Properties

Label 880.2.cm.c.833.6
Level $880$
Weight $2$
Character 880.833
Analytic conductor $7.027$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(17,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 833.6
Character \(\chi\) \(=\) 880.833
Dual form 880.2.cm.c.337.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45771 - 2.86091i) q^{3} +(-1.70643 - 1.44502i) q^{5} +(1.35828 - 0.692077i) q^{7} +(-4.29653 - 5.91367i) q^{9} +(2.70495 - 1.91918i) q^{11} +(-0.165595 + 1.04553i) q^{13} +(-6.62155 + 2.77553i) q^{15} +(0.347837 + 2.19616i) q^{17} +(-1.91500 - 5.89375i) q^{19} -4.89475i q^{21} +(3.05791 + 3.05791i) q^{23} +(0.823819 + 4.93167i) q^{25} +(-13.6675 + 2.16472i) q^{27} +(-1.39938 + 4.30686i) q^{29} +(-2.32781 + 1.69125i) q^{31} +(-1.54760 - 10.5362i) q^{33} +(-3.31788 - 0.781760i) q^{35} +(-0.631904 - 1.24018i) q^{37} +(2.74977 + 1.99782i) q^{39} +(2.38365 - 0.774496i) q^{41} +(6.40957 - 6.40957i) q^{43} +(-1.21365 + 16.2999i) q^{45} +(-3.99740 - 2.03678i) q^{47} +(-2.74855 + 3.78305i) q^{49} +(6.79005 + 2.20622i) q^{51} +(3.75665 + 0.594995i) q^{53} +(-7.38907 - 0.633749i) q^{55} +(-19.6530 - 3.11273i) q^{57} +(4.27154 + 1.38791i) q^{59} +(3.48115 - 4.79140i) q^{61} +(-9.92860 - 5.05887i) q^{63} +(1.79339 - 1.54483i) q^{65} +(-5.40776 + 5.40776i) q^{67} +(13.2059 - 4.29086i) q^{69} +(7.19862 + 5.23010i) q^{71} +(-5.17847 - 10.1633i) q^{73} +(15.3099 + 4.83204i) q^{75} +(2.34584 - 4.47882i) q^{77} +(-4.69179 + 3.40879i) q^{79} +(-6.95367 + 21.4012i) q^{81} +(-1.26330 + 0.200087i) q^{83} +(2.57994 - 4.25022i) q^{85} +(10.2816 + 10.2816i) q^{87} +10.5518i q^{89} +(0.498662 + 1.53472i) q^{91} +(1.44526 + 9.12499i) q^{93} +(-5.24880 + 12.8245i) q^{95} +(1.09605 - 6.92020i) q^{97} +(-22.9713 - 7.75031i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} - 8 q^{5} + 20 q^{7} - 12 q^{11} + 16 q^{15} - 20 q^{17} + 8 q^{23} - 20 q^{25} - 8 q^{27} - 16 q^{31} - 104 q^{33} + 20 q^{37} - 20 q^{41} + 16 q^{45} - 40 q^{47} - 40 q^{51} - 96 q^{55}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.45771 2.86091i 0.841606 1.65175i 0.0863983 0.996261i \(-0.472464\pi\)
0.755208 0.655485i \(-0.227536\pi\)
\(4\) 0 0
\(5\) −1.70643 1.44502i −0.763139 0.646234i
\(6\) 0 0
\(7\) 1.35828 0.692077i 0.513381 0.261581i −0.178052 0.984021i \(-0.556980\pi\)
0.691433 + 0.722440i \(0.256980\pi\)
\(8\) 0 0
\(9\) −4.29653 5.91367i −1.43218 1.97122i
\(10\) 0 0
\(11\) 2.70495 1.91918i 0.815572 0.578656i
\(12\) 0 0
\(13\) −0.165595 + 1.04553i −0.0459279 + 0.289977i −0.999952 0.00975110i \(-0.996896\pi\)
0.954025 + 0.299728i \(0.0968961\pi\)
\(14\) 0 0
\(15\) −6.62155 + 2.77553i −1.70968 + 0.716638i
\(16\) 0 0
\(17\) 0.347837 + 2.19616i 0.0843629 + 0.532646i 0.993286 + 0.115683i \(0.0369057\pi\)
−0.908923 + 0.416963i \(0.863094\pi\)
\(18\) 0 0
\(19\) −1.91500 5.89375i −0.439330 1.35212i −0.888583 0.458715i \(-0.848310\pi\)
0.449253 0.893405i \(-0.351690\pi\)
\(20\) 0 0
\(21\) 4.89475i 1.06812i
\(22\) 0 0
\(23\) 3.05791 + 3.05791i 0.637617 + 0.637617i 0.949967 0.312350i \(-0.101116\pi\)
−0.312350 + 0.949967i \(0.601116\pi\)
\(24\) 0 0
\(25\) 0.823819 + 4.93167i 0.164764 + 0.986333i
\(26\) 0 0
\(27\) −13.6675 + 2.16472i −2.63031 + 0.416601i
\(28\) 0 0
\(29\) −1.39938 + 4.30686i −0.259859 + 0.799763i 0.732975 + 0.680256i \(0.238131\pi\)
−0.992833 + 0.119507i \(0.961869\pi\)
\(30\) 0 0
\(31\) −2.32781 + 1.69125i −0.418087 + 0.303758i −0.776868 0.629664i \(-0.783193\pi\)
0.358781 + 0.933422i \(0.383193\pi\)
\(32\) 0 0
\(33\) −1.54760 10.5362i −0.269402 1.83412i
\(34\) 0 0
\(35\) −3.31788 0.781760i −0.560823 0.132142i
\(36\) 0 0
\(37\) −0.631904 1.24018i −0.103884 0.203885i 0.833213 0.552952i \(-0.186499\pi\)
−0.937098 + 0.349067i \(0.886499\pi\)
\(38\) 0 0
\(39\) 2.74977 + 1.99782i 0.440316 + 0.319908i
\(40\) 0 0
\(41\) 2.38365 0.774496i 0.372264 0.120956i −0.116909 0.993143i \(-0.537299\pi\)
0.489173 + 0.872187i \(0.337299\pi\)
\(42\) 0 0
\(43\) 6.40957 6.40957i 0.977450 0.977450i −0.0223009 0.999751i \(-0.507099\pi\)
0.999751 + 0.0223009i \(0.00709920\pi\)
\(44\) 0 0
\(45\) −1.21365 + 16.2999i −0.180920 + 2.42984i
\(46\) 0 0
\(47\) −3.99740 2.03678i −0.583081 0.297095i 0.137460 0.990507i \(-0.456106\pi\)
−0.720541 + 0.693413i \(0.756106\pi\)
\(48\) 0 0
\(49\) −2.74855 + 3.78305i −0.392650 + 0.540436i
\(50\) 0 0
\(51\) 6.79005 + 2.20622i 0.950797 + 0.308933i
\(52\) 0 0
\(53\) 3.75665 + 0.594995i 0.516016 + 0.0817288i 0.409011 0.912530i \(-0.365874\pi\)
0.107005 + 0.994258i \(0.465874\pi\)
\(54\) 0 0
\(55\) −7.38907 0.633749i −0.996342 0.0854548i
\(56\) 0 0
\(57\) −19.6530 3.11273i −2.60310 0.412291i
\(58\) 0 0
\(59\) 4.27154 + 1.38791i 0.556107 + 0.180690i 0.573569 0.819158i \(-0.305559\pi\)
−0.0174620 + 0.999848i \(0.505559\pi\)
\(60\) 0 0
\(61\) 3.48115 4.79140i 0.445716 0.613475i −0.525754 0.850636i \(-0.676217\pi\)
0.971470 + 0.237161i \(0.0762169\pi\)
\(62\) 0 0
\(63\) −9.92860 5.05887i −1.25089 0.637358i
\(64\) 0 0
\(65\) 1.79339 1.54483i 0.222443 0.191613i
\(66\) 0 0
\(67\) −5.40776 + 5.40776i −0.660663 + 0.660663i −0.955536 0.294873i \(-0.904723\pi\)
0.294873 + 0.955536i \(0.404723\pi\)
\(68\) 0 0
\(69\) 13.2059 4.29086i 1.58980 0.516559i
\(70\) 0 0
\(71\) 7.19862 + 5.23010i 0.854319 + 0.620699i 0.926334 0.376704i \(-0.122943\pi\)
−0.0720143 + 0.997404i \(0.522943\pi\)
\(72\) 0 0
\(73\) −5.17847 10.1633i −0.606094 1.18953i −0.966485 0.256725i \(-0.917357\pi\)
0.360391 0.932801i \(-0.382643\pi\)
\(74\) 0 0
\(75\) 15.3099 + 4.83204i 1.76784 + 0.557956i
\(76\) 0 0
\(77\) 2.34584 4.47882i 0.267334 0.510409i
\(78\) 0 0
\(79\) −4.69179 + 3.40879i −0.527868 + 0.383518i −0.819560 0.572994i \(-0.805782\pi\)
0.291692 + 0.956512i \(0.405782\pi\)
\(80\) 0 0
\(81\) −6.95367 + 21.4012i −0.772631 + 2.37791i
\(82\) 0 0
\(83\) −1.26330 + 0.200087i −0.138665 + 0.0219624i −0.225381 0.974271i \(-0.572363\pi\)
0.0867161 + 0.996233i \(0.472363\pi\)
\(84\) 0 0
\(85\) 2.57994 4.25022i 0.279833 0.461002i
\(86\) 0 0
\(87\) 10.2816 + 10.2816i 1.10231 + 1.10231i
\(88\) 0 0
\(89\) 10.5518i 1.11849i 0.829004 + 0.559243i \(0.188908\pi\)
−0.829004 + 0.559243i \(0.811092\pi\)
\(90\) 0 0
\(91\) 0.498662 + 1.53472i 0.0522740 + 0.160883i
\(92\) 0 0
\(93\) 1.44526 + 9.12499i 0.149866 + 0.946218i
\(94\) 0 0
\(95\) −5.24880 + 12.8245i −0.538515 + 1.31577i
\(96\) 0 0
\(97\) 1.09605 6.92020i 0.111287 0.702639i −0.867451 0.497523i \(-0.834243\pi\)
0.978738 0.205116i \(-0.0657572\pi\)
\(98\) 0 0
\(99\) −22.9713 7.75031i −2.30870 0.778936i
\(100\) 0 0
\(101\) 10.3519 + 14.2481i 1.03005 + 1.41774i 0.904912 + 0.425599i \(0.139937\pi\)
0.125136 + 0.992140i \(0.460063\pi\)
\(102\) 0 0
\(103\) 2.86217 1.45835i 0.282018 0.143695i −0.307260 0.951625i \(-0.599412\pi\)
0.589278 + 0.807930i \(0.299412\pi\)
\(104\) 0 0
\(105\) −7.07303 + 8.35256i −0.690257 + 0.815127i
\(106\) 0 0
\(107\) 7.49892 14.7175i 0.724948 1.42279i −0.174006 0.984745i \(-0.555671\pi\)
0.898953 0.438045i \(-0.144329\pi\)
\(108\) 0 0
\(109\) −1.88801 −0.180839 −0.0904195 0.995904i \(-0.528821\pi\)
−0.0904195 + 0.995904i \(0.528821\pi\)
\(110\) 0 0
\(111\) −4.46917 −0.424195
\(112\) 0 0
\(113\) 1.81113 3.55455i 0.170377 0.334384i −0.789991 0.613118i \(-0.789915\pi\)
0.960368 + 0.278734i \(0.0899149\pi\)
\(114\) 0 0
\(115\) −0.799364 9.63685i −0.0745411 0.898641i
\(116\) 0 0
\(117\) 6.89439 3.51287i 0.637387 0.324765i
\(118\) 0 0
\(119\) 1.99237 + 2.74226i 0.182640 + 0.251383i
\(120\) 0 0
\(121\) 3.63346 10.3826i 0.330314 0.943871i
\(122\) 0 0
\(123\) 1.25890 7.94840i 0.113511 0.716683i
\(124\) 0 0
\(125\) 5.72058 9.60599i 0.511664 0.859186i
\(126\) 0 0
\(127\) −2.65395 16.7564i −0.235500 1.48689i −0.767995 0.640456i \(-0.778746\pi\)
0.532495 0.846433i \(-0.321254\pi\)
\(128\) 0 0
\(129\) −8.99392 27.6805i −0.791871 2.43713i
\(130\) 0 0
\(131\) 9.77651i 0.854177i −0.904210 0.427089i \(-0.859539\pi\)
0.904210 0.427089i \(-0.140461\pi\)
\(132\) 0 0
\(133\) −6.68003 6.68003i −0.579232 0.579232i
\(134\) 0 0
\(135\) 26.4507 + 16.0559i 2.27652 + 1.38187i
\(136\) 0 0
\(137\) −2.44036 + 0.386515i −0.208494 + 0.0330222i −0.259808 0.965660i \(-0.583659\pi\)
0.0513136 + 0.998683i \(0.483659\pi\)
\(138\) 0 0
\(139\) 2.32161 7.14518i 0.196916 0.606046i −0.803032 0.595935i \(-0.796781\pi\)
0.999949 0.0101112i \(-0.00321854\pi\)
\(140\) 0 0
\(141\) −11.6541 + 8.46717i −0.981449 + 0.713065i
\(142\) 0 0
\(143\) 1.55864 + 3.14590i 0.130340 + 0.263074i
\(144\) 0 0
\(145\) 8.61146 5.32722i 0.715143 0.442401i
\(146\) 0 0
\(147\) 6.81639 + 13.3779i 0.562206 + 1.10339i
\(148\) 0 0
\(149\) 0.0269615 + 0.0195887i 0.00220877 + 0.00160477i 0.588889 0.808214i \(-0.299565\pi\)
−0.586680 + 0.809819i \(0.699565\pi\)
\(150\) 0 0
\(151\) 20.1481 6.54653i 1.63963 0.532749i 0.663176 0.748463i \(-0.269208\pi\)
0.976457 + 0.215714i \(0.0692079\pi\)
\(152\) 0 0
\(153\) 11.4929 11.4929i 0.929142 0.929142i
\(154\) 0 0
\(155\) 6.41615 + 0.477730i 0.515357 + 0.0383722i
\(156\) 0 0
\(157\) 1.75037 + 0.891858i 0.139695 + 0.0711780i 0.522441 0.852676i \(-0.325022\pi\)
−0.382746 + 0.923854i \(0.625022\pi\)
\(158\) 0 0
\(159\) 7.17831 9.88010i 0.569277 0.783543i
\(160\) 0 0
\(161\) 6.26979 + 2.03718i 0.494129 + 0.160552i
\(162\) 0 0
\(163\) 2.15047 + 0.340601i 0.168438 + 0.0266779i 0.240084 0.970752i \(-0.422825\pi\)
−0.0716458 + 0.997430i \(0.522825\pi\)
\(164\) 0 0
\(165\) −12.5842 + 20.2156i −0.979677 + 1.57378i
\(166\) 0 0
\(167\) −21.1879 3.35583i −1.63957 0.259682i −0.732530 0.680735i \(-0.761661\pi\)
−0.907036 + 0.421053i \(0.861661\pi\)
\(168\) 0 0
\(169\) 11.2980 + 3.67095i 0.869079 + 0.282381i
\(170\) 0 0
\(171\) −26.6259 + 36.6474i −2.03613 + 2.80249i
\(172\) 0 0
\(173\) 11.7553 + 5.98965i 0.893742 + 0.455384i 0.839635 0.543151i \(-0.182769\pi\)
0.0541069 + 0.998535i \(0.482769\pi\)
\(174\) 0 0
\(175\) 4.53207 + 6.12843i 0.342592 + 0.463266i
\(176\) 0 0
\(177\) 10.1973 10.1973i 0.766477 0.766477i
\(178\) 0 0
\(179\) 12.8887 4.18779i 0.963346 0.313010i 0.215219 0.976566i \(-0.430953\pi\)
0.748127 + 0.663555i \(0.230953\pi\)
\(180\) 0 0
\(181\) −13.9517 10.1365i −1.03702 0.753441i −0.0673204 0.997731i \(-0.521445\pi\)
−0.969702 + 0.244290i \(0.921445\pi\)
\(182\) 0 0
\(183\) −8.63324 16.9437i −0.638188 1.25251i
\(184\) 0 0
\(185\) −0.713789 + 3.02940i −0.0524788 + 0.222726i
\(186\) 0 0
\(187\) 5.15571 + 5.27292i 0.377023 + 0.385594i
\(188\) 0 0
\(189\) −17.0661 + 12.3993i −1.24138 + 0.901914i
\(190\) 0 0
\(191\) 3.89136 11.9764i 0.281569 0.866580i −0.705837 0.708374i \(-0.749429\pi\)
0.987406 0.158206i \(-0.0505709\pi\)
\(192\) 0 0
\(193\) −3.78808 + 0.599973i −0.272672 + 0.0431870i −0.291273 0.956640i \(-0.594079\pi\)
0.0186009 + 0.999827i \(0.494079\pi\)
\(194\) 0 0
\(195\) −1.80539 7.38263i −0.129287 0.528681i
\(196\) 0 0
\(197\) 7.40013 + 7.40013i 0.527238 + 0.527238i 0.919748 0.392510i \(-0.128393\pi\)
−0.392510 + 0.919748i \(0.628393\pi\)
\(198\) 0 0
\(199\) 9.10742i 0.645608i 0.946466 + 0.322804i \(0.104625\pi\)
−0.946466 + 0.322804i \(0.895375\pi\)
\(200\) 0 0
\(201\) 7.58818 + 23.3540i 0.535229 + 1.64727i
\(202\) 0 0
\(203\) 1.07993 + 6.81839i 0.0757960 + 0.478557i
\(204\) 0 0
\(205\) −5.18670 2.12281i −0.362255 0.148263i
\(206\) 0 0
\(207\) 4.94505 31.2218i 0.343705 2.17007i
\(208\) 0 0
\(209\) −16.4912 12.2671i −1.14072 0.848530i
\(210\) 0 0
\(211\) 14.7378 + 20.2849i 1.01459 + 1.39647i 0.915926 + 0.401347i \(0.131458\pi\)
0.0986665 + 0.995121i \(0.468542\pi\)
\(212\) 0 0
\(213\) 25.4563 12.9706i 1.74424 0.888734i
\(214\) 0 0
\(215\) −20.1995 + 1.67552i −1.37759 + 0.114270i
\(216\) 0 0
\(217\) −1.99133 + 3.90821i −0.135181 + 0.265307i
\(218\) 0 0
\(219\) −36.6250 −2.47489
\(220\) 0 0
\(221\) −2.35374 −0.158330
\(222\) 0 0
\(223\) 2.26373 4.44282i 0.151590 0.297513i −0.802706 0.596375i \(-0.796607\pi\)
0.954296 + 0.298862i \(0.0966071\pi\)
\(224\) 0 0
\(225\) 25.6247 26.0608i 1.70831 1.73739i
\(226\) 0 0
\(227\) −1.81833 + 0.926486i −0.120687 + 0.0614931i −0.513292 0.858214i \(-0.671574\pi\)
0.392605 + 0.919707i \(0.371574\pi\)
\(228\) 0 0
\(229\) 0.895888 + 1.23308i 0.0592020 + 0.0814845i 0.837591 0.546297i \(-0.183963\pi\)
−0.778389 + 0.627782i \(0.783963\pi\)
\(230\) 0 0
\(231\) −9.39394 13.2400i −0.618076 0.871131i
\(232\) 0 0
\(233\) −3.47122 + 21.9164i −0.227407 + 1.43579i 0.564642 + 0.825336i \(0.309014\pi\)
−0.792050 + 0.610457i \(0.790986\pi\)
\(234\) 0 0
\(235\) 3.87810 + 9.25196i 0.252980 + 0.603531i
\(236\) 0 0
\(237\) 2.91297 + 18.3918i 0.189218 + 1.19468i
\(238\) 0 0
\(239\) 7.65870 + 23.5711i 0.495400 + 1.52468i 0.816332 + 0.577583i \(0.196004\pi\)
−0.320932 + 0.947102i \(0.603996\pi\)
\(240\) 0 0
\(241\) 0.0562577i 0.00362387i −0.999998 0.00181194i \(-0.999423\pi\)
0.999998 0.00181194i \(-0.000576758\pi\)
\(242\) 0 0
\(243\) 21.7359 + 21.7359i 1.39436 + 1.39436i
\(244\) 0 0
\(245\) 10.1568 2.48381i 0.648895 0.158685i
\(246\) 0 0
\(247\) 6.47920 1.02620i 0.412262 0.0652958i
\(248\) 0 0
\(249\) −1.26909 + 3.90585i −0.0804251 + 0.247523i
\(250\) 0 0
\(251\) −6.81505 + 4.95143i −0.430162 + 0.312531i −0.781714 0.623637i \(-0.785654\pi\)
0.351551 + 0.936169i \(0.385654\pi\)
\(252\) 0 0
\(253\) 14.1402 + 2.40278i 0.888984 + 0.151062i
\(254\) 0 0
\(255\) −8.39871 13.5765i −0.525948 0.850196i
\(256\) 0 0
\(257\) 4.76675 + 9.35527i 0.297342 + 0.583566i 0.990547 0.137175i \(-0.0438021\pi\)
−0.693205 + 0.720740i \(0.743802\pi\)
\(258\) 0 0
\(259\) −1.71660 1.24718i −0.106664 0.0774963i
\(260\) 0 0
\(261\) 31.4818 10.2291i 1.94868 0.633163i
\(262\) 0 0
\(263\) −3.20922 + 3.20922i −0.197889 + 0.197889i −0.799095 0.601205i \(-0.794687\pi\)
0.601205 + 0.799095i \(0.294687\pi\)
\(264\) 0 0
\(265\) −5.55069 6.44376i −0.340976 0.395837i
\(266\) 0 0
\(267\) 30.1877 + 15.3814i 1.84746 + 0.941325i
\(268\) 0 0
\(269\) −15.2248 + 20.9551i −0.928272 + 1.27766i 0.0322573 + 0.999480i \(0.489730\pi\)
−0.960530 + 0.278178i \(0.910270\pi\)
\(270\) 0 0
\(271\) −20.4415 6.64186i −1.24173 0.403464i −0.386783 0.922171i \(-0.626414\pi\)
−0.854952 + 0.518707i \(0.826414\pi\)
\(272\) 0 0
\(273\) 5.11760 + 0.810549i 0.309731 + 0.0490566i
\(274\) 0 0
\(275\) 11.6932 + 11.7588i 0.705124 + 0.709084i
\(276\) 0 0
\(277\) −13.5625 2.14809i −0.814893 0.129066i −0.264943 0.964264i \(-0.585353\pi\)
−0.549950 + 0.835198i \(0.685353\pi\)
\(278\) 0 0
\(279\) 20.0030 + 6.49937i 1.19755 + 0.389107i
\(280\) 0 0
\(281\) 5.82266 8.01420i 0.347351 0.478087i −0.599220 0.800585i \(-0.704522\pi\)
0.946570 + 0.322498i \(0.104522\pi\)
\(282\) 0 0
\(283\) 1.83534 + 0.935154i 0.109100 + 0.0555891i 0.507689 0.861541i \(-0.330500\pi\)
−0.398589 + 0.917130i \(0.630500\pi\)
\(284\) 0 0
\(285\) 29.0385 + 33.7107i 1.72009 + 1.99685i
\(286\) 0 0
\(287\) 2.70165 2.70165i 0.159473 0.159473i
\(288\) 0 0
\(289\) 11.4658 3.72548i 0.674461 0.219146i
\(290\) 0 0
\(291\) −18.2003 13.2233i −1.06692 0.775164i
\(292\) 0 0
\(293\) −8.91767 17.5019i −0.520976 1.02247i −0.990234 0.139412i \(-0.955479\pi\)
0.469259 0.883061i \(-0.344521\pi\)
\(294\) 0 0
\(295\) −5.28353 8.54083i −0.307619 0.497266i
\(296\) 0 0
\(297\) −32.8154 + 32.0859i −1.90414 + 1.86181i
\(298\) 0 0
\(299\) −3.70350 + 2.69075i −0.214179 + 0.155610i
\(300\) 0 0
\(301\) 4.27006 13.1419i 0.246122 0.757486i
\(302\) 0 0
\(303\) 55.8524 8.84616i 3.20864 0.508199i
\(304\) 0 0
\(305\) −12.8640 + 3.14584i −0.736592 + 0.180131i
\(306\) 0 0
\(307\) 8.35315 + 8.35315i 0.476740 + 0.476740i 0.904087 0.427348i \(-0.140552\pi\)
−0.427348 + 0.904087i \(0.640552\pi\)
\(308\) 0 0
\(309\) 10.3142i 0.586757i
\(310\) 0 0
\(311\) 4.29712 + 13.2252i 0.243667 + 0.749931i 0.995853 + 0.0909796i \(0.0289998\pi\)
−0.752185 + 0.658952i \(0.771000\pi\)
\(312\) 0 0
\(313\) 4.72303 + 29.8201i 0.266962 + 1.68553i 0.648530 + 0.761189i \(0.275384\pi\)
−0.381569 + 0.924341i \(0.624616\pi\)
\(314\) 0 0
\(315\) 9.63229 + 22.9797i 0.542718 + 1.29476i
\(316\) 0 0
\(317\) 4.79669 30.2851i 0.269409 1.70098i −0.367485 0.930029i \(-0.619781\pi\)
0.636894 0.770951i \(-0.280219\pi\)
\(318\) 0 0
\(319\) 4.48040 + 14.3355i 0.250854 + 0.802633i
\(320\) 0 0
\(321\) −31.1741 42.9074i −1.73997 2.39486i
\(322\) 0 0
\(323\) 12.2775 6.25570i 0.683139 0.348076i
\(324\) 0 0
\(325\) −5.29262 + 0.0446648i −0.293581 + 0.00247756i
\(326\) 0 0
\(327\) −2.75217 + 5.40143i −0.152195 + 0.298700i
\(328\) 0 0
\(329\) −6.83919 −0.377057
\(330\) 0 0
\(331\) −14.2522 −0.783372 −0.391686 0.920099i \(-0.628108\pi\)
−0.391686 + 0.920099i \(0.628108\pi\)
\(332\) 0 0
\(333\) −4.61903 + 9.06535i −0.253121 + 0.496778i
\(334\) 0 0
\(335\) 17.0423 1.41364i 0.931121 0.0772353i
\(336\) 0 0
\(337\) 12.2410 6.23713i 0.666812 0.339758i −0.0876027 0.996155i \(-0.527921\pi\)
0.754415 + 0.656398i \(0.227921\pi\)
\(338\) 0 0
\(339\) −7.52914 10.3630i −0.408927 0.562839i
\(340\) 0 0
\(341\) −3.05077 + 9.04224i −0.165208 + 0.489665i
\(342\) 0 0
\(343\) −2.78444 + 17.5803i −0.150346 + 0.949246i
\(344\) 0 0
\(345\) −28.7354 11.7608i −1.54706 0.633179i
\(346\) 0 0
\(347\) 2.77431 + 17.5163i 0.148933 + 0.940326i 0.943072 + 0.332589i \(0.107922\pi\)
−0.794139 + 0.607737i \(0.792078\pi\)
\(348\) 0 0
\(349\) 5.50175 + 16.9327i 0.294502 + 0.906384i 0.983388 + 0.181515i \(0.0581000\pi\)
−0.688886 + 0.724870i \(0.741900\pi\)
\(350\) 0 0
\(351\) 14.6482i 0.781865i
\(352\) 0 0
\(353\) 12.3974 + 12.3974i 0.659845 + 0.659845i 0.955343 0.295499i \(-0.0954858\pi\)
−0.295499 + 0.955343i \(0.595486\pi\)
\(354\) 0 0
\(355\) −4.72634 19.3270i −0.250848 1.02577i
\(356\) 0 0
\(357\) 10.7496 1.70258i 0.568932 0.0901099i
\(358\) 0 0
\(359\) 2.37480 7.30888i 0.125337 0.385748i −0.868625 0.495470i \(-0.834996\pi\)
0.993962 + 0.109722i \(0.0349959\pi\)
\(360\) 0 0
\(361\) −15.6978 + 11.4051i −0.826200 + 0.600270i
\(362\) 0 0
\(363\) −24.4071 25.5297i −1.28104 1.33996i
\(364\) 0 0
\(365\) −5.84952 + 24.8260i −0.306178 + 1.29945i
\(366\) 0 0
\(367\) −16.4293 32.2443i −0.857603 1.68314i −0.721464 0.692452i \(-0.756531\pi\)
−0.136139 0.990690i \(-0.543469\pi\)
\(368\) 0 0
\(369\) −14.8215 10.7685i −0.771579 0.560585i
\(370\) 0 0
\(371\) 5.51436 1.79172i 0.286291 0.0930217i
\(372\) 0 0
\(373\) −11.5350 + 11.5350i −0.597259 + 0.597259i −0.939582 0.342323i \(-0.888786\pi\)
0.342323 + 0.939582i \(0.388786\pi\)
\(374\) 0 0
\(375\) −19.1429 30.3687i −0.988536 1.56823i
\(376\) 0 0
\(377\) −4.27121 2.17629i −0.219978 0.112085i
\(378\) 0 0
\(379\) −3.86753 + 5.32320i −0.198662 + 0.273434i −0.896712 0.442614i \(-0.854051\pi\)
0.698050 + 0.716049i \(0.254051\pi\)
\(380\) 0 0
\(381\) −51.8071 16.8332i −2.65416 0.862389i
\(382\) 0 0
\(383\) −28.9091 4.57876i −1.47719 0.233963i −0.634733 0.772731i \(-0.718890\pi\)
−0.842454 + 0.538768i \(0.818890\pi\)
\(384\) 0 0
\(385\) −10.4750 + 4.25300i −0.533856 + 0.216753i
\(386\) 0 0
\(387\) −65.4430 10.3652i −3.32665 0.526890i
\(388\) 0 0
\(389\) −4.21993 1.37114i −0.213959 0.0695195i 0.200076 0.979780i \(-0.435881\pi\)
−0.414035 + 0.910261i \(0.635881\pi\)
\(390\) 0 0
\(391\) −5.65199 + 7.77930i −0.285833 + 0.393416i
\(392\) 0 0
\(393\) −27.9697 14.2513i −1.41088 0.718881i
\(394\) 0 0
\(395\) 12.9320 + 0.962884i 0.650679 + 0.0484480i
\(396\) 0 0
\(397\) 6.59354 6.59354i 0.330920 0.330920i −0.522016 0.852936i \(-0.674820\pi\)
0.852936 + 0.522016i \(0.174820\pi\)
\(398\) 0 0
\(399\) −28.8485 + 9.37344i −1.44423 + 0.469259i
\(400\) 0 0
\(401\) −7.12541 5.17691i −0.355826 0.258523i 0.395483 0.918473i \(-0.370577\pi\)
−0.751309 + 0.659951i \(0.770577\pi\)
\(402\) 0 0
\(403\) −1.38278 2.71385i −0.0688811 0.135187i
\(404\) 0 0
\(405\) 42.7912 26.4715i 2.12631 1.31538i
\(406\) 0 0
\(407\) −4.08940 2.14188i −0.202704 0.106169i
\(408\) 0 0
\(409\) 14.0728 10.2245i 0.695853 0.505567i −0.182726 0.983164i \(-0.558492\pi\)
0.878579 + 0.477597i \(0.158492\pi\)
\(410\) 0 0
\(411\) −2.45154 + 7.54507i −0.120926 + 0.372171i
\(412\) 0 0
\(413\) 6.76247 1.07107i 0.332759 0.0527039i
\(414\) 0 0
\(415\) 2.44486 + 1.48406i 0.120014 + 0.0728497i
\(416\) 0 0
\(417\) −17.0575 17.0575i −0.835309 0.835309i
\(418\) 0 0
\(419\) 16.4015i 0.801265i 0.916239 + 0.400632i \(0.131210\pi\)
−0.916239 + 0.400632i \(0.868790\pi\)
\(420\) 0 0
\(421\) 8.15001 + 25.0832i 0.397207 + 1.22248i 0.927229 + 0.374494i \(0.122184\pi\)
−0.530022 + 0.847984i \(0.677816\pi\)
\(422\) 0 0
\(423\) 5.13013 + 32.3904i 0.249436 + 1.57487i
\(424\) 0 0
\(425\) −10.5442 + 3.52465i −0.511467 + 0.170971i
\(426\) 0 0
\(427\) 1.41236 8.91727i 0.0683488 0.431537i
\(428\) 0 0
\(429\) 11.2722 + 0.126690i 0.544226 + 0.00611667i
\(430\) 0 0
\(431\) 5.58501 + 7.68711i 0.269020 + 0.370275i 0.922059 0.387050i \(-0.126506\pi\)
−0.653038 + 0.757325i \(0.726506\pi\)
\(432\) 0 0
\(433\) −22.2230 + 11.3232i −1.06797 + 0.544158i −0.897414 0.441190i \(-0.854557\pi\)
−0.170557 + 0.985348i \(0.554557\pi\)
\(434\) 0 0
\(435\) −2.68771 32.4021i −0.128866 1.55356i
\(436\) 0 0
\(437\) 12.1667 23.8784i 0.582011 1.14226i
\(438\) 0 0
\(439\) −1.69115 −0.0807143 −0.0403571 0.999185i \(-0.512850\pi\)
−0.0403571 + 0.999185i \(0.512850\pi\)
\(440\) 0 0
\(441\) 34.1809 1.62766
\(442\) 0 0
\(443\) −9.21964 + 18.0946i −0.438038 + 0.859698i 0.561444 + 0.827515i \(0.310246\pi\)
−0.999482 + 0.0321835i \(0.989754\pi\)
\(444\) 0 0
\(445\) 15.2476 18.0059i 0.722804 0.853561i
\(446\) 0 0
\(447\) 0.0953432 0.0485798i 0.00450958 0.00229775i
\(448\) 0 0
\(449\) 24.7166 + 34.0195i 1.16645 + 1.60548i 0.683806 + 0.729664i \(0.260323\pi\)
0.482643 + 0.875817i \(0.339677\pi\)
\(450\) 0 0
\(451\) 4.96125 6.66964i 0.233616 0.314061i
\(452\) 0 0
\(453\) 10.6410 67.1849i 0.499960 3.15662i
\(454\) 0 0
\(455\) 1.36678 3.33948i 0.0640755 0.156557i
\(456\) 0 0
\(457\) 1.58324 + 9.99618i 0.0740608 + 0.467602i 0.996648 + 0.0818123i \(0.0260708\pi\)
−0.922587 + 0.385789i \(0.873929\pi\)
\(458\) 0 0
\(459\) −9.50814 29.2630i −0.443802 1.36588i
\(460\) 0 0
\(461\) 27.4513i 1.27854i −0.768984 0.639268i \(-0.779237\pi\)
0.768984 0.639268i \(-0.220763\pi\)
\(462\) 0 0
\(463\) −12.8080 12.8080i −0.595237 0.595237i 0.343804 0.939041i \(-0.388284\pi\)
−0.939041 + 0.343804i \(0.888284\pi\)
\(464\) 0 0
\(465\) 10.7196 17.6596i 0.497109 0.818945i
\(466\) 0 0
\(467\) 21.5674 3.41594i 0.998021 0.158071i 0.364010 0.931395i \(-0.381407\pi\)
0.634011 + 0.773324i \(0.281407\pi\)
\(468\) 0 0
\(469\) −3.60265 + 11.0878i −0.166355 + 0.511988i
\(470\) 0 0
\(471\) 5.10305 3.70758i 0.235136 0.170836i
\(472\) 0 0
\(473\) 5.03639 29.6387i 0.231573 1.36279i
\(474\) 0 0
\(475\) 27.4884 14.2995i 1.26125 0.656106i
\(476\) 0 0
\(477\) −12.6220 24.7720i −0.577920 1.13423i
\(478\) 0 0
\(479\) 5.27636 + 3.83350i 0.241083 + 0.175157i 0.701766 0.712408i \(-0.252395\pi\)
−0.460683 + 0.887565i \(0.652395\pi\)
\(480\) 0 0
\(481\) 1.40128 0.455305i 0.0638931 0.0207601i
\(482\) 0 0
\(483\) 14.9677 14.9677i 0.681054 0.681054i
\(484\) 0 0
\(485\) −11.8702 + 10.2250i −0.538997 + 0.464294i
\(486\) 0 0
\(487\) 2.61310 + 1.33144i 0.118411 + 0.0603334i 0.512193 0.858871i \(-0.328833\pi\)
−0.393782 + 0.919204i \(0.628833\pi\)
\(488\) 0 0
\(489\) 4.10918 5.65580i 0.185824 0.255764i
\(490\) 0 0
\(491\) −12.6664 4.11555i −0.571625 0.185732i 0.00892018 0.999960i \(-0.497161\pi\)
−0.580545 + 0.814228i \(0.697161\pi\)
\(492\) 0 0
\(493\) −9.94529 1.57518i −0.447913 0.0709425i
\(494\) 0 0
\(495\) 27.9996 + 46.4194i 1.25849 + 2.08640i
\(496\) 0 0
\(497\) 13.3974 + 2.12193i 0.600954 + 0.0951818i
\(498\) 0 0
\(499\) −22.2265 7.22182i −0.994994 0.323293i −0.234130 0.972205i \(-0.575224\pi\)
−0.760863 + 0.648912i \(0.775224\pi\)
\(500\) 0 0
\(501\) −40.4864 + 55.7247i −1.80880 + 2.48960i
\(502\) 0 0
\(503\) −20.7030 10.5487i −0.923103 0.470344i −0.0732197 0.997316i \(-0.523327\pi\)
−0.849883 + 0.526972i \(0.823327\pi\)
\(504\) 0 0
\(505\) 2.92410 39.2721i 0.130121 1.74758i
\(506\) 0 0
\(507\) 26.9714 26.9714i 1.19784 1.19784i
\(508\) 0 0
\(509\) −21.9064 + 7.11784i −0.970986 + 0.315493i −0.751214 0.660059i \(-0.770531\pi\)
−0.219772 + 0.975551i \(0.570531\pi\)
\(510\) 0 0
\(511\) −14.0676 10.2207i −0.622314 0.452138i
\(512\) 0 0
\(513\) 38.9316 + 76.4075i 1.71887 + 3.37347i
\(514\) 0 0
\(515\) −6.99144 1.64733i −0.308080 0.0725899i
\(516\) 0 0
\(517\) −14.7217 + 2.16238i −0.647460 + 0.0951014i
\(518\) 0 0
\(519\) 34.2716 24.8998i 1.50436 1.09298i
\(520\) 0 0
\(521\) −9.62530 + 29.6236i −0.421692 + 1.29783i 0.484435 + 0.874827i \(0.339025\pi\)
−0.906127 + 0.423007i \(0.860975\pi\)
\(522\) 0 0
\(523\) −5.13797 + 0.813774i −0.224668 + 0.0355838i −0.267753 0.963488i \(-0.586281\pi\)
0.0430856 + 0.999071i \(0.486281\pi\)
\(524\) 0 0
\(525\) 24.1393 4.03239i 1.05352 0.175988i
\(526\) 0 0
\(527\) −4.52395 4.52395i −0.197067 0.197067i
\(528\) 0 0
\(529\) 4.29842i 0.186888i
\(530\) 0 0
\(531\) −10.1452 31.2236i −0.440263 1.35499i
\(532\) 0 0
\(533\) 0.415035 + 2.62043i 0.0179772 + 0.113503i
\(534\) 0 0
\(535\) −34.0634 + 14.2782i −1.47269 + 0.617301i
\(536\) 0 0
\(537\) 6.80704 42.9779i 0.293745 1.85463i
\(538\) 0 0
\(539\) −0.174297 + 15.5079i −0.00750749 + 0.667973i
\(540\) 0 0
\(541\) 7.63567 + 10.5096i 0.328283 + 0.451843i 0.940974 0.338480i \(-0.109913\pi\)
−0.612690 + 0.790323i \(0.709913\pi\)
\(542\) 0 0
\(543\) −49.3371 + 25.1385i −2.11726 + 1.07880i
\(544\) 0 0
\(545\) 3.22177 + 2.72822i 0.138005 + 0.116864i
\(546\) 0 0
\(547\) −2.13624 + 4.19261i −0.0913391 + 0.179263i −0.932156 0.362056i \(-0.882075\pi\)
0.840817 + 0.541319i \(0.182075\pi\)
\(548\) 0 0
\(549\) −43.2916 −1.84764
\(550\) 0 0
\(551\) 28.0634 1.19554
\(552\) 0 0
\(553\) −4.01362 + 7.87716i −0.170676 + 0.334971i
\(554\) 0 0
\(555\) 7.62634 + 6.45806i 0.323720 + 0.274129i
\(556\) 0 0
\(557\) −29.1897 + 14.8729i −1.23681 + 0.630185i −0.945243 0.326366i \(-0.894176\pi\)
−0.291564 + 0.956551i \(0.594176\pi\)
\(558\) 0 0
\(559\) 5.63999 + 7.76278i 0.238546 + 0.328331i
\(560\) 0 0
\(561\) 22.6008 7.06365i 0.954209 0.298228i
\(562\) 0 0
\(563\) 0.520168 3.28421i 0.0219225 0.138413i −0.974299 0.225257i \(-0.927678\pi\)
0.996222 + 0.0868434i \(0.0276780\pi\)
\(564\) 0 0
\(565\) −8.22698 + 3.44847i −0.346112 + 0.145078i
\(566\) 0 0
\(567\) 5.36627 + 33.8813i 0.225362 + 1.42288i
\(568\) 0 0
\(569\) −2.18501 6.72478i −0.0916005 0.281917i 0.894752 0.446563i \(-0.147352\pi\)
−0.986353 + 0.164645i \(0.947352\pi\)
\(570\) 0 0
\(571\) 24.2620i 1.01533i −0.861553 0.507667i \(-0.830508\pi\)
0.861553 0.507667i \(-0.169492\pi\)
\(572\) 0 0
\(573\) −28.5908 28.5908i −1.19440 1.19440i
\(574\) 0 0
\(575\) −12.5614 + 17.5997i −0.523847 + 0.733959i
\(576\) 0 0
\(577\) 6.36086 1.00746i 0.264806 0.0419412i −0.0226195 0.999744i \(-0.507201\pi\)
0.287426 + 0.957803i \(0.407201\pi\)
\(578\) 0 0
\(579\) −3.80544 + 11.7119i −0.158149 + 0.486731i
\(580\) 0 0
\(581\) −1.57744 + 1.14607i −0.0654430 + 0.0475471i
\(582\) 0 0
\(583\) 11.3034 5.60028i 0.468141 0.231940i
\(584\) 0 0
\(585\) −16.8410 3.96808i −0.696289 0.164060i
\(586\) 0 0
\(587\) −2.50306 4.91253i −0.103312 0.202762i 0.833564 0.552423i \(-0.186297\pi\)
−0.936876 + 0.349661i \(0.886297\pi\)
\(588\) 0 0
\(589\) 14.4256 + 10.4808i 0.594395 + 0.431853i
\(590\) 0 0
\(591\) 31.9583 10.3839i 1.31459 0.427136i
\(592\) 0 0
\(593\) −11.4901 + 11.4901i −0.471841 + 0.471841i −0.902510 0.430669i \(-0.858278\pi\)
0.430669 + 0.902510i \(0.358278\pi\)
\(594\) 0 0
\(595\) 0.562787 7.55850i 0.0230720 0.309868i
\(596\) 0 0
\(597\) 26.0555 + 13.2759i 1.06638 + 0.543348i
\(598\) 0 0
\(599\) −24.2507 + 33.3782i −0.990856 + 1.36380i −0.0600854 + 0.998193i \(0.519137\pi\)
−0.930771 + 0.365603i \(0.880863\pi\)
\(600\) 0 0
\(601\) 42.1453 + 13.6938i 1.71914 + 0.558583i 0.991812 0.127705i \(-0.0407609\pi\)
0.727330 + 0.686288i \(0.240761\pi\)
\(602\) 0 0
\(603\) 55.2143 + 8.74509i 2.24850 + 0.356127i
\(604\) 0 0
\(605\) −21.2033 + 12.4667i −0.862037 + 0.506845i
\(606\) 0 0
\(607\) 16.6706 + 2.64036i 0.676638 + 0.107169i 0.485290 0.874353i \(-0.338714\pi\)
0.191348 + 0.981522i \(0.438714\pi\)
\(608\) 0 0
\(609\) 21.0810 + 6.84963i 0.854245 + 0.277561i
\(610\) 0 0
\(611\) 2.79146 3.84212i 0.112930 0.155435i
\(612\) 0 0
\(613\) −21.6696 11.0412i −0.875225 0.445949i −0.0421512 0.999111i \(-0.513421\pi\)
−0.833074 + 0.553162i \(0.813421\pi\)
\(614\) 0 0
\(615\) −13.6338 + 11.7443i −0.549770 + 0.473574i
\(616\) 0 0
\(617\) −2.46606 + 2.46606i −0.0992799 + 0.0992799i −0.755002 0.655722i \(-0.772364\pi\)
0.655722 + 0.755002i \(0.272364\pi\)
\(618\) 0 0
\(619\) 28.7652 9.34637i 1.15617 0.375662i 0.332706 0.943031i \(-0.392038\pi\)
0.823464 + 0.567369i \(0.192038\pi\)
\(620\) 0 0
\(621\) −48.4135 35.1745i −1.94277 1.41150i
\(622\) 0 0
\(623\) 7.30265 + 14.3323i 0.292574 + 0.574210i
\(624\) 0 0
\(625\) −23.6426 + 8.12560i −0.945706 + 0.325024i
\(626\) 0 0
\(627\) −59.1342 + 29.2980i −2.36159 + 1.17005i
\(628\) 0 0
\(629\) 2.50383 1.81914i 0.0998344 0.0725339i
\(630\) 0 0
\(631\) −9.75833 + 30.0330i −0.388473 + 1.19560i 0.545456 + 0.838139i \(0.316356\pi\)
−0.933929 + 0.357458i \(0.883644\pi\)
\(632\) 0 0
\(633\) 79.5165 12.5942i 3.16050 0.500573i
\(634\) 0 0
\(635\) −19.6846 + 32.4286i −0.781158 + 1.28689i
\(636\) 0 0
\(637\) −3.50014 3.50014i −0.138681 0.138681i
\(638\) 0 0
\(639\) 65.0416i 2.57300i
\(640\) 0 0
\(641\) −1.51513 4.66309i −0.0598440 0.184181i 0.916665 0.399655i \(-0.130870\pi\)
−0.976509 + 0.215474i \(0.930870\pi\)
\(642\) 0 0
\(643\) −2.56190 16.1752i −0.101031 0.637888i −0.985290 0.170890i \(-0.945336\pi\)
0.884259 0.466998i \(-0.154664\pi\)
\(644\) 0 0
\(645\) −24.6514 + 60.2312i −0.970646 + 2.37160i
\(646\) 0 0
\(647\) −6.72843 + 42.4816i −0.264522 + 1.67012i 0.395185 + 0.918602i \(0.370681\pi\)
−0.659707 + 0.751523i \(0.729319\pi\)
\(648\) 0 0
\(649\) 14.2179 4.44366i 0.558102 0.174429i
\(650\) 0 0
\(651\) 8.27826 + 11.3940i 0.324451 + 0.446568i
\(652\) 0 0
\(653\) −3.03452 + 1.54616i −0.118750 + 0.0605061i −0.512356 0.858773i \(-0.671227\pi\)
0.393606 + 0.919279i \(0.371227\pi\)
\(654\) 0 0
\(655\) −14.1273 + 16.6829i −0.551998 + 0.651856i
\(656\) 0 0
\(657\) −37.8530 + 74.2907i −1.47679 + 2.89836i
\(658\) 0 0
\(659\) 1.70430 0.0663902 0.0331951 0.999449i \(-0.489432\pi\)
0.0331951 + 0.999449i \(0.489432\pi\)
\(660\) 0 0
\(661\) −3.81557 −0.148409 −0.0742043 0.997243i \(-0.523642\pi\)
−0.0742043 + 0.997243i \(0.523642\pi\)
\(662\) 0 0
\(663\) −3.43107 + 6.73385i −0.133252 + 0.261521i
\(664\) 0 0
\(665\) 1.74622 + 21.0518i 0.0677156 + 0.816354i
\(666\) 0 0
\(667\) −17.4491 + 8.89078i −0.675634 + 0.344252i
\(668\) 0 0
\(669\) −9.41064 12.9526i −0.363836 0.500778i
\(670\) 0 0
\(671\) 0.220754 19.6414i 0.00852212 0.758249i
\(672\) 0 0
\(673\) 4.12434 26.0401i 0.158982 1.00377i −0.771179 0.636619i \(-0.780333\pi\)
0.930161 0.367153i \(-0.119667\pi\)
\(674\) 0 0
\(675\) −21.9352 65.6203i −0.844288 2.52572i
\(676\) 0 0
\(677\) −1.85111 11.6875i −0.0711440 0.449185i −0.997386 0.0722563i \(-0.976980\pi\)
0.926242 0.376929i \(-0.123020\pi\)
\(678\) 0 0
\(679\) −3.30057 10.1581i −0.126664 0.389832i
\(680\) 0 0
\(681\) 6.55262i 0.251097i
\(682\) 0 0
\(683\) 19.2371 + 19.2371i 0.736087 + 0.736087i 0.971818 0.235731i \(-0.0757484\pi\)
−0.235731 + 0.971818i \(0.575748\pi\)
\(684\) 0 0
\(685\) 4.72283 + 2.86681i 0.180450 + 0.109535i
\(686\) 0 0
\(687\) 4.83368 0.765580i 0.184416 0.0292087i
\(688\) 0 0
\(689\) −1.24417 + 3.82916i −0.0473990 + 0.145879i
\(690\) 0 0
\(691\) 2.86279 2.07994i 0.108906 0.0791246i −0.531999 0.846745i \(-0.678559\pi\)
0.640905 + 0.767620i \(0.278559\pi\)
\(692\) 0 0
\(693\) −36.5652 + 5.37084i −1.38900 + 0.204021i
\(694\) 0 0
\(695\) −14.2866 + 8.83799i −0.541922 + 0.335244i
\(696\) 0 0
\(697\) 2.53004 + 4.96548i 0.0958320 + 0.188081i
\(698\) 0 0
\(699\) 57.6408 + 41.8785i 2.18018 + 1.58399i
\(700\) 0 0
\(701\) 37.5991 12.2167i 1.42010 0.461418i 0.504466 0.863432i \(-0.331689\pi\)
0.915634 + 0.402013i \(0.131689\pi\)
\(702\) 0 0
\(703\) −6.09923 + 6.09923i −0.230037 + 0.230037i
\(704\) 0 0
\(705\) 32.1221 + 2.39173i 1.20979 + 0.0900779i
\(706\) 0 0
\(707\) 23.9215 + 12.1886i 0.899660 + 0.458400i
\(708\) 0 0
\(709\) 23.7291 32.6603i 0.891166 1.22658i −0.0820353 0.996629i \(-0.526142\pi\)
0.973201 0.229955i \(-0.0738580\pi\)
\(710\) 0 0
\(711\) 40.3169 + 13.0997i 1.51200 + 0.491279i
\(712\) 0 0
\(713\) −12.2899 1.94653i −0.460261 0.0728982i
\(714\) 0 0
\(715\) 1.88620 7.62054i 0.0705398 0.284992i
\(716\) 0 0
\(717\) 78.5987 + 12.4488i 2.93532 + 0.464910i
\(718\) 0 0
\(719\) −6.32991 2.05671i −0.236066 0.0767024i 0.188595 0.982055i \(-0.439607\pi\)
−0.424661 + 0.905353i \(0.639607\pi\)
\(720\) 0 0
\(721\) 2.87833 3.96168i 0.107195 0.147541i
\(722\) 0 0
\(723\) −0.160948 0.0820071i −0.00598572 0.00304988i
\(724\) 0 0
\(725\) −22.3928 3.35322i −0.831648 0.124535i
\(726\) 0 0
\(727\) −13.3487 + 13.3487i −0.495074 + 0.495074i −0.909901 0.414826i \(-0.863842\pi\)
0.414826 + 0.909901i \(0.363842\pi\)
\(728\) 0 0
\(729\) 29.6653 9.63884i 1.09871 0.356994i
\(730\) 0 0
\(731\) 16.3059 + 11.8469i 0.603096 + 0.438175i
\(732\) 0 0
\(733\) −12.6624 24.8515i −0.467698 0.917909i −0.997559 0.0698250i \(-0.977756\pi\)
0.529861 0.848084i \(-0.322244\pi\)
\(734\) 0 0
\(735\) 7.69969 32.6783i 0.284007 1.20536i
\(736\) 0 0
\(737\) −4.24920 + 25.0062i −0.156521 + 0.921115i
\(738\) 0 0
\(739\) −8.88327 + 6.45407i −0.326776 + 0.237417i −0.739061 0.673638i \(-0.764731\pi\)
0.412285 + 0.911055i \(0.364731\pi\)
\(740\) 0 0
\(741\) 6.50889 20.0323i 0.239110 0.735905i
\(742\) 0 0
\(743\) 23.8652 3.77987i 0.875527 0.138670i 0.297534 0.954711i \(-0.403836\pi\)
0.577994 + 0.816041i \(0.303836\pi\)
\(744\) 0 0
\(745\) −0.0177019 0.0723867i −0.000648546 0.00265204i
\(746\) 0 0
\(747\) 6.61105 + 6.61105i 0.241886 + 0.241886i
\(748\) 0 0
\(749\) 25.1802i 0.920065i
\(750\) 0 0
\(751\) 15.1449 + 46.6112i 0.552645 + 1.70087i 0.702082 + 0.712096i \(0.252254\pi\)
−0.149437 + 0.988771i \(0.547746\pi\)
\(752\) 0 0
\(753\) 4.23123 + 26.7150i 0.154195 + 0.973547i
\(754\) 0 0
\(755\) −43.8413 17.9433i −1.59555 0.653024i
\(756\) 0 0
\(757\) −7.91360 + 49.9645i −0.287625 + 1.81599i 0.244869 + 0.969556i \(0.421255\pi\)
−0.532493 + 0.846434i \(0.678745\pi\)
\(758\) 0 0
\(759\) 27.4863 36.9511i 0.997690 1.34124i
\(760\) 0 0
\(761\) 18.7749 + 25.8415i 0.680591 + 0.936753i 0.999941 0.0108837i \(-0.00346445\pi\)
−0.319350 + 0.947637i \(0.603464\pi\)
\(762\) 0 0
\(763\) −2.56445 + 1.30665i −0.0928392 + 0.0473040i
\(764\) 0 0
\(765\) −36.2192 + 3.00434i −1.30951 + 0.108622i
\(766\) 0 0
\(767\) −2.15844 + 4.23618i −0.0779368 + 0.152960i
\(768\) 0 0
\(769\) −41.4875 −1.49608 −0.748039 0.663655i \(-0.769004\pi\)
−0.748039 + 0.663655i \(0.769004\pi\)
\(770\) 0 0
\(771\) 33.7131 1.21415
\(772\) 0 0
\(773\) 9.90821 19.4460i 0.356373 0.699422i −0.641322 0.767272i \(-0.721614\pi\)
0.997696 + 0.0678495i \(0.0216138\pi\)
\(774\) 0 0
\(775\) −10.2584 10.0867i −0.368492 0.362325i
\(776\) 0 0
\(777\) −6.07038 + 3.09301i −0.217774 + 0.110961i
\(778\) 0 0
\(779\) −9.12937 12.5655i −0.327094 0.450206i
\(780\) 0 0
\(781\) 29.5094 + 0.331662i 1.05593 + 0.0118678i
\(782\) 0 0
\(783\) 9.80293 61.8933i 0.350328 2.21189i
\(784\) 0 0
\(785\) −1.69813 4.05122i −0.0606089 0.144594i
\(786\) 0 0
\(787\) −4.74219 29.9410i −0.169041 1.06728i −0.915637 0.402005i \(-0.868313\pi\)
0.746596 0.665277i \(-0.231687\pi\)
\(788\) 0 0
\(789\) 4.50319 + 13.8594i 0.160318 + 0.493407i
\(790\) 0 0
\(791\) 6.08151i 0.216234i
\(792\) 0 0
\(793\) 4.43308 + 4.43308i 0.157423 + 0.157423i
\(794\) 0 0
\(795\) −26.5263 + 6.48689i −0.940790 + 0.230066i
\(796\) 0 0
\(797\) 53.0278 8.39878i 1.87834 0.297500i 0.890744 0.454505i \(-0.150184\pi\)
0.987598 + 0.157004i \(0.0501837\pi\)
\(798\) 0 0
\(799\) 3.08264 9.48739i 0.109056 0.335640i
\(800\) 0 0
\(801\) 62.3997 45.3361i 2.20479 1.60187i
\(802\) 0 0
\(803\) −33.5128 17.5528i −1.18264 0.619424i
\(804\) 0 0
\(805\) −7.75521 12.5363i −0.273335 0.441847i
\(806\) 0 0
\(807\) 37.7574 + 74.1031i 1.32912 + 2.60855i
\(808\) 0 0
\(809\) 25.4737 + 18.5077i 0.895608 + 0.650697i 0.937334 0.348432i \(-0.113286\pi\)
−0.0417260 + 0.999129i \(0.513286\pi\)
\(810\) 0 0
\(811\) 6.48163 2.10601i 0.227601 0.0739520i −0.192996 0.981199i \(-0.561821\pi\)
0.420597 + 0.907247i \(0.361821\pi\)
\(812\) 0 0
\(813\) −48.7995 + 48.7995i −1.71147 + 1.71147i
\(814\) 0 0
\(815\) −3.17746 3.68869i −0.111301 0.129209i
\(816\) 0 0
\(817\) −50.0507 25.5021i −1.75105 0.892206i
\(818\) 0 0
\(819\) 6.93333 9.54290i 0.242270 0.333456i
\(820\) 0 0
\(821\) −0.216685 0.0704052i −0.00756235 0.00245716i 0.305233 0.952278i \(-0.401266\pi\)
−0.312796 + 0.949820i \(0.601266\pi\)
\(822\) 0 0
\(823\) −22.6675 3.59018i −0.790139 0.125146i −0.251695 0.967807i \(-0.580988\pi\)
−0.538445 + 0.842661i \(0.680988\pi\)
\(824\) 0 0
\(825\) 50.6861 16.3122i 1.76466 0.567916i
\(826\) 0 0
\(827\) 39.9523 + 6.32782i 1.38928 + 0.220040i 0.805847 0.592124i \(-0.201710\pi\)
0.583430 + 0.812164i \(0.301710\pi\)
\(828\) 0 0
\(829\) 25.8477 + 8.39841i 0.897726 + 0.291689i 0.721298 0.692625i \(-0.243546\pi\)
0.176428 + 0.984314i \(0.443546\pi\)
\(830\) 0 0
\(831\) −25.9156 + 35.6698i −0.899004 + 1.23737i
\(832\) 0 0
\(833\) −9.26422 4.72036i −0.320986 0.163551i
\(834\) 0 0
\(835\) 31.3064 + 36.3434i 1.08340 + 1.25772i
\(836\) 0 0
\(837\) 28.1543 28.1543i 0.973154 0.973154i
\(838\) 0 0
\(839\) −20.9575 + 6.80951i −0.723533 + 0.235090i −0.647554 0.762019i \(-0.724208\pi\)
−0.0759789 + 0.997109i \(0.524208\pi\)
\(840\) 0 0
\(841\) 6.87075 + 4.99189i 0.236922 + 0.172134i
\(842\) 0 0
\(843\) −14.4402 28.3404i −0.497346 0.976096i
\(844\) 0 0
\(845\) −13.9747 22.5901i −0.480744 0.777124i
\(846\) 0 0
\(847\) −2.25030 16.6171i −0.0773212 0.570969i
\(848\) 0 0
\(849\) 5.35078 3.88757i 0.183638 0.133421i
\(850\) 0 0
\(851\) 1.86005 5.72466i 0.0637619 0.196239i
\(852\) 0 0
\(853\) −36.1266 + 5.72190i −1.23695 + 0.195914i −0.740444 0.672118i \(-0.765385\pi\)
−0.496508 + 0.868032i \(0.665385\pi\)
\(854\) 0 0
\(855\) 98.3915 24.0612i 3.36492 0.822877i
\(856\) 0 0
\(857\) 8.98140 + 8.98140i 0.306799 + 0.306799i 0.843666 0.536868i \(-0.180393\pi\)
−0.536868 + 0.843666i \(0.680393\pi\)
\(858\) 0 0
\(859\) 54.6972i 1.86624i −0.359559 0.933122i \(-0.617073\pi\)
0.359559 0.933122i \(-0.382927\pi\)
\(860\) 0 0
\(861\) −3.79096 11.6674i −0.129196 0.397624i
\(862\) 0 0
\(863\) 2.23202 + 14.0924i 0.0759788 + 0.479711i 0.996111 + 0.0881040i \(0.0280808\pi\)
−0.920132 + 0.391607i \(0.871919\pi\)
\(864\) 0 0
\(865\) −11.4045 27.2077i −0.387765 0.925088i
\(866\) 0 0
\(867\) 6.05557 38.2334i 0.205658 1.29847i
\(868\) 0 0
\(869\) −6.14895 + 18.2250i −0.208589 + 0.618241i
\(870\) 0 0
\(871\) −4.75846 6.54946i −0.161234 0.221920i
\(872\) 0 0
\(873\) −45.6330 + 23.2512i −1.54444 + 0.786932i
\(874\) 0 0
\(875\) 1.12205 17.0067i 0.0379322 0.574931i
\(876\) 0 0
\(877\) 6.98490 13.7086i 0.235863 0.462908i −0.742488 0.669860i \(-0.766354\pi\)
0.978351 + 0.206952i \(0.0663543\pi\)
\(878\) 0 0
\(879\) −63.0707 −2.12732
\(880\) 0 0
\(881\) −27.4651 −0.925323 −0.462662 0.886535i \(-0.653106\pi\)
−0.462662 + 0.886535i \(0.653106\pi\)
\(882\) 0 0
\(883\) −24.6520 + 48.3824i −0.829607 + 1.62820i −0.0526752 + 0.998612i \(0.516775\pi\)
−0.776932 + 0.629584i \(0.783225\pi\)
\(884\) 0 0
\(885\) −32.1364 + 2.66567i −1.08025 + 0.0896055i
\(886\) 0 0
\(887\) 52.7376 26.8712i 1.77076 0.902246i 0.834432 0.551111i \(-0.185796\pi\)
0.936325 0.351134i \(-0.114204\pi\)
\(888\) 0 0
\(889\) −15.2015 20.9231i −0.509843 0.701738i
\(890\) 0 0
\(891\) 22.2636 + 71.2345i 0.745858 + 2.38645i
\(892\) 0 0
\(893\) −4.34926 + 27.4601i −0.145542 + 0.918918i
\(894\) 0 0
\(895\) −28.0451 11.4783i −0.937446 0.383677i
\(896\) 0 0
\(897\) 2.29938 + 14.5177i 0.0767740 + 0.484732i
\(898\) 0 0
\(899\) −4.02649 12.3922i −0.134291 0.413305i
\(900\) 0 0
\(901\) 8.45716i 0.281749i
\(902\) 0 0
\(903\) −31.3733 31.3733i −1.04404 1.04404i
\(904\) 0 0
\(905\) 9.16015 + 37.4578i 0.304494 + 1.24514i
\(906\) 0 0
\(907\) 14.9623 2.36980i 0.496817 0.0786880i 0.0970022 0.995284i \(-0.469075\pi\)
0.399814 + 0.916596i \(0.369075\pi\)
\(908\) 0 0
\(909\) 39.7815 122.435i 1.31947 4.06091i
\(910\) 0 0
\(911\) −5.44856 + 3.95861i −0.180519 + 0.131155i −0.674375 0.738389i \(-0.735587\pi\)
0.493856 + 0.869544i \(0.335587\pi\)
\(912\) 0 0
\(913\) −3.03315 + 2.96573i −0.100383 + 0.0981512i
\(914\) 0 0
\(915\) −9.75198 + 41.3885i −0.322391 + 1.36826i
\(916\) 0 0
\(917\) −6.76610 13.2792i −0.223436 0.438518i
\(918\) 0 0
\(919\) 47.2044 + 34.2960i 1.55713 + 1.13132i 0.938315 + 0.345782i \(0.112386\pi\)
0.618813 + 0.785538i \(0.287614\pi\)
\(920\) 0 0
\(921\) 36.0740 11.7212i 1.18868 0.386226i
\(922\) 0 0
\(923\) −6.66028 + 6.66028i −0.219226 + 0.219226i
\(924\) 0 0
\(925\) 5.59558 4.13802i 0.183982 0.136057i
\(926\) 0 0
\(927\) −20.9216 10.6601i −0.687155 0.350123i
\(928\) 0 0
\(929\) −5.89306 + 8.11110i −0.193345 + 0.266117i −0.894672 0.446723i \(-0.852591\pi\)
0.701327 + 0.712839i \(0.252591\pi\)
\(930\) 0 0
\(931\) 27.5598 + 8.95473i 0.903237 + 0.293480i
\(932\) 0 0
\(933\) 44.1000 + 6.98475i 1.44377 + 0.228670i
\(934\) 0 0
\(935\) −1.17838 16.4480i −0.0385371 0.537907i
\(936\) 0 0
\(937\) −41.2128 6.52746i −1.34636 0.213243i −0.558710 0.829363i \(-0.688703\pi\)
−0.787652 + 0.616120i \(0.788703\pi\)
\(938\) 0 0
\(939\) 92.1972 + 29.9567i 3.00874 + 0.977600i
\(940\) 0 0
\(941\) 14.4754 19.9237i 0.471885 0.649494i −0.505035 0.863099i \(-0.668520\pi\)
0.976920 + 0.213605i \(0.0685205\pi\)
\(942\) 0 0
\(943\) 9.65732 + 4.92065i 0.314486 + 0.160238i
\(944\) 0 0
\(945\) 47.0394 + 3.50244i 1.53019 + 0.113934i
\(946\) 0 0
\(947\) 6.72877 6.72877i 0.218656 0.218656i −0.589276 0.807932i \(-0.700587\pi\)
0.807932 + 0.589276i \(0.200587\pi\)
\(948\) 0 0
\(949\) 11.4836 3.73124i 0.372772 0.121121i
\(950\) 0 0
\(951\) −79.6507 57.8696i −2.58285 1.87655i
\(952\) 0 0
\(953\) −15.9429 31.2897i −0.516441 1.01357i −0.991064 0.133384i \(-0.957416\pi\)
0.474623 0.880189i \(-0.342584\pi\)
\(954\) 0 0
\(955\) −23.9465 + 14.8138i −0.774889 + 0.479362i
\(956\) 0 0
\(957\) 47.5436 + 8.07890i 1.53687 + 0.261154i
\(958\) 0 0
\(959\) −3.04719 + 2.21391i −0.0983989 + 0.0714910i
\(960\) 0 0
\(961\) −7.02117 + 21.6089i −0.226489 + 0.697062i
\(962\) 0 0
\(963\) −119.253 + 18.8879i −3.84289 + 0.608654i
\(964\) 0 0
\(965\) 7.33108 + 4.45005i 0.235996 + 0.143252i
\(966\) 0 0
\(967\) −43.6347 43.6347i −1.40320 1.40320i −0.789685 0.613512i \(-0.789756\pi\)
−0.613512 0.789685i \(-0.710244\pi\)
\(968\) 0 0
\(969\) 44.2438i 1.42131i
\(970\) 0 0
\(971\) −8.80597 27.1020i −0.282597 0.869744i −0.987109 0.160052i \(-0.948834\pi\)
0.704512 0.709693i \(-0.251166\pi\)
\(972\) 0 0
\(973\) −1.79163 11.3119i −0.0574369 0.362642i
\(974\) 0 0
\(975\) −7.58729 + 15.2068i −0.242988 + 0.487007i
\(976\) 0 0
\(977\) −8.07944 + 51.0116i −0.258484 + 1.63201i 0.427236 + 0.904140i \(0.359487\pi\)
−0.685720 + 0.727865i \(0.740513\pi\)
\(978\) 0 0
\(979\) 20.2508 + 28.5420i 0.647219 + 0.912206i
\(980\) 0 0
\(981\) 8.11191 + 11.1651i 0.258993 + 0.356474i
\(982\) 0 0
\(983\) 48.6352 24.7809i 1.55122 0.790387i 0.552161 0.833737i \(-0.313803\pi\)
0.999060 + 0.0433506i \(0.0138033\pi\)
\(984\) 0 0
\(985\) −1.93446 23.3212i −0.0616371 0.743075i
\(986\) 0 0
\(987\) −9.96952 + 19.5663i −0.317333 + 0.622802i
\(988\) 0 0
\(989\) 39.1997 1.24648
\(990\) 0 0
\(991\) −1.67436 −0.0531879 −0.0265939 0.999646i \(-0.508466\pi\)
−0.0265939 + 0.999646i \(0.508466\pi\)
\(992\) 0 0
\(993\) −20.7755 + 40.7742i −0.659291 + 1.29393i
\(994\) 0 0
\(995\) 13.1604 15.5412i 0.417214 0.492689i
\(996\) 0 0
\(997\) −26.6089 + 13.5579i −0.842713 + 0.429384i −0.821375 0.570389i \(-0.806793\pi\)
−0.0213379 + 0.999772i \(0.506793\pi\)
\(998\) 0 0
\(999\) 11.3212 + 15.5823i 0.358187 + 0.493002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.c.833.6 48
4.3 odd 2 110.2.k.a.63.1 yes 48
5.2 odd 4 inner 880.2.cm.c.657.1 48
11.7 odd 10 inner 880.2.cm.c.513.1 48
12.11 even 2 990.2.bh.c.613.6 48
20.3 even 4 550.2.bh.b.107.1 48
20.7 even 4 110.2.k.a.107.6 yes 48
20.19 odd 2 550.2.bh.b.393.6 48
44.7 even 10 110.2.k.a.73.6 yes 48
55.7 even 20 inner 880.2.cm.c.337.6 48
60.47 odd 4 990.2.bh.c.217.2 48
132.95 odd 10 990.2.bh.c.73.2 48
220.7 odd 20 110.2.k.a.7.1 48
220.139 even 10 550.2.bh.b.293.1 48
220.183 odd 20 550.2.bh.b.7.6 48
660.227 even 20 990.2.bh.c.667.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.k.a.7.1 48 220.7 odd 20
110.2.k.a.63.1 yes 48 4.3 odd 2
110.2.k.a.73.6 yes 48 44.7 even 10
110.2.k.a.107.6 yes 48 20.7 even 4
550.2.bh.b.7.6 48 220.183 odd 20
550.2.bh.b.107.1 48 20.3 even 4
550.2.bh.b.293.1 48 220.139 even 10
550.2.bh.b.393.6 48 20.19 odd 2
880.2.cm.c.337.6 48 55.7 even 20 inner
880.2.cm.c.513.1 48 11.7 odd 10 inner
880.2.cm.c.657.1 48 5.2 odd 4 inner
880.2.cm.c.833.6 48 1.1 even 1 trivial
990.2.bh.c.73.2 48 132.95 odd 10
990.2.bh.c.217.2 48 60.47 odd 4
990.2.bh.c.613.6 48 12.11 even 2
990.2.bh.c.667.6 48 660.227 even 20