 + 0.731242i \(0.261059\pi\)
\(594\) −0.0272933 0.0198297i −0.00111986 0.000813623i
\(595\) 0 0
\(596\) −31.7389 + 23.0597i −1.30008 + 0.944560i
\(597\) −1.87099 + 0.718205i −0.0765744 + 0.0293942i
\(598\) −0.285596 + 0.185468i −0.0116789 + 0.00758436i
\(599\) 2.44181 + 1.40978i 0.0997698 + 0.0576021i 0.549055 0.835786i \(-0.314988\pi\)
−0.449285 + 0.893389i \(0.648321\pi\)
\(600\) 0 0
\(601\) 33.6982i 1.37458i −0.726384 0.687289i \(-0.758801\pi\)
0.726384 0.687289i \(-0.241199\pi\)
\(602\) 0.469668 + 0.0692596i 0.0191422 + 0.00282281i
\(603\) 26.1976 + 4.14929i 1.06685 + 0.168972i
\(604\) 7.41788 16.6608i 0.301829 0.677920i
\(605\) 0 0
\(606\) 0.0147509 0.00656754i 0.000599215 0.000266788i
\(607\) 8.74821 32.6488i 0.355079 1.32517i −0.525306 0.850913i \(-0.676049\pi\)
0.880385 0.474259i \(-0.157284\pi\)
\(608\) 0.0303934 0.00481385i 0.00123262 0.000195227i
\(609\) 1.64611 0.973944i 0.0667036 0.0394662i
\(610\) 0 0
\(611\) 7.67696 8.52613i 0.310577 0.344930i
\(612\) 1.36477 26.0414i 0.0551676 1.05266i
\(613\) −0.309370 + 5.90313i −0.0124953 + 0.238425i 0.985241 + 0.171174i \(0.0547561\pi\)
−0.997736 + 0.0672508i \(0.978577\pi\)
\(614\) −0.522769 + 0.580594i −0.0210973 + 0.0234309i
\(615\) 0 0
\(616\) 0.469414 0.277736i 0.0189132 0.0111903i
\(617\) −4.67312 + 0.740149i −0.188133 + 0.0297973i −0.249790 0.968300i \(-0.580361\pi\)
0.0616571 + 0.998097i \(0.480361\pi\)
\(618\) 0.00813851 0.0303733i 0.000327379 0.00122180i
\(619\) 0.987941 0.439860i 0.0397087 0.0176795i −0.386786 0.922169i \(-0.626415\pi\)
0.426495 + 0.904490i \(0.359748\pi\)
\(620\) 0 0
\(621\) 1.50302 3.37583i 0.0603140 0.135467i
\(622\) 0.317433 + 0.0502765i 0.0127279 + 0.00201590i
\(623\) 21.0726 + 3.10747i 0.844257 + 0.124498i
\(624\) 0.702018i 0.0281032i
\(625\) 0 0
\(626\) −0.789090 0.455581i −0.0315384 0.0182087i
\(627\) −0.00863903 + 0.00561025i −0.000345010 + 0.000224052i
\(628\) −34.4475 + 13.2232i −1.37460 + 0.527661i
\(629\) −27.3460 + 19.8680i −1.09036 + 0.792191i
\(630\) 0 0
\(631\) −17.6839 12.8481i −0.703983 0.511474i 0.177244 0.984167i \(-0.443282\pi\)
−0.881227 + 0.472693i \(0.843282\pi\)
\(632\) 1.31749 + 0.353022i 0.0524071 + 0.0140424i
\(633\) 0.373379 0.972685i 0.0148405 0.0386608i
\(634\) −0.127410 + 0.114721i −0.00506012 + 0.00455615i
\(635\) 0 0
\(636\) −0.616047 + 0.200166i −0.0244279 + 0.00793709i
\(637\) −11.2353 + 0.829543i −0.445161 + 0.0328677i
\(638\) −0.303886 + 0.154838i −0.0120310 + 0.00613008i
\(639\) −15.1760 13.6646i −0.600355 0.540562i
\(640\) 0 0
\(641\) −14.7391 16.3694i −0.582159 0.646553i 0.378066 0.925779i \(-0.376589\pi\)
−0.960226 + 0.279225i \(0.909922\pi\)
\(642\) 0.0343375 0.0278059i 0.00135519 0.00109741i
\(643\) −7.57933 + 7.57933i −0.298899 + 0.298899i −0.840583 0.541683i \(-0.817787\pi\)
0.541683 + 0.840583i \(0.317787\pi\)
\(644\) 20.2165 + 21.9766i 0.796643 + 0.865999i
\(645\) 0 0
\(646\) 0.0102391 + 0.00455874i 0.000402852 + 0.000179361i
\(647\) −21.8601 + 26.9950i −0.859410 + 1.06128i 0.138077 + 0.990422i \(0.455908\pi\)
−0.997486 + 0.0708609i \(0.977425\pi\)
\(648\) −0.725621 1.11736i −0.0285051 0.0438940i
\(649\) 7.08130 + 12.2652i 0.277965 + 0.481450i
\(650\) 0 0
\(651\) −0.961146 + 0.323673i −0.0376703 + 0.0126857i
\(652\) 6.15566 + 3.13647i 0.241074 + 0.122834i
\(653\) −5.94863 15.4967i −0.232788 0.606433i 0.766574 0.642156i \(-0.221960\pi\)
−0.999362 + 0.0357231i \(0.988627\pi\)
\(654\) −0.00123317 0.0117329i −4.82209e−5 0.000458791i
\(655\) 0 0
\(656\) 38.0779 + 4.00215i 1.48669 + 0.156258i
\(657\) −0.906067 0.906067i −0.0353490 0.0353490i
\(658\) 0.596741 + 0.378538i 0.0232634 + 0.0147569i
\(659\) 23.7349 + 7.71192i 0.924579 + 0.300414i 0.732344 0.680935i \(-0.238426\pi\)
0.192235 + 0.981349i \(0.438426\pi\)
\(660\) 0 0
\(661\) −0.637712 + 3.00020i −0.0248041 + 0.116694i −0.988808 0.149194i \(-0.952332\pi\)
0.964004 + 0.265889i \(0.0856653\pi\)
\(662\) −0.0889140 0.00465979i −0.00345574 0.000181108i
\(663\) −0.418271 + 0.644081i −0.0162443 + 0.0250140i
\(664\) −0.196439 0.604578i −0.00762333 0.0234622i
\(665\) 0 0
\(666\) −0.267808 + 0.824229i −0.0103774 + 0.0319382i
\(667\) −23.5101 29.0325i −0.910314 1.12414i
\(668\) −6.85292 25.5754i −0.265147 0.989543i
\(669\) −1.11701 2.50884i −0.0431859 0.0969972i
\(670\) 0 0
\(671\) −6.11692 8.41922i −0.236141 0.325020i
\(672\) −0.128050 + 0.0216841i −0.00493965 + 0.000836484i
\(673\) −4.32228 + 8.48294i −0.166611 + 0.326993i −0.959183 0.282785i \(-0.908742\pi\)
0.792572 + 0.609779i \(0.208742\pi\)
\(674\) 0.693099 0.400161i 0.0266972 0.0154136i
\(675\) 0 0
\(676\) 10.4025 18.0176i 0.400095 0.692985i
\(677\) −10.4146 + 0.545808i −0.400267 + 0.0209771i −0.251408 0.967881i \(-0.580893\pi\)
−0.148859 + 0.988858i \(0.547560\pi\)
\(678\) 0.00650613 0.0410781i 0.000249867 0.00157760i
\(679\) 18.2786 + 39.9031i 0.701469 + 1.53134i
\(680\) 0 0
\(681\) 0.141342 1.34478i 0.00541625 0.0515322i
\(682\) 0.174684 0.0468065i 0.00668901 0.00179231i
\(683\) 8.91768 + 3.42318i 0.341226 + 0.130984i 0.522946 0.852366i \(-0.324833\pi\)
−0.181720 + 0.983350i \(0.558166\pi\)
\(684\) −0.400168 + 0.0850583i −0.0153008 + 0.00325228i
\(685\) 0 0
\(686\) −0.165923 0.673790i −0.00633497 0.0257254i
\(687\) −0.732711 1.43803i −0.0279546 0.0548641i
\(688\) −16.0320 10.4113i −0.611215 0.396927i
\(689\) −4.66898 0.992421i −0.177874 0.0378082i
\(690\) 0 0
\(691\) 4.86605 + 22.8929i 0.185113 + 0.870889i 0.968434 + 0.249271i \(0.0801910\pi\)
−0.783321 + 0.621618i \(0.786476\pi\)
\(692\) −3.17305 20.0338i −0.120621 0.761572i
\(693\) −9.05942 + 6.02165i −0.344139 + 0.228744i
\(694\) 0.577980 0.795521i 0.0219398 0.0301976i
\(695\) 0 0
\(696\) 0.107713 0.0113211i 0.00408287 0.000429127i
\(697\) 32.5508 + 26.3592i 1.23295 + 0.998424i
\(698\) 0.0327774 + 0.625429i 0.00124064 + 0.0236728i
\(699\) 0.132618 0.00501608
\(700\) 0 0
\(701\) 24.9909 0.943892 0.471946 0.881628i \(-0.343552\pi\)
0.471946 + 0.881628i \(0.343552\pi\)
\(702\) 0.00206515 + 0.0394054i 7.79440e−5 + 0.00148726i
\(703\) 0.412113 + 0.333723i 0.0155431 + 0.0125866i
\(704\) −10.9015 + 1.14580i −0.410867 + 0.0431839i
\(705\) 0 0
\(706\) −0.634328 + 0.873078i −0.0238733 + 0.0328587i
\(707\) −0.657204 10.4131i −0.0247167 0.391624i
\(708\) −0.351657 2.22027i −0.0132161 0.0834430i
\(709\) 10.0976 + 47.5054i 0.379223 + 1.78410i 0.590881 + 0.806759i \(0.298780\pi\)
−0.211658 + 0.977344i \(0.567886\pi\)
\(710\) 0 0
\(711\) −26.6090 5.65593i −0.997917 0.212114i
\(712\) 1.01158 + 0.656930i 0.0379107 + 0.0246195i
\(713\) 8.99310 + 17.6500i 0.336794 + 0.660996i
\(714\) −0.0434165 0.0187778i −0.00162482 0.000702741i
\(715\) 0 0
\(716\) −17.6420 + 3.74992i −0.659312 + 0.140141i
\(717\) 2.62542 + 1.00781i 0.0980482 + 0.0376372i
\(718\) 0.162441 0.0435259i 0.00606224 0.00162437i
\(719\) 0.622106 5.91894i 0.0232006 0.220739i −0.976778 0.214252i \(-0.931269\pi\)
0.999979 0.00648680i \(-0.00206483\pi\)
\(720\) 0 0
\(721\) −16.5649 11.7671i −0.616909 0.438231i
\(722\) −0.111337 + 0.702956i −0.00414354 + 0.0261613i
\(723\) −1.49497 + 0.0783480i −0.0555985 + 0.00291379i
\(724\) 15.8380 27.4323i 0.588615 1.01951i
\(725\) 0 0
\(726\) 0.0322913 0.0186434i 0.00119844 0.000691921i
\(727\) 4.72308 9.26956i 0.175169 0.343789i −0.786684 0.617356i \(-0.788204\pi\)
0.961853 + 0.273567i \(0.0882037\pi\)
\(728\) −0.597984 0.222253i −0.0221628 0.00823726i
\(729\) 15.4924 + 21.3235i 0.573793 + 0.789759i
\(730\) 0 0
\(731\) −8.50572 19.1042i −0.314595 0.706593i
\(732\) 0.427518 + 1.59552i 0.0158015 + 0.0589720i
\(733\) 24.1284 + 29.7961i 0.891202 + 1.10054i 0.994379 + 0.105880i \(0.0337660\pi\)
−0.103177 + 0.994663i \(0.532901\pi\)
\(734\) −0.379860 + 1.16909i −0.0140209 + 0.0431519i
\(735\) 0 0
\(736\) 0.783879 + 2.41253i 0.0288942 + 0.0889271i
\(737\) 6.65238 10.2438i 0.245043 0.377334i
\(738\) 1.07243 + 0.0562037i 0.0394767 + 0.00206889i
\(739\) −6.02962 + 28.3671i −0.221803 + 1.04350i 0.716473 + 0.697615i \(0.245755\pi\)
−0.938276 + 0.345887i \(0.887578\pi\)
\(740\) 0 0
\(741\) 0.0114586 + 0.00372314i 0.000420944 + 0.000136773i
\(742\) 0.0122536 0.293752i 0.000449845 0.0107840i
\(743\) −26.0302 26.0302i −0.954956 0.954956i 0.0440723 0.999028i \(-0.485967\pi\)
−0.999028 + 0.0440723i \(0.985967\pi\)
\(744\) −0.0571151 0.00600303i −0.00209394 0.000220082i
\(745\) 0 0
\(746\) 0.147768 + 1.40592i 0.00541018 + 0.0514744i
\(747\) 4.54355 + 11.8364i 0.166240 + 0.433069i
\(748\) −10.6996 5.45172i −0.391216 0.199335i
\(749\) −9.11191 27.0578i −0.332942 0.988669i
\(750\) 0 0
\(751\) 3.63171 + 6.29030i 0.132523 + 0.229536i 0.924648 0.380822i \(-0.124359\pi\)
−0.792126 + 0.610358i \(0.791026\pi\)
\(752\) −15.4975 23.8641i −0.565137 0.870235i
\(753\) −1.69051 + 2.08760i −0.0616055 + 0.0760764i
\(754\) 0.364429 + 0.162254i 0.0132717 + 0.00590895i
\(755\) 0 0
\(756\) 3.37667 0.755476i 0.122808 0.0274764i
\(757\) −19.0809 + 19.0809i −0.693507 + 0.693507i −0.963002 0.269495i \(-0.913143\pi\)
0.269495 + 0.963002i \(0.413143\pi\)
\(758\) −0.111262 + 0.0900982i −0.00404122 + 0.00327252i
\(759\) −0.568187 0.631035i −0.0206239 0.0229051i
\(760\) 0 0
\(761\) 4.12455 + 3.71376i 0.149515 + 0.134624i 0.740494 0.672063i \(-0.234592\pi\)
−0.590979 + 0.806687i \(0.701258\pi\)
\(762\) 0.0772023 0.0393365i 0.00279674 0.00142501i
\(763\) −7.38417 1.89438i −0.267325 0.0685810i
\(764\) −42.5511 + 13.8257i −1.53944 + 0.500196i
\(765\) 0 0
\(766\) 0.447969 0.403353i 0.0161858 0.0145738i
\(767\) 5.93643 15.4649i 0.214352 0.558406i
\(768\) 1.67704 + 0.449360i 0.0605148 + 0.0162149i
\(769\) −19.1561 13.9177i −0.690787 0.501886i 0.186131 0.982525i \(-0.440405\pi\)
−0.876919 + 0.480638i \(0.840405\pi\)
\(770\) 0 0
\(771\) −1.81130 + 1.31599i −0.0652324 + 0.0473941i
\(772\) −22.7248 + 8.72323i −0.817883 + 0.313956i
\(773\) −37.2561 + 24.1944i −1.34001 + 0.870213i −0.997593 0.0693350i \(-0.977912\pi\)
−0.342417 + 0.939548i \(0.611246\pi\)
\(774\) −0.464337 0.268085i −0.0166902 0.00963612i
\(775\) 0 0
\(776\) 2.48536i 0.0892193i
\(777\) −1.75424 1.38983i −0.0629329 0.0498597i
\(778\) 0.569955 + 0.0902720i 0.0204339 + 0.00323641i
\(779\) 0.267270 0.600299i 0.00957595 0.0215079i
\(780\) 0 0
\(781\) −8.59096 + 3.82494i −0.307409 + 0.136867i
\(782\) −0.239130 + 0.892445i −0.00855127 + 0.0319138i
\(783\) −4.27555 + 0.677181i −0.152796 + 0.0242005i
\(784\) −5.22477 + 27.4482i −0.186599 + 0.980293i
\(785\) 0 0
\(786\) 0.00477077 0.00529848i 0.000170168 0.000188990i
\(787\) 0.236701 4.51652i 0.00843747 0.160996i −0.991161 0.132664i \(-0.957647\pi\)
0.999599 0.0283326i \(-0.00901975\pi\)
\(788\) 1.39584 26.6342i 0.0497246 0.948803i
\(789\) −0.931469 + 1.03450i −0.0331612 + 0.0368292i
\(790\) 0 0
\(791\) −23.4162 13.1883i −0.832585 0.468920i
\(792\) −0.608406 + 0.0963621i −0.0216188 + 0.00342408i
\(793\) −3.15038 + 11.7574i −0.111873 + 0.417517i
\(794\) −0.400914 + 0.178498i −0.0142279 + 0.00633467i
\(795\) 0 0
\(796\) −14.9081 + 33.4842i −0.528405 + 1.18682i
\(797\) −43.4081 6.87517i −1.53759 0.243531i −0.670588 0.741830i \(-0.733958\pi\)
−0.867005 + 0.498299i \(0.833958\pi\)
\(798\) −0.000108264 0 0.000734171i −3.83252e−6 0 2.59894e-5i
\(799\) 31.1283i 1.10124i
\(800\) 0 0
\(801\) −20.8334 12.0282i −0.736113 0.424995i
\(802\) −0.400553 + 0.260122i −0.0141440 + 0.00918524i
\(803\) −0.550876 + 0.211461i −0.0194400 + 0.00746231i
\(804\) −1.56845 + 1.13954i −0.0553148 + 0.0401886i
\(805\) 0 0
\(806\) −0.171128 0.124332i −0.00602772 0.00437940i
\(807\) −2.09777 0.562096i −0.0738450 0.0197867i
\(808\) 0.211734 0.551587i 0.00744879 0.0194048i
\(809\) −13.6744 + 12.3125i −0.480768 + 0.432885i −0.873541 0.486750i \(-0.838182\pi\)
0.392774 + 0.919635i \(0.371516\pi\)
\(810\) 0 0
\(811\) −29.0804 + 9.44881i −1.02115 + 0.331793i −0.771287 0.636488i \(-0.780387\pi\)
−0.249866 + 0.968280i \(0.580387\pi\)
\(812\) 8.69260 33.8833i 0.305050 1.18907i
\(813\) 0.786087 0.400531i 0.0275693 0.0140472i
\(814\) 0.296580 + 0.267042i 0.0103951 + 0.00935980i
\(815\) 0 0
\(816\) 1.27449 + 1.41546i 0.0446160 + 0.0495511i
\(817\) −0.254963 + 0.206465i −0.00892004 + 0.00722331i
\(818\) 0.268156 0.268156i 0.00937585 0.00937585i
\(819\) 12.1420 + 3.80245i 0.424277 + 0.132868i
\(820\) 0 0
\(821\) 5.77197 + 2.56985i 0.201443 + 0.0896883i 0.504979 0.863132i \(-0.331500\pi\)
−0.303535 + 0.952820i \(0.598167\pi\)
\(822\) −0.0164124 + 0.0202676i −0.000572447 + 0.000706913i
\(823\) −19.1851 29.5425i −0.668752 1.02979i −0.996382 0.0849819i \(-0.972917\pi\)
0.327630 0.944806i \(-0.393750\pi\)
\(824\) −0.575297 0.996444i −0.0200414 0.0347128i
\(825\) 0 0
\(826\) 1.00023 + 0.201477i 0.0348026 + 0.00701026i
\(827\) 27.3997 + 13.9609i 0.952782 + 0.485466i 0.860042 0.510224i \(-0.170437\pi\)
0.0927399 + 0.995690i \(0.470437\pi\)
\(828\) −12.0857 31.4844i −0.420009 1.09416i
\(829\) 5.00644 + 47.6331i 0.173881 + 1.65437i 0.639066 + 0.769152i \(0.279321\pi\)
−0.465185 + 0.885213i \(0.654012\pi\)
\(830\) 0 0
\(831\) 0.440022 + 0.0462481i 0.0152642 + 0.00160433i
\(832\) 9.06592 + 9.06592i 0.314304 + 0.314304i
\(833\) −21.1476 + 22.0700i −0.732720 + 0.764679i
\(834\) −0.0838916 0.0272580i −0.00290493 0.000943869i
\(835\) 0 0
\(836\) −0.0391690 + 0.184276i −0.00135469 + 0.00637331i
\(837\) 2.29223 + 0.120130i 0.0792309 + 0.00415232i
\(838\) −0.0556087 + 0.0856299i −0.00192097 + 0.00295803i
\(839\) 4.53318 + 13.9517i 0.156503 + 0.481666i 0.998310 0.0581120i \(-0.0185080\pi\)
−0.841807 + 0.539778i \(0.818508\pi\)
\(840\) 0 0
\(841\) −4.56193 + 14.0402i −0.157308 + 0.484144i
\(842\) 0.788335 + 0.973513i 0.0271678 + 0.0335495i
\(843\) 0.0363057 + 0.135495i 0.00125043 + 0.00466668i
\(844\) −7.75041 17.4077i −0.266780 0.599198i
\(845\) 0 0
\(846\) −0.469115 0.645681i −0.0161285 0.0221990i
\(847\) −4.02282 23.7557i −0.138226 0.816256i
\(848\) −5.37452 + 10.5481i −0.184562 + 0.362223i
\(849\) 0.0296350 0.0171098i 0.00101707 0.000587205i
\(850\) 0 0
\(851\) −21.8570 + 37.8574i −0.749249 + 1.29774i
\(852\) 1.49060 0.0781188i 0.0510670 0.00267631i
\(853\) 3.66049 23.1114i 0.125333 0.791320i −0.842310 0.538994i \(-0.818805\pi\)
0.967642 0.252326i \(-0.0811954\pi\)
\(854\) −0.746424 0.0704088i −0.0255421 0.00240934i
\(855\) 0 0
\(856\) 0.168995 1.60788i 0.00577613 0.0549562i
\(857\) 40.5488 10.8650i 1.38512 0.371142i 0.512143 0.858900i \(-0.328852\pi\)
0.872979 + 0.487758i \(0.162185\pi\)
\(858\) 0.00846510 + 0.00324945i 0.000288994 + 0.000110934i
\(859\) 45.8315 9.74179i 1.56375 0.332386i 0.656947 0.753937i \(-0.271848\pi\)
0.906805 + 0.421551i \(0.138514\pi\)
\(860\) 0 0
\(861\) −1.10091 + 2.54543i −0.0375188 + 0.0867480i
\(862\) −0.529787 1.03977i −0.0180446 0.0354146i
\(863\) −36.4708 23.6844i −1.24148 0.806226i −0.254500 0.967073i \(-0.581911\pi\)
−0.986979 + 0.160847i \(0.948577\pi\)
\(864\) 0.287515 + 0.0611133i 0.00978147 + 0.00207912i
\(865\) 0 0
\(866\) 0.0416274 + 0.195842i 0.00141456 + 0.00665497i
\(867\) 0.0353423 + 0.223142i 0.00120029 + 0.00757832i
\(868\) −8.24399 + 16.6157i −0.279819 + 0.563972i
\(869\) −7.36326 + 10.1347i −0.249781 + 0.343795i
\(870\) 0 0
\(871\) −14.2081 + 1.49333i −0.481423 + 0.0505996i
\(872\) −0.335479 0.271666i −0.0113608 0.00919976i
\(873\) −2.59424 49.5010i −0.0878016 1.67535i
\(874\) 0.0144949 0.000490297
\(875\) 0 0
\(876\) 0.0936581 0.00316442
\(877\) −1.52164 29.0345i −0.0513820 0.980427i −0.895721 0.444617i \(-0.853340\pi\)
0.844339 0.535810i \(-0.179994\pi\)
\(878\) −0.778436 0.630365i −0.0262709 0.0212738i
\(879\) 2.14306 0.225244i 0.0722835 0.00759730i
\(880\) 0 0
\(881\) 3.61462 4.97510i 0.121780 0.167616i −0.743774 0.668431i \(-0.766966\pi\)
0.865554 + 0.500815i \(0.166966\pi\)
\(882\) −0.106053 + 0.776489i −0.00357098 + 0.0261458i
\(883\) −4.04343 25.5292i −0.136072 0.859126i −0.957420 0.288698i \(-0.906777\pi\)
0.821348 0.570428i \(-0.193223\pi\)
\(884\) 2.92024 + 13.7387i 0.0982184 + 0.462081i
\(885\) 0 0
\(886\) −1.08192 0.229970i −0.0363479 0.00772598i
\(887\) −29.9286 19.4358i −1.00490 0.652591i −0.0663746 0.997795i \(-0.521143\pi\)
−0.938528 + 0.345204i \(0.887810\pi\)
\(888\) −0.0575362 0.112921i −0.00193079 0.00378938i
\(889\) −6.44621 55.6166i −0.216199 1.86532i
\(890\) 0 0
\(891\) 11.9688 2.54406i 0.400971 0.0852290i
\(892\) −46.8905 17.9996i −1.57001 0.602670i
\(893\) −0.471712 + 0.126395i −0.0157852 + 0.00422964i
\(894\) 0.00840117 0.0799318i 0.000280977 0.00267332i
\(895\) 0 0
\(896\) −1.83386 + 2.58158i −0.0612650 + 0.0862444i
\(897\) −0.155370 + 0.980964i −0.00518764 + 0.0327534i
\(898\) 0.624327 0.0327196i 0.0208341 0.00109187i
\(899\) 11.6026 20.0963i 0.386968 0.670248i
\(900\) 0 0
\(901\) −11.2157 + 6.47536i −0.373648 + 0.215726i
\(902\) 0.224511 0.440628i 0.00747540 0.0146713i
\(903\) 1.06670 0.882811i 0.0354977 0.0293781i
\(904\) −0.894504 1.23118i −0.0297508 0.0409484i
\(905\) 0 0
\(906\) 0.0151968 + 0.0341325i 0.000504879 + 0.00113398i
\(907\) 0.544417 + 2.03179i 0.0180771 + 0.0674645i 0.974375 0.224929i \(-0.0722150\pi\)
−0.956298 + 0.292393i \(0.905548\pi\)
\(908\) −15.5632 19.2190i −0.516484 0.637805i
\(909\) −3.64137 + 11.2070i −0.120777 + 0.371712i
\(910\) 0 0
\(911\) 7.06918 + 21.7567i 0.234212 + 0.720831i 0.997225 + 0.0744476i \(0.0237194\pi\)
−0.763013 + 0.646383i \(0.776281\pi\)
\(912\) 0.0162746 0.0250607i 0.000538907 0.000829844i
\(913\) 5.83038 + 0.305557i 0.192957 + 0.0101125i
\(914\) −0.0826361 + 0.388772i −0.00273336 + 0.0128594i
\(915\) 0 0
\(916\) −28.0726 9.12134i −0.927545 0.301378i
\(917\) −2.13527 4.08243i −0.0705129 0.134814i
\(918\) 0.0757030 + 0.0757030i 0.00249857 + 0.00249857i
\(919\) 54.4417 + 5.72206i 1.79587 + 0.188753i 0.942870 0.333162i \(-0.108116\pi\)
0.852997 + 0.521915i \(0.174782\pi\)
\(920\) 0 0
\(921\) 0.238181 + 2.26614i 0.00784832 + 0.0746718i
\(922\) 0.275802 + 0.718488i 0.00908305 + 0.0236621i
\(923\) 9.80045 + 4.99358i 0.322586 + 0.164366i
\(924\) 0.157004 0.779449i 0.00516505 0.0256420i
\(925\) 0 0
\(926\) 0.0544855 + 0.0943716i 0.00179050 + 0.00310124i
\(927\) 12.4983 + 19.2457i 0.410498 + 0.632111i
\(928\) 1.87008 2.30936i 0.0613884 0.0758084i
\(929\) −7.03630 3.13276i −0.230854 0.102783i 0.288050 0.957615i \(-0.406993\pi\)
−0.518904 + 0.854833i \(0.673660\pi\)
\(930\) 0 0
\(931\) 0.420312 + 0.230852i 0.0137752 + 0.00756587i
\(932\) 1.71506 1.71506i 0.0561786 0.0561786i
\(933\) 0.728463 0.589898i 0.0238488 0.0193124i
\(934\) 0.183875 + 0.204214i 0.00601659 + 0.00668210i
\(935\) 0 0
\(936\) 0.535428 + 0.482101i 0.0175010 + 0.0157580i
\(937\) −11.7089 + 5.96599i −0.382514 + 0.194901i −0.634665 0.772787i \(-0.718862\pi\)
0.252151 + 0.967688i \(0.418862\pi\)
\(938\) −0.236807 0.847498i −0.00773201 0.0276718i
\(939\) −2.52741 + 0.821204i −0.0824788 + 0.0267990i
\(940\) 0 0
\(941\) −14.0897 + 12.6864i −0.459309 + 0.413564i −0.866033 0.499987i \(-0.833338\pi\)
0.406723 + 0.913551i \(0.366671\pi\)
\(942\) 0.0270898 0.0705714i 0.000882634 0.00229934i
\(943\) 52.3224 + 14.0197i 1.70385 + 0.456546i
\(944\) −33.2376 24.1485i −1.08179 0.785967i
\(945\) 0 0
\(946\) −0.199750 + 0.145127i −0.00649443 + 0.00471848i
\(947\) 2.53480 0.973020i 0.0823700 0.0316189i −0.316834 0.948481i \(-0.602620\pi\)
0.399204 + 0.916862i \(0.369286\pi\)
\(948\) 1.66758 1.08294i 0.0541605 0.0351722i
\(949\) 0.597703 + 0.345084i 0.0194023 + 0.0112019i
\(950\) 0 0
\(951\) 0.500039i 0.0162149i
\(952\) −1.60920 + 0.637494i −0.0521543 + 0.0206613i
\(953\) 29.7958 + 4.71919i 0.965180 + 0.152870i 0.619080 0.785328i \(-0.287506\pi\)
0.346100 + 0.938197i \(0.387506\pi\)
\(954\) −0.135056 + 0.303340i −0.00437258 + 0.00982098i
\(955\) 0 0
\(956\) 46.9860 20.9195i 1.51964 0.676585i
\(957\) −0.257453 + 0.960828i −0.00832228 + 0.0310592i
\(958\) 0.218450 0.0345990i 0.00705779 0.00111784i
\(959\) 8.58125 + 14.5036i 0.277103 + 0.468344i
\(960\) 0 0
\(961\) 12.5097 13.8934i 0.403539 0.448175i
\(962\) 0.0244299 0.466150i 0.000787651 0.0150293i
\(963\) −1.68756 + 32.2005i −0.0543808 + 1.03765i
\(964\) −18.3202 + 20.3466i −0.590053 + 0.655320i
\(965\) 0 0
\(966\) −0.0611717 0.000652719i −0.00196817 2.10009e-5i
\(967\) −47.1384 + 7.46599i −1.51587 + 0.240090i −0.858239 0.513250i \(-0.828441\pi\)
−0.657631 + 0.753341i \(0.728441\pi\)
\(968\) 0.353121 1.31787i 0.0113498 0.0423579i
\(969\) 0.0298630 0.0132959i 0.000959339 0.000427125i
\(970\) 0 0
\(971\) 21.4242 48.1195i 0.687535 1.54423i −0.144499 0.989505i \(-0.546157\pi\)
0.832034 0.554724i \(-0.187176\pi\)
\(972\) −5.79341 0.917586i −0.185824 0.0294316i
\(973\) −35.3958 + 44.6765i −1.13474 + 1.43226i
\(974\) 0.651616i 0.0208791i
\(975\) 0 0
\(976\) 26.1441 + 15.0943i 0.836853 + 0.483157i
\(977\) 35.6446 23.1478i 1.14037 0.740565i 0.170783 0.985309i \(-0.445370\pi\)
0.969588 + 0.244744i \(0.0787038\pi\)
\(978\) −0.0132135 + 0.00507217i −0.000422520 + 0.000162190i
\(979\) −8.96219 + 6.51142i −0.286433 + 0.208106i
\(980\) 0 0
\(981\) 6.96531 + 5.06059i 0.222385 + 0.161572i
\(982\) −0.195699 0.0524374i −0.00624500 0.00167334i
\(983\) −6.71323 + 17.4886i −0.214119 + 0.557799i −0.998007 0.0631034i \(-0.979900\pi\)
0.783888 + 0.620902i \(0.213234\pi\)
\(984\) −0.116705 + 0.105082i −0.00372043 + 0.00334989i
\(985\) 0 0
\(986\) 1.02936 0.334458i 0.0327814 0.0106513i
\(987\) 1.98504 0.554656i 0.0631844 0.0176549i
\(988\) 0.196335 0.100038i 0.00624626 0.00318263i
\(989\) −20.0981 18.0964i −0.639083 0.575433i
\(990\) 0 0
\(991\) 14.7280 + 16.3571i 0.467849 + 0.519599i 0.930178 0.367109i \(-0.119653\pi\)
−0.462328 + 0.886709i \(0.652986\pi\)
\(992\) −1.22454 + 0.991610i −0.0388791 + 0.0314836i
\(993\) −0.183622 + 0.183622i −0.00582705 + 0.00582705i
\(994\) −0.202471 + 0.646534i −0.00642199 + 0.0205068i
\(995\) 0 0
\(996\) −0.846577 0.376921i −0.0268248 0.0119432i
\(997\) −10.4518 + 12.9069i −0.331013 + 0.408767i −0.915295 0.402784i \(-0.868043\pi\)
0.584282 + 0.811550i \(0.301376\pi\)
\(998\) 0.0491426 + 0.0756730i 0.00155558 + 0.00239539i
\(999\) 2.53268 + 4.38674i 0.0801306 + 0.138790i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.b.143.10 288
5.2 odd 4 175.2.x.a.17.9 yes 288
5.3 odd 4 875.2.bb.c.857.10 288
5.4 even 2 875.2.bb.a.143.9 288
7.5 odd 6 inner 875.2.bb.b.768.10 288
25.3 odd 20 875.2.bb.a.507.9 288
25.4 even 10 875.2.bb.c.493.9 288
25.21 even 5 175.2.x.a.3.10 288
25.22 odd 20 inner 875.2.bb.b.507.10 288
35.12 even 12 175.2.x.a.117.10 yes 288
35.19 odd 6 875.2.bb.a.768.9 288
35.33 even 12 875.2.bb.c.607.9 288
175.47 even 60 inner 875.2.bb.b.257.10 288
175.54 odd 30 875.2.bb.c.243.10 288
175.96 odd 30 175.2.x.a.103.9 yes 288
175.103 even 60 875.2.bb.a.257.9 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.10 288 25.21 even 5
175.2.x.a.17.9 yes 288 5.2 odd 4
175.2.x.a.103.9 yes 288 175.96 odd 30
175.2.x.a.117.10 yes 288 35.12 even 12
875.2.bb.a.143.9 288 5.4 even 2
875.2.bb.a.257.9 288 175.103 even 60
875.2.bb.a.507.9 288 25.3 odd 20
875.2.bb.a.768.9 288 35.19 odd 6
875.2.bb.b.143.10 288 1.1 even 1 trivial
875.2.bb.b.257.10 288 175.47 even 60 inner
875.2.bb.b.507.10 288 25.22 odd 20 inner
875.2.bb.b.768.10 288 7.5 odd 6 inner
875.2.bb.c.243.10 288 175.54 odd 30
875.2.bb.c.493.9 288 25.4 even 10
875.2.bb.c.607.9 288 35.33 even 12
875.2.bb.c.857.10 288 5.3 odd 4