Properties

Label 88.3.h.a.65.6
Level $88$
Weight $3$
Character 88.65
Analytic conductor $2.398$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,3,Mod(65,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 88.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.39782632637\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1750426112.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 21x^{4} + 4x^{3} + 228x^{2} + 368x + 548 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 65.6
Root \(-0.615072 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 88.65
Dual form 88.3.h.a.65.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.50331 q^{3} +2.27316 q^{5} +1.73969i q^{7} +3.27316 q^{9} +(-0.230143 - 10.9976i) q^{11} +12.4212i q^{13} +7.96359 q^{15} +13.0534i q^{17} -27.2142i q^{19} +6.09465i q^{21} -4.49669 q^{23} -19.8327 q^{25} -20.0629 q^{27} +25.4746i q^{29} -27.6026 q^{31} +(-0.806263 - 38.5279i) q^{33} +3.95459i q^{35} -46.6739 q^{37} +43.5151i q^{39} -57.0438i q^{41} +23.2596i q^{43} +7.44044 q^{45} +37.7515 q^{47} +45.9735 q^{49} +45.7301i q^{51} +77.1323 q^{53} +(-0.523153 - 24.9993i) q^{55} -95.3399i q^{57} +102.636 q^{59} +89.8774i q^{61} +5.69428i q^{63} +28.2353i q^{65} -26.3114 q^{67} -15.7533 q^{69} +5.63570 q^{71} -44.8545i q^{73} -69.4801 q^{75} +(19.1323 - 0.400377i) q^{77} -140.194i q^{79} -99.7449 q^{81} +115.984i q^{83} +29.6725i q^{85} +89.2452i q^{87} +107.220 q^{89} -21.6089 q^{91} -96.7003 q^{93} -61.8624i q^{95} -15.9651 q^{97} +(-0.753297 - 35.9969i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 6 q^{9} + 10 q^{11} - 52 q^{23} + 22 q^{25} + 32 q^{27} - 36 q^{31} - 64 q^{33} - 48 q^{37} + 172 q^{45} - 60 q^{47} - 170 q^{49} + 108 q^{53} + 172 q^{55} + 236 q^{59} - 292 q^{67} + 92 q^{69}+ \cdots + 182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.50331 1.16777 0.583885 0.811837i \(-0.301532\pi\)
0.583885 + 0.811837i \(0.301532\pi\)
\(4\) 0 0
\(5\) 2.27316 0.454633 0.227316 0.973821i \(-0.427005\pi\)
0.227316 + 0.973821i \(0.427005\pi\)
\(6\) 0 0
\(7\) 1.73969i 0.248526i 0.992249 + 0.124263i \(0.0396567\pi\)
−0.992249 + 0.124263i \(0.960343\pi\)
\(8\) 0 0
\(9\) 3.27316 0.363685
\(10\) 0 0
\(11\) −0.230143 10.9976i −0.0209221 0.999781i
\(12\) 0 0
\(13\) 12.4212i 0.955474i 0.878503 + 0.477737i \(0.158543\pi\)
−0.878503 + 0.477737i \(0.841457\pi\)
\(14\) 0 0
\(15\) 7.96359 0.530906
\(16\) 0 0
\(17\) 13.0534i 0.767847i 0.923365 + 0.383923i \(0.125427\pi\)
−0.923365 + 0.383923i \(0.874573\pi\)
\(18\) 0 0
\(19\) 27.2142i 1.43233i −0.697932 0.716164i \(-0.745896\pi\)
0.697932 0.716164i \(-0.254104\pi\)
\(20\) 0 0
\(21\) 6.09465i 0.290222i
\(22\) 0 0
\(23\) −4.49669 −0.195508 −0.0977542 0.995211i \(-0.531166\pi\)
−0.0977542 + 0.995211i \(0.531166\pi\)
\(24\) 0 0
\(25\) −19.8327 −0.793309
\(26\) 0 0
\(27\) −20.0629 −0.743069
\(28\) 0 0
\(29\) 25.4746i 0.878433i 0.898381 + 0.439216i \(0.144744\pi\)
−0.898381 + 0.439216i \(0.855256\pi\)
\(30\) 0 0
\(31\) −27.6026 −0.890406 −0.445203 0.895430i \(-0.646868\pi\)
−0.445203 + 0.895430i \(0.646868\pi\)
\(32\) 0 0
\(33\) −0.806263 38.5279i −0.0244322 1.16751i
\(34\) 0 0
\(35\) 3.95459i 0.112988i
\(36\) 0 0
\(37\) −46.6739 −1.26146 −0.630728 0.776004i \(-0.717244\pi\)
−0.630728 + 0.776004i \(0.717244\pi\)
\(38\) 0 0
\(39\) 43.5151i 1.11577i
\(40\) 0 0
\(41\) 57.0438i 1.39131i −0.718375 0.695656i \(-0.755114\pi\)
0.718375 0.695656i \(-0.244886\pi\)
\(42\) 0 0
\(43\) 23.2596i 0.540922i 0.962731 + 0.270461i \(0.0871761\pi\)
−0.962731 + 0.270461i \(0.912824\pi\)
\(44\) 0 0
\(45\) 7.44044 0.165343
\(46\) 0 0
\(47\) 37.7515 0.803223 0.401612 0.915810i \(-0.368450\pi\)
0.401612 + 0.915810i \(0.368450\pi\)
\(48\) 0 0
\(49\) 45.9735 0.938235
\(50\) 0 0
\(51\) 45.7301i 0.896668i
\(52\) 0 0
\(53\) 77.1323 1.45533 0.727664 0.685934i \(-0.240606\pi\)
0.727664 + 0.685934i \(0.240606\pi\)
\(54\) 0 0
\(55\) −0.523153 24.9993i −0.00951188 0.454533i
\(56\) 0 0
\(57\) 95.3399i 1.67263i
\(58\) 0 0
\(59\) 102.636 1.73959 0.869794 0.493416i \(-0.164252\pi\)
0.869794 + 0.493416i \(0.164252\pi\)
\(60\) 0 0
\(61\) 89.8774i 1.47340i 0.676219 + 0.736700i \(0.263617\pi\)
−0.676219 + 0.736700i \(0.736383\pi\)
\(62\) 0 0
\(63\) 5.69428i 0.0903853i
\(64\) 0 0
\(65\) 28.2353i 0.434390i
\(66\) 0 0
\(67\) −26.3114 −0.392707 −0.196354 0.980533i \(-0.562910\pi\)
−0.196354 + 0.980533i \(0.562910\pi\)
\(68\) 0 0
\(69\) −15.7533 −0.228309
\(70\) 0 0
\(71\) 5.63570 0.0793761 0.0396880 0.999212i \(-0.487364\pi\)
0.0396880 + 0.999212i \(0.487364\pi\)
\(72\) 0 0
\(73\) 44.8545i 0.614445i −0.951638 0.307222i \(-0.900600\pi\)
0.951638 0.307222i \(-0.0993995\pi\)
\(74\) 0 0
\(75\) −69.4801 −0.926402
\(76\) 0 0
\(77\) 19.1323 0.400377i 0.248472 0.00519970i
\(78\) 0 0
\(79\) 140.194i 1.77461i −0.461182 0.887306i \(-0.652574\pi\)
0.461182 0.887306i \(-0.347426\pi\)
\(80\) 0 0
\(81\) −99.7449 −1.23142
\(82\) 0 0
\(83\) 115.984i 1.39740i 0.715415 + 0.698700i \(0.246238\pi\)
−0.715415 + 0.698700i \(0.753762\pi\)
\(84\) 0 0
\(85\) 29.6725i 0.349088i
\(86\) 0 0
\(87\) 89.2452i 1.02581i
\(88\) 0 0
\(89\) 107.220 1.20472 0.602361 0.798224i \(-0.294227\pi\)
0.602361 + 0.798224i \(0.294227\pi\)
\(90\) 0 0
\(91\) −21.6089 −0.237461
\(92\) 0 0
\(93\) −96.7003 −1.03979
\(94\) 0 0
\(95\) 61.8624i 0.651184i
\(96\) 0 0
\(97\) −15.9651 −0.164588 −0.0822942 0.996608i \(-0.526225\pi\)
−0.0822942 + 0.996608i \(0.526225\pi\)
\(98\) 0 0
\(99\) −0.753297 35.9969i −0.00760906 0.363605i
\(100\) 0 0
\(101\) 130.766i 1.29471i −0.762188 0.647355i \(-0.775875\pi\)
0.762188 0.647355i \(-0.224125\pi\)
\(102\) 0 0
\(103\) 54.3014 0.527198 0.263599 0.964632i \(-0.415090\pi\)
0.263599 + 0.964632i \(0.415090\pi\)
\(104\) 0 0
\(105\) 13.8541i 0.131944i
\(106\) 0 0
\(107\) 0.643741i 0.00601627i −0.999995 0.00300814i \(-0.999042\pi\)
0.999995 0.00300814i \(-0.000957521\pi\)
\(108\) 0 0
\(109\) 170.899i 1.56788i 0.620834 + 0.783942i \(0.286794\pi\)
−0.620834 + 0.783942i \(0.713206\pi\)
\(110\) 0 0
\(111\) −163.513 −1.47309
\(112\) 0 0
\(113\) 0.432018 0.00382317 0.00191159 0.999998i \(-0.499392\pi\)
0.00191159 + 0.999998i \(0.499392\pi\)
\(114\) 0 0
\(115\) −10.2217 −0.0888845
\(116\) 0 0
\(117\) 40.6565i 0.347491i
\(118\) 0 0
\(119\) −22.7088 −0.190830
\(120\) 0 0
\(121\) −120.894 + 5.06204i −0.999125 + 0.0418351i
\(122\) 0 0
\(123\) 199.842i 1.62473i
\(124\) 0 0
\(125\) −101.912 −0.815297
\(126\) 0 0
\(127\) 13.4423i 0.105845i 0.998599 + 0.0529223i \(0.0168536\pi\)
−0.998599 + 0.0529223i \(0.983146\pi\)
\(128\) 0 0
\(129\) 81.4857i 0.631672i
\(130\) 0 0
\(131\) 60.7665i 0.463866i 0.972732 + 0.231933i \(0.0745051\pi\)
−0.972732 + 0.231933i \(0.925495\pi\)
\(132\) 0 0
\(133\) 47.3442 0.355972
\(134\) 0 0
\(135\) −45.6062 −0.337824
\(136\) 0 0
\(137\) 69.4584 0.506996 0.253498 0.967336i \(-0.418419\pi\)
0.253498 + 0.967336i \(0.418419\pi\)
\(138\) 0 0
\(139\) 152.227i 1.09516i −0.836755 0.547578i \(-0.815550\pi\)
0.836755 0.547578i \(-0.184450\pi\)
\(140\) 0 0
\(141\) 132.255 0.937979
\(142\) 0 0
\(143\) 136.603 2.85865i 0.955265 0.0199905i
\(144\) 0 0
\(145\) 57.9079i 0.399364i
\(146\) 0 0
\(147\) 161.059 1.09564
\(148\) 0 0
\(149\) 110.353i 0.740626i 0.928907 + 0.370313i \(0.120750\pi\)
−0.928907 + 0.370313i \(0.879250\pi\)
\(150\) 0 0
\(151\) 61.3872i 0.406538i −0.979123 0.203269i \(-0.934843\pi\)
0.979123 0.203269i \(-0.0651566\pi\)
\(152\) 0 0
\(153\) 42.7259i 0.279254i
\(154\) 0 0
\(155\) −62.7452 −0.404808
\(156\) 0 0
\(157\) 215.697 1.37386 0.686932 0.726722i \(-0.258957\pi\)
0.686932 + 0.726722i \(0.258957\pi\)
\(158\) 0 0
\(159\) 270.218 1.69949
\(160\) 0 0
\(161\) 7.82283i 0.0485890i
\(162\) 0 0
\(163\) −10.1956 −0.0625496 −0.0312748 0.999511i \(-0.509957\pi\)
−0.0312748 + 0.999511i \(0.509957\pi\)
\(164\) 0 0
\(165\) −1.83277 87.5804i −0.0111077 0.530790i
\(166\) 0 0
\(167\) 192.569i 1.15311i 0.817059 + 0.576554i \(0.195603\pi\)
−0.817059 + 0.576554i \(0.804397\pi\)
\(168\) 0 0
\(169\) 14.7148 0.0870696
\(170\) 0 0
\(171\) 89.0767i 0.520916i
\(172\) 0 0
\(173\) 181.024i 1.04638i −0.852216 0.523189i \(-0.824742\pi\)
0.852216 0.523189i \(-0.175258\pi\)
\(174\) 0 0
\(175\) 34.5027i 0.197158i
\(176\) 0 0
\(177\) 359.564 2.03144
\(178\) 0 0
\(179\) −107.761 −0.602019 −0.301009 0.953621i \(-0.597324\pi\)
−0.301009 + 0.953621i \(0.597324\pi\)
\(180\) 0 0
\(181\) −324.494 −1.79279 −0.896394 0.443259i \(-0.853822\pi\)
−0.896394 + 0.443259i \(0.853822\pi\)
\(182\) 0 0
\(183\) 314.868i 1.72059i
\(184\) 0 0
\(185\) −106.097 −0.573499
\(186\) 0 0
\(187\) 143.556 3.00415i 0.767679 0.0160650i
\(188\) 0 0
\(189\) 34.9031i 0.184672i
\(190\) 0 0
\(191\) −188.655 −0.987725 −0.493862 0.869540i \(-0.664415\pi\)
−0.493862 + 0.869540i \(0.664415\pi\)
\(192\) 0 0
\(193\) 34.9664i 0.181173i 0.995889 + 0.0905866i \(0.0288742\pi\)
−0.995889 + 0.0905866i \(0.971126\pi\)
\(194\) 0 0
\(195\) 98.9171i 0.507267i
\(196\) 0 0
\(197\) 348.589i 1.76949i −0.466078 0.884744i \(-0.654333\pi\)
0.466078 0.884744i \(-0.345667\pi\)
\(198\) 0 0
\(199\) −198.672 −0.998352 −0.499176 0.866501i \(-0.666364\pi\)
−0.499176 + 0.866501i \(0.666364\pi\)
\(200\) 0 0
\(201\) −92.1768 −0.458591
\(202\) 0 0
\(203\) −44.3177 −0.218314
\(204\) 0 0
\(205\) 129.670i 0.632536i
\(206\) 0 0
\(207\) −14.7184 −0.0711034
\(208\) 0 0
\(209\) −299.291 + 6.26317i −1.43201 + 0.0299673i
\(210\) 0 0
\(211\) 325.789i 1.54402i 0.635608 + 0.772012i \(0.280749\pi\)
−0.635608 + 0.772012i \(0.719251\pi\)
\(212\) 0 0
\(213\) 19.7436 0.0926929
\(214\) 0 0
\(215\) 52.8730i 0.245921i
\(216\) 0 0
\(217\) 48.0198i 0.221289i
\(218\) 0 0
\(219\) 157.139i 0.717530i
\(220\) 0 0
\(221\) −162.138 −0.733658
\(222\) 0 0
\(223\) −204.550 −0.917263 −0.458631 0.888627i \(-0.651660\pi\)
−0.458631 + 0.888627i \(0.651660\pi\)
\(224\) 0 0
\(225\) −64.9158 −0.288515
\(226\) 0 0
\(227\) 169.646i 0.747341i 0.927561 + 0.373671i \(0.121901\pi\)
−0.927561 + 0.373671i \(0.878099\pi\)
\(228\) 0 0
\(229\) 233.882 1.02132 0.510659 0.859783i \(-0.329401\pi\)
0.510659 + 0.859783i \(0.329401\pi\)
\(230\) 0 0
\(231\) 67.0265 1.40264i 0.290158 0.00607205i
\(232\) 0 0
\(233\) 272.165i 1.16809i 0.811721 + 0.584046i \(0.198531\pi\)
−0.811721 + 0.584046i \(0.801469\pi\)
\(234\) 0 0
\(235\) 85.8153 0.365172
\(236\) 0 0
\(237\) 491.144i 2.07234i
\(238\) 0 0
\(239\) 202.218i 0.846100i −0.906106 0.423050i \(-0.860959\pi\)
0.906106 0.423050i \(-0.139041\pi\)
\(240\) 0 0
\(241\) 44.4541i 0.184457i −0.995738 0.0922284i \(-0.970601\pi\)
0.995738 0.0922284i \(-0.0293990\pi\)
\(242\) 0 0
\(243\) −168.871 −0.694943
\(244\) 0 0
\(245\) 104.505 0.426552
\(246\) 0 0
\(247\) 338.032 1.36855
\(248\) 0 0
\(249\) 406.328i 1.63184i
\(250\) 0 0
\(251\) −362.556 −1.44444 −0.722222 0.691661i \(-0.756879\pi\)
−0.722222 + 0.691661i \(0.756879\pi\)
\(252\) 0 0
\(253\) 1.03488 + 49.4528i 0.00409045 + 0.195466i
\(254\) 0 0
\(255\) 103.952i 0.407655i
\(256\) 0 0
\(257\) 40.8146 0.158812 0.0794059 0.996842i \(-0.474698\pi\)
0.0794059 + 0.996842i \(0.474698\pi\)
\(258\) 0 0
\(259\) 81.1978i 0.313505i
\(260\) 0 0
\(261\) 83.3824i 0.319473i
\(262\) 0 0
\(263\) 245.411i 0.933121i −0.884489 0.466560i \(-0.845493\pi\)
0.884489 0.466560i \(-0.154507\pi\)
\(264\) 0 0
\(265\) 175.335 0.661640
\(266\) 0 0
\(267\) 375.625 1.40684
\(268\) 0 0
\(269\) −246.762 −0.917329 −0.458665 0.888609i \(-0.651672\pi\)
−0.458665 + 0.888609i \(0.651672\pi\)
\(270\) 0 0
\(271\) 387.820i 1.43107i −0.698577 0.715535i \(-0.746183\pi\)
0.698577 0.715535i \(-0.253817\pi\)
\(272\) 0 0
\(273\) −75.7027 −0.277299
\(274\) 0 0
\(275\) 4.56437 + 218.112i 0.0165977 + 0.793135i
\(276\) 0 0
\(277\) 465.497i 1.68049i 0.542205 + 0.840246i \(0.317590\pi\)
−0.542205 + 0.840246i \(0.682410\pi\)
\(278\) 0 0
\(279\) −90.3478 −0.323827
\(280\) 0 0
\(281\) 31.0003i 0.110321i 0.998477 + 0.0551607i \(0.0175671\pi\)
−0.998477 + 0.0551607i \(0.982433\pi\)
\(282\) 0 0
\(283\) 44.7953i 0.158287i −0.996863 0.0791436i \(-0.974781\pi\)
0.996863 0.0791436i \(-0.0252186\pi\)
\(284\) 0 0
\(285\) 216.723i 0.760432i
\(286\) 0 0
\(287\) 99.2382 0.345778
\(288\) 0 0
\(289\) 118.609 0.410411
\(290\) 0 0
\(291\) −55.9306 −0.192201
\(292\) 0 0
\(293\) 113.519i 0.387436i −0.981057 0.193718i \(-0.937945\pi\)
0.981057 0.193718i \(-0.0620546\pi\)
\(294\) 0 0
\(295\) 233.308 0.790874
\(296\) 0 0
\(297\) 4.61733 + 220.643i 0.0155466 + 0.742906i
\(298\) 0 0
\(299\) 55.8541i 0.186803i
\(300\) 0 0
\(301\) −40.4645 −0.134433
\(302\) 0 0
\(303\) 458.113i 1.51192i
\(304\) 0 0
\(305\) 204.306i 0.669856i
\(306\) 0 0
\(307\) 81.6657i 0.266012i 0.991115 + 0.133006i \(0.0424630\pi\)
−0.991115 + 0.133006i \(0.957537\pi\)
\(308\) 0 0
\(309\) 190.235 0.615646
\(310\) 0 0
\(311\) −288.619 −0.928036 −0.464018 0.885826i \(-0.653593\pi\)
−0.464018 + 0.885826i \(0.653593\pi\)
\(312\) 0 0
\(313\) 358.220 1.14447 0.572237 0.820089i \(-0.306076\pi\)
0.572237 + 0.820089i \(0.306076\pi\)
\(314\) 0 0
\(315\) 12.9440i 0.0410921i
\(316\) 0 0
\(317\) 385.247 1.21529 0.607644 0.794209i \(-0.292115\pi\)
0.607644 + 0.794209i \(0.292115\pi\)
\(318\) 0 0
\(319\) 280.159 5.86280i 0.878241 0.0183787i
\(320\) 0 0
\(321\) 2.25522i 0.00702562i
\(322\) 0 0
\(323\) 355.238 1.09981
\(324\) 0 0
\(325\) 246.345i 0.757986i
\(326\) 0 0
\(327\) 598.713i 1.83093i
\(328\) 0 0
\(329\) 65.6757i 0.199622i
\(330\) 0 0
\(331\) 224.841 0.679279 0.339639 0.940556i \(-0.389695\pi\)
0.339639 + 0.940556i \(0.389695\pi\)
\(332\) 0 0
\(333\) −152.771 −0.458773
\(334\) 0 0
\(335\) −59.8101 −0.178538
\(336\) 0 0
\(337\) 434.610i 1.28964i −0.764333 0.644822i \(-0.776932\pi\)
0.764333 0.644822i \(-0.223068\pi\)
\(338\) 0 0
\(339\) 1.51349 0.00446458
\(340\) 0 0
\(341\) 6.35255 + 303.562i 0.0186292 + 0.890211i
\(342\) 0 0
\(343\) 165.224i 0.481703i
\(344\) 0 0
\(345\) −35.8098 −0.103797
\(346\) 0 0
\(347\) 424.683i 1.22387i −0.790908 0.611935i \(-0.790391\pi\)
0.790908 0.611935i \(-0.209609\pi\)
\(348\) 0 0
\(349\) 267.504i 0.766486i 0.923647 + 0.383243i \(0.125193\pi\)
−0.923647 + 0.383243i \(0.874807\pi\)
\(350\) 0 0
\(351\) 249.204i 0.709983i
\(352\) 0 0
\(353\) −252.800 −0.716148 −0.358074 0.933693i \(-0.616566\pi\)
−0.358074 + 0.933693i \(0.616566\pi\)
\(354\) 0 0
\(355\) 12.8109 0.0360870
\(356\) 0 0
\(357\) −79.5559 −0.222846
\(358\) 0 0
\(359\) 190.991i 0.532007i −0.963972 0.266004i \(-0.914297\pi\)
0.963972 0.266004i \(-0.0857033\pi\)
\(360\) 0 0
\(361\) −379.615 −1.05156
\(362\) 0 0
\(363\) −423.529 + 17.7339i −1.16675 + 0.0488537i
\(364\) 0 0
\(365\) 101.962i 0.279347i
\(366\) 0 0
\(367\) −277.338 −0.755689 −0.377845 0.925869i \(-0.623335\pi\)
−0.377845 + 0.925869i \(0.623335\pi\)
\(368\) 0 0
\(369\) 186.714i 0.505999i
\(370\) 0 0
\(371\) 134.186i 0.361687i
\(372\) 0 0
\(373\) 442.955i 1.18755i 0.804632 + 0.593774i \(0.202363\pi\)
−0.804632 + 0.593774i \(0.797637\pi\)
\(374\) 0 0
\(375\) −357.030 −0.952079
\(376\) 0 0
\(377\) −316.424 −0.839320
\(378\) 0 0
\(379\) −520.888 −1.37437 −0.687187 0.726481i \(-0.741155\pi\)
−0.687187 + 0.726481i \(0.741155\pi\)
\(380\) 0 0
\(381\) 47.0924i 0.123602i
\(382\) 0 0
\(383\) −117.258 −0.306158 −0.153079 0.988214i \(-0.548919\pi\)
−0.153079 + 0.988214i \(0.548919\pi\)
\(384\) 0 0
\(385\) 43.4910 0.910122i 0.112964 0.00236395i
\(386\) 0 0
\(387\) 76.1327i 0.196725i
\(388\) 0 0
\(389\) −329.077 −0.845956 −0.422978 0.906140i \(-0.639015\pi\)
−0.422978 + 0.906140i \(0.639015\pi\)
\(390\) 0 0
\(391\) 58.6971i 0.150120i
\(392\) 0 0
\(393\) 212.884i 0.541689i
\(394\) 0 0
\(395\) 318.685i 0.806797i
\(396\) 0 0
\(397\) −334.297 −0.842058 −0.421029 0.907047i \(-0.638331\pi\)
−0.421029 + 0.907047i \(0.638331\pi\)
\(398\) 0 0
\(399\) 165.861 0.415693
\(400\) 0 0
\(401\) 399.291 0.995738 0.497869 0.867252i \(-0.334116\pi\)
0.497869 + 0.867252i \(0.334116\pi\)
\(402\) 0 0
\(403\) 342.856i 0.850760i
\(404\) 0 0
\(405\) −226.736 −0.559843
\(406\) 0 0
\(407\) 10.7417 + 513.300i 0.0263923 + 1.26118i
\(408\) 0 0
\(409\) 260.275i 0.636370i −0.948029 0.318185i \(-0.896927\pi\)
0.948029 0.318185i \(-0.103073\pi\)
\(410\) 0 0
\(411\) 243.334 0.592054
\(412\) 0 0
\(413\) 178.554i 0.432334i
\(414\) 0 0
\(415\) 263.651i 0.635304i
\(416\) 0 0
\(417\) 533.297i 1.27889i
\(418\) 0 0
\(419\) 128.534 0.306763 0.153382 0.988167i \(-0.450984\pi\)
0.153382 + 0.988167i \(0.450984\pi\)
\(420\) 0 0
\(421\) 88.3502 0.209858 0.104929 0.994480i \(-0.466538\pi\)
0.104929 + 0.994480i \(0.466538\pi\)
\(422\) 0 0
\(423\) 123.567 0.292120
\(424\) 0 0
\(425\) 258.884i 0.609140i
\(426\) 0 0
\(427\) −156.358 −0.366179
\(428\) 0 0
\(429\) 478.562 10.0147i 1.11553 0.0233443i
\(430\) 0 0
\(431\) 261.912i 0.607683i −0.952723 0.303842i \(-0.901731\pi\)
0.952723 0.303842i \(-0.0982694\pi\)
\(432\) 0 0
\(433\) −161.189 −0.372261 −0.186130 0.982525i \(-0.559595\pi\)
−0.186130 + 0.982525i \(0.559595\pi\)
\(434\) 0 0
\(435\) 202.869i 0.466366i
\(436\) 0 0
\(437\) 122.374i 0.280032i
\(438\) 0 0
\(439\) 796.202i 1.81367i 0.421484 + 0.906836i \(0.361510\pi\)
−0.421484 + 0.906836i \(0.638490\pi\)
\(440\) 0 0
\(441\) 150.479 0.341222
\(442\) 0 0
\(443\) 842.927 1.90277 0.951385 0.308006i \(-0.0996615\pi\)
0.951385 + 0.308006i \(0.0996615\pi\)
\(444\) 0 0
\(445\) 243.729 0.547706
\(446\) 0 0
\(447\) 386.601i 0.864880i
\(448\) 0 0
\(449\) 401.591 0.894411 0.447206 0.894431i \(-0.352419\pi\)
0.447206 + 0.894431i \(0.352419\pi\)
\(450\) 0 0
\(451\) −627.344 + 13.1282i −1.39101 + 0.0291092i
\(452\) 0 0
\(453\) 215.058i 0.474742i
\(454\) 0 0
\(455\) −49.1206 −0.107957
\(456\) 0 0
\(457\) 802.579i 1.75619i −0.478486 0.878095i \(-0.658814\pi\)
0.478486 0.878095i \(-0.341186\pi\)
\(458\) 0 0
\(459\) 261.889i 0.570563i
\(460\) 0 0
\(461\) 51.9184i 0.112621i −0.998413 0.0563106i \(-0.982066\pi\)
0.998413 0.0563106i \(-0.0179337\pi\)
\(462\) 0 0
\(463\) 636.065 1.37379 0.686895 0.726756i \(-0.258973\pi\)
0.686895 + 0.726756i \(0.258973\pi\)
\(464\) 0 0
\(465\) −219.816 −0.472722
\(466\) 0 0
\(467\) −527.855 −1.13031 −0.565155 0.824984i \(-0.691184\pi\)
−0.565155 + 0.824984i \(0.691184\pi\)
\(468\) 0 0
\(469\) 45.7735i 0.0975981i
\(470\) 0 0
\(471\) 755.652 1.60436
\(472\) 0 0
\(473\) 255.800 5.35305i 0.540804 0.0113172i
\(474\) 0 0
\(475\) 539.733i 1.13628i
\(476\) 0 0
\(477\) 252.467 0.529281
\(478\) 0 0
\(479\) 468.191i 0.977434i 0.872442 + 0.488717i \(0.162535\pi\)
−0.872442 + 0.488717i \(0.837465\pi\)
\(480\) 0 0
\(481\) 579.744i 1.20529i
\(482\) 0 0
\(483\) 27.4058i 0.0567407i
\(484\) 0 0
\(485\) −36.2912 −0.0748273
\(486\) 0 0
\(487\) −851.667 −1.74880 −0.874402 0.485203i \(-0.838746\pi\)
−0.874402 + 0.485203i \(0.838746\pi\)
\(488\) 0 0
\(489\) −35.7183 −0.0730435
\(490\) 0 0
\(491\) 358.667i 0.730483i 0.930913 + 0.365241i \(0.119014\pi\)
−0.930913 + 0.365241i \(0.880986\pi\)
\(492\) 0 0
\(493\) −332.529 −0.674502
\(494\) 0 0
\(495\) −1.71237 81.8269i −0.00345933 0.165307i
\(496\) 0 0
\(497\) 9.80435i 0.0197271i
\(498\) 0 0
\(499\) 833.169 1.66968 0.834838 0.550495i \(-0.185561\pi\)
0.834838 + 0.550495i \(0.185561\pi\)
\(500\) 0 0
\(501\) 674.629i 1.34656i
\(502\) 0 0
\(503\) 317.397i 0.631008i −0.948924 0.315504i \(-0.897826\pi\)
0.948924 0.315504i \(-0.102174\pi\)
\(504\) 0 0
\(505\) 297.252i 0.588618i
\(506\) 0 0
\(507\) 51.5503 0.101677
\(508\) 0 0
\(509\) 55.9879 0.109996 0.0549980 0.998486i \(-0.482485\pi\)
0.0549980 + 0.998486i \(0.482485\pi\)
\(510\) 0 0
\(511\) 78.0326 0.152706
\(512\) 0 0
\(513\) 545.996i 1.06432i
\(514\) 0 0
\(515\) 123.436 0.239682
\(516\) 0 0
\(517\) −8.68825 415.175i −0.0168051 0.803047i
\(518\) 0 0
\(519\) 634.181i 1.22193i
\(520\) 0 0
\(521\) 427.253 0.820063 0.410031 0.912071i \(-0.365518\pi\)
0.410031 + 0.912071i \(0.365518\pi\)
\(522\) 0 0
\(523\) 197.190i 0.377037i 0.982070 + 0.188519i \(0.0603686\pi\)
−0.982070 + 0.188519i \(0.939631\pi\)
\(524\) 0 0
\(525\) 120.874i 0.230235i
\(526\) 0 0
\(527\) 360.307i 0.683695i
\(528\) 0 0
\(529\) −508.780 −0.961776
\(530\) 0 0
\(531\) 335.943 0.632662
\(532\) 0 0
\(533\) 708.550 1.32936
\(534\) 0 0
\(535\) 1.46333i 0.00273520i
\(536\) 0 0
\(537\) −377.521 −0.703019
\(538\) 0 0
\(539\) −10.5805 505.598i −0.0196299 0.938029i
\(540\) 0 0
\(541\) 654.393i 1.20960i 0.796378 + 0.604800i \(0.206747\pi\)
−0.796378 + 0.604800i \(0.793253\pi\)
\(542\) 0 0
\(543\) −1136.80 −2.09356
\(544\) 0 0
\(545\) 388.483i 0.712812i
\(546\) 0 0
\(547\) 37.5142i 0.0685817i 0.999412 + 0.0342908i \(0.0109173\pi\)
−0.999412 + 0.0342908i \(0.989083\pi\)
\(548\) 0 0
\(549\) 294.184i 0.535854i
\(550\) 0 0
\(551\) 693.271 1.25820
\(552\) 0 0
\(553\) 243.894 0.441038
\(554\) 0 0
\(555\) −371.692 −0.669715
\(556\) 0 0
\(557\) 715.749i 1.28501i 0.766283 + 0.642504i \(0.222104\pi\)
−0.766283 + 0.642504i \(0.777896\pi\)
\(558\) 0 0
\(559\) −288.912 −0.516837
\(560\) 0 0
\(561\) 502.920 10.5245i 0.896471 0.0187602i
\(562\) 0 0
\(563\) 691.989i 1.22911i −0.788874 0.614555i \(-0.789335\pi\)
0.788874 0.614555i \(-0.210665\pi\)
\(564\) 0 0
\(565\) 0.982049 0.00173814
\(566\) 0 0
\(567\) 173.525i 0.306040i
\(568\) 0 0
\(569\) 245.840i 0.432056i −0.976387 0.216028i \(-0.930690\pi\)
0.976387 0.216028i \(-0.0693103\pi\)
\(570\) 0 0
\(571\) 474.881i 0.831665i 0.909441 + 0.415832i \(0.136510\pi\)
−0.909441 + 0.415832i \(0.863490\pi\)
\(572\) 0 0
\(573\) −660.918 −1.15343
\(574\) 0 0
\(575\) 89.1817 0.155099
\(576\) 0 0
\(577\) −541.321 −0.938165 −0.469082 0.883154i \(-0.655415\pi\)
−0.469082 + 0.883154i \(0.655415\pi\)
\(578\) 0 0
\(579\) 122.498i 0.211568i
\(580\) 0 0
\(581\) −201.776 −0.347291
\(582\) 0 0
\(583\) −17.7515 848.270i −0.0304485 1.45501i
\(584\) 0 0
\(585\) 92.4189i 0.157981i
\(586\) 0 0
\(587\) −471.592 −0.803394 −0.401697 0.915773i \(-0.631580\pi\)
−0.401697 + 0.915773i \(0.631580\pi\)
\(588\) 0 0
\(589\) 751.183i 1.27535i
\(590\) 0 0
\(591\) 1221.21i 2.06635i
\(592\) 0 0
\(593\) 460.953i 0.777323i 0.921381 + 0.388662i \(0.127062\pi\)
−0.921381 + 0.388662i \(0.872938\pi\)
\(594\) 0 0
\(595\) −51.6208 −0.0867577
\(596\) 0 0
\(597\) −696.009 −1.16584
\(598\) 0 0
\(599\) 309.686 0.517006 0.258503 0.966011i \(-0.416771\pi\)
0.258503 + 0.966011i \(0.416771\pi\)
\(600\) 0 0
\(601\) 766.230i 1.27493i −0.770481 0.637463i \(-0.779984\pi\)
0.770481 0.637463i \(-0.220016\pi\)
\(602\) 0 0
\(603\) −86.1215 −0.142822
\(604\) 0 0
\(605\) −274.812 + 11.5069i −0.454235 + 0.0190196i
\(606\) 0 0
\(607\) 928.818i 1.53018i 0.643925 + 0.765089i \(0.277305\pi\)
−0.643925 + 0.765089i \(0.722695\pi\)
\(608\) 0 0
\(609\) −155.259 −0.254940
\(610\) 0 0
\(611\) 468.917i 0.767459i
\(612\) 0 0
\(613\) 224.968i 0.366995i −0.983020 0.183497i \(-0.941258\pi\)
0.983020 0.183497i \(-0.0587419\pi\)
\(614\) 0 0
\(615\) 454.273i 0.738656i
\(616\) 0 0
\(617\) −809.197 −1.31150 −0.655751 0.754977i \(-0.727648\pi\)
−0.655751 + 0.754977i \(0.727648\pi\)
\(618\) 0 0
\(619\) 168.012 0.271425 0.135713 0.990748i \(-0.456668\pi\)
0.135713 + 0.990748i \(0.456668\pi\)
\(620\) 0 0
\(621\) 90.2165 0.145276
\(622\) 0 0
\(623\) 186.529i 0.299405i
\(624\) 0 0
\(625\) 264.155 0.422648
\(626\) 0 0
\(627\) −1048.51 + 21.9418i −1.67226 + 0.0349949i
\(628\) 0 0
\(629\) 609.252i 0.968605i
\(630\) 0 0
\(631\) −779.311 −1.23504 −0.617521 0.786554i \(-0.711863\pi\)
−0.617521 + 0.786554i \(0.711863\pi\)
\(632\) 0 0
\(633\) 1141.34i 1.80306i
\(634\) 0 0
\(635\) 30.5565i 0.0481204i
\(636\) 0 0
\(637\) 571.044i 0.896459i
\(638\) 0 0
\(639\) 18.4466 0.0288679
\(640\) 0 0
\(641\) 283.385 0.442098 0.221049 0.975263i \(-0.429052\pi\)
0.221049 + 0.975263i \(0.429052\pi\)
\(642\) 0 0
\(643\) −570.053 −0.886552 −0.443276 0.896385i \(-0.646184\pi\)
−0.443276 + 0.896385i \(0.646184\pi\)
\(644\) 0 0
\(645\) 185.230i 0.287179i
\(646\) 0 0
\(647\) 557.941 0.862351 0.431175 0.902268i \(-0.358099\pi\)
0.431175 + 0.902268i \(0.358099\pi\)
\(648\) 0 0
\(649\) −23.6209 1128.75i −0.0363958 1.73921i
\(650\) 0 0
\(651\) 168.228i 0.258415i
\(652\) 0 0
\(653\) 1111.31 1.70186 0.850928 0.525283i \(-0.176041\pi\)
0.850928 + 0.525283i \(0.176041\pi\)
\(654\) 0 0
\(655\) 138.132i 0.210889i
\(656\) 0 0
\(657\) 146.816i 0.223464i
\(658\) 0 0
\(659\) 10.0016i 0.0151769i 0.999971 + 0.00758847i \(0.00241551\pi\)
−0.999971 + 0.00758847i \(0.997584\pi\)
\(660\) 0 0
\(661\) 330.126 0.499435 0.249717 0.968319i \(-0.419662\pi\)
0.249717 + 0.968319i \(0.419662\pi\)
\(662\) 0 0
\(663\) −568.020 −0.856743
\(664\) 0 0
\(665\) 107.621 0.161836
\(666\) 0 0
\(667\) 114.551i 0.171741i
\(668\) 0 0
\(669\) −716.600 −1.07115
\(670\) 0 0
\(671\) 988.435 20.6847i 1.47308 0.0308267i
\(672\) 0 0
\(673\) 510.419i 0.758423i −0.925310 0.379211i \(-0.876195\pi\)
0.925310 0.379211i \(-0.123805\pi\)
\(674\) 0 0
\(675\) 397.901 0.589483
\(676\) 0 0
\(677\) 854.013i 1.26147i −0.776000 0.630733i \(-0.782754\pi\)
0.776000 0.630733i \(-0.217246\pi\)
\(678\) 0 0
\(679\) 27.7742i 0.0409046i
\(680\) 0 0
\(681\) 594.324i 0.872722i
\(682\) 0 0
\(683\) 1102.97 1.61489 0.807444 0.589944i \(-0.200850\pi\)
0.807444 + 0.589944i \(0.200850\pi\)
\(684\) 0 0
\(685\) 157.890 0.230497
\(686\) 0 0
\(687\) 819.361 1.19266
\(688\) 0 0
\(689\) 958.073i 1.39053i
\(690\) 0 0
\(691\) 1033.85 1.49617 0.748085 0.663603i \(-0.230974\pi\)
0.748085 + 0.663603i \(0.230974\pi\)
\(692\) 0 0
\(693\) 62.6233 1.31050i 0.0903655 0.00189105i
\(694\) 0 0
\(695\) 346.036i 0.497894i
\(696\) 0 0
\(697\) 744.615 1.06831
\(698\) 0 0
\(699\) 953.479i 1.36406i
\(700\) 0 0
\(701\) 188.420i 0.268788i −0.990928 0.134394i \(-0.957091\pi\)
0.990928 0.134394i \(-0.0429088\pi\)
\(702\) 0 0
\(703\) 1270.19i 1.80682i
\(704\) 0 0
\(705\) 300.638 0.426436
\(706\) 0 0
\(707\) 227.491 0.321770
\(708\) 0 0
\(709\) 585.088 0.825230 0.412615 0.910906i \(-0.364616\pi\)
0.412615 + 0.910906i \(0.364616\pi\)
\(710\) 0 0
\(711\) 458.879i 0.645399i
\(712\) 0 0
\(713\) 124.120 0.174082
\(714\) 0 0
\(715\) 310.521 6.49817i 0.434295 0.00908835i
\(716\) 0 0
\(717\) 708.432i 0.988050i
\(718\) 0 0
\(719\) −1237.24 −1.72078 −0.860392 0.509633i \(-0.829781\pi\)
−0.860392 + 0.509633i \(0.829781\pi\)
\(720\) 0 0
\(721\) 94.4674i 0.131023i
\(722\) 0 0
\(723\) 155.736i 0.215403i
\(724\) 0 0
\(725\) 505.230i 0.696869i
\(726\) 0 0
\(727\) −257.146 −0.353709 −0.176854 0.984237i \(-0.556592\pi\)
−0.176854 + 0.984237i \(0.556592\pi\)
\(728\) 0 0
\(729\) 306.096 0.419885
\(730\) 0 0
\(731\) −303.617 −0.415345
\(732\) 0 0
\(733\) 716.541i 0.977545i −0.872411 0.488773i \(-0.837445\pi\)
0.872411 0.488773i \(-0.162555\pi\)
\(734\) 0 0
\(735\) 366.114 0.498115
\(736\) 0 0
\(737\) 6.05539 + 289.362i 0.00821626 + 0.392621i
\(738\) 0 0
\(739\) 938.114i 1.26944i −0.772743 0.634719i \(-0.781116\pi\)
0.772743 0.634719i \(-0.218884\pi\)
\(740\) 0 0
\(741\) 1184.23 1.59815
\(742\) 0 0
\(743\) 598.391i 0.805371i 0.915338 + 0.402686i \(0.131923\pi\)
−0.915338 + 0.402686i \(0.868077\pi\)
\(744\) 0 0
\(745\) 250.851i 0.336713i
\(746\) 0 0
\(747\) 379.635i 0.508213i
\(748\) 0 0
\(749\) 1.11991 0.00149520
\(750\) 0 0
\(751\) 85.2179 0.113473 0.0567363 0.998389i \(-0.481931\pi\)
0.0567363 + 0.998389i \(0.481931\pi\)
\(752\) 0 0
\(753\) −1270.14 −1.68678
\(754\) 0 0
\(755\) 139.543i 0.184825i
\(756\) 0 0
\(757\) −1057.81 −1.39737 −0.698685 0.715430i \(-0.746231\pi\)
−0.698685 + 0.715430i \(0.746231\pi\)
\(758\) 0 0
\(759\) 3.62551 + 173.248i 0.00477670 + 0.228259i
\(760\) 0 0
\(761\) 584.173i 0.767639i −0.923408 0.383820i \(-0.874608\pi\)
0.923408 0.383820i \(-0.125392\pi\)
\(762\) 0 0
\(763\) −297.311 −0.389661
\(764\) 0 0
\(765\) 97.1230i 0.126958i
\(766\) 0 0
\(767\) 1274.85i 1.66213i
\(768\) 0 0
\(769\) 1326.75i 1.72529i 0.505807 + 0.862647i \(0.331195\pi\)
−0.505807 + 0.862647i \(0.668805\pi\)
\(770\) 0 0
\(771\) 142.986 0.185456
\(772\) 0 0
\(773\) −410.847 −0.531497 −0.265749 0.964042i \(-0.585619\pi\)
−0.265749 + 0.964042i \(0.585619\pi\)
\(774\) 0 0
\(775\) 547.434 0.706367
\(776\) 0 0
\(777\) 284.461i 0.366102i
\(778\) 0 0
\(779\) −1552.40 −1.99281
\(780\) 0 0
\(781\) −1.29702 61.9791i −0.00166072 0.0793587i
\(782\) 0 0
\(783\) 511.093i 0.652736i
\(784\) 0 0
\(785\) 490.314 0.624604
\(786\) 0 0
\(787\) 1208.02i 1.53497i −0.641064 0.767487i \(-0.721507\pi\)
0.641064 0.767487i \(-0.278493\pi\)
\(788\) 0 0
\(789\) 859.749i 1.08967i
\(790\) 0 0
\(791\) 0.751576i 0.000950159i
\(792\) 0 0
\(793\) −1116.38 −1.40780
\(794\) 0 0
\(795\) 614.251 0.772642
\(796\) 0 0
\(797\) −222.786 −0.279531 −0.139765 0.990185i \(-0.544635\pi\)
−0.139765 + 0.990185i \(0.544635\pi\)
\(798\) 0 0
\(799\) 492.785i 0.616752i
\(800\) 0 0
\(801\) 350.949 0.438139
\(802\) 0 0
\(803\) −493.291 + 10.3230i −0.614310 + 0.0128555i
\(804\) 0 0
\(805\) 17.7826i 0.0220902i
\(806\) 0 0
\(807\) −864.482 −1.07123
\(808\) 0 0
\(809\) 629.428i 0.778033i 0.921231 + 0.389016i \(0.127185\pi\)
−0.921231 + 0.389016i \(0.872815\pi\)
\(810\) 0 0
\(811\) 499.230i 0.615573i 0.951455 + 0.307787i \(0.0995883\pi\)
−0.951455 + 0.307787i \(0.900412\pi\)
\(812\) 0 0
\(813\) 1358.65i 1.67116i
\(814\) 0 0
\(815\) −23.1762 −0.0284371
\(816\) 0 0
\(817\) 632.994 0.774778
\(818\) 0 0
\(819\) −70.7295 −0.0863608
\(820\) 0 0
\(821\) 666.128i 0.811361i −0.914015 0.405681i \(-0.867035\pi\)
0.914015 0.405681i \(-0.132965\pi\)
\(822\) 0 0
\(823\) 1424.55 1.73092 0.865462 0.500975i \(-0.167025\pi\)
0.865462 + 0.500975i \(0.167025\pi\)
\(824\) 0 0
\(825\) 15.9904 + 764.114i 0.0193823 + 0.926199i
\(826\) 0 0
\(827\) 596.146i 0.720853i −0.932788 0.360427i \(-0.882631\pi\)
0.932788 0.360427i \(-0.117369\pi\)
\(828\) 0 0
\(829\) −861.706 −1.03945 −0.519726 0.854333i \(-0.673966\pi\)
−0.519726 + 0.854333i \(0.673966\pi\)
\(830\) 0 0
\(831\) 1630.78i 1.96243i
\(832\) 0 0
\(833\) 600.110i 0.720420i
\(834\) 0 0
\(835\) 437.741i 0.524241i
\(836\) 0 0
\(837\) 553.787 0.661633
\(838\) 0 0
\(839\) −1346.03 −1.60432 −0.802161 0.597108i \(-0.796316\pi\)
−0.802161 + 0.597108i \(0.796316\pi\)
\(840\) 0 0
\(841\) 192.047 0.228356
\(842\) 0 0
\(843\) 108.604i 0.128830i
\(844\) 0 0
\(845\) 33.4491 0.0395847
\(846\) 0 0
\(847\) −8.80636 210.318i −0.0103971 0.248309i
\(848\) 0 0
\(849\) 156.932i 0.184843i
\(850\) 0 0
\(851\) 209.878 0.246625
\(852\) 0 0
\(853\) 581.240i 0.681407i −0.940171 0.340703i \(-0.889335\pi\)
0.940171 0.340703i \(-0.110665\pi\)
\(854\) 0 0
\(855\) 202.486i 0.236826i
\(856\) 0 0
\(857\) 685.242i 0.799582i −0.916606 0.399791i \(-0.869083\pi\)
0.916606 0.399791i \(-0.130917\pi\)
\(858\) 0 0
\(859\) 23.1449 0.0269440 0.0134720 0.999909i \(-0.495712\pi\)
0.0134720 + 0.999909i \(0.495712\pi\)
\(860\) 0 0
\(861\) 347.662 0.403789
\(862\) 0 0
\(863\) −208.554 −0.241662 −0.120831 0.992673i \(-0.538556\pi\)
−0.120831 + 0.992673i \(0.538556\pi\)
\(864\) 0 0
\(865\) 411.496i 0.475718i
\(866\) 0 0
\(867\) 415.524 0.479266
\(868\) 0 0
\(869\) −1541.80 + 32.2648i −1.77422 + 0.0371286i
\(870\) 0 0
\(871\) 326.818i 0.375221i
\(872\) 0 0
\(873\) −52.2563 −0.0598583
\(874\) 0 0
\(875\) 177.295i 0.202623i
\(876\) 0 0
\(877\) 1249.16i 1.42436i 0.701997 + 0.712180i \(0.252292\pi\)
−0.701997 + 0.712180i \(0.747708\pi\)
\(878\) 0 0
\(879\) 397.691i 0.452435i
\(880\) 0 0
\(881\) −1347.42 −1.52942 −0.764712 0.644372i \(-0.777119\pi\)
−0.764712 + 0.644372i \(0.777119\pi\)
\(882\) 0 0
\(883\) −718.134 −0.813289 −0.406644 0.913587i \(-0.633301\pi\)
−0.406644 + 0.913587i \(0.633301\pi\)
\(884\) 0 0
\(885\) 817.349 0.923558
\(886\) 0 0
\(887\) 453.536i 0.511315i 0.966767 + 0.255658i \(0.0822919\pi\)
−0.966767 + 0.255658i \(0.917708\pi\)
\(888\) 0 0
\(889\) −23.3853 −0.0263052
\(890\) 0 0
\(891\) 22.9556 + 1096.95i 0.0257639 + 1.23115i
\(892\) 0 0
\(893\) 1027.38i 1.15048i
\(894\) 0 0
\(895\) −244.959 −0.273697
\(896\) 0 0
\(897\) 195.674i 0.218143i
\(898\) 0 0
\(899\) 703.163i 0.782162i
\(900\) 0 0
\(901\) 1006.84i 1.11747i
\(902\) 0 0
\(903\) −141.759 −0.156987
\(904\) 0 0
\(905\) −737.629 −0.815060
\(906\) 0 0
\(907\) −503.384 −0.554999 −0.277500 0.960726i \(-0.589506\pi\)
−0.277500 + 0.960726i \(0.589506\pi\)
\(908\) 0 0
\(909\) 428.018i 0.470867i
\(910\) 0 0
\(911\) −771.136 −0.846472 −0.423236 0.906019i \(-0.639106\pi\)
−0.423236 + 0.906019i \(0.639106\pi\)
\(912\) 0 0
\(913\) 1275.55 26.6930i 1.39709 0.0292366i
\(914\) 0 0
\(915\) 715.747i 0.782238i
\(916\) 0 0
\(917\) −105.715 −0.115283
\(918\) 0 0
\(919\) 1422.23i 1.54758i −0.633440 0.773792i \(-0.718358\pi\)
0.633440 0.773792i \(-0.281642\pi\)
\(920\) 0 0
\(921\) 286.100i 0.310641i
\(922\) 0 0
\(923\) 70.0019i 0.0758418i
\(924\) 0 0
\(925\) 925.670 1.00072
\(926\) 0 0
\(927\) 177.738 0.191734
\(928\) 0 0
\(929\) −1097.58 −1.18146 −0.590732 0.806868i \(-0.701161\pi\)
−0.590732 + 0.806868i \(0.701161\pi\)
\(930\) 0 0
\(931\) 1251.13i 1.34386i
\(932\) 0 0
\(933\) −1011.12 −1.08373
\(934\) 0 0
\(935\) 326.326 6.82893i 0.349012 0.00730367i
\(936\) 0 0
\(937\) 1501.84i 1.60282i 0.598117 + 0.801408i \(0.295916\pi\)
−0.598117 + 0.801408i \(0.704084\pi\)
\(938\) 0 0
\(939\) 1254.96 1.33648
\(940\) 0 0
\(941\) 280.903i 0.298515i 0.988798 + 0.149257i \(0.0476883\pi\)
−0.988798 + 0.149257i \(0.952312\pi\)
\(942\) 0 0
\(943\) 256.508i 0.272013i
\(944\) 0 0
\(945\) 79.3404i 0.0839581i
\(946\) 0 0
\(947\) −106.220 −0.112165 −0.0560824 0.998426i \(-0.517861\pi\)
−0.0560824 + 0.998426i \(0.517861\pi\)
\(948\) 0 0
\(949\) 557.144 0.587086
\(950\) 0 0
\(951\) 1349.64 1.41918
\(952\) 0 0
\(953\) 1649.29i 1.73063i 0.501227 + 0.865316i \(0.332882\pi\)
−0.501227 + 0.865316i \(0.667118\pi\)
\(954\) 0 0
\(955\) −428.845 −0.449052
\(956\) 0 0
\(957\) 981.482 20.5392i 1.02558 0.0214620i
\(958\) 0 0
\(959\) 120.836i 0.126002i
\(960\) 0 0
\(961\) −199.098 −0.207177
\(962\) 0 0
\(963\) 2.10707i 0.00218803i
\(964\) 0 0
\(965\) 79.4844i 0.0823672i
\(966\) 0 0
\(967\) 1394.32i 1.44190i −0.692986 0.720951i \(-0.743705\pi\)
0.692986 0.720951i \(-0.256295\pi\)
\(968\) 0 0
\(969\) 1244.51 1.28432
\(970\) 0 0
\(971\) 1171.15 1.20612 0.603062 0.797694i \(-0.293947\pi\)
0.603062 + 0.797694i \(0.293947\pi\)
\(972\) 0 0
\(973\) 264.826 0.272175
\(974\) 0 0
\(975\) 863.024i 0.885153i
\(976\) 0 0
\(977\) 1145.62 1.17259 0.586293 0.810099i \(-0.300587\pi\)
0.586293 + 0.810099i \(0.300587\pi\)
\(978\) 0 0
\(979\) −24.6760 1179.16i −0.0252053 1.20446i
\(980\) 0 0
\(981\) 559.382i 0.570216i
\(982\) 0 0
\(983\) −116.438 −0.118452 −0.0592258 0.998245i \(-0.518863\pi\)
−0.0592258 + 0.998245i \(0.518863\pi\)
\(984\) 0 0
\(985\) 792.400i 0.804467i
\(986\) 0 0
\(987\) 230.082i 0.233113i
\(988\) 0 0
\(989\) 104.591i 0.105755i
\(990\) 0 0
\(991\) 214.558 0.216506 0.108253 0.994123i \(-0.465474\pi\)
0.108253 + 0.994123i \(0.465474\pi\)
\(992\) 0 0
\(993\) 787.688 0.793241
\(994\) 0 0
\(995\) −451.614 −0.453884
\(996\) 0 0
\(997\) 1553.37i 1.55805i 0.626994 + 0.779024i \(0.284285\pi\)
−0.626994 + 0.779024i \(0.715715\pi\)
\(998\) 0 0
\(999\) 936.412 0.937349
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.3.h.a.65.6 yes 6
3.2 odd 2 792.3.j.a.505.4 6
4.3 odd 2 176.3.h.d.65.1 6
8.3 odd 2 704.3.h.g.65.5 6
8.5 even 2 704.3.h.h.65.2 6
11.10 odd 2 inner 88.3.h.a.65.5 6
12.11 even 2 1584.3.j.k.1297.3 6
33.32 even 2 792.3.j.a.505.3 6
44.43 even 2 176.3.h.d.65.2 6
88.21 odd 2 704.3.h.h.65.1 6
88.43 even 2 704.3.h.g.65.6 6
132.131 odd 2 1584.3.j.k.1297.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.3.h.a.65.5 6 11.10 odd 2 inner
88.3.h.a.65.6 yes 6 1.1 even 1 trivial
176.3.h.d.65.1 6 4.3 odd 2
176.3.h.d.65.2 6 44.43 even 2
704.3.h.g.65.5 6 8.3 odd 2
704.3.h.g.65.6 6 88.43 even 2
704.3.h.h.65.1 6 88.21 odd 2
704.3.h.h.65.2 6 8.5 even 2
792.3.j.a.505.3 6 33.32 even 2
792.3.j.a.505.4 6 3.2 odd 2
1584.3.j.k.1297.3 6 12.11 even 2
1584.3.j.k.1297.4 6 132.131 odd 2