Properties

Label 88.6.a.c.1.4
Level $88$
Weight $6$
Character 88.1
Self dual yes
Analytic conductor $14.114$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,6,Mod(1,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 88.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.1137761435\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 158x^{2} - 78x + 2316 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-4.56967\) of defining polynomial
Character \(\chi\) \(=\) 88.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.8972 q^{3} -4.29272 q^{5} -204.438 q^{7} -49.8668 q^{9} -121.000 q^{11} -939.867 q^{13} -59.6569 q^{15} +741.838 q^{17} +1868.56 q^{19} -2841.12 q^{21} -1932.30 q^{23} -3106.57 q^{25} -4070.04 q^{27} +7684.78 q^{29} -8497.26 q^{31} -1681.57 q^{33} +877.593 q^{35} -136.803 q^{37} -13061.6 q^{39} +103.129 q^{41} -2837.74 q^{43} +214.064 q^{45} -17669.0 q^{47} +24987.8 q^{49} +10309.5 q^{51} +1282.99 q^{53} +519.419 q^{55} +25967.9 q^{57} +28047.9 q^{59} +44146.9 q^{61} +10194.6 q^{63} +4034.58 q^{65} -21350.8 q^{67} -26853.6 q^{69} +49741.1 q^{71} +59439.4 q^{73} -43172.8 q^{75} +24737.0 q^{77} -81188.9 q^{79} -44444.7 q^{81} -58038.4 q^{83} -3184.50 q^{85} +106797. q^{87} -14792.3 q^{89} +192144. q^{91} -118088. q^{93} -8021.21 q^{95} +40704.5 q^{97} +6033.88 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 13 q^{3} - 19 q^{5} + 58 q^{7} + 191 q^{9} - 484 q^{11} - 1266 q^{13} - 2173 q^{15} - 504 q^{17} - 4016 q^{19} - 2902 q^{21} - 7837 q^{23} - 1845 q^{25} - 16531 q^{27} - 4114 q^{29} - 6989 q^{31}+ \cdots - 23111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 13.8972 0.891508 0.445754 0.895155i \(-0.352936\pi\)
0.445754 + 0.895155i \(0.352936\pi\)
\(4\) 0 0
\(5\) −4.29272 −0.0767904 −0.0383952 0.999263i \(-0.512225\pi\)
−0.0383952 + 0.999263i \(0.512225\pi\)
\(6\) 0 0
\(7\) −204.438 −1.57694 −0.788471 0.615072i \(-0.789127\pi\)
−0.788471 + 0.615072i \(0.789127\pi\)
\(8\) 0 0
\(9\) −49.8668 −0.205213
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) −939.867 −1.54244 −0.771220 0.636569i \(-0.780353\pi\)
−0.771220 + 0.636569i \(0.780353\pi\)
\(14\) 0 0
\(15\) −59.6569 −0.0684593
\(16\) 0 0
\(17\) 741.838 0.622568 0.311284 0.950317i \(-0.399241\pi\)
0.311284 + 0.950317i \(0.399241\pi\)
\(18\) 0 0
\(19\) 1868.56 1.18747 0.593736 0.804660i \(-0.297652\pi\)
0.593736 + 0.804660i \(0.297652\pi\)
\(20\) 0 0
\(21\) −2841.12 −1.40586
\(22\) 0 0
\(23\) −1932.30 −0.761648 −0.380824 0.924648i \(-0.624360\pi\)
−0.380824 + 0.924648i \(0.624360\pi\)
\(24\) 0 0
\(25\) −3106.57 −0.994103
\(26\) 0 0
\(27\) −4070.04 −1.07446
\(28\) 0 0
\(29\) 7684.78 1.69682 0.848411 0.529337i \(-0.177559\pi\)
0.848411 + 0.529337i \(0.177559\pi\)
\(30\) 0 0
\(31\) −8497.26 −1.58809 −0.794044 0.607860i \(-0.792028\pi\)
−0.794044 + 0.607860i \(0.792028\pi\)
\(32\) 0 0
\(33\) −1681.57 −0.268800
\(34\) 0 0
\(35\) 877.593 0.121094
\(36\) 0 0
\(37\) −136.803 −0.0164283 −0.00821414 0.999966i \(-0.502615\pi\)
−0.00821414 + 0.999966i \(0.502615\pi\)
\(38\) 0 0
\(39\) −13061.6 −1.37510
\(40\) 0 0
\(41\) 103.129 0.00958124 0.00479062 0.999989i \(-0.498475\pi\)
0.00479062 + 0.999989i \(0.498475\pi\)
\(42\) 0 0
\(43\) −2837.74 −0.234046 −0.117023 0.993129i \(-0.537335\pi\)
−0.117023 + 0.993129i \(0.537335\pi\)
\(44\) 0 0
\(45\) 214.064 0.0157584
\(46\) 0 0
\(47\) −17669.0 −1.16672 −0.583360 0.812214i \(-0.698262\pi\)
−0.583360 + 0.812214i \(0.698262\pi\)
\(48\) 0 0
\(49\) 24987.8 1.48675
\(50\) 0 0
\(51\) 10309.5 0.555025
\(52\) 0 0
\(53\) 1282.99 0.0627386 0.0313693 0.999508i \(-0.490013\pi\)
0.0313693 + 0.999508i \(0.490013\pi\)
\(54\) 0 0
\(55\) 519.419 0.0231532
\(56\) 0 0
\(57\) 25967.9 1.05864
\(58\) 0 0
\(59\) 28047.9 1.04899 0.524495 0.851414i \(-0.324254\pi\)
0.524495 + 0.851414i \(0.324254\pi\)
\(60\) 0 0
\(61\) 44146.9 1.51906 0.759532 0.650470i \(-0.225428\pi\)
0.759532 + 0.650470i \(0.225428\pi\)
\(62\) 0 0
\(63\) 10194.6 0.323609
\(64\) 0 0
\(65\) 4034.58 0.118445
\(66\) 0 0
\(67\) −21350.8 −0.581069 −0.290535 0.956865i \(-0.593833\pi\)
−0.290535 + 0.956865i \(0.593833\pi\)
\(68\) 0 0
\(69\) −26853.6 −0.679015
\(70\) 0 0
\(71\) 49741.1 1.17103 0.585517 0.810660i \(-0.300891\pi\)
0.585517 + 0.810660i \(0.300891\pi\)
\(72\) 0 0
\(73\) 59439.4 1.30547 0.652736 0.757586i \(-0.273621\pi\)
0.652736 + 0.757586i \(0.273621\pi\)
\(74\) 0 0
\(75\) −43172.8 −0.886251
\(76\) 0 0
\(77\) 24737.0 0.475466
\(78\) 0 0
\(79\) −81188.9 −1.46362 −0.731811 0.681508i \(-0.761324\pi\)
−0.731811 + 0.681508i \(0.761324\pi\)
\(80\) 0 0
\(81\) −44444.7 −0.752675
\(82\) 0 0
\(83\) −58038.4 −0.924741 −0.462370 0.886687i \(-0.653001\pi\)
−0.462370 + 0.886687i \(0.653001\pi\)
\(84\) 0 0
\(85\) −3184.50 −0.0478073
\(86\) 0 0
\(87\) 106797. 1.51273
\(88\) 0 0
\(89\) −14792.3 −0.197953 −0.0989763 0.995090i \(-0.531557\pi\)
−0.0989763 + 0.995090i \(0.531557\pi\)
\(90\) 0 0
\(91\) 192144. 2.43234
\(92\) 0 0
\(93\) −118088. −1.41579
\(94\) 0 0
\(95\) −8021.21 −0.0911866
\(96\) 0 0
\(97\) 40704.5 0.439251 0.219626 0.975584i \(-0.429516\pi\)
0.219626 + 0.975584i \(0.429516\pi\)
\(98\) 0 0
\(99\) 6033.88 0.0618741
\(100\) 0 0
\(101\) −125801. −1.22710 −0.613552 0.789654i \(-0.710260\pi\)
−0.613552 + 0.789654i \(0.710260\pi\)
\(102\) 0 0
\(103\) −169673. −1.57587 −0.787936 0.615757i \(-0.788850\pi\)
−0.787936 + 0.615757i \(0.788850\pi\)
\(104\) 0 0
\(105\) 12196.1 0.107956
\(106\) 0 0
\(107\) −74755.7 −0.631226 −0.315613 0.948888i \(-0.602210\pi\)
−0.315613 + 0.948888i \(0.602210\pi\)
\(108\) 0 0
\(109\) 123083. 0.992276 0.496138 0.868244i \(-0.334751\pi\)
0.496138 + 0.868244i \(0.334751\pi\)
\(110\) 0 0
\(111\) −1901.19 −0.0146459
\(112\) 0 0
\(113\) −146460. −1.07900 −0.539502 0.841985i \(-0.681387\pi\)
−0.539502 + 0.841985i \(0.681387\pi\)
\(114\) 0 0
\(115\) 8294.80 0.0584873
\(116\) 0 0
\(117\) 46868.2 0.316529
\(118\) 0 0
\(119\) −151660. −0.981754
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 1433.21 0.00854176
\(124\) 0 0
\(125\) 26750.4 0.153128
\(126\) 0 0
\(127\) 85789.4 0.471981 0.235990 0.971755i \(-0.424167\pi\)
0.235990 + 0.971755i \(0.424167\pi\)
\(128\) 0 0
\(129\) −39436.8 −0.208654
\(130\) 0 0
\(131\) 98589.9 0.501943 0.250971 0.967995i \(-0.419250\pi\)
0.250971 + 0.967995i \(0.419250\pi\)
\(132\) 0 0
\(133\) −382005. −1.87258
\(134\) 0 0
\(135\) 17471.5 0.0825080
\(136\) 0 0
\(137\) 140094. 0.637703 0.318852 0.947805i \(-0.396703\pi\)
0.318852 + 0.947805i \(0.396703\pi\)
\(138\) 0 0
\(139\) −180709. −0.793308 −0.396654 0.917968i \(-0.629829\pi\)
−0.396654 + 0.917968i \(0.629829\pi\)
\(140\) 0 0
\(141\) −245550. −1.04014
\(142\) 0 0
\(143\) 113724. 0.465063
\(144\) 0 0
\(145\) −32988.6 −0.130300
\(146\) 0 0
\(147\) 347261. 1.32545
\(148\) 0 0
\(149\) −418243. −1.54334 −0.771672 0.636021i \(-0.780579\pi\)
−0.771672 + 0.636021i \(0.780579\pi\)
\(150\) 0 0
\(151\) 149557. 0.533782 0.266891 0.963727i \(-0.414004\pi\)
0.266891 + 0.963727i \(0.414004\pi\)
\(152\) 0 0
\(153\) −36993.1 −0.127759
\(154\) 0 0
\(155\) 36476.3 0.121950
\(156\) 0 0
\(157\) −181195. −0.586676 −0.293338 0.956009i \(-0.594766\pi\)
−0.293338 + 0.956009i \(0.594766\pi\)
\(158\) 0 0
\(159\) 17830.1 0.0559320
\(160\) 0 0
\(161\) 395034. 1.20107
\(162\) 0 0
\(163\) 420310. 1.23908 0.619542 0.784963i \(-0.287318\pi\)
0.619542 + 0.784963i \(0.287318\pi\)
\(164\) 0 0
\(165\) 7218.48 0.0206413
\(166\) 0 0
\(167\) 90313.7 0.250589 0.125295 0.992120i \(-0.460012\pi\)
0.125295 + 0.992120i \(0.460012\pi\)
\(168\) 0 0
\(169\) 512057. 1.37912
\(170\) 0 0
\(171\) −93179.2 −0.243685
\(172\) 0 0
\(173\) 394997. 1.00341 0.501705 0.865039i \(-0.332706\pi\)
0.501705 + 0.865039i \(0.332706\pi\)
\(174\) 0 0
\(175\) 635100. 1.56764
\(176\) 0 0
\(177\) 389789. 0.935182
\(178\) 0 0
\(179\) −519681. −1.21228 −0.606142 0.795357i \(-0.707283\pi\)
−0.606142 + 0.795357i \(0.707283\pi\)
\(180\) 0 0
\(181\) −365931. −0.830237 −0.415119 0.909767i \(-0.636260\pi\)
−0.415119 + 0.909767i \(0.636260\pi\)
\(182\) 0 0
\(183\) 613520. 1.35426
\(184\) 0 0
\(185\) 587.258 0.00126153
\(186\) 0 0
\(187\) −89762.4 −0.187711
\(188\) 0 0
\(189\) 832069. 1.69436
\(190\) 0 0
\(191\) 160811. 0.318957 0.159478 0.987201i \(-0.449019\pi\)
0.159478 + 0.987201i \(0.449019\pi\)
\(192\) 0 0
\(193\) 124698. 0.240972 0.120486 0.992715i \(-0.461555\pi\)
0.120486 + 0.992715i \(0.461555\pi\)
\(194\) 0 0
\(195\) 56069.6 0.105594
\(196\) 0 0
\(197\) −784680. −1.44054 −0.720272 0.693691i \(-0.755983\pi\)
−0.720272 + 0.693691i \(0.755983\pi\)
\(198\) 0 0
\(199\) −584647. −1.04655 −0.523277 0.852163i \(-0.675291\pi\)
−0.523277 + 0.852163i \(0.675291\pi\)
\(200\) 0 0
\(201\) −296718. −0.518028
\(202\) 0 0
\(203\) −1.57106e6 −2.67579
\(204\) 0 0
\(205\) −442.704 −0.000735748 0
\(206\) 0 0
\(207\) 96357.4 0.156300
\(208\) 0 0
\(209\) −226096. −0.358037
\(210\) 0 0
\(211\) −376077. −0.581529 −0.290764 0.956795i \(-0.593910\pi\)
−0.290764 + 0.956795i \(0.593910\pi\)
\(212\) 0 0
\(213\) 691264. 1.04399
\(214\) 0 0
\(215\) 12181.6 0.0179725
\(216\) 0 0
\(217\) 1.73716e6 2.50432
\(218\) 0 0
\(219\) 826044. 1.16384
\(220\) 0 0
\(221\) −697229. −0.960274
\(222\) 0 0
\(223\) −186863. −0.251629 −0.125814 0.992054i \(-0.540154\pi\)
−0.125814 + 0.992054i \(0.540154\pi\)
\(224\) 0 0
\(225\) 154915. 0.204003
\(226\) 0 0
\(227\) −1.35845e6 −1.74977 −0.874883 0.484334i \(-0.839062\pi\)
−0.874883 + 0.484334i \(0.839062\pi\)
\(228\) 0 0
\(229\) −165090. −0.208033 −0.104016 0.994576i \(-0.533169\pi\)
−0.104016 + 0.994576i \(0.533169\pi\)
\(230\) 0 0
\(231\) 343775. 0.423882
\(232\) 0 0
\(233\) −972832. −1.17395 −0.586973 0.809607i \(-0.699681\pi\)
−0.586973 + 0.809607i \(0.699681\pi\)
\(234\) 0 0
\(235\) 75847.9 0.0895929
\(236\) 0 0
\(237\) −1.12830e6 −1.30483
\(238\) 0 0
\(239\) −1.59700e6 −1.80846 −0.904230 0.427045i \(-0.859555\pi\)
−0.904230 + 0.427045i \(0.859555\pi\)
\(240\) 0 0
\(241\) 1.66500e6 1.84660 0.923299 0.384082i \(-0.125482\pi\)
0.923299 + 0.384082i \(0.125482\pi\)
\(242\) 0 0
\(243\) 371361. 0.403442
\(244\) 0 0
\(245\) −107265. −0.114168
\(246\) 0 0
\(247\) −1.75620e6 −1.83160
\(248\) 0 0
\(249\) −806573. −0.824414
\(250\) 0 0
\(251\) 344631. 0.345279 0.172639 0.984985i \(-0.444771\pi\)
0.172639 + 0.984985i \(0.444771\pi\)
\(252\) 0 0
\(253\) 233808. 0.229645
\(254\) 0 0
\(255\) −44255.8 −0.0426206
\(256\) 0 0
\(257\) 1.60526e6 1.51605 0.758023 0.652227i \(-0.226165\pi\)
0.758023 + 0.652227i \(0.226165\pi\)
\(258\) 0 0
\(259\) 27967.7 0.0259065
\(260\) 0 0
\(261\) −383215. −0.348210
\(262\) 0 0
\(263\) 794473. 0.708255 0.354128 0.935197i \(-0.384778\pi\)
0.354128 + 0.935197i \(0.384778\pi\)
\(264\) 0 0
\(265\) −5507.53 −0.00481773
\(266\) 0 0
\(267\) −205572. −0.176476
\(268\) 0 0
\(269\) −1.59318e6 −1.34241 −0.671203 0.741274i \(-0.734222\pi\)
−0.671203 + 0.741274i \(0.734222\pi\)
\(270\) 0 0
\(271\) −978012. −0.808949 −0.404474 0.914549i \(-0.632546\pi\)
−0.404474 + 0.914549i \(0.632546\pi\)
\(272\) 0 0
\(273\) 2.67027e6 2.16845
\(274\) 0 0
\(275\) 375895. 0.299733
\(276\) 0 0
\(277\) 247857. 0.194089 0.0970447 0.995280i \(-0.469061\pi\)
0.0970447 + 0.995280i \(0.469061\pi\)
\(278\) 0 0
\(279\) 423731. 0.325897
\(280\) 0 0
\(281\) −2.56291e6 −1.93628 −0.968140 0.250410i \(-0.919435\pi\)
−0.968140 + 0.250410i \(0.919435\pi\)
\(282\) 0 0
\(283\) 751020. 0.557424 0.278712 0.960375i \(-0.410093\pi\)
0.278712 + 0.960375i \(0.410093\pi\)
\(284\) 0 0
\(285\) −111473. −0.0812936
\(286\) 0 0
\(287\) −21083.5 −0.0151091
\(288\) 0 0
\(289\) −869533. −0.612409
\(290\) 0 0
\(291\) 565680. 0.391596
\(292\) 0 0
\(293\) −361215. −0.245808 −0.122904 0.992419i \(-0.539221\pi\)
−0.122904 + 0.992419i \(0.539221\pi\)
\(294\) 0 0
\(295\) −120402. −0.0805523
\(296\) 0 0
\(297\) 492475. 0.323961
\(298\) 0 0
\(299\) 1.81610e6 1.17480
\(300\) 0 0
\(301\) 580141. 0.369078
\(302\) 0 0
\(303\) −1.74829e6 −1.09397
\(304\) 0 0
\(305\) −189510. −0.116650
\(306\) 0 0
\(307\) 2.26761e6 1.37316 0.686581 0.727054i \(-0.259111\pi\)
0.686581 + 0.727054i \(0.259111\pi\)
\(308\) 0 0
\(309\) −2.35799e6 −1.40490
\(310\) 0 0
\(311\) 1.47991e6 0.867628 0.433814 0.901002i \(-0.357168\pi\)
0.433814 + 0.901002i \(0.357168\pi\)
\(312\) 0 0
\(313\) −1.51012e6 −0.871268 −0.435634 0.900124i \(-0.643476\pi\)
−0.435634 + 0.900124i \(0.643476\pi\)
\(314\) 0 0
\(315\) −43762.7 −0.0248501
\(316\) 0 0
\(317\) −583893. −0.326351 −0.163176 0.986597i \(-0.552174\pi\)
−0.163176 + 0.986597i \(0.552174\pi\)
\(318\) 0 0
\(319\) −929859. −0.511611
\(320\) 0 0
\(321\) −1.03890e6 −0.562743
\(322\) 0 0
\(323\) 1.38617e6 0.739283
\(324\) 0 0
\(325\) 2.91977e6 1.53334
\(326\) 0 0
\(327\) 1.71052e6 0.884622
\(328\) 0 0
\(329\) 3.61220e6 1.83985
\(330\) 0 0
\(331\) 534027. 0.267913 0.133956 0.990987i \(-0.457232\pi\)
0.133956 + 0.990987i \(0.457232\pi\)
\(332\) 0 0
\(333\) 6821.94 0.00337130
\(334\) 0 0
\(335\) 91653.0 0.0446205
\(336\) 0 0
\(337\) 2.75088e6 1.31946 0.659731 0.751502i \(-0.270670\pi\)
0.659731 + 0.751502i \(0.270670\pi\)
\(338\) 0 0
\(339\) −2.03539e6 −0.961940
\(340\) 0 0
\(341\) 1.02817e6 0.478827
\(342\) 0 0
\(343\) −1.67246e6 −0.767572
\(344\) 0 0
\(345\) 115275. 0.0521419
\(346\) 0 0
\(347\) 241141. 0.107510 0.0537548 0.998554i \(-0.482881\pi\)
0.0537548 + 0.998554i \(0.482881\pi\)
\(348\) 0 0
\(349\) 3.58337e6 1.57481 0.787405 0.616436i \(-0.211424\pi\)
0.787405 + 0.616436i \(0.211424\pi\)
\(350\) 0 0
\(351\) 3.82530e6 1.65729
\(352\) 0 0
\(353\) −1.84061e6 −0.786184 −0.393092 0.919499i \(-0.628595\pi\)
−0.393092 + 0.919499i \(0.628595\pi\)
\(354\) 0 0
\(355\) −213525. −0.0899243
\(356\) 0 0
\(357\) −2.10765e6 −0.875242
\(358\) 0 0
\(359\) 1.78372e6 0.730451 0.365226 0.930919i \(-0.380992\pi\)
0.365226 + 0.930919i \(0.380992\pi\)
\(360\) 0 0
\(361\) 1.01543e6 0.410092
\(362\) 0 0
\(363\) 203469. 0.0810462
\(364\) 0 0
\(365\) −255157. −0.100248
\(366\) 0 0
\(367\) 4.33788e6 1.68117 0.840587 0.541677i \(-0.182211\pi\)
0.840587 + 0.541677i \(0.182211\pi\)
\(368\) 0 0
\(369\) −5142.72 −0.00196620
\(370\) 0 0
\(371\) −262292. −0.0989352
\(372\) 0 0
\(373\) −5.12472e6 −1.90721 −0.953604 0.301063i \(-0.902658\pi\)
−0.953604 + 0.301063i \(0.902658\pi\)
\(374\) 0 0
\(375\) 371756. 0.136515
\(376\) 0 0
\(377\) −7.22267e6 −2.61725
\(378\) 0 0
\(379\) −4.19347e6 −1.49960 −0.749801 0.661664i \(-0.769851\pi\)
−0.749801 + 0.661664i \(0.769851\pi\)
\(380\) 0 0
\(381\) 1.19224e6 0.420775
\(382\) 0 0
\(383\) −2.60071e6 −0.905930 −0.452965 0.891528i \(-0.649634\pi\)
−0.452965 + 0.891528i \(0.649634\pi\)
\(384\) 0 0
\(385\) −106189. −0.0365112
\(386\) 0 0
\(387\) 141509. 0.0480294
\(388\) 0 0
\(389\) −563376. −0.188766 −0.0943832 0.995536i \(-0.530088\pi\)
−0.0943832 + 0.995536i \(0.530088\pi\)
\(390\) 0 0
\(391\) −1.43345e6 −0.474178
\(392\) 0 0
\(393\) 1.37013e6 0.447486
\(394\) 0 0
\(395\) 348521. 0.112392
\(396\) 0 0
\(397\) −1.13156e6 −0.360331 −0.180165 0.983636i \(-0.557663\pi\)
−0.180165 + 0.983636i \(0.557663\pi\)
\(398\) 0 0
\(399\) −5.30881e6 −1.66942
\(400\) 0 0
\(401\) 3.54308e6 1.10032 0.550161 0.835058i \(-0.314566\pi\)
0.550161 + 0.835058i \(0.314566\pi\)
\(402\) 0 0
\(403\) 7.98630e6 2.44953
\(404\) 0 0
\(405\) 190788. 0.0577982
\(406\) 0 0
\(407\) 16553.2 0.00495331
\(408\) 0 0
\(409\) −4.23104e6 −1.25066 −0.625330 0.780360i \(-0.715036\pi\)
−0.625330 + 0.780360i \(0.715036\pi\)
\(410\) 0 0
\(411\) 1.94692e6 0.568518
\(412\) 0 0
\(413\) −5.73406e6 −1.65420
\(414\) 0 0
\(415\) 249142. 0.0710112
\(416\) 0 0
\(417\) −2.51135e6 −0.707241
\(418\) 0 0
\(419\) −5.85784e6 −1.63006 −0.815028 0.579422i \(-0.803278\pi\)
−0.815028 + 0.579422i \(0.803278\pi\)
\(420\) 0 0
\(421\) 6.65403e6 1.82970 0.914850 0.403794i \(-0.132309\pi\)
0.914850 + 0.403794i \(0.132309\pi\)
\(422\) 0 0
\(423\) 881095. 0.239426
\(424\) 0 0
\(425\) −2.30457e6 −0.618897
\(426\) 0 0
\(427\) −9.02529e6 −2.39548
\(428\) 0 0
\(429\) 1.58045e6 0.414607
\(430\) 0 0
\(431\) 6.54588e6 1.69736 0.848682 0.528904i \(-0.177397\pi\)
0.848682 + 0.528904i \(0.177397\pi\)
\(432\) 0 0
\(433\) −4.67682e6 −1.19876 −0.599379 0.800466i \(-0.704586\pi\)
−0.599379 + 0.800466i \(0.704586\pi\)
\(434\) 0 0
\(435\) −458450. −0.116163
\(436\) 0 0
\(437\) −3.61062e6 −0.904436
\(438\) 0 0
\(439\) 2.67406e6 0.662231 0.331115 0.943590i \(-0.392575\pi\)
0.331115 + 0.943590i \(0.392575\pi\)
\(440\) 0 0
\(441\) −1.24606e6 −0.305100
\(442\) 0 0
\(443\) −2.40974e6 −0.583393 −0.291697 0.956511i \(-0.594220\pi\)
−0.291697 + 0.956511i \(0.594220\pi\)
\(444\) 0 0
\(445\) 63499.2 0.0152009
\(446\) 0 0
\(447\) −5.81242e6 −1.37590
\(448\) 0 0
\(449\) 6.56118e6 1.53591 0.767956 0.640503i \(-0.221274\pi\)
0.767956 + 0.640503i \(0.221274\pi\)
\(450\) 0 0
\(451\) −12478.6 −0.00288885
\(452\) 0 0
\(453\) 2.07843e6 0.475871
\(454\) 0 0
\(455\) −824821. −0.186780
\(456\) 0 0
\(457\) 177486. 0.0397533 0.0198767 0.999802i \(-0.493673\pi\)
0.0198767 + 0.999802i \(0.493673\pi\)
\(458\) 0 0
\(459\) −3.01931e6 −0.668923
\(460\) 0 0
\(461\) 7.95359e6 1.74305 0.871527 0.490347i \(-0.163130\pi\)
0.871527 + 0.490347i \(0.163130\pi\)
\(462\) 0 0
\(463\) −741086. −0.160663 −0.0803315 0.996768i \(-0.525598\pi\)
−0.0803315 + 0.996768i \(0.525598\pi\)
\(464\) 0 0
\(465\) 506920. 0.108719
\(466\) 0 0
\(467\) 5.12831e6 1.08813 0.544066 0.839042i \(-0.316884\pi\)
0.544066 + 0.839042i \(0.316884\pi\)
\(468\) 0 0
\(469\) 4.36491e6 0.916312
\(470\) 0 0
\(471\) −2.51812e6 −0.523026
\(472\) 0 0
\(473\) 343367. 0.0705676
\(474\) 0 0
\(475\) −5.80483e6 −1.18047
\(476\) 0 0
\(477\) −63978.8 −0.0128748
\(478\) 0 0
\(479\) 4.98194e6 0.992111 0.496055 0.868291i \(-0.334781\pi\)
0.496055 + 0.868291i \(0.334781\pi\)
\(480\) 0 0
\(481\) 128577. 0.0253396
\(482\) 0 0
\(483\) 5.48988e6 1.07077
\(484\) 0 0
\(485\) −174733. −0.0337303
\(486\) 0 0
\(487\) −1.40032e6 −0.267550 −0.133775 0.991012i \(-0.542710\pi\)
−0.133775 + 0.991012i \(0.542710\pi\)
\(488\) 0 0
\(489\) 5.84115e6 1.10465
\(490\) 0 0
\(491\) 1.63264e6 0.305623 0.152811 0.988255i \(-0.451167\pi\)
0.152811 + 0.988255i \(0.451167\pi\)
\(492\) 0 0
\(493\) 5.70086e6 1.05639
\(494\) 0 0
\(495\) −25901.7 −0.00475134
\(496\) 0 0
\(497\) −1.01690e7 −1.84665
\(498\) 0 0
\(499\) −3.05894e6 −0.549945 −0.274973 0.961452i \(-0.588669\pi\)
−0.274973 + 0.961452i \(0.588669\pi\)
\(500\) 0 0
\(501\) 1.25511e6 0.223402
\(502\) 0 0
\(503\) −1.01326e6 −0.178566 −0.0892831 0.996006i \(-0.528458\pi\)
−0.0892831 + 0.996006i \(0.528458\pi\)
\(504\) 0 0
\(505\) 540029. 0.0942299
\(506\) 0 0
\(507\) 7.11618e6 1.22950
\(508\) 0 0
\(509\) 9.88684e6 1.69147 0.845733 0.533607i \(-0.179164\pi\)
0.845733 + 0.533607i \(0.179164\pi\)
\(510\) 0 0
\(511\) −1.21517e7 −2.05865
\(512\) 0 0
\(513\) −7.60512e6 −1.27589
\(514\) 0 0
\(515\) 728360. 0.121012
\(516\) 0 0
\(517\) 2.13795e6 0.351779
\(518\) 0 0
\(519\) 5.48936e6 0.894548
\(520\) 0 0
\(521\) 5.99108e6 0.966965 0.483482 0.875354i \(-0.339372\pi\)
0.483482 + 0.875354i \(0.339372\pi\)
\(522\) 0 0
\(523\) 1.35910e6 0.217269 0.108634 0.994082i \(-0.465352\pi\)
0.108634 + 0.994082i \(0.465352\pi\)
\(524\) 0 0
\(525\) 8.82614e6 1.39757
\(526\) 0 0
\(527\) −6.30359e6 −0.988693
\(528\) 0 0
\(529\) −2.70257e6 −0.419893
\(530\) 0 0
\(531\) −1.39866e6 −0.215266
\(532\) 0 0
\(533\) −96927.7 −0.0147785
\(534\) 0 0
\(535\) 320905. 0.0484721
\(536\) 0 0
\(537\) −7.22213e6 −1.08076
\(538\) 0 0
\(539\) −3.02352e6 −0.448271
\(540\) 0 0
\(541\) −219465. −0.0322382 −0.0161191 0.999870i \(-0.505131\pi\)
−0.0161191 + 0.999870i \(0.505131\pi\)
\(542\) 0 0
\(543\) −5.08542e6 −0.740163
\(544\) 0 0
\(545\) −528361. −0.0761973
\(546\) 0 0
\(547\) −9.22935e6 −1.31887 −0.659436 0.751760i \(-0.729205\pi\)
−0.659436 + 0.751760i \(0.729205\pi\)
\(548\) 0 0
\(549\) −2.20146e6 −0.311732
\(550\) 0 0
\(551\) 1.43595e7 2.01493
\(552\) 0 0
\(553\) 1.65981e7 2.30805
\(554\) 0 0
\(555\) 8161.26 0.00112467
\(556\) 0 0
\(557\) −1.29470e6 −0.176819 −0.0884096 0.996084i \(-0.528178\pi\)
−0.0884096 + 0.996084i \(0.528178\pi\)
\(558\) 0 0
\(559\) 2.66710e6 0.361002
\(560\) 0 0
\(561\) −1.24745e6 −0.167346
\(562\) 0 0
\(563\) 3.39881e6 0.451915 0.225957 0.974137i \(-0.427449\pi\)
0.225957 + 0.974137i \(0.427449\pi\)
\(564\) 0 0
\(565\) 628711. 0.0828571
\(566\) 0 0
\(567\) 9.08617e6 1.18692
\(568\) 0 0
\(569\) 9.92266e6 1.28484 0.642418 0.766355i \(-0.277931\pi\)
0.642418 + 0.766355i \(0.277931\pi\)
\(570\) 0 0
\(571\) −2.11476e6 −0.271438 −0.135719 0.990747i \(-0.543334\pi\)
−0.135719 + 0.990747i \(0.543334\pi\)
\(572\) 0 0
\(573\) 2.23482e6 0.284352
\(574\) 0 0
\(575\) 6.00282e6 0.757157
\(576\) 0 0
\(577\) 1.41413e6 0.176828 0.0884140 0.996084i \(-0.471820\pi\)
0.0884140 + 0.996084i \(0.471820\pi\)
\(578\) 0 0
\(579\) 1.73296e6 0.214829
\(580\) 0 0
\(581\) 1.18652e7 1.45826
\(582\) 0 0
\(583\) −155242. −0.0189164
\(584\) 0 0
\(585\) −201192. −0.0243064
\(586\) 0 0
\(587\) −1.82594e6 −0.218722 −0.109361 0.994002i \(-0.534880\pi\)
−0.109361 + 0.994002i \(0.534880\pi\)
\(588\) 0 0
\(589\) −1.58777e7 −1.88581
\(590\) 0 0
\(591\) −1.09049e7 −1.28426
\(592\) 0 0
\(593\) −1.00356e7 −1.17194 −0.585971 0.810332i \(-0.699287\pi\)
−0.585971 + 0.810332i \(0.699287\pi\)
\(594\) 0 0
\(595\) 651032. 0.0753893
\(596\) 0 0
\(597\) −8.12498e6 −0.933011
\(598\) 0 0
\(599\) 6.95642e6 0.792170 0.396085 0.918214i \(-0.370369\pi\)
0.396085 + 0.918214i \(0.370369\pi\)
\(600\) 0 0
\(601\) −1.09278e7 −1.23409 −0.617043 0.786929i \(-0.711670\pi\)
−0.617043 + 0.786929i \(0.711670\pi\)
\(602\) 0 0
\(603\) 1.06470e6 0.119243
\(604\) 0 0
\(605\) −62849.6 −0.00698095
\(606\) 0 0
\(607\) 845095. 0.0930966 0.0465483 0.998916i \(-0.485178\pi\)
0.0465483 + 0.998916i \(0.485178\pi\)
\(608\) 0 0
\(609\) −2.18334e7 −2.38549
\(610\) 0 0
\(611\) 1.66065e7 1.79959
\(612\) 0 0
\(613\) −2.16942e6 −0.233180 −0.116590 0.993180i \(-0.537196\pi\)
−0.116590 + 0.993180i \(0.537196\pi\)
\(614\) 0 0
\(615\) −6152.37 −0.000655925 0
\(616\) 0 0
\(617\) −1.29619e7 −1.37074 −0.685372 0.728193i \(-0.740361\pi\)
−0.685372 + 0.728193i \(0.740361\pi\)
\(618\) 0 0
\(619\) −1.11194e7 −1.16642 −0.583209 0.812322i \(-0.698203\pi\)
−0.583209 + 0.812322i \(0.698203\pi\)
\(620\) 0 0
\(621\) 7.86452e6 0.818358
\(622\) 0 0
\(623\) 3.02411e6 0.312160
\(624\) 0 0
\(625\) 9.59321e6 0.982344
\(626\) 0 0
\(627\) −3.14211e6 −0.319193
\(628\) 0 0
\(629\) −101486. −0.0102277
\(630\) 0 0
\(631\) 4.91924e6 0.491841 0.245921 0.969290i \(-0.420910\pi\)
0.245921 + 0.969290i \(0.420910\pi\)
\(632\) 0 0
\(633\) −5.22644e6 −0.518438
\(634\) 0 0
\(635\) −368269. −0.0362436
\(636\) 0 0
\(637\) −2.34852e7 −2.29322
\(638\) 0 0
\(639\) −2.48043e6 −0.240312
\(640\) 0 0
\(641\) −1.65493e7 −1.59087 −0.795434 0.606040i \(-0.792757\pi\)
−0.795434 + 0.606040i \(0.792757\pi\)
\(642\) 0 0
\(643\) −572421. −0.0545994 −0.0272997 0.999627i \(-0.508691\pi\)
−0.0272997 + 0.999627i \(0.508691\pi\)
\(644\) 0 0
\(645\) 169291. 0.0160226
\(646\) 0 0
\(647\) −1.32996e7 −1.24905 −0.624525 0.781005i \(-0.714707\pi\)
−0.624525 + 0.781005i \(0.714707\pi\)
\(648\) 0 0
\(649\) −3.39380e6 −0.316282
\(650\) 0 0
\(651\) 2.41417e7 2.23263
\(652\) 0 0
\(653\) 1.05394e7 0.967234 0.483617 0.875280i \(-0.339323\pi\)
0.483617 + 0.875280i \(0.339323\pi\)
\(654\) 0 0
\(655\) −423218. −0.0385444
\(656\) 0 0
\(657\) −2.96405e6 −0.267900
\(658\) 0 0
\(659\) −8.04359e6 −0.721500 −0.360750 0.932663i \(-0.617479\pi\)
−0.360750 + 0.932663i \(0.617479\pi\)
\(660\) 0 0
\(661\) 1.74407e7 1.55261 0.776303 0.630360i \(-0.217093\pi\)
0.776303 + 0.630360i \(0.217093\pi\)
\(662\) 0 0
\(663\) −9.68956e6 −0.856092
\(664\) 0 0
\(665\) 1.63984e6 0.143796
\(666\) 0 0
\(667\) −1.48493e7 −1.29238
\(668\) 0 0
\(669\) −2.59688e6 −0.224329
\(670\) 0 0
\(671\) −5.34178e6 −0.458015
\(672\) 0 0
\(673\) 9.89064e6 0.841757 0.420878 0.907117i \(-0.361722\pi\)
0.420878 + 0.907117i \(0.361722\pi\)
\(674\) 0 0
\(675\) 1.26439e7 1.06812
\(676\) 0 0
\(677\) 6.20931e6 0.520681 0.260341 0.965517i \(-0.416165\pi\)
0.260341 + 0.965517i \(0.416165\pi\)
\(678\) 0 0
\(679\) −8.32154e6 −0.692674
\(680\) 0 0
\(681\) −1.88787e7 −1.55993
\(682\) 0 0
\(683\) 1.18068e7 0.968461 0.484230 0.874940i \(-0.339100\pi\)
0.484230 + 0.874940i \(0.339100\pi\)
\(684\) 0 0
\(685\) −601384. −0.0489695
\(686\) 0 0
\(687\) −2.29429e6 −0.185463
\(688\) 0 0
\(689\) −1.20584e6 −0.0967705
\(690\) 0 0
\(691\) −1.28250e7 −1.02179 −0.510896 0.859643i \(-0.670686\pi\)
−0.510896 + 0.859643i \(0.670686\pi\)
\(692\) 0 0
\(693\) −1.23355e6 −0.0975718
\(694\) 0 0
\(695\) 775731. 0.0609185
\(696\) 0 0
\(697\) 76505.1 0.00596498
\(698\) 0 0
\(699\) −1.35197e7 −1.04658
\(700\) 0 0
\(701\) −5.99809e6 −0.461018 −0.230509 0.973070i \(-0.574039\pi\)
−0.230509 + 0.973070i \(0.574039\pi\)
\(702\) 0 0
\(703\) −255626. −0.0195081
\(704\) 0 0
\(705\) 1.05408e6 0.0798728
\(706\) 0 0
\(707\) 2.57185e7 1.93507
\(708\) 0 0
\(709\) 1.33200e7 0.995150 0.497575 0.867421i \(-0.334224\pi\)
0.497575 + 0.867421i \(0.334224\pi\)
\(710\) 0 0
\(711\) 4.04863e6 0.300354
\(712\) 0 0
\(713\) 1.64192e7 1.20956
\(714\) 0 0
\(715\) −488184. −0.0357124
\(716\) 0 0
\(717\) −2.21938e7 −1.61226
\(718\) 0 0
\(719\) −5.94742e6 −0.429049 −0.214524 0.976719i \(-0.568820\pi\)
−0.214524 + 0.976719i \(0.568820\pi\)
\(720\) 0 0
\(721\) 3.46876e7 2.48506
\(722\) 0 0
\(723\) 2.31389e7 1.64626
\(724\) 0 0
\(725\) −2.38733e7 −1.68682
\(726\) 0 0
\(727\) 7.06271e6 0.495605 0.247802 0.968811i \(-0.420292\pi\)
0.247802 + 0.968811i \(0.420292\pi\)
\(728\) 0 0
\(729\) 1.59610e7 1.11235
\(730\) 0 0
\(731\) −2.10515e6 −0.145710
\(732\) 0 0
\(733\) 1.01810e7 0.699891 0.349945 0.936770i \(-0.386200\pi\)
0.349945 + 0.936770i \(0.386200\pi\)
\(734\) 0 0
\(735\) −1.49069e6 −0.101782
\(736\) 0 0
\(737\) 2.58345e6 0.175199
\(738\) 0 0
\(739\) 8.90680e6 0.599944 0.299972 0.953948i \(-0.403023\pi\)
0.299972 + 0.953948i \(0.403023\pi\)
\(740\) 0 0
\(741\) −2.44063e7 −1.63289
\(742\) 0 0
\(743\) 3.70751e6 0.246383 0.123191 0.992383i \(-0.460687\pi\)
0.123191 + 0.992383i \(0.460687\pi\)
\(744\) 0 0
\(745\) 1.79540e6 0.118514
\(746\) 0 0
\(747\) 2.89419e6 0.189769
\(748\) 0 0
\(749\) 1.52829e7 0.995408
\(750\) 0 0
\(751\) 2.30940e7 1.49417 0.747085 0.664729i \(-0.231453\pi\)
0.747085 + 0.664729i \(0.231453\pi\)
\(752\) 0 0
\(753\) 4.78941e6 0.307819
\(754\) 0 0
\(755\) −642005. −0.0409894
\(756\) 0 0
\(757\) 1.25262e7 0.794474 0.397237 0.917716i \(-0.369969\pi\)
0.397237 + 0.917716i \(0.369969\pi\)
\(758\) 0 0
\(759\) 3.24928e6 0.204731
\(760\) 0 0
\(761\) 1.66360e7 1.04133 0.520663 0.853762i \(-0.325685\pi\)
0.520663 + 0.853762i \(0.325685\pi\)
\(762\) 0 0
\(763\) −2.51628e7 −1.56476
\(764\) 0 0
\(765\) 158801. 0.00981068
\(766\) 0 0
\(767\) −2.63613e7 −1.61800
\(768\) 0 0
\(769\) −4.17179e6 −0.254394 −0.127197 0.991877i \(-0.540598\pi\)
−0.127197 + 0.991877i \(0.540598\pi\)
\(770\) 0 0
\(771\) 2.23087e7 1.35157
\(772\) 0 0
\(773\) 6.18595e6 0.372355 0.186178 0.982516i \(-0.440390\pi\)
0.186178 + 0.982516i \(0.440390\pi\)
\(774\) 0 0
\(775\) 2.63974e7 1.57872
\(776\) 0 0
\(777\) 388674. 0.0230958
\(778\) 0 0
\(779\) 192703. 0.0113775
\(780\) 0 0
\(781\) −6.01868e6 −0.353080
\(782\) 0 0
\(783\) −3.12774e7 −1.82316
\(784\) 0 0
\(785\) 777821. 0.0450511
\(786\) 0 0
\(787\) 1.37144e7 0.789294 0.394647 0.918833i \(-0.370867\pi\)
0.394647 + 0.918833i \(0.370867\pi\)
\(788\) 0 0
\(789\) 1.10410e7 0.631415
\(790\) 0 0
\(791\) 2.99419e7 1.70153
\(792\) 0 0
\(793\) −4.14922e7 −2.34306
\(794\) 0 0
\(795\) −76539.4 −0.00429504
\(796\) 0 0
\(797\) −4.09307e6 −0.228246 −0.114123 0.993467i \(-0.536406\pi\)
−0.114123 + 0.993467i \(0.536406\pi\)
\(798\) 0 0
\(799\) −1.31075e7 −0.726362
\(800\) 0 0
\(801\) 737645. 0.0406225
\(802\) 0 0
\(803\) −7.19217e6 −0.393615
\(804\) 0 0
\(805\) −1.69577e6 −0.0922310
\(806\) 0 0
\(807\) −2.21408e7 −1.19677
\(808\) 0 0
\(809\) 3.09632e6 0.166332 0.0831658 0.996536i \(-0.473497\pi\)
0.0831658 + 0.996536i \(0.473497\pi\)
\(810\) 0 0
\(811\) −1.78715e7 −0.954133 −0.477066 0.878867i \(-0.658300\pi\)
−0.477066 + 0.878867i \(0.658300\pi\)
\(812\) 0 0
\(813\) −1.35917e7 −0.721185
\(814\) 0 0
\(815\) −1.80427e6 −0.0951499
\(816\) 0 0
\(817\) −5.30250e6 −0.277924
\(818\) 0 0
\(819\) −9.58162e6 −0.499148
\(820\) 0 0
\(821\) 2.63991e7 1.36689 0.683443 0.730004i \(-0.260482\pi\)
0.683443 + 0.730004i \(0.260482\pi\)
\(822\) 0 0
\(823\) −4.12330e6 −0.212200 −0.106100 0.994355i \(-0.533836\pi\)
−0.106100 + 0.994355i \(0.533836\pi\)
\(824\) 0 0
\(825\) 5.22391e6 0.267215
\(826\) 0 0
\(827\) −1.10990e7 −0.564314 −0.282157 0.959368i \(-0.591050\pi\)
−0.282157 + 0.959368i \(0.591050\pi\)
\(828\) 0 0
\(829\) −7.60846e6 −0.384513 −0.192256 0.981345i \(-0.561580\pi\)
−0.192256 + 0.981345i \(0.561580\pi\)
\(830\) 0 0
\(831\) 3.44453e6 0.173032
\(832\) 0 0
\(833\) 1.85369e7 0.925601
\(834\) 0 0
\(835\) −387691. −0.0192429
\(836\) 0 0
\(837\) 3.45842e7 1.70633
\(838\) 0 0
\(839\) 2.64407e7 1.29678 0.648392 0.761306i \(-0.275442\pi\)
0.648392 + 0.761306i \(0.275442\pi\)
\(840\) 0 0
\(841\) 3.85447e7 1.87921
\(842\) 0 0
\(843\) −3.56174e7 −1.72621
\(844\) 0 0
\(845\) −2.19812e6 −0.105903
\(846\) 0 0
\(847\) −2.99317e6 −0.143358
\(848\) 0 0
\(849\) 1.04371e7 0.496948
\(850\) 0 0
\(851\) 264345. 0.0125126
\(852\) 0 0
\(853\) −2.20001e7 −1.03527 −0.517633 0.855602i \(-0.673187\pi\)
−0.517633 + 0.855602i \(0.673187\pi\)
\(854\) 0 0
\(855\) 399992. 0.0187127
\(856\) 0 0
\(857\) 1.08709e7 0.505605 0.252803 0.967518i \(-0.418648\pi\)
0.252803 + 0.967518i \(0.418648\pi\)
\(858\) 0 0
\(859\) −1.63430e7 −0.755699 −0.377849 0.925867i \(-0.623336\pi\)
−0.377849 + 0.925867i \(0.623336\pi\)
\(860\) 0 0
\(861\) −293002. −0.0134699
\(862\) 0 0
\(863\) 2.31095e7 1.05624 0.528121 0.849169i \(-0.322897\pi\)
0.528121 + 0.849169i \(0.322897\pi\)
\(864\) 0 0
\(865\) −1.69561e6 −0.0770522
\(866\) 0 0
\(867\) −1.20841e7 −0.545968
\(868\) 0 0
\(869\) 9.82385e6 0.441298
\(870\) 0 0
\(871\) 2.00669e7 0.896264
\(872\) 0 0
\(873\) −2.02980e6 −0.0901402
\(874\) 0 0
\(875\) −5.46878e6 −0.241474
\(876\) 0 0
\(877\) −4.30032e7 −1.88800 −0.944000 0.329944i \(-0.892970\pi\)
−0.944000 + 0.329944i \(0.892970\pi\)
\(878\) 0 0
\(879\) −5.01989e6 −0.219140
\(880\) 0 0
\(881\) −1.80461e7 −0.783326 −0.391663 0.920109i \(-0.628100\pi\)
−0.391663 + 0.920109i \(0.628100\pi\)
\(882\) 0 0
\(883\) 2.02867e6 0.0875607 0.0437803 0.999041i \(-0.486060\pi\)
0.0437803 + 0.999041i \(0.486060\pi\)
\(884\) 0 0
\(885\) −1.67325e6 −0.0718131
\(886\) 0 0
\(887\) −1.67196e7 −0.713537 −0.356768 0.934193i \(-0.616121\pi\)
−0.356768 + 0.934193i \(0.616121\pi\)
\(888\) 0 0
\(889\) −1.75386e7 −0.744286
\(890\) 0 0
\(891\) 5.37781e6 0.226940
\(892\) 0 0
\(893\) −3.30156e7 −1.38545
\(894\) 0 0
\(895\) 2.23084e6 0.0930917
\(896\) 0 0
\(897\) 2.52388e7 1.04734
\(898\) 0 0
\(899\) −6.52996e7 −2.69471
\(900\) 0 0
\(901\) 951774. 0.0390591
\(902\) 0 0
\(903\) 8.06236e6 0.329036
\(904\) 0 0
\(905\) 1.57084e6 0.0637543
\(906\) 0 0
\(907\) 1.13533e7 0.458250 0.229125 0.973397i \(-0.426414\pi\)
0.229125 + 0.973397i \(0.426414\pi\)
\(908\) 0 0
\(909\) 6.27331e6 0.251818
\(910\) 0 0
\(911\) −2.72350e7 −1.08725 −0.543627 0.839327i \(-0.682949\pi\)
−0.543627 + 0.839327i \(0.682949\pi\)
\(912\) 0 0
\(913\) 7.02264e6 0.278820
\(914\) 0 0
\(915\) −2.63367e6 −0.103994
\(916\) 0 0
\(917\) −2.01555e7 −0.791535
\(918\) 0 0
\(919\) 1.65016e7 0.644522 0.322261 0.946651i \(-0.395557\pi\)
0.322261 + 0.946651i \(0.395557\pi\)
\(920\) 0 0
\(921\) 3.15135e7 1.22418
\(922\) 0 0
\(923\) −4.67501e7 −1.80625
\(924\) 0 0
\(925\) 424989. 0.0163314
\(926\) 0 0
\(927\) 8.46107e6 0.323389
\(928\) 0 0
\(929\) −1.68977e7 −0.642373 −0.321186 0.947016i \(-0.604082\pi\)
−0.321186 + 0.947016i \(0.604082\pi\)
\(930\) 0 0
\(931\) 4.66912e7 1.76547
\(932\) 0 0
\(933\) 2.05666e7 0.773497
\(934\) 0 0
\(935\) 385325. 0.0144144
\(936\) 0 0
\(937\) 1.25638e7 0.467490 0.233745 0.972298i \(-0.424902\pi\)
0.233745 + 0.972298i \(0.424902\pi\)
\(938\) 0 0
\(939\) −2.09866e7 −0.776743
\(940\) 0 0
\(941\) −2.78645e7 −1.02583 −0.512917 0.858438i \(-0.671435\pi\)
−0.512917 + 0.858438i \(0.671435\pi\)
\(942\) 0 0
\(943\) −199276. −0.00729753
\(944\) 0 0
\(945\) −3.57184e6 −0.130110
\(946\) 0 0
\(947\) 1.30308e7 0.472169 0.236085 0.971732i \(-0.424136\pi\)
0.236085 + 0.971732i \(0.424136\pi\)
\(948\) 0 0
\(949\) −5.58652e7 −2.01361
\(950\) 0 0
\(951\) −8.11451e6 −0.290945
\(952\) 0 0
\(953\) 1.15678e7 0.412589 0.206295 0.978490i \(-0.433859\pi\)
0.206295 + 0.978490i \(0.433859\pi\)
\(954\) 0 0
\(955\) −690315. −0.0244928
\(956\) 0 0
\(957\) −1.29225e7 −0.456106
\(958\) 0 0
\(959\) −2.86405e7 −1.00562
\(960\) 0 0
\(961\) 4.35743e7 1.52203
\(962\) 0 0
\(963\) 3.72783e6 0.129536
\(964\) 0 0
\(965\) −535294. −0.0185044
\(966\) 0 0
\(967\) 1.48070e7 0.509214 0.254607 0.967045i \(-0.418054\pi\)
0.254607 + 0.967045i \(0.418054\pi\)
\(968\) 0 0
\(969\) 1.92639e7 0.659077
\(970\) 0 0
\(971\) −4.54956e7 −1.54854 −0.774269 0.632857i \(-0.781882\pi\)
−0.774269 + 0.632857i \(0.781882\pi\)
\(972\) 0 0
\(973\) 3.69437e7 1.25100
\(974\) 0 0
\(975\) 4.05767e7 1.36699
\(976\) 0 0
\(977\) −3.59948e7 −1.20643 −0.603216 0.797578i \(-0.706114\pi\)
−0.603216 + 0.797578i \(0.706114\pi\)
\(978\) 0 0
\(979\) 1.78987e6 0.0596850
\(980\) 0 0
\(981\) −6.13776e6 −0.203628
\(982\) 0 0
\(983\) −4.41236e7 −1.45642 −0.728210 0.685354i \(-0.759648\pi\)
−0.728210 + 0.685354i \(0.759648\pi\)
\(984\) 0 0
\(985\) 3.36841e6 0.110620
\(986\) 0 0
\(987\) 5.01996e7 1.64024
\(988\) 0 0
\(989\) 5.48336e6 0.178261
\(990\) 0 0
\(991\) −3.80658e7 −1.23126 −0.615631 0.788034i \(-0.711099\pi\)
−0.615631 + 0.788034i \(0.711099\pi\)
\(992\) 0 0
\(993\) 7.42151e6 0.238847
\(994\) 0 0
\(995\) 2.50972e6 0.0803653
\(996\) 0 0
\(997\) −1.03251e6 −0.0328971 −0.0164485 0.999865i \(-0.505236\pi\)
−0.0164485 + 0.999865i \(0.505236\pi\)
\(998\) 0 0
\(999\) 556795. 0.0176515
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.6.a.c.1.4 4
3.2 odd 2 792.6.a.l.1.3 4
4.3 odd 2 176.6.a.l.1.1 4
8.3 odd 2 704.6.a.u.1.4 4
8.5 even 2 704.6.a.x.1.1 4
11.10 odd 2 968.6.a.d.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.a.c.1.4 4 1.1 even 1 trivial
176.6.a.l.1.1 4 4.3 odd 2
704.6.a.u.1.4 4 8.3 odd 2
704.6.a.x.1.1 4 8.5 even 2
792.6.a.l.1.3 4 3.2 odd 2
968.6.a.d.1.4 4 11.10 odd 2