Properties

Label 88.6.a.d.1.3
Level $88$
Weight $6$
Character 88.1
Self dual yes
Analytic conductor $14.114$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,6,Mod(1,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 88.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.1137761435\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 145x^{2} + 57x + 4950 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-9.03563\) of defining polynomial
Character \(\chi\) \(=\) 88.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.76524 q^{3} +18.8067 q^{5} +185.753 q^{7} -220.292 q^{9} -121.000 q^{11} +450.936 q^{13} +89.6184 q^{15} +1878.09 q^{17} +271.092 q^{19} +885.156 q^{21} +2180.44 q^{23} -2771.31 q^{25} -2207.70 q^{27} +7291.56 q^{29} +5237.55 q^{31} -576.594 q^{33} +3493.39 q^{35} +8120.04 q^{37} +2148.82 q^{39} +13312.9 q^{41} -21476.7 q^{43} -4142.97 q^{45} -28445.2 q^{47} +17697.1 q^{49} +8949.53 q^{51} -5605.15 q^{53} -2275.61 q^{55} +1291.82 q^{57} -15408.5 q^{59} -20621.8 q^{61} -40919.9 q^{63} +8480.62 q^{65} +15477.3 q^{67} +10390.3 q^{69} -34594.0 q^{71} -72344.7 q^{73} -13205.9 q^{75} -22476.1 q^{77} -13843.5 q^{79} +43010.9 q^{81} -14365.9 q^{83} +35320.6 q^{85} +34746.0 q^{87} +37056.0 q^{89} +83762.7 q^{91} +24958.2 q^{93} +5098.34 q^{95} -2544.22 q^{97} +26655.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{3} + 93 q^{5} - 94 q^{7} + 591 q^{9} - 484 q^{11} + 230 q^{13} + 3227 q^{15} + 1856 q^{17} - 40 q^{19} + 6114 q^{21} + 1515 q^{23} + 15147 q^{25} + 11605 q^{27} + 11390 q^{29} + 1339 q^{31} + 605 q^{33}+ \cdots - 71511 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.76524 0.305690 0.152845 0.988250i \(-0.451156\pi\)
0.152845 + 0.988250i \(0.451156\pi\)
\(4\) 0 0
\(5\) 18.8067 0.336424 0.168212 0.985751i \(-0.446201\pi\)
0.168212 + 0.985751i \(0.446201\pi\)
\(6\) 0 0
\(7\) 185.753 1.43282 0.716408 0.697682i \(-0.245785\pi\)
0.716408 + 0.697682i \(0.245785\pi\)
\(8\) 0 0
\(9\) −220.292 −0.906553
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) 450.936 0.740043 0.370021 0.929023i \(-0.379350\pi\)
0.370021 + 0.929023i \(0.379350\pi\)
\(14\) 0 0
\(15\) 89.6184 0.102842
\(16\) 0 0
\(17\) 1878.09 1.57613 0.788067 0.615589i \(-0.211082\pi\)
0.788067 + 0.615589i \(0.211082\pi\)
\(18\) 0 0
\(19\) 271.092 0.172279 0.0861395 0.996283i \(-0.472547\pi\)
0.0861395 + 0.996283i \(0.472547\pi\)
\(20\) 0 0
\(21\) 885.156 0.437998
\(22\) 0 0
\(23\) 2180.44 0.859458 0.429729 0.902958i \(-0.358609\pi\)
0.429729 + 0.902958i \(0.358609\pi\)
\(24\) 0 0
\(25\) −2771.31 −0.886819
\(26\) 0 0
\(27\) −2207.70 −0.582815
\(28\) 0 0
\(29\) 7291.56 1.61000 0.804999 0.593276i \(-0.202166\pi\)
0.804999 + 0.593276i \(0.202166\pi\)
\(30\) 0 0
\(31\) 5237.55 0.978867 0.489434 0.872041i \(-0.337204\pi\)
0.489434 + 0.872041i \(0.337204\pi\)
\(32\) 0 0
\(33\) −576.594 −0.0921691
\(34\) 0 0
\(35\) 3493.39 0.482034
\(36\) 0 0
\(37\) 8120.04 0.975110 0.487555 0.873092i \(-0.337889\pi\)
0.487555 + 0.873092i \(0.337889\pi\)
\(38\) 0 0
\(39\) 2148.82 0.226224
\(40\) 0 0
\(41\) 13312.9 1.23684 0.618419 0.785848i \(-0.287773\pi\)
0.618419 + 0.785848i \(0.287773\pi\)
\(42\) 0 0
\(43\) −21476.7 −1.77132 −0.885658 0.464339i \(-0.846292\pi\)
−0.885658 + 0.464339i \(0.846292\pi\)
\(44\) 0 0
\(45\) −4142.97 −0.304987
\(46\) 0 0
\(47\) −28445.2 −1.87829 −0.939147 0.343515i \(-0.888382\pi\)
−0.939147 + 0.343515i \(0.888382\pi\)
\(48\) 0 0
\(49\) 17697.1 1.05296
\(50\) 0 0
\(51\) 8949.53 0.481809
\(52\) 0 0
\(53\) −5605.15 −0.274093 −0.137046 0.990565i \(-0.543761\pi\)
−0.137046 + 0.990565i \(0.543761\pi\)
\(54\) 0 0
\(55\) −2275.61 −0.101436
\(56\) 0 0
\(57\) 1291.82 0.0526640
\(58\) 0 0
\(59\) −15408.5 −0.576275 −0.288137 0.957589i \(-0.593036\pi\)
−0.288137 + 0.957589i \(0.593036\pi\)
\(60\) 0 0
\(61\) −20621.8 −0.709581 −0.354790 0.934946i \(-0.615448\pi\)
−0.354790 + 0.934946i \(0.615448\pi\)
\(62\) 0 0
\(63\) −40919.9 −1.29892
\(64\) 0 0
\(65\) 8480.62 0.248968
\(66\) 0 0
\(67\) 15477.3 0.421219 0.210609 0.977570i \(-0.432455\pi\)
0.210609 + 0.977570i \(0.432455\pi\)
\(68\) 0 0
\(69\) 10390.3 0.262728
\(70\) 0 0
\(71\) −34594.0 −0.814431 −0.407216 0.913332i \(-0.633500\pi\)
−0.407216 + 0.913332i \(0.633500\pi\)
\(72\) 0 0
\(73\) −72344.7 −1.58891 −0.794456 0.607322i \(-0.792244\pi\)
−0.794456 + 0.607322i \(0.792244\pi\)
\(74\) 0 0
\(75\) −13205.9 −0.271092
\(76\) 0 0
\(77\) −22476.1 −0.432010
\(78\) 0 0
\(79\) −13843.5 −0.249562 −0.124781 0.992184i \(-0.539823\pi\)
−0.124781 + 0.992184i \(0.539823\pi\)
\(80\) 0 0
\(81\) 43010.9 0.728393
\(82\) 0 0
\(83\) −14365.9 −0.228895 −0.114447 0.993429i \(-0.536510\pi\)
−0.114447 + 0.993429i \(0.536510\pi\)
\(84\) 0 0
\(85\) 35320.6 0.530250
\(86\) 0 0
\(87\) 34746.0 0.492161
\(88\) 0 0
\(89\) 37056.0 0.495888 0.247944 0.968774i \(-0.420245\pi\)
0.247944 + 0.968774i \(0.420245\pi\)
\(90\) 0 0
\(91\) 83762.7 1.06034
\(92\) 0 0
\(93\) 24958.2 0.299230
\(94\) 0 0
\(95\) 5098.34 0.0579588
\(96\) 0 0
\(97\) −2544.22 −0.0274552 −0.0137276 0.999906i \(-0.504370\pi\)
−0.0137276 + 0.999906i \(0.504370\pi\)
\(98\) 0 0
\(99\) 26655.4 0.273336
\(100\) 0 0
\(101\) −43827.3 −0.427506 −0.213753 0.976888i \(-0.568569\pi\)
−0.213753 + 0.976888i \(0.568569\pi\)
\(102\) 0 0
\(103\) −112331. −1.04329 −0.521645 0.853163i \(-0.674681\pi\)
−0.521645 + 0.853163i \(0.674681\pi\)
\(104\) 0 0
\(105\) 16646.9 0.147353
\(106\) 0 0
\(107\) −9509.43 −0.0802962 −0.0401481 0.999194i \(-0.512783\pi\)
−0.0401481 + 0.999194i \(0.512783\pi\)
\(108\) 0 0
\(109\) −87901.4 −0.708646 −0.354323 0.935123i \(-0.615289\pi\)
−0.354323 + 0.935123i \(0.615289\pi\)
\(110\) 0 0
\(111\) 38693.9 0.298082
\(112\) 0 0
\(113\) 222724. 1.64086 0.820430 0.571747i \(-0.193734\pi\)
0.820430 + 0.571747i \(0.193734\pi\)
\(114\) 0 0
\(115\) 41006.8 0.289142
\(116\) 0 0
\(117\) −99337.9 −0.670889
\(118\) 0 0
\(119\) 348860. 2.25831
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 63439.2 0.378090
\(124\) 0 0
\(125\) −110890. −0.634772
\(126\) 0 0
\(127\) 281292. 1.54756 0.773781 0.633453i \(-0.218363\pi\)
0.773781 + 0.633453i \(0.218363\pi\)
\(128\) 0 0
\(129\) −102341. −0.541474
\(130\) 0 0
\(131\) 56794.9 0.289155 0.144578 0.989493i \(-0.453818\pi\)
0.144578 + 0.989493i \(0.453818\pi\)
\(132\) 0 0
\(133\) 50356.1 0.246844
\(134\) 0 0
\(135\) −41519.5 −0.196073
\(136\) 0 0
\(137\) 97777.6 0.445080 0.222540 0.974924i \(-0.428565\pi\)
0.222540 + 0.974924i \(0.428565\pi\)
\(138\) 0 0
\(139\) −136419. −0.598875 −0.299438 0.954116i \(-0.596799\pi\)
−0.299438 + 0.954116i \(0.596799\pi\)
\(140\) 0 0
\(141\) −135548. −0.574176
\(142\) 0 0
\(143\) −54563.3 −0.223131
\(144\) 0 0
\(145\) 137130. 0.541642
\(146\) 0 0
\(147\) 84330.9 0.321879
\(148\) 0 0
\(149\) −32856.5 −0.121243 −0.0606213 0.998161i \(-0.519308\pi\)
−0.0606213 + 0.998161i \(0.519308\pi\)
\(150\) 0 0
\(151\) −96344.0 −0.343861 −0.171930 0.985109i \(-0.555000\pi\)
−0.171930 + 0.985109i \(0.555000\pi\)
\(152\) 0 0
\(153\) −413728. −1.42885
\(154\) 0 0
\(155\) 98500.9 0.329315
\(156\) 0 0
\(157\) −464474. −1.50388 −0.751938 0.659234i \(-0.770881\pi\)
−0.751938 + 0.659234i \(0.770881\pi\)
\(158\) 0 0
\(159\) −26709.9 −0.0837874
\(160\) 0 0
\(161\) 405023. 1.23144
\(162\) 0 0
\(163\) −553151. −1.63070 −0.815351 0.578967i \(-0.803456\pi\)
−0.815351 + 0.578967i \(0.803456\pi\)
\(164\) 0 0
\(165\) −10843.8 −0.0310079
\(166\) 0 0
\(167\) 527319. 1.46313 0.731564 0.681773i \(-0.238791\pi\)
0.731564 + 0.681773i \(0.238791\pi\)
\(168\) 0 0
\(169\) −167949. −0.452336
\(170\) 0 0
\(171\) −59719.5 −0.156180
\(172\) 0 0
\(173\) −267245. −0.678881 −0.339440 0.940628i \(-0.610238\pi\)
−0.339440 + 0.940628i \(0.610238\pi\)
\(174\) 0 0
\(175\) −514778. −1.27065
\(176\) 0 0
\(177\) −73425.1 −0.176162
\(178\) 0 0
\(179\) 225715. 0.526537 0.263268 0.964723i \(-0.415200\pi\)
0.263268 + 0.964723i \(0.415200\pi\)
\(180\) 0 0
\(181\) 3570.84 0.00810165 0.00405083 0.999992i \(-0.498711\pi\)
0.00405083 + 0.999992i \(0.498711\pi\)
\(182\) 0 0
\(183\) −98267.8 −0.216912
\(184\) 0 0
\(185\) 152711. 0.328051
\(186\) 0 0
\(187\) −227248. −0.475222
\(188\) 0 0
\(189\) −410086. −0.835066
\(190\) 0 0
\(191\) −505611. −1.00284 −0.501421 0.865203i \(-0.667189\pi\)
−0.501421 + 0.865203i \(0.667189\pi\)
\(192\) 0 0
\(193\) 642337. 1.24128 0.620640 0.784096i \(-0.286873\pi\)
0.620640 + 0.784096i \(0.286873\pi\)
\(194\) 0 0
\(195\) 40412.2 0.0761072
\(196\) 0 0
\(197\) −809688. −1.48646 −0.743228 0.669038i \(-0.766706\pi\)
−0.743228 + 0.669038i \(0.766706\pi\)
\(198\) 0 0
\(199\) −78134.0 −0.139864 −0.0699322 0.997552i \(-0.522278\pi\)
−0.0699322 + 0.997552i \(0.522278\pi\)
\(200\) 0 0
\(201\) 73753.0 0.128762
\(202\) 0 0
\(203\) 1.35443e6 2.30683
\(204\) 0 0
\(205\) 250372. 0.416103
\(206\) 0 0
\(207\) −480334. −0.779144
\(208\) 0 0
\(209\) −32802.1 −0.0519441
\(210\) 0 0
\(211\) −1.09424e6 −1.69202 −0.846012 0.533164i \(-0.821003\pi\)
−0.846012 + 0.533164i \(0.821003\pi\)
\(212\) 0 0
\(213\) −164849. −0.248964
\(214\) 0 0
\(215\) −403905. −0.595913
\(216\) 0 0
\(217\) 972889. 1.40254
\(218\) 0 0
\(219\) −344740. −0.485715
\(220\) 0 0
\(221\) 846897. 1.16641
\(222\) 0 0
\(223\) 1.11545e6 1.50206 0.751031 0.660267i \(-0.229557\pi\)
0.751031 + 0.660267i \(0.229557\pi\)
\(224\) 0 0
\(225\) 610498. 0.803949
\(226\) 0 0
\(227\) −194126. −0.250046 −0.125023 0.992154i \(-0.539900\pi\)
−0.125023 + 0.992154i \(0.539900\pi\)
\(228\) 0 0
\(229\) 796852. 1.00413 0.502064 0.864830i \(-0.332574\pi\)
0.502064 + 0.864830i \(0.332574\pi\)
\(230\) 0 0
\(231\) −107104. −0.132061
\(232\) 0 0
\(233\) 1.51904e6 1.83307 0.916533 0.399959i \(-0.130976\pi\)
0.916533 + 0.399959i \(0.130976\pi\)
\(234\) 0 0
\(235\) −534959. −0.631904
\(236\) 0 0
\(237\) −65967.7 −0.0762887
\(238\) 0 0
\(239\) −558399. −0.632339 −0.316170 0.948703i \(-0.602397\pi\)
−0.316170 + 0.948703i \(0.602397\pi\)
\(240\) 0 0
\(241\) −311218. −0.345161 −0.172581 0.984995i \(-0.555210\pi\)
−0.172581 + 0.984995i \(0.555210\pi\)
\(242\) 0 0
\(243\) 741428. 0.805477
\(244\) 0 0
\(245\) 332824. 0.354241
\(246\) 0 0
\(247\) 122245. 0.127494
\(248\) 0 0
\(249\) −68456.7 −0.0699710
\(250\) 0 0
\(251\) −515782. −0.516752 −0.258376 0.966044i \(-0.583187\pi\)
−0.258376 + 0.966044i \(0.583187\pi\)
\(252\) 0 0
\(253\) −263833. −0.259136
\(254\) 0 0
\(255\) 168311. 0.162092
\(256\) 0 0
\(257\) −677970. −0.640292 −0.320146 0.947368i \(-0.603732\pi\)
−0.320146 + 0.947368i \(0.603732\pi\)
\(258\) 0 0
\(259\) 1.50832e6 1.39715
\(260\) 0 0
\(261\) −1.60628e6 −1.45955
\(262\) 0 0
\(263\) 665288. 0.593090 0.296545 0.955019i \(-0.404166\pi\)
0.296545 + 0.955019i \(0.404166\pi\)
\(264\) 0 0
\(265\) −105414. −0.0922114
\(266\) 0 0
\(267\) 176581. 0.151588
\(268\) 0 0
\(269\) 2.24458e6 1.89128 0.945639 0.325219i \(-0.105438\pi\)
0.945639 + 0.325219i \(0.105438\pi\)
\(270\) 0 0
\(271\) −77270.8 −0.0639134 −0.0319567 0.999489i \(-0.510174\pi\)
−0.0319567 + 0.999489i \(0.510174\pi\)
\(272\) 0 0
\(273\) 399149. 0.324137
\(274\) 0 0
\(275\) 335328. 0.267386
\(276\) 0 0
\(277\) −1.98599e6 −1.55517 −0.777584 0.628779i \(-0.783555\pi\)
−0.777584 + 0.628779i \(0.783555\pi\)
\(278\) 0 0
\(279\) −1.15379e6 −0.887396
\(280\) 0 0
\(281\) 1.94967e6 1.47298 0.736489 0.676449i \(-0.236482\pi\)
0.736489 + 0.676449i \(0.236482\pi\)
\(282\) 0 0
\(283\) −2.48694e6 −1.84586 −0.922930 0.384968i \(-0.874212\pi\)
−0.922930 + 0.384968i \(0.874212\pi\)
\(284\) 0 0
\(285\) 24294.8 0.0177175
\(286\) 0 0
\(287\) 2.47291e6 1.77216
\(288\) 0 0
\(289\) 2.10735e6 1.48420
\(290\) 0 0
\(291\) −12123.8 −0.00839280
\(292\) 0 0
\(293\) −1.07188e6 −0.729417 −0.364709 0.931122i \(-0.618831\pi\)
−0.364709 + 0.931122i \(0.618831\pi\)
\(294\) 0 0
\(295\) −289782. −0.193873
\(296\) 0 0
\(297\) 267132. 0.175725
\(298\) 0 0
\(299\) 983240. 0.636036
\(300\) 0 0
\(301\) −3.98935e6 −2.53797
\(302\) 0 0
\(303\) −208848. −0.130684
\(304\) 0 0
\(305\) −387828. −0.238720
\(306\) 0 0
\(307\) −1.96522e6 −1.19005 −0.595025 0.803707i \(-0.702858\pi\)
−0.595025 + 0.803707i \(0.702858\pi\)
\(308\) 0 0
\(309\) −535282. −0.318923
\(310\) 0 0
\(311\) 301849. 0.176966 0.0884828 0.996078i \(-0.471798\pi\)
0.0884828 + 0.996078i \(0.471798\pi\)
\(312\) 0 0
\(313\) 1.02713e6 0.592605 0.296302 0.955094i \(-0.404246\pi\)
0.296302 + 0.955094i \(0.404246\pi\)
\(314\) 0 0
\(315\) −769568. −0.436989
\(316\) 0 0
\(317\) 1.00339e6 0.560815 0.280408 0.959881i \(-0.409530\pi\)
0.280408 + 0.959881i \(0.409530\pi\)
\(318\) 0 0
\(319\) −882279. −0.485433
\(320\) 0 0
\(321\) −45314.7 −0.0245458
\(322\) 0 0
\(323\) 509134. 0.271535
\(324\) 0 0
\(325\) −1.24968e6 −0.656284
\(326\) 0 0
\(327\) −418871. −0.216626
\(328\) 0 0
\(329\) −5.28377e6 −2.69125
\(330\) 0 0
\(331\) 754787. 0.378665 0.189332 0.981913i \(-0.439368\pi\)
0.189332 + 0.981913i \(0.439368\pi\)
\(332\) 0 0
\(333\) −1.78878e6 −0.883990
\(334\) 0 0
\(335\) 291076. 0.141708
\(336\) 0 0
\(337\) 131673. 0.0631571 0.0315785 0.999501i \(-0.489947\pi\)
0.0315785 + 0.999501i \(0.489947\pi\)
\(338\) 0 0
\(339\) 1.06133e6 0.501595
\(340\) 0 0
\(341\) −633743. −0.295140
\(342\) 0 0
\(343\) 165337. 0.0758813
\(344\) 0 0
\(345\) 195407. 0.0883880
\(346\) 0 0
\(347\) 4.10512e6 1.83021 0.915107 0.403212i \(-0.132106\pi\)
0.915107 + 0.403212i \(0.132106\pi\)
\(348\) 0 0
\(349\) 3.29395e6 1.44762 0.723808 0.690002i \(-0.242390\pi\)
0.723808 + 0.690002i \(0.242390\pi\)
\(350\) 0 0
\(351\) −995532. −0.431308
\(352\) 0 0
\(353\) −2.30224e6 −0.983363 −0.491682 0.870775i \(-0.663618\pi\)
−0.491682 + 0.870775i \(0.663618\pi\)
\(354\) 0 0
\(355\) −650598. −0.273994
\(356\) 0 0
\(357\) 1.66240e6 0.690343
\(358\) 0 0
\(359\) 776222. 0.317870 0.158935 0.987289i \(-0.449194\pi\)
0.158935 + 0.987289i \(0.449194\pi\)
\(360\) 0 0
\(361\) −2.40261e6 −0.970320
\(362\) 0 0
\(363\) 69767.9 0.0277900
\(364\) 0 0
\(365\) −1.36056e6 −0.534548
\(366\) 0 0
\(367\) −2.51246e6 −0.973721 −0.486860 0.873480i \(-0.661858\pi\)
−0.486860 + 0.873480i \(0.661858\pi\)
\(368\) 0 0
\(369\) −2.93273e6 −1.12126
\(370\) 0 0
\(371\) −1.04117e6 −0.392724
\(372\) 0 0
\(373\) −2.74730e6 −1.02243 −0.511216 0.859452i \(-0.670805\pi\)
−0.511216 + 0.859452i \(0.670805\pi\)
\(374\) 0 0
\(375\) −528418. −0.194043
\(376\) 0 0
\(377\) 3.28803e6 1.19147
\(378\) 0 0
\(379\) −1.20072e6 −0.429381 −0.214690 0.976682i \(-0.568874\pi\)
−0.214690 + 0.976682i \(0.568874\pi\)
\(380\) 0 0
\(381\) 1.34042e6 0.473075
\(382\) 0 0
\(383\) −2.18649e6 −0.761640 −0.380820 0.924649i \(-0.624358\pi\)
−0.380820 + 0.924649i \(0.624358\pi\)
\(384\) 0 0
\(385\) −422701. −0.145339
\(386\) 0 0
\(387\) 4.73115e6 1.60579
\(388\) 0 0
\(389\) 2.84332e6 0.952689 0.476344 0.879259i \(-0.341962\pi\)
0.476344 + 0.879259i \(0.341962\pi\)
\(390\) 0 0
\(391\) 4.09505e6 1.35462
\(392\) 0 0
\(393\) 270641. 0.0883919
\(394\) 0 0
\(395\) −260351. −0.0839588
\(396\) 0 0
\(397\) 6.04554e6 1.92512 0.962562 0.271062i \(-0.0873749\pi\)
0.962562 + 0.271062i \(0.0873749\pi\)
\(398\) 0 0
\(399\) 239959. 0.0754578
\(400\) 0 0
\(401\) 1.19358e6 0.370672 0.185336 0.982675i \(-0.440663\pi\)
0.185336 + 0.982675i \(0.440663\pi\)
\(402\) 0 0
\(403\) 2.36180e6 0.724404
\(404\) 0 0
\(405\) 808892. 0.245049
\(406\) 0 0
\(407\) −982525. −0.294007
\(408\) 0 0
\(409\) 3.11380e6 0.920412 0.460206 0.887812i \(-0.347776\pi\)
0.460206 + 0.887812i \(0.347776\pi\)
\(410\) 0 0
\(411\) 465934. 0.136057
\(412\) 0 0
\(413\) −2.86217e6 −0.825695
\(414\) 0 0
\(415\) −270174. −0.0770058
\(416\) 0 0
\(417\) −650067. −0.183070
\(418\) 0 0
\(419\) 4.09395e6 1.13922 0.569609 0.821916i \(-0.307095\pi\)
0.569609 + 0.821916i \(0.307095\pi\)
\(420\) 0 0
\(421\) 3.07486e6 0.845513 0.422757 0.906243i \(-0.361063\pi\)
0.422757 + 0.906243i \(0.361063\pi\)
\(422\) 0 0
\(423\) 6.26625e6 1.70277
\(424\) 0 0
\(425\) −5.20476e6 −1.39775
\(426\) 0 0
\(427\) −3.83056e6 −1.01670
\(428\) 0 0
\(429\) −260007. −0.0682091
\(430\) 0 0
\(431\) 1.15761e6 0.300172 0.150086 0.988673i \(-0.452045\pi\)
0.150086 + 0.988673i \(0.452045\pi\)
\(432\) 0 0
\(433\) −789612. −0.202392 −0.101196 0.994866i \(-0.532267\pi\)
−0.101196 + 0.994866i \(0.532267\pi\)
\(434\) 0 0
\(435\) 653458. 0.165575
\(436\) 0 0
\(437\) 591099. 0.148067
\(438\) 0 0
\(439\) 687808. 0.170336 0.0851679 0.996367i \(-0.472857\pi\)
0.0851679 + 0.996367i \(0.472857\pi\)
\(440\) 0 0
\(441\) −3.89854e6 −0.954564
\(442\) 0 0
\(443\) −4.14991e6 −1.00468 −0.502342 0.864669i \(-0.667528\pi\)
−0.502342 + 0.864669i \(0.667528\pi\)
\(444\) 0 0
\(445\) 696901. 0.166829
\(446\) 0 0
\(447\) −156569. −0.0370627
\(448\) 0 0
\(449\) 5.35141e6 1.25272 0.626358 0.779536i \(-0.284545\pi\)
0.626358 + 0.779536i \(0.284545\pi\)
\(450\) 0 0
\(451\) −1.61086e6 −0.372921
\(452\) 0 0
\(453\) −459102. −0.105115
\(454\) 0 0
\(455\) 1.57530e6 0.356726
\(456\) 0 0
\(457\) 3.23593e6 0.724784 0.362392 0.932026i \(-0.381960\pi\)
0.362392 + 0.932026i \(0.381960\pi\)
\(458\) 0 0
\(459\) −4.14625e6 −0.918594
\(460\) 0 0
\(461\) −3.96957e6 −0.869943 −0.434971 0.900444i \(-0.643242\pi\)
−0.434971 + 0.900444i \(0.643242\pi\)
\(462\) 0 0
\(463\) −922430. −0.199977 −0.0999887 0.994989i \(-0.531881\pi\)
−0.0999887 + 0.994989i \(0.531881\pi\)
\(464\) 0 0
\(465\) 469381. 0.100668
\(466\) 0 0
\(467\) −982248. −0.208415 −0.104208 0.994556i \(-0.533231\pi\)
−0.104208 + 0.994556i \(0.533231\pi\)
\(468\) 0 0
\(469\) 2.87495e6 0.603529
\(470\) 0 0
\(471\) −2.21333e6 −0.459720
\(472\) 0 0
\(473\) 2.59868e6 0.534072
\(474\) 0 0
\(475\) −751279. −0.152780
\(476\) 0 0
\(477\) 1.23477e6 0.248480
\(478\) 0 0
\(479\) −1.13568e6 −0.226161 −0.113081 0.993586i \(-0.536072\pi\)
−0.113081 + 0.993586i \(0.536072\pi\)
\(480\) 0 0
\(481\) 3.66162e6 0.721624
\(482\) 0 0
\(483\) 1.93003e6 0.376440
\(484\) 0 0
\(485\) −47848.3 −0.00923660
\(486\) 0 0
\(487\) 3.03084e6 0.579083 0.289542 0.957165i \(-0.406497\pi\)
0.289542 + 0.957165i \(0.406497\pi\)
\(488\) 0 0
\(489\) −2.63590e6 −0.498490
\(490\) 0 0
\(491\) −7.93792e6 −1.48595 −0.742973 0.669322i \(-0.766585\pi\)
−0.742973 + 0.669322i \(0.766585\pi\)
\(492\) 0 0
\(493\) 1.36942e7 2.53757
\(494\) 0 0
\(495\) 501300. 0.0919569
\(496\) 0 0
\(497\) −6.42592e6 −1.16693
\(498\) 0 0
\(499\) −4.33152e6 −0.778734 −0.389367 0.921083i \(-0.627306\pi\)
−0.389367 + 0.921083i \(0.627306\pi\)
\(500\) 0 0
\(501\) 2.51280e6 0.447264
\(502\) 0 0
\(503\) −4.02378e6 −0.709112 −0.354556 0.935035i \(-0.615368\pi\)
−0.354556 + 0.935035i \(0.615368\pi\)
\(504\) 0 0
\(505\) −824247. −0.143823
\(506\) 0 0
\(507\) −800319. −0.138275
\(508\) 0 0
\(509\) −1.35686e6 −0.232135 −0.116068 0.993241i \(-0.537029\pi\)
−0.116068 + 0.993241i \(0.537029\pi\)
\(510\) 0 0
\(511\) −1.34382e7 −2.27662
\(512\) 0 0
\(513\) −598489. −0.100407
\(514\) 0 0
\(515\) −2.11256e6 −0.350988
\(516\) 0 0
\(517\) 3.44186e6 0.566327
\(518\) 0 0
\(519\) −1.27348e6 −0.207527
\(520\) 0 0
\(521\) −1.13437e7 −1.83088 −0.915439 0.402456i \(-0.868157\pi\)
−0.915439 + 0.402456i \(0.868157\pi\)
\(522\) 0 0
\(523\) −8.38569e6 −1.34055 −0.670277 0.742111i \(-0.733825\pi\)
−0.670277 + 0.742111i \(0.733825\pi\)
\(524\) 0 0
\(525\) −2.45304e6 −0.388425
\(526\) 0 0
\(527\) 9.83657e6 1.54283
\(528\) 0 0
\(529\) −1.68203e6 −0.261333
\(530\) 0 0
\(531\) 3.39437e6 0.522424
\(532\) 0 0
\(533\) 6.00327e6 0.915314
\(534\) 0 0
\(535\) −178841. −0.0270136
\(536\) 0 0
\(537\) 1.07559e6 0.160957
\(538\) 0 0
\(539\) −2.14135e6 −0.317479
\(540\) 0 0
\(541\) −1.12820e7 −1.65726 −0.828632 0.559794i \(-0.810880\pi\)
−0.828632 + 0.559794i \(0.810880\pi\)
\(542\) 0 0
\(543\) 17015.9 0.00247660
\(544\) 0 0
\(545\) −1.65313e6 −0.238406
\(546\) 0 0
\(547\) 1.10783e6 0.158308 0.0791542 0.996862i \(-0.474778\pi\)
0.0791542 + 0.996862i \(0.474778\pi\)
\(548\) 0 0
\(549\) 4.54283e6 0.643273
\(550\) 0 0
\(551\) 1.97668e6 0.277369
\(552\) 0 0
\(553\) −2.57147e6 −0.357576
\(554\) 0 0
\(555\) 727705. 0.100282
\(556\) 0 0
\(557\) 1.33004e6 0.181646 0.0908229 0.995867i \(-0.471050\pi\)
0.0908229 + 0.995867i \(0.471050\pi\)
\(558\) 0 0
\(559\) −9.68461e6 −1.31085
\(560\) 0 0
\(561\) −1.08289e6 −0.145271
\(562\) 0 0
\(563\) 5.71080e6 0.759322 0.379661 0.925126i \(-0.376041\pi\)
0.379661 + 0.925126i \(0.376041\pi\)
\(564\) 0 0
\(565\) 4.18871e6 0.552025
\(566\) 0 0
\(567\) 7.98939e6 1.04365
\(568\) 0 0
\(569\) −1.89022e6 −0.244755 −0.122378 0.992484i \(-0.539052\pi\)
−0.122378 + 0.992484i \(0.539052\pi\)
\(570\) 0 0
\(571\) 8.50941e6 1.09222 0.546109 0.837714i \(-0.316108\pi\)
0.546109 + 0.837714i \(0.316108\pi\)
\(572\) 0 0
\(573\) −2.40936e6 −0.306559
\(574\) 0 0
\(575\) −6.04267e6 −0.762183
\(576\) 0 0
\(577\) −637951. −0.0797715 −0.0398857 0.999204i \(-0.512699\pi\)
−0.0398857 + 0.999204i \(0.512699\pi\)
\(578\) 0 0
\(579\) 3.06089e6 0.379447
\(580\) 0 0
\(581\) −2.66850e6 −0.327964
\(582\) 0 0
\(583\) 678223. 0.0826420
\(584\) 0 0
\(585\) −1.86822e6 −0.225703
\(586\) 0 0
\(587\) 1.28267e7 1.53646 0.768230 0.640174i \(-0.221138\pi\)
0.768230 + 0.640174i \(0.221138\pi\)
\(588\) 0 0
\(589\) 1.41986e6 0.168638
\(590\) 0 0
\(591\) −3.85836e6 −0.454395
\(592\) 0 0
\(593\) −6.57824e6 −0.768198 −0.384099 0.923292i \(-0.625488\pi\)
−0.384099 + 0.923292i \(0.625488\pi\)
\(594\) 0 0
\(595\) 6.56090e6 0.759750
\(596\) 0 0
\(597\) −372327. −0.0427552
\(598\) 0 0
\(599\) −1.05032e7 −1.19607 −0.598034 0.801471i \(-0.704051\pi\)
−0.598034 + 0.801471i \(0.704051\pi\)
\(600\) 0 0
\(601\) 3.03229e6 0.342441 0.171220 0.985233i \(-0.445229\pi\)
0.171220 + 0.985233i \(0.445229\pi\)
\(602\) 0 0
\(603\) −3.40953e6 −0.381857
\(604\) 0 0
\(605\) 275349. 0.0305840
\(606\) 0 0
\(607\) 2.47261e6 0.272385 0.136193 0.990682i \(-0.456513\pi\)
0.136193 + 0.990682i \(0.456513\pi\)
\(608\) 0 0
\(609\) 6.45417e6 0.705175
\(610\) 0 0
\(611\) −1.28270e7 −1.39002
\(612\) 0 0
\(613\) 1.51835e7 1.63200 0.816002 0.578050i \(-0.196186\pi\)
0.816002 + 0.578050i \(0.196186\pi\)
\(614\) 0 0
\(615\) 1.19308e6 0.127199
\(616\) 0 0
\(617\) −1.22428e7 −1.29470 −0.647348 0.762195i \(-0.724122\pi\)
−0.647348 + 0.762195i \(0.724122\pi\)
\(618\) 0 0
\(619\) −2.05223e6 −0.215278 −0.107639 0.994190i \(-0.534329\pi\)
−0.107639 + 0.994190i \(0.534329\pi\)
\(620\) 0 0
\(621\) −4.81376e6 −0.500905
\(622\) 0 0
\(623\) 6.88326e6 0.710516
\(624\) 0 0
\(625\) 6.57487e6 0.673266
\(626\) 0 0
\(627\) −156310. −0.0158788
\(628\) 0 0
\(629\) 1.52501e7 1.53690
\(630\) 0 0
\(631\) 1.32105e7 1.32082 0.660412 0.750904i \(-0.270382\pi\)
0.660412 + 0.750904i \(0.270382\pi\)
\(632\) 0 0
\(633\) −5.21431e6 −0.517235
\(634\) 0 0
\(635\) 5.29017e6 0.520638
\(636\) 0 0
\(637\) 7.98026e6 0.779235
\(638\) 0 0
\(639\) 7.62079e6 0.738326
\(640\) 0 0
\(641\) −1.34860e7 −1.29640 −0.648198 0.761472i \(-0.724477\pi\)
−0.648198 + 0.761472i \(0.724477\pi\)
\(642\) 0 0
\(643\) 1.41694e7 1.35153 0.675763 0.737119i \(-0.263814\pi\)
0.675763 + 0.737119i \(0.263814\pi\)
\(644\) 0 0
\(645\) −1.92470e6 −0.182165
\(646\) 0 0
\(647\) −4.52666e6 −0.425125 −0.212563 0.977147i \(-0.568181\pi\)
−0.212563 + 0.977147i \(0.568181\pi\)
\(648\) 0 0
\(649\) 1.86442e6 0.173753
\(650\) 0 0
\(651\) 4.63605e6 0.428742
\(652\) 0 0
\(653\) −2.91674e6 −0.267679 −0.133840 0.991003i \(-0.542731\pi\)
−0.133840 + 0.991003i \(0.542731\pi\)
\(654\) 0 0
\(655\) 1.06812e6 0.0972788
\(656\) 0 0
\(657\) 1.59370e7 1.44043
\(658\) 0 0
\(659\) 2.00854e7 1.80163 0.900816 0.434201i \(-0.142969\pi\)
0.900816 + 0.434201i \(0.142969\pi\)
\(660\) 0 0
\(661\) −1.73147e7 −1.54138 −0.770691 0.637209i \(-0.780089\pi\)
−0.770691 + 0.637209i \(0.780089\pi\)
\(662\) 0 0
\(663\) 4.03567e6 0.356559
\(664\) 0 0
\(665\) 947030. 0.0830443
\(666\) 0 0
\(667\) 1.58988e7 1.38373
\(668\) 0 0
\(669\) 5.31539e6 0.459166
\(670\) 0 0
\(671\) 2.49524e6 0.213947
\(672\) 0 0
\(673\) −1.72167e7 −1.46525 −0.732627 0.680631i \(-0.761706\pi\)
−0.732627 + 0.680631i \(0.761706\pi\)
\(674\) 0 0
\(675\) 6.11822e6 0.516851
\(676\) 0 0
\(677\) −1.67698e7 −1.40623 −0.703113 0.711078i \(-0.748207\pi\)
−0.703113 + 0.711078i \(0.748207\pi\)
\(678\) 0 0
\(679\) −472596. −0.0393383
\(680\) 0 0
\(681\) −925058. −0.0764366
\(682\) 0 0
\(683\) −2.26092e7 −1.85452 −0.927262 0.374412i \(-0.877844\pi\)
−0.927262 + 0.374412i \(0.877844\pi\)
\(684\) 0 0
\(685\) 1.83887e6 0.149736
\(686\) 0 0
\(687\) 3.79719e6 0.306952
\(688\) 0 0
\(689\) −2.52756e6 −0.202840
\(690\) 0 0
\(691\) −2.03037e7 −1.61763 −0.808817 0.588061i \(-0.799891\pi\)
−0.808817 + 0.588061i \(0.799891\pi\)
\(692\) 0 0
\(693\) 4.95131e6 0.391640
\(694\) 0 0
\(695\) −2.56558e6 −0.201476
\(696\) 0 0
\(697\) 2.50028e7 1.94942
\(698\) 0 0
\(699\) 7.23857e6 0.560350
\(700\) 0 0
\(701\) 6.50043e6 0.499629 0.249814 0.968294i \(-0.419630\pi\)
0.249814 + 0.968294i \(0.419630\pi\)
\(702\) 0 0
\(703\) 2.20128e6 0.167991
\(704\) 0 0
\(705\) −2.54921e6 −0.193167
\(706\) 0 0
\(707\) −8.14105e6 −0.612536
\(708\) 0 0
\(709\) −1.08788e7 −0.812769 −0.406385 0.913702i \(-0.633211\pi\)
−0.406385 + 0.913702i \(0.633211\pi\)
\(710\) 0 0
\(711\) 3.04962e6 0.226241
\(712\) 0 0
\(713\) 1.14202e7 0.841295
\(714\) 0 0
\(715\) −1.02615e6 −0.0750668
\(716\) 0 0
\(717\) −2.66091e6 −0.193300
\(718\) 0 0
\(719\) −2.35143e6 −0.169633 −0.0848163 0.996397i \(-0.527030\pi\)
−0.0848163 + 0.996397i \(0.527030\pi\)
\(720\) 0 0
\(721\) −2.08657e7 −1.49484
\(722\) 0 0
\(723\) −1.48303e6 −0.105512
\(724\) 0 0
\(725\) −2.02072e7 −1.42778
\(726\) 0 0
\(727\) 1.16270e7 0.815890 0.407945 0.913007i \(-0.366246\pi\)
0.407945 + 0.913007i \(0.366246\pi\)
\(728\) 0 0
\(729\) −6.91856e6 −0.482166
\(730\) 0 0
\(731\) −4.03350e7 −2.79183
\(732\) 0 0
\(733\) 7.78239e6 0.534999 0.267499 0.963558i \(-0.413803\pi\)
0.267499 + 0.963558i \(0.413803\pi\)
\(734\) 0 0
\(735\) 1.58598e6 0.108288
\(736\) 0 0
\(737\) −1.87275e6 −0.127002
\(738\) 0 0
\(739\) 1.62063e7 1.09162 0.545811 0.837908i \(-0.316222\pi\)
0.545811 + 0.837908i \(0.316222\pi\)
\(740\) 0 0
\(741\) 582527. 0.0389736
\(742\) 0 0
\(743\) 1.16461e7 0.773940 0.386970 0.922092i \(-0.373522\pi\)
0.386970 + 0.922092i \(0.373522\pi\)
\(744\) 0 0
\(745\) −617922. −0.0407890
\(746\) 0 0
\(747\) 3.16469e6 0.207506
\(748\) 0 0
\(749\) −1.76640e6 −0.115050
\(750\) 0 0
\(751\) −2.83018e7 −1.83111 −0.915555 0.402194i \(-0.868248\pi\)
−0.915555 + 0.402194i \(0.868248\pi\)
\(752\) 0 0
\(753\) −2.45783e6 −0.157966
\(754\) 0 0
\(755\) −1.81191e6 −0.115683
\(756\) 0 0
\(757\) −6.31471e6 −0.400510 −0.200255 0.979744i \(-0.564177\pi\)
−0.200255 + 0.979744i \(0.564177\pi\)
\(758\) 0 0
\(759\) −1.25723e6 −0.0792154
\(760\) 0 0
\(761\) −5.26676e6 −0.329672 −0.164836 0.986321i \(-0.552709\pi\)
−0.164836 + 0.986321i \(0.552709\pi\)
\(762\) 0 0
\(763\) −1.63279e7 −1.01536
\(764\) 0 0
\(765\) −7.78086e6 −0.480700
\(766\) 0 0
\(767\) −6.94824e6 −0.426468
\(768\) 0 0
\(769\) 2.93559e7 1.79011 0.895056 0.445954i \(-0.147135\pi\)
0.895056 + 0.445954i \(0.147135\pi\)
\(770\) 0 0
\(771\) −3.23069e6 −0.195731
\(772\) 0 0
\(773\) 2.09811e7 1.26293 0.631466 0.775404i \(-0.282454\pi\)
0.631466 + 0.775404i \(0.282454\pi\)
\(774\) 0 0
\(775\) −1.45149e7 −0.868078
\(776\) 0 0
\(777\) 7.18750e6 0.427096
\(778\) 0 0
\(779\) 3.60902e6 0.213081
\(780\) 0 0
\(781\) 4.18587e6 0.245560
\(782\) 0 0
\(783\) −1.60976e7 −0.938331
\(784\) 0 0
\(785\) −8.73521e6 −0.505940
\(786\) 0 0
\(787\) 2.72734e7 1.56965 0.784825 0.619717i \(-0.212753\pi\)
0.784825 + 0.619717i \(0.212753\pi\)
\(788\) 0 0
\(789\) 3.17026e6 0.181302
\(790\) 0 0
\(791\) 4.13717e7 2.35105
\(792\) 0 0
\(793\) −9.29912e6 −0.525120
\(794\) 0 0
\(795\) −502324. −0.0281881
\(796\) 0 0
\(797\) −2.17249e7 −1.21147 −0.605734 0.795667i \(-0.707121\pi\)
−0.605734 + 0.795667i \(0.707121\pi\)
\(798\) 0 0
\(799\) −5.34225e7 −2.96044
\(800\) 0 0
\(801\) −8.16316e6 −0.449549
\(802\) 0 0
\(803\) 8.75371e6 0.479075
\(804\) 0 0
\(805\) 7.61713e6 0.414288
\(806\) 0 0
\(807\) 1.06960e7 0.578145
\(808\) 0 0
\(809\) 792354. 0.0425645 0.0212823 0.999774i \(-0.493225\pi\)
0.0212823 + 0.999774i \(0.493225\pi\)
\(810\) 0 0
\(811\) −3.63960e7 −1.94313 −0.971563 0.236780i \(-0.923908\pi\)
−0.971563 + 0.236780i \(0.923908\pi\)
\(812\) 0 0
\(813\) −368214. −0.0195377
\(814\) 0 0
\(815\) −1.04029e7 −0.548608
\(816\) 0 0
\(817\) −5.82215e6 −0.305160
\(818\) 0 0
\(819\) −1.84523e7 −0.961259
\(820\) 0 0
\(821\) 696484. 0.0360623 0.0180311 0.999837i \(-0.494260\pi\)
0.0180311 + 0.999837i \(0.494260\pi\)
\(822\) 0 0
\(823\) 2.23374e7 1.14956 0.574782 0.818307i \(-0.305087\pi\)
0.574782 + 0.818307i \(0.305087\pi\)
\(824\) 0 0
\(825\) 1.59792e6 0.0817373
\(826\) 0 0
\(827\) −8.80259e6 −0.447555 −0.223778 0.974640i \(-0.571839\pi\)
−0.223778 + 0.974640i \(0.571839\pi\)
\(828\) 0 0
\(829\) 1.46640e7 0.741081 0.370540 0.928816i \(-0.379173\pi\)
0.370540 + 0.928816i \(0.379173\pi\)
\(830\) 0 0
\(831\) −9.46371e6 −0.475400
\(832\) 0 0
\(833\) 3.32367e7 1.65961
\(834\) 0 0
\(835\) 9.91713e6 0.492232
\(836\) 0 0
\(837\) −1.15629e7 −0.570498
\(838\) 0 0
\(839\) 2.34020e7 1.14775 0.573877 0.818942i \(-0.305439\pi\)
0.573877 + 0.818942i \(0.305439\pi\)
\(840\) 0 0
\(841\) 3.26557e7 1.59209
\(842\) 0 0
\(843\) 9.29067e6 0.450275
\(844\) 0 0
\(845\) −3.15857e6 −0.152177
\(846\) 0 0
\(847\) 2.71961e6 0.130256
\(848\) 0 0
\(849\) −1.18508e7 −0.564261
\(850\) 0 0
\(851\) 1.77053e7 0.838066
\(852\) 0 0
\(853\) −2.88463e7 −1.35743 −0.678714 0.734403i \(-0.737462\pi\)
−0.678714 + 0.734403i \(0.737462\pi\)
\(854\) 0 0
\(855\) −1.12313e6 −0.0525428
\(856\) 0 0
\(857\) 2.23189e7 1.03806 0.519028 0.854757i \(-0.326294\pi\)
0.519028 + 0.854757i \(0.326294\pi\)
\(858\) 0 0
\(859\) 6.62134e6 0.306170 0.153085 0.988213i \(-0.451079\pi\)
0.153085 + 0.988213i \(0.451079\pi\)
\(860\) 0 0
\(861\) 1.17840e7 0.541733
\(862\) 0 0
\(863\) −1.43706e7 −0.656820 −0.328410 0.944535i \(-0.606513\pi\)
−0.328410 + 0.944535i \(0.606513\pi\)
\(864\) 0 0
\(865\) −5.02598e6 −0.228392
\(866\) 0 0
\(867\) 1.00420e7 0.453705
\(868\) 0 0
\(869\) 1.67507e6 0.0752458
\(870\) 0 0
\(871\) 6.97927e6 0.311720
\(872\) 0 0
\(873\) 560472. 0.0248896
\(874\) 0 0
\(875\) −2.05981e7 −0.909510
\(876\) 0 0
\(877\) −1.18877e7 −0.521912 −0.260956 0.965351i \(-0.584038\pi\)
−0.260956 + 0.965351i \(0.584038\pi\)
\(878\) 0 0
\(879\) −5.10775e6 −0.222976
\(880\) 0 0
\(881\) 3.95772e7 1.71793 0.858965 0.512035i \(-0.171108\pi\)
0.858965 + 0.512035i \(0.171108\pi\)
\(882\) 0 0
\(883\) −2.94934e7 −1.27298 −0.636491 0.771284i \(-0.719615\pi\)
−0.636491 + 0.771284i \(0.719615\pi\)
\(884\) 0 0
\(885\) −1.38088e6 −0.0592650
\(886\) 0 0
\(887\) 7.48463e6 0.319419 0.159710 0.987164i \(-0.448944\pi\)
0.159710 + 0.987164i \(0.448944\pi\)
\(888\) 0 0
\(889\) 5.22508e7 2.21737
\(890\) 0 0
\(891\) −5.20431e6 −0.219619
\(892\) 0 0
\(893\) −7.71125e6 −0.323591
\(894\) 0 0
\(895\) 4.24496e6 0.177140
\(896\) 0 0
\(897\) 4.68537e6 0.194430
\(898\) 0 0
\(899\) 3.81899e7 1.57597
\(900\) 0 0
\(901\) −1.05269e7 −0.432007
\(902\) 0 0
\(903\) −1.90102e7 −0.775832
\(904\) 0 0
\(905\) 67155.6 0.00272559
\(906\) 0 0
\(907\) 3.17456e7 1.28134 0.640671 0.767816i \(-0.278656\pi\)
0.640671 + 0.767816i \(0.278656\pi\)
\(908\) 0 0
\(909\) 9.65484e6 0.387557
\(910\) 0 0
\(911\) −3.13372e7 −1.25102 −0.625510 0.780216i \(-0.715109\pi\)
−0.625510 + 0.780216i \(0.715109\pi\)
\(912\) 0 0
\(913\) 1.73827e6 0.0690144
\(914\) 0 0
\(915\) −1.84809e6 −0.0729744
\(916\) 0 0
\(917\) 1.05498e7 0.414306
\(918\) 0 0
\(919\) −2.95485e7 −1.15411 −0.577054 0.816706i \(-0.695798\pi\)
−0.577054 + 0.816706i \(0.695798\pi\)
\(920\) 0 0
\(921\) −9.36475e6 −0.363787
\(922\) 0 0
\(923\) −1.55997e7 −0.602714
\(924\) 0 0
\(925\) −2.25031e7 −0.864746
\(926\) 0 0
\(927\) 2.47456e7 0.945797
\(928\) 0 0
\(929\) 1.10989e7 0.421932 0.210966 0.977493i \(-0.432339\pi\)
0.210966 + 0.977493i \(0.432339\pi\)
\(930\) 0 0
\(931\) 4.79754e6 0.181403
\(932\) 0 0
\(933\) 1.43838e6 0.0540967
\(934\) 0 0
\(935\) −4.27379e6 −0.159876
\(936\) 0 0
\(937\) 2.66254e7 0.990711 0.495356 0.868690i \(-0.335038\pi\)
0.495356 + 0.868690i \(0.335038\pi\)
\(938\) 0 0
\(939\) 4.89453e6 0.181154
\(940\) 0 0
\(941\) 4.39026e7 1.61628 0.808140 0.588991i \(-0.200475\pi\)
0.808140 + 0.588991i \(0.200475\pi\)
\(942\) 0 0
\(943\) 2.90280e7 1.06301
\(944\) 0 0
\(945\) −7.71237e6 −0.280936
\(946\) 0 0
\(947\) 3.01899e7 1.09392 0.546961 0.837158i \(-0.315785\pi\)
0.546961 + 0.837158i \(0.315785\pi\)
\(948\) 0 0
\(949\) −3.26229e7 −1.17586
\(950\) 0 0
\(951\) 4.78137e6 0.171436
\(952\) 0 0
\(953\) 4.59444e6 0.163870 0.0819352 0.996638i \(-0.473890\pi\)
0.0819352 + 0.996638i \(0.473890\pi\)
\(954\) 0 0
\(955\) −9.50886e6 −0.337381
\(956\) 0 0
\(957\) −4.20427e6 −0.148392
\(958\) 0 0
\(959\) 1.81625e7 0.637717
\(960\) 0 0
\(961\) −1.19723e6 −0.0418186
\(962\) 0 0
\(963\) 2.09486e6 0.0727928
\(964\) 0 0
\(965\) 1.20802e7 0.417597
\(966\) 0 0
\(967\) 2.93857e7 1.01058 0.505289 0.862950i \(-0.331386\pi\)
0.505289 + 0.862950i \(0.331386\pi\)
\(968\) 0 0
\(969\) 2.42614e6 0.0830056
\(970\) 0 0
\(971\) −1.06536e7 −0.362618 −0.181309 0.983426i \(-0.558033\pi\)
−0.181309 + 0.983426i \(0.558033\pi\)
\(972\) 0 0
\(973\) −2.53401e7 −0.858077
\(974\) 0 0
\(975\) −5.95504e6 −0.200620
\(976\) 0 0
\(977\) −1.75504e6 −0.0588235 −0.0294118 0.999567i \(-0.509363\pi\)
−0.0294118 + 0.999567i \(0.509363\pi\)
\(978\) 0 0
\(979\) −4.48378e6 −0.149516
\(980\) 0 0
\(981\) 1.93640e7 0.642425
\(982\) 0 0
\(983\) 2.00508e7 0.661833 0.330917 0.943660i \(-0.392642\pi\)
0.330917 + 0.943660i \(0.392642\pi\)
\(984\) 0 0
\(985\) −1.52276e7 −0.500080
\(986\) 0 0
\(987\) −2.51784e7 −0.822689
\(988\) 0 0
\(989\) −4.68286e7 −1.52237
\(990\) 0 0
\(991\) 1.39910e7 0.452547 0.226274 0.974064i \(-0.427346\pi\)
0.226274 + 0.974064i \(0.427346\pi\)
\(992\) 0 0
\(993\) 3.59674e6 0.115754
\(994\) 0 0
\(995\) −1.46944e6 −0.0470538
\(996\) 0 0
\(997\) −3.99863e7 −1.27401 −0.637006 0.770859i \(-0.719827\pi\)
−0.637006 + 0.770859i \(0.719827\pi\)
\(998\) 0 0
\(999\) −1.79266e7 −0.568309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.6.a.d.1.3 4
3.2 odd 2 792.6.a.k.1.3 4
4.3 odd 2 176.6.a.k.1.2 4
8.3 odd 2 704.6.a.v.1.3 4
8.5 even 2 704.6.a.w.1.2 4
11.10 odd 2 968.6.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.a.d.1.3 4 1.1 even 1 trivial
176.6.a.k.1.2 4 4.3 odd 2
704.6.a.v.1.3 4 8.3 odd 2
704.6.a.w.1.2 4 8.5 even 2
792.6.a.k.1.3 4 3.2 odd 2
968.6.a.e.1.3 4 11.10 odd 2