Properties

Label 990.2.bh.c.217.2
Level $990$
Weight $2$
Character 990.217
Analytic conductor $7.905$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,2,Mod(73,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 15, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bh (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 217.2
Character \(\chi\) \(=\) 990.217
Dual form 990.2.bh.c.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.156434 + 0.987688i) q^{2} +(-0.951057 - 0.309017i) q^{4} +(1.90161 + 1.17638i) q^{5} +(-0.692077 - 1.35828i) q^{7} +(0.453990 - 0.891007i) q^{8} +(-1.45937 + 1.69418i) q^{10} +(2.70495 - 1.91918i) q^{11} +(1.04553 + 0.165595i) q^{13} +(1.44982 - 0.471075i) q^{14} +(0.809017 + 0.587785i) q^{16} +(2.19616 - 0.347837i) q^{17} +(-1.91500 - 5.89375i) q^{19} +(-1.44502 - 1.70643i) q^{20} +(1.47241 + 2.97187i) q^{22} +(3.05791 - 3.05791i) q^{23} +(2.23228 + 4.47403i) q^{25} +(-0.327113 + 1.00675i) q^{26} +(0.238474 + 1.50566i) q^{28} +(-1.39938 + 4.30686i) q^{29} +(2.32781 - 1.69125i) q^{31} +(-0.707107 + 0.707107i) q^{32} +2.22353i q^{34} +(0.281782 - 3.39707i) q^{35} +(1.24018 - 0.631904i) q^{37} +(6.12076 - 0.969434i) q^{38} +(1.91147 - 1.16029i) q^{40} +(-2.38365 + 0.774496i) q^{41} +(6.40957 + 6.40957i) q^{43} +(-3.16562 + 0.989379i) q^{44} +(2.54190 + 3.49862i) q^{46} +(2.03678 - 3.99740i) q^{47} +(2.74855 - 3.78305i) q^{49} +(-4.76815 + 1.50490i) q^{50} +(-0.943185 - 0.480577i) q^{52} +(-0.594995 + 3.75665i) q^{53} +(7.40145 - 0.467516i) q^{55} -1.52443 q^{56} +(-4.03492 - 2.05589i) q^{58} +(-4.27154 - 1.38791i) q^{59} +(3.48115 - 4.79140i) q^{61} +(1.30628 + 2.56372i) q^{62} +(-0.587785 - 0.809017i) q^{64} +(1.79339 + 1.54483i) q^{65} +(5.40776 + 5.40776i) q^{67} +(-2.19616 - 0.347837i) q^{68} +(3.31116 + 0.809731i) q^{70} +(7.19862 + 5.23010i) q^{71} +(-10.1633 + 5.17847i) q^{73} +(0.430117 + 1.32376i) q^{74} +6.19706i q^{76} +(-4.47882 - 2.34584i) q^{77} +(-4.69179 + 3.40879i) q^{79} +(0.846982 + 2.06945i) q^{80} +(-0.392075 - 2.47546i) q^{82} +(0.200087 + 1.26330i) q^{83} +(4.58543 + 1.92206i) q^{85} +(-7.33334 + 5.32798i) q^{86} +(-0.481987 - 3.28142i) q^{88} +10.5518i q^{89} +(-0.498662 - 1.53472i) q^{91} +(-3.85319 + 1.96330i) q^{92} +(3.62956 + 2.63703i) q^{94} +(3.29169 - 13.4604i) q^{95} +(6.92020 + 1.09605i) q^{97} +(3.30651 + 3.30651i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 8 q^{5} - 20 q^{7} - 12 q^{11} + 12 q^{16} + 20 q^{17} + 4 q^{20} - 4 q^{22} + 8 q^{23} - 20 q^{25} - 8 q^{26} - 20 q^{28} + 16 q^{31} + 20 q^{37} + 36 q^{38} + 20 q^{41} + 40 q^{46} - 40 q^{47}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.156434 + 0.987688i −0.110616 + 0.698401i
\(3\) 0 0
\(4\) −0.951057 0.309017i −0.475528 0.154508i
\(5\) 1.90161 + 1.17638i 0.850428 + 0.526092i
\(6\) 0 0
\(7\) −0.692077 1.35828i −0.261581 0.513381i 0.722440 0.691433i \(-0.243020\pi\)
−0.984021 + 0.178052i \(0.943020\pi\)
\(8\) 0.453990 0.891007i 0.160510 0.315018i
\(9\) 0 0
\(10\) −1.45937 + 1.69418i −0.461494 + 0.535746i
\(11\) 2.70495 1.91918i 0.815572 0.578656i
\(12\) 0 0
\(13\) 1.04553 + 0.165595i 0.289977 + 0.0459279i 0.299728 0.954025i \(-0.403104\pi\)
−0.00975110 + 0.999952i \(0.503104\pi\)
\(14\) 1.44982 0.471075i 0.387481 0.125900i
\(15\) 0 0
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) 2.19616 0.347837i 0.532646 0.0843629i 0.115683 0.993286i \(-0.463094\pi\)
0.416963 + 0.908923i \(0.363094\pi\)
\(18\) 0 0
\(19\) −1.91500 5.89375i −0.439330 1.35212i −0.888583 0.458715i \(-0.848310\pi\)
0.449253 0.893405i \(-0.351690\pi\)
\(20\) −1.44502 1.70643i −0.323117 0.381570i
\(21\) 0 0
\(22\) 1.47241 + 2.97187i 0.313919 + 0.633605i
\(23\) 3.05791 3.05791i 0.637617 0.637617i −0.312350 0.949967i \(-0.601116\pi\)
0.949967 + 0.312350i \(0.101116\pi\)
\(24\) 0 0
\(25\) 2.23228 + 4.47403i 0.446455 + 0.894806i
\(26\) −0.327113 + 1.00675i −0.0641522 + 0.197440i
\(27\) 0 0
\(28\) 0.238474 + 1.50566i 0.0450673 + 0.284544i
\(29\) −1.39938 + 4.30686i −0.259859 + 0.799763i 0.732975 + 0.680256i \(0.238131\pi\)
−0.992833 + 0.119507i \(0.961869\pi\)
\(30\) 0 0
\(31\) 2.32781 1.69125i 0.418087 0.303758i −0.358781 0.933422i \(-0.616807\pi\)
0.776868 + 0.629664i \(0.216807\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 2.22353i 0.381333i
\(35\) 0.281782 3.39707i 0.0476299 0.574209i
\(36\) 0 0
\(37\) 1.24018 0.631904i 0.203885 0.103884i −0.349067 0.937098i \(-0.613501\pi\)
0.552952 + 0.833213i \(0.313501\pi\)
\(38\) 6.12076 0.969434i 0.992919 0.157263i
\(39\) 0 0
\(40\) 1.91147 1.16029i 0.302231 0.183458i
\(41\) −2.38365 + 0.774496i −0.372264 + 0.120956i −0.489173 0.872187i \(-0.662701\pi\)
0.116909 + 0.993143i \(0.462701\pi\)
\(42\) 0 0
\(43\) 6.40957 + 6.40957i 0.977450 + 0.977450i 0.999751 0.0223009i \(-0.00709920\pi\)
−0.0223009 + 0.999751i \(0.507099\pi\)
\(44\) −3.16562 + 0.989379i −0.477235 + 0.149155i
\(45\) 0 0
\(46\) 2.54190 + 3.49862i 0.374782 + 0.515843i
\(47\) 2.03678 3.99740i 0.297095 0.583081i −0.693413 0.720541i \(-0.743894\pi\)
0.990507 + 0.137460i \(0.0438937\pi\)
\(48\) 0 0
\(49\) 2.74855 3.78305i 0.392650 0.540436i
\(50\) −4.76815 + 1.50490i −0.674319 + 0.212825i
\(51\) 0 0
\(52\) −0.943185 0.480577i −0.130796 0.0666440i
\(53\) −0.594995 + 3.75665i −0.0817288 + 0.516016i 0.912530 + 0.409011i \(0.134126\pi\)
−0.994258 + 0.107005i \(0.965874\pi\)
\(54\) 0 0
\(55\) 7.40145 0.467516i 0.998011 0.0630398i
\(56\) −1.52443 −0.203711
\(57\) 0 0
\(58\) −4.03492 2.05589i −0.529811 0.269952i
\(59\) −4.27154 1.38791i −0.556107 0.180690i 0.0174620 0.999848i \(-0.494441\pi\)
−0.573569 + 0.819158i \(0.694441\pi\)
\(60\) 0 0
\(61\) 3.48115 4.79140i 0.445716 0.613475i −0.525754 0.850636i \(-0.676217\pi\)
0.971470 + 0.237161i \(0.0762169\pi\)
\(62\) 1.30628 + 2.56372i 0.165898 + 0.325593i
\(63\) 0 0
\(64\) −0.587785 0.809017i −0.0734732 0.101127i
\(65\) 1.79339 + 1.54483i 0.222443 + 0.191613i
\(66\) 0 0
\(67\) 5.40776 + 5.40776i 0.660663 + 0.660663i 0.955536 0.294873i \(-0.0952775\pi\)
−0.294873 + 0.955536i \(0.595277\pi\)
\(68\) −2.19616 0.347837i −0.266323 0.0421814i
\(69\) 0 0
\(70\) 3.31116 + 0.809731i 0.395759 + 0.0967814i
\(71\) 7.19862 + 5.23010i 0.854319 + 0.620699i 0.926334 0.376704i \(-0.122943\pi\)
−0.0720143 + 0.997404i \(0.522943\pi\)
\(72\) 0 0
\(73\) −10.1633 + 5.17847i −1.18953 + 0.606094i −0.932801 0.360391i \(-0.882643\pi\)
−0.256725 + 0.966485i \(0.582643\pi\)
\(74\) 0.430117 + 1.32376i 0.0500001 + 0.153884i
\(75\) 0 0
\(76\) 6.19706i 0.710852i
\(77\) −4.47882 2.34584i −0.510409 0.267334i
\(78\) 0 0
\(79\) −4.69179 + 3.40879i −0.527868 + 0.383518i −0.819560 0.572994i \(-0.805782\pi\)
0.291692 + 0.956512i \(0.405782\pi\)
\(80\) 0.846982 + 2.06945i 0.0946954 + 0.231372i
\(81\) 0 0
\(82\) −0.392075 2.47546i −0.0432974 0.273369i
\(83\) 0.200087 + 1.26330i 0.0219624 + 0.138665i 0.996233 0.0867161i \(-0.0276373\pi\)
−0.974271 + 0.225381i \(0.927637\pi\)
\(84\) 0 0
\(85\) 4.58543 + 1.92206i 0.497360 + 0.208476i
\(86\) −7.33334 + 5.32798i −0.790774 + 0.574531i
\(87\) 0 0
\(88\) −0.481987 3.28142i −0.0513800 0.349800i
\(89\) 10.5518i 1.11849i 0.829004 + 0.559243i \(0.188908\pi\)
−0.829004 + 0.559243i \(0.811092\pi\)
\(90\) 0 0
\(91\) −0.498662 1.53472i −0.0522740 0.160883i
\(92\) −3.85319 + 1.96330i −0.401722 + 0.204688i
\(93\) 0 0
\(94\) 3.62956 + 2.63703i 0.374361 + 0.271989i
\(95\) 3.29169 13.4604i 0.337720 1.38101i
\(96\) 0 0
\(97\) 6.92020 + 1.09605i 0.702639 + 0.111287i 0.497523 0.867451i \(-0.334243\pi\)
0.205116 + 0.978738i \(0.434243\pi\)
\(98\) 3.30651 + 3.30651i 0.334008 + 0.334008i
\(99\) 0 0
\(100\) −0.740470 4.94487i −0.0740470 0.494487i
\(101\) −10.3519 14.2481i −1.03005 1.41774i −0.904912 0.425599i \(-0.860063\pi\)
−0.125136 0.992140i \(-0.539937\pi\)
\(102\) 0 0
\(103\) 1.45835 + 2.86217i 0.143695 + 0.282018i 0.951625 0.307260i \(-0.0994122\pi\)
−0.807930 + 0.589278i \(0.799412\pi\)
\(104\) 0.622206 0.856394i 0.0610124 0.0839763i
\(105\) 0 0
\(106\) −3.61732 1.17534i −0.351345 0.114159i
\(107\) 14.7175 + 7.49892i 1.42279 + 0.724948i 0.984745 0.174006i \(-0.0556711\pi\)
0.438045 + 0.898953i \(0.355671\pi\)
\(108\) 0 0
\(109\) 1.88801 0.180839 0.0904195 0.995904i \(-0.471179\pi\)
0.0904195 + 0.995904i \(0.471179\pi\)
\(110\) −0.696082 + 7.38346i −0.0663688 + 0.703985i
\(111\) 0 0
\(112\) 0.238474 1.50566i 0.0225336 0.142272i
\(113\) 3.55455 + 1.81113i 0.334384 + 0.170377i 0.613118 0.789991i \(-0.289915\pi\)
−0.278734 + 0.960368i \(0.589915\pi\)
\(114\) 0 0
\(115\) 9.41221 2.21771i 0.877693 0.206803i
\(116\) 2.66178 3.66363i 0.247140 0.340160i
\(117\) 0 0
\(118\) 2.03903 4.00183i 0.187708 0.368398i
\(119\) −1.99237 2.74226i −0.182640 0.251383i
\(120\) 0 0
\(121\) 3.63346 10.3826i 0.330314 0.943871i
\(122\) 4.18783 + 4.18783i 0.379149 + 0.379149i
\(123\) 0 0
\(124\) −2.73650 + 0.889144i −0.245745 + 0.0798475i
\(125\) −1.01821 + 11.1339i −0.0910718 + 0.995844i
\(126\) 0 0
\(127\) −16.7564 + 2.65395i −1.48689 + 0.235500i −0.846433 0.532495i \(-0.821254\pi\)
−0.640456 + 0.767995i \(0.721254\pi\)
\(128\) 0.891007 0.453990i 0.0787546 0.0401275i
\(129\) 0 0
\(130\) −1.80636 + 1.52964i −0.158428 + 0.134159i
\(131\) 9.77651i 0.854177i −0.904210 0.427089i \(-0.859539\pi\)
0.904210 0.427089i \(-0.140461\pi\)
\(132\) 0 0
\(133\) −6.68003 + 6.68003i −0.579232 + 0.579232i
\(134\) −6.18714 + 4.49522i −0.534488 + 0.388328i
\(135\) 0 0
\(136\) 0.687109 2.11471i 0.0589191 0.181334i
\(137\) 0.386515 + 2.44036i 0.0330222 + 0.208494i 0.998683 0.0513136i \(-0.0163408\pi\)
−0.965660 + 0.259808i \(0.916341\pi\)
\(138\) 0 0
\(139\) 2.32161 7.14518i 0.196916 0.606046i −0.803032 0.595935i \(-0.796781\pi\)
0.999949 0.0101112i \(-0.00321854\pi\)
\(140\) −1.31774 + 3.14373i −0.111369 + 0.265693i
\(141\) 0 0
\(142\) −6.29183 + 6.29183i −0.527998 + 0.527998i
\(143\) 3.14590 1.55864i 0.263074 0.130340i
\(144\) 0 0
\(145\) −7.72757 + 6.54378i −0.641740 + 0.543431i
\(146\) −3.52482 10.8483i −0.291716 0.897810i
\(147\) 0 0
\(148\) −1.37475 + 0.217739i −0.113004 + 0.0178981i
\(149\) 0.0269615 + 0.0195887i 0.00220877 + 0.00160477i 0.588889 0.808214i \(-0.299565\pi\)
−0.586680 + 0.809819i \(0.699565\pi\)
\(150\) 0 0
\(151\) −20.1481 + 6.54653i −1.63963 + 0.532749i −0.976457 0.215714i \(-0.930792\pi\)
−0.663176 + 0.748463i \(0.730792\pi\)
\(152\) −6.12076 0.969434i −0.496459 0.0786315i
\(153\) 0 0
\(154\) 3.01760 4.05671i 0.243165 0.326899i
\(155\) 6.41615 0.477730i 0.515357 0.0383722i
\(156\) 0 0
\(157\) −0.891858 + 1.75037i −0.0711780 + 0.139695i −0.923854 0.382746i \(-0.874978\pi\)
0.852676 + 0.522441i \(0.174978\pi\)
\(158\) −2.63286 5.16728i −0.209459 0.411087i
\(159\) 0 0
\(160\) −2.17647 + 0.512821i −0.172065 + 0.0405420i
\(161\) −6.26979 2.03718i −0.494129 0.160552i
\(162\) 0 0
\(163\) −0.340601 + 2.15047i −0.0266779 + 0.168438i −0.997430 0.0716458i \(-0.977175\pi\)
0.970752 + 0.240084i \(0.0771749\pi\)
\(164\) 2.50632 0.195711
\(165\) 0 0
\(166\) −1.27905 −0.0992732
\(167\) 3.35583 21.1879i 0.259682 1.63957i −0.421053 0.907036i \(-0.638339\pi\)
0.680735 0.732530i \(-0.261661\pi\)
\(168\) 0 0
\(169\) −11.2980 3.67095i −0.869079 0.282381i
\(170\) −2.61571 + 4.22830i −0.200616 + 0.324296i
\(171\) 0 0
\(172\) −4.11520 8.07653i −0.313781 0.615830i
\(173\) −5.98965 + 11.7553i −0.455384 + 0.893742i 0.543151 + 0.839635i \(0.317231\pi\)
−0.998535 + 0.0541069i \(0.982769\pi\)
\(174\) 0 0
\(175\) 4.53207 6.12843i 0.342592 0.463266i
\(176\) 3.31642 + 0.0372739i 0.249984 + 0.00280962i
\(177\) 0 0
\(178\) −10.4219 1.65066i −0.781152 0.123722i
\(179\) −12.8887 + 4.18779i −0.963346 + 0.313010i −0.748127 0.663555i \(-0.769047\pi\)
−0.215219 + 0.976566i \(0.569047\pi\)
\(180\) 0 0
\(181\) −13.9517 10.1365i −1.03702 0.753441i −0.0673204 0.997731i \(-0.521445\pi\)
−0.969702 + 0.244290i \(0.921445\pi\)
\(182\) 1.59384 0.252439i 0.118143 0.0187120i
\(183\) 0 0
\(184\) −1.33635 4.11287i −0.0985173 0.303205i
\(185\) 3.10170 + 0.257282i 0.228042 + 0.0189158i
\(186\) 0 0
\(187\) 5.27292 5.15571i 0.385594 0.377023i
\(188\) −3.17236 + 3.17236i −0.231368 + 0.231368i
\(189\) 0 0
\(190\) 12.7798 + 5.35683i 0.927141 + 0.388626i
\(191\) 3.89136 11.9764i 0.281569 0.866580i −0.705837 0.708374i \(-0.749429\pi\)
0.987406 0.158206i \(-0.0505709\pi\)
\(192\) 0 0
\(193\) 0.599973 + 3.78808i 0.0431870 + 0.272672i 0.999827 0.0186009i \(-0.00592120\pi\)
−0.956640 + 0.291273i \(0.905921\pi\)
\(194\) −2.16511 + 6.66354i −0.155446 + 0.478414i
\(195\) 0 0
\(196\) −3.78305 + 2.74855i −0.270218 + 0.196325i
\(197\) 7.40013 7.40013i 0.527238 0.527238i −0.392510 0.919748i \(-0.628393\pi\)
0.919748 + 0.392510i \(0.128393\pi\)
\(198\) 0 0
\(199\) 9.10742i 0.645608i 0.946466 + 0.322804i \(0.104625\pi\)
−0.946466 + 0.322804i \(0.895375\pi\)
\(200\) 4.99982 + 0.0421939i 0.353541 + 0.00298356i
\(201\) 0 0
\(202\) 15.6921 7.99551i 1.10409 0.562562i
\(203\) 6.81839 1.07993i 0.478557 0.0757960i
\(204\) 0 0
\(205\) −5.44389 1.33128i −0.380218 0.0929807i
\(206\) −3.05507 + 0.992651i −0.212857 + 0.0691613i
\(207\) 0 0
\(208\) 0.748516 + 0.748516i 0.0519002 + 0.0519002i
\(209\) −16.4912 12.2671i −1.14072 0.848530i
\(210\) 0 0
\(211\) −14.7378 20.2849i −1.01459 1.39647i −0.915926 0.401347i \(-0.868542\pi\)
−0.0986665 0.995121i \(-0.531458\pi\)
\(212\) 1.72674 3.38892i 0.118593 0.232752i
\(213\) 0 0
\(214\) −9.70891 + 13.3632i −0.663687 + 0.913487i
\(215\) 4.64847 + 19.7286i 0.317023 + 1.34548i
\(216\) 0 0
\(217\) −3.90821 1.99133i −0.265307 0.135181i
\(218\) −0.295350 + 1.86477i −0.0200037 + 0.126298i
\(219\) 0 0
\(220\) −7.18367 1.84254i −0.484323 0.124224i
\(221\) 2.35374 0.158330
\(222\) 0 0
\(223\) 4.44282 + 2.26373i 0.297513 + 0.151590i 0.596375 0.802706i \(-0.296607\pi\)
−0.298862 + 0.954296i \(0.596607\pi\)
\(224\) 1.44982 + 0.471075i 0.0968702 + 0.0314750i
\(225\) 0 0
\(226\) −2.34489 + 3.22746i −0.155980 + 0.214688i
\(227\) −0.926486 1.81833i −0.0614931 0.120687i 0.858214 0.513292i \(-0.171574\pi\)
−0.919707 + 0.392605i \(0.871574\pi\)
\(228\) 0 0
\(229\) −0.895888 1.23308i −0.0592020 0.0814845i 0.778389 0.627782i \(-0.216037\pi\)
−0.837591 + 0.546297i \(0.816037\pi\)
\(230\) 0.718013 + 9.64325i 0.0473444 + 0.635857i
\(231\) 0 0
\(232\) 3.20213 + 3.20213i 0.210230 + 0.210230i
\(233\) −21.9164 3.47122i −1.43579 0.227407i −0.610457 0.792050i \(-0.709014\pi\)
−0.825336 + 0.564642i \(0.809014\pi\)
\(234\) 0 0
\(235\) 8.57562 5.20550i 0.559412 0.339569i
\(236\) 3.63358 + 2.63995i 0.236526 + 0.171846i
\(237\) 0 0
\(238\) 3.02018 1.53886i 0.195769 0.0997492i
\(239\) −7.65870 23.5711i −0.495400 1.52468i −0.816332 0.577583i \(-0.803996\pi\)
0.320932 0.947102i \(-0.396004\pi\)
\(240\) 0 0
\(241\) 0.0562577i 0.00362387i −0.999998 0.00181194i \(-0.999423\pi\)
0.999998 0.00181194i \(-0.000576758\pi\)
\(242\) 9.68636 + 5.21292i 0.622662 + 0.335099i
\(243\) 0 0
\(244\) −4.79140 + 3.48115i −0.306738 + 0.222858i
\(245\) 9.67697 3.96058i 0.618239 0.253032i
\(246\) 0 0
\(247\) −1.02620 6.47920i −0.0652958 0.412262i
\(248\) −0.450114 2.84191i −0.0285822 0.180461i
\(249\) 0 0
\(250\) −10.8375 2.74740i −0.685425 0.173761i
\(251\) −6.81505 + 4.95143i −0.430162 + 0.312531i −0.781714 0.623637i \(-0.785654\pi\)
0.351551 + 0.936169i \(0.385654\pi\)
\(252\) 0 0
\(253\) 2.40278 14.1402i 0.151062 0.888984i
\(254\) 16.9653i 1.06449i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 9.35527 4.76675i 0.583566 0.297342i −0.137175 0.990547i \(-0.543802\pi\)
0.720740 + 0.693205i \(0.243802\pi\)
\(258\) 0 0
\(259\) −1.71660 1.24718i −0.106664 0.0774963i
\(260\) −1.22823 2.02341i −0.0761719 0.125487i
\(261\) 0 0
\(262\) 9.65614 + 1.52938i 0.596558 + 0.0944856i
\(263\) 3.20922 + 3.20922i 0.197889 + 0.197889i 0.799095 0.601205i \(-0.205313\pi\)
−0.601205 + 0.799095i \(0.705313\pi\)
\(264\) 0 0
\(265\) −5.55069 + 6.44376i −0.340976 + 0.395837i
\(266\) −5.55280 7.64278i −0.340464 0.468609i
\(267\) 0 0
\(268\) −3.47200 6.81417i −0.212086 0.416242i
\(269\) −15.2248 + 20.9551i −0.928272 + 1.27766i 0.0322573 + 0.999480i \(0.489730\pi\)
−0.960530 + 0.278178i \(0.910270\pi\)
\(270\) 0 0
\(271\) 20.4415 + 6.64186i 1.24173 + 0.403464i 0.854952 0.518707i \(-0.173586\pi\)
0.386783 + 0.922171i \(0.373586\pi\)
\(272\) 1.98118 + 1.00946i 0.120127 + 0.0612077i
\(273\) 0 0
\(274\) −2.47078 −0.149265
\(275\) 14.6247 + 7.81785i 0.881901 + 0.471434i
\(276\) 0 0
\(277\) 2.14809 13.5625i 0.129066 0.814893i −0.835198 0.549950i \(-0.814647\pi\)
0.964264 0.264943i \(-0.0853531\pi\)
\(278\) 6.69403 + 3.41078i 0.401481 + 0.204565i
\(279\) 0 0
\(280\) −2.89888 1.79331i −0.173241 0.107170i
\(281\) −5.82266 + 8.01420i −0.347351 + 0.478087i −0.946570 0.322498i \(-0.895478\pi\)
0.599220 + 0.800585i \(0.295478\pi\)
\(282\) 0 0
\(283\) −0.935154 + 1.83534i −0.0555891 + 0.109100i −0.917130 0.398589i \(-0.869500\pi\)
0.861541 + 0.507689i \(0.169500\pi\)
\(284\) −5.23010 7.19862i −0.310350 0.427160i
\(285\) 0 0
\(286\) 1.04732 + 3.35100i 0.0619292 + 0.198149i
\(287\) 2.70165 + 2.70165i 0.159473 + 0.159473i
\(288\) 0 0
\(289\) −11.4658 + 3.72548i −0.674461 + 0.219146i
\(290\) −5.25436 8.65611i −0.308547 0.508304i
\(291\) 0 0
\(292\) 11.2661 1.78438i 0.659300 0.104423i
\(293\) 17.5019 8.91767i 1.02247 0.520976i 0.139412 0.990234i \(-0.455479\pi\)
0.883061 + 0.469259i \(0.155479\pi\)
\(294\) 0 0
\(295\) −6.49011 7.66420i −0.377869 0.446227i
\(296\) 1.39189i 0.0809018i
\(297\) 0 0
\(298\) −0.0235652 + 0.0235652i −0.00136510 + 0.00136510i
\(299\) 3.70350 2.69075i 0.214179 0.155610i
\(300\) 0 0
\(301\) 4.27006 13.1419i 0.246122 0.757486i
\(302\) −3.31407 20.9242i −0.190703 1.20405i
\(303\) 0 0
\(304\) 1.91500 5.89375i 0.109833 0.338030i
\(305\) 12.2563 5.01624i 0.701793 0.287229i
\(306\) 0 0
\(307\) 8.35315 8.35315i 0.476740 0.476740i −0.427348 0.904087i \(-0.640552\pi\)
0.904087 + 0.427348i \(0.140552\pi\)
\(308\) 3.53470 + 3.61506i 0.201408 + 0.205987i
\(309\) 0 0
\(310\) −0.531858 + 6.41189i −0.0302075 + 0.364171i
\(311\) 4.29712 + 13.2252i 0.243667 + 0.749931i 0.995853 + 0.0909796i \(0.0289998\pi\)
−0.752185 + 0.658952i \(0.771000\pi\)
\(312\) 0 0
\(313\) 29.8201 4.72303i 1.68553 0.266962i 0.761189 0.648530i \(-0.224616\pi\)
0.924341 + 0.381569i \(0.124616\pi\)
\(314\) −1.58930 1.15470i −0.0896895 0.0651633i
\(315\) 0 0
\(316\) 5.51553 1.79211i 0.310273 0.100814i
\(317\) −30.2851 4.79669i −1.70098 0.269409i −0.770951 0.636894i \(-0.780219\pi\)
−0.930029 + 0.367485i \(0.880219\pi\)
\(318\) 0 0
\(319\) 4.48040 + 14.3355i 0.250854 + 0.802633i
\(320\) −0.166032 2.22990i −0.00928150 0.124655i
\(321\) 0 0
\(322\) 2.99291 5.87392i 0.166788 0.327341i
\(323\) −6.25570 12.2775i −0.348076 0.683139i
\(324\) 0 0
\(325\) 1.59303 + 5.04738i 0.0883654 + 0.279978i
\(326\) −2.07071 0.672816i −0.114686 0.0372638i
\(327\) 0 0
\(328\) −0.392075 + 2.47546i −0.0216487 + 0.136685i
\(329\) −6.83919 −0.377057
\(330\) 0 0
\(331\) 14.2522 0.783372 0.391686 0.920099i \(-0.371892\pi\)
0.391686 + 0.920099i \(0.371892\pi\)
\(332\) 0.200087 1.26330i 0.0109812 0.0693325i
\(333\) 0 0
\(334\) 20.4020 + 6.62902i 1.11635 + 0.362724i
\(335\) 3.92191 + 16.6450i 0.214277 + 0.909415i
\(336\) 0 0
\(337\) 6.23713 + 12.2410i 0.339758 + 0.666812i 0.996155 0.0876027i \(-0.0279206\pi\)
−0.656398 + 0.754415i \(0.727921\pi\)
\(338\) 5.39316 10.5847i 0.293349 0.575730i
\(339\) 0 0
\(340\) −3.76706 3.24496i −0.204297 0.175983i
\(341\) 3.05077 9.04224i 0.165208 0.489665i
\(342\) 0 0
\(343\) −17.5803 2.78444i −0.949246 0.150346i
\(344\) 8.62085 2.80109i 0.464805 0.151024i
\(345\) 0 0
\(346\) −10.6736 7.75484i −0.573818 0.416903i
\(347\) −17.5163 + 2.77431i −0.940326 + 0.148933i −0.607737 0.794139i \(-0.707922\pi\)
−0.332589 + 0.943072i \(0.607922\pi\)
\(348\) 0 0
\(349\) −5.50175 16.9327i −0.294502 0.906384i −0.983388 0.181515i \(-0.941900\pi\)
0.688886 0.724870i \(-0.258100\pi\)
\(350\) 5.34400 + 5.43497i 0.285649 + 0.290511i
\(351\) 0 0
\(352\) −0.555617 + 3.26975i −0.0296145 + 0.174278i
\(353\) −12.3974 + 12.3974i −0.659845 + 0.659845i −0.955343 0.295499i \(-0.904514\pi\)
0.295499 + 0.955343i \(0.404514\pi\)
\(354\) 0 0
\(355\) 7.53643 + 18.4139i 0.399992 + 0.977310i
\(356\) 3.26068 10.0353i 0.172816 0.531872i
\(357\) 0 0
\(358\) −2.12000 13.3851i −0.112045 0.707426i
\(359\) −2.37480 + 7.30888i −0.125337 + 0.385748i −0.993962 0.109722i \(-0.965004\pi\)
0.868625 + 0.495470i \(0.165004\pi\)
\(360\) 0 0
\(361\) −15.6978 + 11.4051i −0.826200 + 0.600270i
\(362\) 12.1942 12.1942i 0.640915 0.640915i
\(363\) 0 0
\(364\) 1.61370i 0.0845810i
\(365\) −25.4185 2.10844i −1.33047 0.110361i
\(366\) 0 0
\(367\) −32.2443 + 16.4293i −1.68314 + 0.857603i −0.692452 + 0.721464i \(0.743469\pi\)
−0.990690 + 0.136139i \(0.956531\pi\)
\(368\) 4.27129 0.676506i 0.222656 0.0352653i
\(369\) 0 0
\(370\) −0.739328 + 3.02327i −0.0384358 + 0.157172i
\(371\) 5.51436 1.79172i 0.286291 0.0930217i
\(372\) 0 0
\(373\) 11.5350 + 11.5350i 0.597259 + 0.597259i 0.939582 0.342323i \(-0.111214\pi\)
−0.342323 + 0.939582i \(0.611214\pi\)
\(374\) 4.26737 + 6.01453i 0.220660 + 0.311004i
\(375\) 0 0
\(376\) −2.63703 3.62956i −0.135995 0.187181i
\(377\) −2.17629 + 4.27121i −0.112085 + 0.219978i
\(378\) 0 0
\(379\) −3.86753 + 5.32320i −0.198662 + 0.273434i −0.896712 0.442614i \(-0.854051\pi\)
0.698050 + 0.716049i \(0.254051\pi\)
\(380\) −7.29008 + 11.7844i −0.373973 + 0.604528i
\(381\) 0 0
\(382\) 11.2202 + 5.71697i 0.574074 + 0.292505i
\(383\) −4.57876 + 28.9091i −0.233963 + 1.47719i 0.538768 + 0.842454i \(0.318890\pi\)
−0.772731 + 0.634733i \(0.781110\pi\)
\(384\) 0 0
\(385\) −5.75739 9.72967i −0.293424 0.495870i
\(386\) −3.83530 −0.195212
\(387\) 0 0
\(388\) −6.24280 3.18087i −0.316930 0.161484i
\(389\) −4.21993 1.37114i −0.213959 0.0695195i 0.200076 0.979780i \(-0.435881\pi\)
−0.414035 + 0.910261i \(0.635881\pi\)
\(390\) 0 0
\(391\) 5.65199 7.77930i 0.285833 0.393416i
\(392\) −2.12291 4.16644i −0.107223 0.210437i
\(393\) 0 0
\(394\) 6.15139 + 8.46666i 0.309903 + 0.426544i
\(395\) −12.9320 + 0.962884i −0.650679 + 0.0484480i
\(396\) 0 0
\(397\) 6.59354 + 6.59354i 0.330920 + 0.330920i 0.852936 0.522016i \(-0.174820\pi\)
−0.522016 + 0.852936i \(0.674820\pi\)
\(398\) −8.99529 1.42471i −0.450893 0.0714145i
\(399\) 0 0
\(400\) −0.823819 + 4.93167i −0.0411909 + 0.246583i
\(401\) 7.12541 + 5.17691i 0.355826 + 0.258523i 0.751309 0.659951i \(-0.229423\pi\)
−0.395483 + 0.918473i \(0.629423\pi\)
\(402\) 0 0
\(403\) 2.71385 1.38278i 0.135187 0.0688811i
\(404\) 5.44229 + 16.7496i 0.270764 + 0.833326i
\(405\) 0 0
\(406\) 6.90338i 0.342609i
\(407\) 2.14188 4.08940i 0.106169 0.202704i
\(408\) 0 0
\(409\) −14.0728 + 10.2245i −0.695853 + 0.505567i −0.878579 0.477597i \(-0.841508\pi\)
0.182726 + 0.983164i \(0.441508\pi\)
\(410\) 2.16650 5.16861i 0.106996 0.255259i
\(411\) 0 0
\(412\) −0.502512 3.17274i −0.0247570 0.156310i
\(413\) 1.07107 + 6.76247i 0.0527039 + 0.332759i
\(414\) 0 0
\(415\) −1.10563 + 2.63768i −0.0542731 + 0.129479i
\(416\) −0.856394 + 0.622206i −0.0419882 + 0.0305062i
\(417\) 0 0
\(418\) 14.6958 14.3691i 0.718796 0.702818i
\(419\) 16.4015i 0.801265i −0.916239 0.400632i \(-0.868790\pi\)
0.916239 0.400632i \(-0.131210\pi\)
\(420\) 0 0
\(421\) 8.15001 + 25.0832i 0.397207 + 1.22248i 0.927229 + 0.374494i \(0.122184\pi\)
−0.530022 + 0.847984i \(0.677816\pi\)
\(422\) 22.3406 11.3831i 1.08752 0.554121i
\(423\) 0 0
\(424\) 3.07708 + 2.23563i 0.149436 + 0.108572i
\(425\) 6.45866 + 9.04920i 0.313291 + 0.438951i
\(426\) 0 0
\(427\) −8.91727 1.41236i −0.431537 0.0683488i
\(428\) −11.6798 11.6798i −0.564566 0.564566i
\(429\) 0 0
\(430\) −20.2129 + 1.50500i −0.974752 + 0.0725776i
\(431\) 5.58501 + 7.68711i 0.269020 + 0.370275i 0.922059 0.387050i \(-0.126506\pi\)
−0.653038 + 0.757325i \(0.726506\pi\)
\(432\) 0 0
\(433\) 11.3232 + 22.2230i 0.544158 + 1.06797i 0.985348 + 0.170557i \(0.0545566\pi\)
−0.441190 + 0.897414i \(0.645443\pi\)
\(434\) 2.57820 3.54858i 0.123757 0.170338i
\(435\) 0 0
\(436\) −1.79561 0.583428i −0.0859940 0.0279411i
\(437\) −23.8784 12.1667i −1.14226 0.582011i
\(438\) 0 0
\(439\) −1.69115 −0.0807143 −0.0403571 0.999185i \(-0.512850\pi\)
−0.0403571 + 0.999185i \(0.512850\pi\)
\(440\) 2.94363 6.80699i 0.140332 0.324510i
\(441\) 0 0
\(442\) −0.368207 + 2.32477i −0.0175138 + 0.110578i
\(443\) 18.0946 + 9.21964i 0.859698 + 0.438038i 0.827515 0.561444i \(-0.189754\pi\)
0.0321835 + 0.999482i \(0.489754\pi\)
\(444\) 0 0
\(445\) −12.4129 + 20.0654i −0.588426 + 0.951192i
\(446\) −2.93087 + 4.03399i −0.138781 + 0.191015i
\(447\) 0 0
\(448\) −0.692077 + 1.35828i −0.0326976 + 0.0641726i
\(449\) 24.7166 + 34.0195i 1.16645 + 1.60548i 0.683806 + 0.729664i \(0.260323\pi\)
0.482643 + 0.875817i \(0.339677\pi\)
\(450\) 0 0
\(451\) −4.96125 + 6.66964i −0.233616 + 0.314061i
\(452\) −2.82091 2.82091i −0.132684 0.132684i
\(453\) 0 0
\(454\) 1.94088 0.630630i 0.0910900 0.0295969i
\(455\) 0.857150 3.50507i 0.0401838 0.164320i
\(456\) 0 0
\(457\) −9.99618 + 1.58324i −0.467602 + 0.0740608i −0.385789 0.922587i \(-0.626071\pi\)
−0.0818123 + 0.996648i \(0.526071\pi\)
\(458\) 1.35805 0.691961i 0.0634575 0.0323332i
\(459\) 0 0
\(460\) −9.63685 0.799364i −0.449321 0.0372706i
\(461\) 27.4513i 1.27854i 0.768984 + 0.639268i \(0.220763\pi\)
−0.768984 + 0.639268i \(0.779237\pi\)
\(462\) 0 0
\(463\) 12.8080 12.8080i 0.595237 0.595237i −0.343804 0.939041i \(-0.611716\pi\)
0.939041 + 0.343804i \(0.111716\pi\)
\(464\) −3.66363 + 2.66178i −0.170080 + 0.123570i
\(465\) 0 0
\(466\) 6.85697 21.1036i 0.317643 0.977604i
\(467\) 3.41594 + 21.5674i 0.158071 + 0.998021i 0.931395 + 0.364010i \(0.118593\pi\)
−0.773324 + 0.634011i \(0.781407\pi\)
\(468\) 0 0
\(469\) 3.60265 11.0878i 0.166355 0.511988i
\(470\) 3.79989 + 9.28436i 0.175276 + 0.428255i
\(471\) 0 0
\(472\) −3.17587 + 3.17587i −0.146181 + 0.146181i
\(473\) 29.6387 + 5.03639i 1.36279 + 0.231573i
\(474\) 0 0
\(475\) 22.0940 21.7242i 1.01374 0.996777i
\(476\) 1.04745 + 3.22372i 0.0480098 + 0.147759i
\(477\) 0 0
\(478\) 24.4789 3.87708i 1.11964 0.177334i
\(479\) −5.27636 3.83350i −0.241083 0.175157i 0.460683 0.887565i \(-0.347605\pi\)
−0.701766 + 0.712408i \(0.747605\pi\)
\(480\) 0 0
\(481\) 1.40128 0.455305i 0.0638931 0.0207601i
\(482\) 0.0555650 + 0.00880064i 0.00253092 + 0.000400858i
\(483\) 0 0
\(484\) −6.66402 + 8.75162i −0.302910 + 0.397801i
\(485\) 11.8702 + 10.2250i 0.538997 + 0.464294i
\(486\) 0 0
\(487\) 1.33144 2.61310i 0.0603334 0.118411i −0.858871 0.512193i \(-0.828833\pi\)
0.919204 + 0.393782i \(0.128833\pi\)
\(488\) −2.68875 5.27698i −0.121714 0.238878i
\(489\) 0 0
\(490\) 2.39801 + 10.1774i 0.108331 + 0.459768i
\(491\) −12.6664 4.11555i −0.571625 0.185732i 0.00892018 0.999960i \(-0.497161\pi\)
−0.580545 + 0.814228i \(0.697161\pi\)
\(492\) 0 0
\(493\) −1.57518 + 9.94529i −0.0709425 + 0.447913i
\(494\) 6.55996 0.295147
\(495\) 0 0
\(496\) 2.87733 0.129196
\(497\) 2.12193 13.3974i 0.0951818 0.600954i
\(498\) 0 0
\(499\) −22.2265 7.22182i −0.994994 0.323293i −0.234130 0.972205i \(-0.575224\pi\)
−0.760863 + 0.648912i \(0.775224\pi\)
\(500\) 4.40894 10.2743i 0.197174 0.459481i
\(501\) 0 0
\(502\) −3.82436 7.50572i −0.170689 0.334997i
\(503\) −10.5487 + 20.7030i −0.470344 + 0.923103i 0.526972 + 0.849883i \(0.323327\pi\)
−0.997316 + 0.0732197i \(0.976673\pi\)
\(504\) 0 0
\(505\) −2.92410 39.2721i −0.130121 1.74758i
\(506\) 13.5902 + 4.58521i 0.604158 + 0.203837i
\(507\) 0 0
\(508\) 16.7564 + 2.65395i 0.743444 + 0.117750i
\(509\) −21.9064 + 7.11784i −0.970986 + 0.315493i −0.751214 0.660059i \(-0.770531\pi\)
−0.219772 + 0.975551i \(0.570531\pi\)
\(510\) 0 0
\(511\) 14.0676 + 10.2207i 0.622314 + 0.452138i
\(512\) −0.987688 + 0.156434i −0.0436501 + 0.00691349i
\(513\) 0 0
\(514\) 3.24457 + 9.98577i 0.143112 + 0.440454i
\(515\) −0.593772 + 7.15831i −0.0261647 + 0.315433i
\(516\) 0 0
\(517\) −2.16238 14.7217i −0.0951014 0.647460i
\(518\) 1.50037 1.50037i 0.0659223 0.0659223i
\(519\) 0 0
\(520\) 2.19064 0.896582i 0.0960658 0.0393177i
\(521\) 9.62530 29.6236i 0.421692 1.29783i −0.484435 0.874827i \(-0.660975\pi\)
0.906127 0.423007i \(-0.139025\pi\)
\(522\) 0 0
\(523\) −0.813774 5.13797i −0.0355838 0.224668i 0.963488 0.267753i \(-0.0862812\pi\)
−0.999071 + 0.0430856i \(0.986281\pi\)
\(524\) −3.02111 + 9.29801i −0.131978 + 0.406185i
\(525\) 0 0
\(526\) −3.67174 + 2.66768i −0.160096 + 0.116316i
\(527\) 4.52395 4.52395i 0.197067 0.197067i
\(528\) 0 0
\(529\) 4.29842i 0.186888i
\(530\) −5.49611 6.49037i −0.238736 0.281924i
\(531\) 0 0
\(532\) 8.41733 4.28884i 0.364938 0.185945i
\(533\) −2.62043 + 0.415035i −0.113503 + 0.0179772i
\(534\) 0 0
\(535\) 19.1654 + 31.5733i 0.828591 + 1.36503i
\(536\) 7.27342 2.36328i 0.314164 0.102078i
\(537\) 0 0
\(538\) −18.3155 18.3155i −0.789636 0.789636i
\(539\) 0.174297 15.5079i 0.00750749 0.667973i
\(540\) 0 0
\(541\) 7.63567 + 10.5096i 0.328283 + 0.451843i 0.940974 0.338480i \(-0.109913\pi\)
−0.612690 + 0.790323i \(0.709913\pi\)
\(542\) −9.75785 + 19.1509i −0.419135 + 0.822600i
\(543\) 0 0
\(544\) −1.30696 + 1.79888i −0.0560354 + 0.0771262i
\(545\) 3.59027 + 2.22101i 0.153790 + 0.0951378i
\(546\) 0 0
\(547\) 4.19261 + 2.13624i 0.179263 + 0.0913391i 0.541319 0.840817i \(-0.317925\pi\)
−0.362056 + 0.932156i \(0.617925\pi\)
\(548\) 0.386515 2.44036i 0.0165111 0.104247i
\(549\) 0 0
\(550\) −10.0094 + 13.2216i −0.426803 + 0.563773i
\(551\) 28.0634 1.19554
\(552\) 0 0
\(553\) 7.87716 + 4.01362i 0.334971 + 0.170676i
\(554\) 13.0595 + 4.24329i 0.554845 + 0.180280i
\(555\) 0 0
\(556\) −4.41597 + 6.07806i −0.187279 + 0.257767i
\(557\) 14.8729 + 29.1897i 0.630185 + 1.23681i 0.956551 + 0.291564i \(0.0941757\pi\)
−0.326366 + 0.945243i \(0.605824\pi\)
\(558\) 0 0
\(559\) 5.63999 + 7.76278i 0.238546 + 0.328331i
\(560\) 2.22471 2.58266i 0.0940112 0.109137i
\(561\) 0 0
\(562\) −7.00467 7.00467i −0.295474 0.295474i
\(563\) −3.28421 0.520168i −0.138413 0.0219225i 0.0868434 0.996222i \(-0.472322\pi\)
−0.225257 + 0.974299i \(0.572322\pi\)
\(564\) 0 0
\(565\) 4.62881 + 7.62557i 0.194735 + 0.320810i
\(566\) −1.66646 1.21075i −0.0700464 0.0508917i
\(567\) 0 0
\(568\) 7.92816 4.03960i 0.332658 0.169498i
\(569\) −2.18501 6.72478i −0.0916005 0.281917i 0.894752 0.446563i \(-0.147352\pi\)
−0.986353 + 0.164645i \(0.947352\pi\)
\(570\) 0 0
\(571\) 24.2620i 1.01533i 0.861553 + 0.507667i \(0.169492\pi\)
−0.861553 + 0.507667i \(0.830508\pi\)
\(572\) −3.47358 + 0.510212i −0.145238 + 0.0213330i
\(573\) 0 0
\(574\) −3.09102 + 2.24576i −0.129017 + 0.0937362i
\(575\) 20.5073 + 6.85507i 0.855212 + 0.285876i
\(576\) 0 0
\(577\) 1.00746 + 6.36086i 0.0419412 + 0.264806i 0.999744 0.0226195i \(-0.00720062\pi\)
−0.957803 + 0.287426i \(0.907201\pi\)
\(578\) −1.88596 11.9075i −0.0784455 0.495286i
\(579\) 0 0
\(580\) 9.37150 3.83555i 0.389130 0.159263i
\(581\) 1.57744 1.14607i 0.0654430 0.0475471i
\(582\) 0 0
\(583\) 5.60028 + 11.3034i 0.231940 + 0.468141i
\(584\) 11.4066i 0.472007i
\(585\) 0 0
\(586\) 6.06998 + 18.6815i 0.250748 + 0.771724i
\(587\) 4.91253 2.50306i 0.202762 0.103312i −0.349661 0.936876i \(-0.613703\pi\)
0.552423 + 0.833564i \(0.313703\pi\)
\(588\) 0 0
\(589\) −14.4256 10.4808i −0.594395 0.431853i
\(590\) 8.58511 5.21127i 0.353444 0.214544i
\(591\) 0 0
\(592\) 1.37475 + 0.217739i 0.0565019 + 0.00894903i
\(593\) −11.4901 11.4901i −0.471841 0.471841i 0.430669 0.902510i \(-0.358278\pi\)
−0.902510 + 0.430669i \(0.858278\pi\)
\(594\) 0 0
\(595\) −0.562787 7.55850i −0.0230720 0.309868i
\(596\) −0.0195887 0.0269615i −0.000802383 0.00110439i
\(597\) 0 0
\(598\) 2.07827 + 4.07883i 0.0849867 + 0.166796i
\(599\) 24.2507 33.3782i 0.990856 1.36380i 0.0600854 0.998193i \(-0.480863\pi\)
0.930771 0.365603i \(-0.119137\pi\)
\(600\) 0 0
\(601\) 42.1453 + 13.6938i 1.71914 + 0.558583i 0.991812 0.127705i \(-0.0407609\pi\)
0.727330 + 0.686288i \(0.240761\pi\)
\(602\) 12.3121 + 6.27334i 0.501804 + 0.255682i
\(603\) 0 0
\(604\) 21.1850 0.862006
\(605\) 19.1233 15.4694i 0.777471 0.628919i
\(606\) 0 0
\(607\) 2.64036 16.6706i 0.107169 0.676638i −0.874353 0.485290i \(-0.838714\pi\)
0.981522 0.191348i \(-0.0612858\pi\)
\(608\) 5.52162 + 2.81341i 0.223931 + 0.114099i
\(609\) 0 0
\(610\) 3.03718 + 12.8901i 0.122972 + 0.521905i
\(611\) 2.79146 3.84212i 0.112930 0.155435i
\(612\) 0 0
\(613\) −11.0412 + 21.6696i −0.445949 + 0.875225i 0.553162 + 0.833074i \(0.313421\pi\)
−0.999111 + 0.0421512i \(0.986579\pi\)
\(614\) 6.94359 + 9.55703i 0.280221 + 0.385691i
\(615\) 0 0
\(616\) −4.12350 + 2.92567i −0.166141 + 0.117878i
\(617\) 2.46606 + 2.46606i 0.0992799 + 0.0992799i 0.755002 0.655722i \(-0.227636\pi\)
−0.655722 + 0.755002i \(0.727636\pi\)
\(618\) 0 0
\(619\) 28.7652 9.34637i 1.15617 0.375662i 0.332706 0.943031i \(-0.392038\pi\)
0.823464 + 0.567369i \(0.192038\pi\)
\(620\) −6.24974 1.52835i −0.250996 0.0613800i
\(621\) 0 0
\(622\) −13.7346 + 2.17534i −0.550706 + 0.0872233i
\(623\) 14.3323 7.30265i 0.574210 0.292574i
\(624\) 0 0
\(625\) −15.0339 + 19.9745i −0.601355 + 0.798982i
\(626\) 30.1918i 1.20671i
\(627\) 0 0
\(628\) 1.38910 1.38910i 0.0554312 0.0554312i
\(629\) 2.50383 1.81914i 0.0998344 0.0725339i
\(630\) 0 0
\(631\) 9.75833 30.0330i 0.388473 1.19560i −0.545456 0.838139i \(-0.683644\pi\)
0.933929 0.357458i \(-0.116356\pi\)
\(632\) 0.907222 + 5.72797i 0.0360874 + 0.227847i
\(633\) 0 0
\(634\) 9.47527 29.1619i 0.376311 1.15817i
\(635\) −34.9862 14.6650i −1.38839 0.581964i
\(636\) 0 0
\(637\) 3.50014 3.50014i 0.138681 0.138681i
\(638\) −14.8599 + 2.18268i −0.588308 + 0.0864129i
\(639\) 0 0
\(640\) 2.22841 + 0.184844i 0.0880858 + 0.00730661i
\(641\) 1.51513 + 4.66309i 0.0598440 + 0.184181i 0.976509 0.215474i \(-0.0691298\pi\)
−0.916665 + 0.399655i \(0.869130\pi\)
\(642\) 0 0
\(643\) 16.1752 2.56190i 0.637888 0.101031i 0.170890 0.985290i \(-0.445336\pi\)
0.466998 + 0.884259i \(0.345336\pi\)
\(644\) 5.33341 + 3.87495i 0.210166 + 0.152694i
\(645\) 0 0
\(646\) 13.1050 4.25806i 0.515608 0.167531i
\(647\) −42.4816 6.72843i −1.67012 0.264522i −0.751523 0.659707i \(-0.770681\pi\)
−0.918602 + 0.395185i \(0.870681\pi\)
\(648\) 0 0
\(649\) −14.2179 + 4.44366i −0.558102 + 0.174429i
\(650\) −5.23444 + 0.783833i −0.205312 + 0.0307444i
\(651\) 0 0
\(652\) 0.988463 1.93997i 0.0387112 0.0759750i
\(653\) −1.54616 3.03452i −0.0605061 0.118750i 0.858773 0.512356i \(-0.171227\pi\)
−0.919279 + 0.393606i \(0.871227\pi\)
\(654\) 0 0
\(655\) 11.5009 18.5911i 0.449376 0.726416i
\(656\) −2.38365 0.774496i −0.0930660 0.0302390i
\(657\) 0 0
\(658\) 1.06989 6.75499i 0.0417085 0.263337i
\(659\) −1.70430 −0.0663902 −0.0331951 0.999449i \(-0.510568\pi\)
−0.0331951 + 0.999449i \(0.510568\pi\)
\(660\) 0 0
\(661\) −3.81557 −0.148409 −0.0742043 0.997243i \(-0.523642\pi\)
−0.0742043 + 0.997243i \(0.523642\pi\)
\(662\) −2.22953 + 14.0767i −0.0866533 + 0.547108i
\(663\) 0 0
\(664\) 1.21644 + 0.395247i 0.0472072 + 0.0153386i
\(665\) −20.5611 + 4.84461i −0.797324 + 0.187866i
\(666\) 0 0
\(667\) 8.89078 + 17.4491i 0.344252 + 0.675634i
\(668\) −9.73899 + 19.1138i −0.376813 + 0.739537i
\(669\) 0 0
\(670\) −17.0536 + 1.26977i −0.658839 + 0.0490555i
\(671\) 0.220754 19.6414i 0.00852212 0.758249i
\(672\) 0 0
\(673\) −26.0401 4.12434i −1.00377 0.158982i −0.367153 0.930161i \(-0.619667\pi\)
−0.636619 + 0.771179i \(0.719667\pi\)
\(674\) −13.0660 + 4.24541i −0.503285 + 0.163527i
\(675\) 0 0
\(676\) 9.61068 + 6.98256i 0.369641 + 0.268560i
\(677\) −11.6875 + 1.85111i −0.449185 + 0.0711440i −0.376929 0.926242i \(-0.623020\pi\)
−0.0722563 + 0.997386i \(0.523020\pi\)
\(678\) 0 0
\(679\) −3.30057 10.1581i −0.126664 0.389832i
\(680\) 3.79431 3.21305i 0.145505 0.123215i
\(681\) 0 0
\(682\) 8.45367 + 4.42773i 0.323708 + 0.169546i
\(683\) 19.2371 19.2371i 0.736087 0.736087i −0.235731 0.971818i \(-0.575748\pi\)
0.971818 + 0.235731i \(0.0757484\pi\)
\(684\) 0 0
\(685\) −2.13578 + 5.09531i −0.0816040 + 0.194682i
\(686\) 5.50033 16.9283i 0.210003 0.646324i
\(687\) 0 0
\(688\) 1.41800 + 8.95290i 0.0540608 + 0.341326i
\(689\) −1.24417 + 3.82916i −0.0473990 + 0.145879i
\(690\) 0 0
\(691\) −2.86279 + 2.07994i −0.108906 + 0.0791246i −0.640905 0.767620i \(-0.721441\pi\)
0.531999 + 0.846745i \(0.321441\pi\)
\(692\) 9.32909 9.32909i 0.354639 0.354639i
\(693\) 0 0
\(694\) 17.7347i 0.673199i
\(695\) 12.8202 10.8563i 0.486299 0.411803i
\(696\) 0 0
\(697\) −4.96548 + 2.53004i −0.188081 + 0.0958320i
\(698\) 17.5849 2.78517i 0.665596 0.105420i
\(699\) 0 0
\(700\) −6.20404 + 4.42799i −0.234491 + 0.167362i
\(701\) −37.5991 + 12.2167i −1.42010 + 0.461418i −0.915634 0.402013i \(-0.868311\pi\)
−0.504466 + 0.863432i \(0.668311\pi\)
\(702\) 0 0
\(703\) −6.09923 6.09923i −0.230037 0.230037i
\(704\) −3.14258 1.06028i −0.118440 0.0399607i
\(705\) 0 0
\(706\) −10.3053 14.1841i −0.387847 0.533826i
\(707\) −12.1886 + 23.9215i −0.458400 + 0.899660i
\(708\) 0 0
\(709\) −23.7291 + 32.6603i −0.891166 + 1.22658i 0.0820353 + 0.996629i \(0.473858\pi\)
−0.973201 + 0.229955i \(0.926142\pi\)
\(710\) −19.3662 + 4.56307i −0.726800 + 0.171249i
\(711\) 0 0
\(712\) 9.40171 + 4.79041i 0.352344 + 0.179528i
\(713\) 1.94653 12.2899i 0.0728982 0.460261i
\(714\) 0 0
\(715\) 7.81584 + 0.736845i 0.292296 + 0.0275564i
\(716\) 13.5520 0.506461
\(717\) 0 0
\(718\) −6.84740 3.48892i −0.255543 0.130205i
\(719\) 6.32991 + 2.05671i 0.236066 + 0.0767024i 0.424661 0.905353i \(-0.360393\pi\)
−0.188595 + 0.982055i \(0.560393\pi\)
\(720\) 0 0
\(721\) 2.87833 3.96168i 0.107195 0.147541i
\(722\) −8.80903 17.2887i −0.327838 0.643418i
\(723\) 0 0
\(724\) 10.1365 + 13.9517i 0.376720 + 0.518511i
\(725\) −22.3928 + 3.35322i −0.831648 + 0.124535i
\(726\) 0 0
\(727\) 13.3487 + 13.3487i 0.495074 + 0.495074i 0.909901 0.414826i \(-0.136158\pi\)
−0.414826 + 0.909901i \(0.636158\pi\)
\(728\) −1.59384 0.252439i −0.0590715 0.00935600i
\(729\) 0 0
\(730\) 6.05881 24.7758i 0.224247 0.916992i
\(731\) 16.3059 + 11.8469i 0.603096 + 0.438175i
\(732\) 0 0
\(733\) −24.8515 + 12.6624i −0.917909 + 0.467698i −0.848084 0.529861i \(-0.822244\pi\)
−0.0698250 + 0.997559i \(0.522244\pi\)
\(734\) −11.1829 34.4175i −0.412769 1.27037i
\(735\) 0 0
\(736\) 4.32453i 0.159404i
\(737\) 25.0062 + 4.24920i 0.921115 + 0.156521i
\(738\) 0 0
\(739\) −8.88327 + 6.45407i −0.326776 + 0.237417i −0.739061 0.673638i \(-0.764731\pi\)
0.412285 + 0.911055i \(0.364731\pi\)
\(740\) −2.87039 1.20317i −0.105518 0.0442294i
\(741\) 0 0
\(742\) 0.907029 + 5.72675i 0.0332981 + 0.210236i
\(743\) −3.77987 23.8652i −0.138670 0.875527i −0.954711 0.297534i \(-0.903836\pi\)
0.816041 0.577994i \(-0.196164\pi\)
\(744\) 0 0
\(745\) 0.0282267 + 0.0689669i 0.00103415 + 0.00252675i
\(746\) −13.1974 + 9.58850i −0.483193 + 0.351060i
\(747\) 0 0
\(748\) −6.60805 + 3.27395i −0.241614 + 0.119708i
\(749\) 25.1802i 0.920065i
\(750\) 0 0
\(751\) −15.1449 46.6112i −0.552645 1.70087i −0.702082 0.712096i \(-0.747746\pi\)
0.149437 0.988771i \(-0.452254\pi\)
\(752\) 3.99740 2.03678i 0.145770 0.0742737i
\(753\) 0 0
\(754\) −3.87818 2.81766i −0.141235 0.102613i
\(755\) −46.0152 11.2528i −1.67466 0.409532i
\(756\) 0 0
\(757\) −49.9645 7.91360i −1.81599 0.287625i −0.846434 0.532493i \(-0.821255\pi\)
−0.969556 + 0.244869i \(0.921255\pi\)
\(758\) −4.65265 4.65265i −0.168992 0.168992i
\(759\) 0 0
\(760\) −10.4989 9.04381i −0.380836 0.328054i
\(761\) −18.7749 25.8415i −0.680591 0.936753i 0.319350 0.947637i \(-0.396536\pi\)
−0.999941 + 0.0108837i \(0.996536\pi\)
\(762\) 0 0
\(763\) −1.30665 2.56445i −0.0473040 0.0928392i
\(764\) −7.40180 + 10.1877i −0.267788 + 0.368578i
\(765\) 0 0
\(766\) −27.8369 9.04477i −1.00579 0.326801i
\(767\) −4.23618 2.15844i −0.152960 0.0779368i
\(768\) 0 0
\(769\) 41.4875 1.49608 0.748039 0.663655i \(-0.230996\pi\)
0.748039 + 0.663655i \(0.230996\pi\)
\(770\) 10.5105 4.16445i 0.378773 0.150076i
\(771\) 0 0
\(772\) 0.599973 3.78808i 0.0215935 0.136336i
\(773\) 19.4460 + 9.90821i 0.699422 + 0.356373i 0.767272 0.641322i \(-0.221614\pi\)
−0.0678495 + 0.997696i \(0.521614\pi\)
\(774\) 0 0
\(775\) 12.7630 + 6.63934i 0.458461 + 0.238492i
\(776\) 4.11829 5.66834i 0.147838 0.203482i
\(777\) 0 0
\(778\) 2.01440 3.95348i 0.0722197 0.141739i
\(779\) 9.12937 + 12.5655i 0.327094 + 0.450206i
\(780\) 0 0
\(781\) 29.5094 + 0.331662i 1.05593 + 0.0118678i
\(782\) 6.79935 + 6.79935i 0.243144 + 0.243144i
\(783\) 0 0
\(784\) 4.44724 1.44500i 0.158830 0.0516070i
\(785\) −3.75506 + 2.27937i −0.134024 + 0.0813541i
\(786\) 0 0
\(787\) −29.9410 + 4.74219i −1.06728 + 0.169041i −0.665277 0.746596i \(-0.731687\pi\)
−0.402005 + 0.915637i \(0.631687\pi\)
\(788\) −9.32471 + 4.75118i −0.332179 + 0.169254i
\(789\) 0 0
\(790\) 1.07198 12.9234i 0.0381394 0.459794i
\(791\) 6.08151i 0.216234i
\(792\) 0 0
\(793\) 4.43308 4.43308i 0.157423 0.157423i
\(794\) −7.54381 + 5.48090i −0.267720 + 0.194510i
\(795\) 0 0
\(796\) 2.81435 8.66167i 0.0997519 0.307005i
\(797\) −8.39878 53.0278i −0.297500 1.87834i −0.454505 0.890744i \(-0.650184\pi\)
0.157004 0.987598i \(-0.449816\pi\)
\(798\) 0 0
\(799\) 3.08264 9.48739i 0.109056 0.335640i
\(800\) −4.74207 1.58516i −0.167658 0.0560438i
\(801\) 0 0
\(802\) −6.22783 + 6.22783i −0.219912 + 0.219912i
\(803\) −17.5528 + 33.5128i −0.619424 + 1.18264i
\(804\) 0 0
\(805\) −9.52624 11.2496i −0.335756 0.396495i
\(806\) 0.941213 + 2.89676i 0.0331528 + 0.102034i
\(807\) 0 0
\(808\) −17.3948 + 2.75506i −0.611947 + 0.0969228i
\(809\) 25.4737 + 18.5077i 0.895608 + 0.650697i 0.937334 0.348432i \(-0.113286\pi\)
−0.0417260 + 0.999129i \(0.513286\pi\)
\(810\) 0 0
\(811\) −6.48163 + 2.10601i −0.227601 + 0.0739520i −0.420597 0.907247i \(-0.638179\pi\)
0.192996 + 0.981199i \(0.438179\pi\)
\(812\) −6.81839 1.07993i −0.239279 0.0378980i
\(813\) 0 0
\(814\) 3.70399 + 2.75524i 0.129825 + 0.0965710i
\(815\) −3.17746 + 3.68869i −0.111301 + 0.129209i
\(816\) 0 0
\(817\) 25.5021 50.0507i 0.892206 1.75105i
\(818\) −7.89712 15.4990i −0.276116 0.541908i
\(819\) 0 0
\(820\) 4.76606 + 2.94838i 0.166438 + 0.102962i
\(821\) 0.216685 + 0.0704052i 0.00756235 + 0.00245716i 0.312796 0.949820i \(-0.398734\pi\)
−0.305233 + 0.952278i \(0.598734\pi\)
\(822\) 0 0
\(823\) 3.59018 22.6675i 0.125146 0.790139i −0.842661 0.538445i \(-0.819012\pi\)
0.967807 0.251695i \(-0.0809879\pi\)
\(824\) 3.21229 0.111905
\(825\) 0 0
\(826\) −6.84677 −0.238229
\(827\) −6.32782 + 39.9523i −0.220040 + 1.38928i 0.592124 + 0.805847i \(0.298290\pi\)
−0.812164 + 0.583430i \(0.801710\pi\)
\(828\) 0 0
\(829\) −25.8477 8.39841i −0.897726 0.291689i −0.176428 0.984314i \(-0.556454\pi\)
−0.721298 + 0.692625i \(0.756454\pi\)
\(830\) −2.43225 1.50464i −0.0844247 0.0522268i
\(831\) 0 0
\(832\) −0.480577 0.943185i −0.0166610 0.0326990i
\(833\) 4.72036 9.26422i 0.163551 0.320986i
\(834\) 0 0
\(835\) 31.3064 36.3434i 1.08340 1.25772i
\(836\) 11.8933 + 16.7627i 0.411338 + 0.579750i
\(837\) 0 0
\(838\) 16.1996 + 2.56576i 0.559604 + 0.0886326i
\(839\) 20.9575 6.80951i 0.723533 0.235090i 0.0759789 0.997109i \(-0.475792\pi\)
0.647554 + 0.762019i \(0.275792\pi\)
\(840\) 0 0
\(841\) 6.87075 + 4.99189i 0.236922 + 0.172134i
\(842\) −26.0493 + 4.12580i −0.897718 + 0.142185i
\(843\) 0 0
\(844\) 7.74813 + 23.8463i 0.266701 + 0.820823i
\(845\) −17.1661 20.2715i −0.590531 0.697360i
\(846\) 0 0
\(847\) −16.6171 + 2.25030i −0.570969 + 0.0773212i
\(848\) −2.68946 + 2.68946i −0.0923566 + 0.0923566i
\(849\) 0 0
\(850\) −9.94815 + 4.96354i −0.341219 + 0.170248i
\(851\) 1.86005 5.72466i 0.0637619 0.196239i
\(852\) 0 0
\(853\) 5.72190 + 36.1266i 0.195914 + 1.23695i 0.868032 + 0.496508i \(0.165385\pi\)
−0.672118 + 0.740444i \(0.734615\pi\)
\(854\) 2.78994 8.58655i 0.0954697 0.293826i
\(855\) 0 0
\(856\) 13.3632 9.70891i 0.456744 0.331844i
\(857\) 8.98140 8.98140i 0.306799 0.306799i −0.536868 0.843666i \(-0.680393\pi\)
0.843666 + 0.536868i \(0.180393\pi\)
\(858\) 0 0
\(859\) 54.6972i 1.86624i −0.359559 0.933122i \(-0.617073\pi\)
0.359559 0.933122i \(-0.382927\pi\)
\(860\) 1.67552 20.1995i 0.0571348 0.688796i
\(861\) 0 0
\(862\) −8.46615 + 4.31372i −0.288358 + 0.146926i
\(863\) 14.0924 2.23202i 0.479711 0.0759788i 0.0881040 0.996111i \(-0.471919\pi\)
0.391607 + 0.920132i \(0.371919\pi\)
\(864\) 0 0
\(865\) −25.2187 + 15.3081i −0.857462 + 0.520489i
\(866\) −23.7208 + 7.70734i −0.806064 + 0.261906i
\(867\) 0 0
\(868\) 3.10158 + 3.10158i 0.105274 + 0.105274i
\(869\) −6.14895 + 18.2250i −0.208589 + 0.618241i
\(870\) 0 0
\(871\) 4.75846 + 6.54946i 0.161234 + 0.221920i
\(872\) 0.857140 1.68223i 0.0290264 0.0569676i
\(873\) 0 0
\(874\) 15.7523 21.6812i 0.532829 0.733376i
\(875\) 15.8276 6.32249i 0.535070 0.213739i
\(876\) 0 0
\(877\) 13.7086 + 6.98490i 0.462908 + 0.235863i 0.669860 0.742488i \(-0.266354\pi\)
−0.206952 + 0.978351i \(0.566354\pi\)
\(878\) 0.264554 1.67033i 0.00892828 0.0563710i
\(879\) 0 0
\(880\) 6.26270 + 3.97223i 0.211115 + 0.133904i
\(881\) 27.4651 0.925323 0.462662 0.886535i \(-0.346894\pi\)
0.462662 + 0.886535i \(0.346894\pi\)
\(882\) 0 0
\(883\) −48.3824 24.6520i −1.62820 0.829607i −0.998612 0.0526752i \(-0.983225\pi\)
−0.629584 0.776932i \(-0.716775\pi\)
\(884\) −2.23854 0.727347i −0.0752904 0.0244633i
\(885\) 0 0
\(886\) −11.9367 + 16.4295i −0.401023 + 0.551960i
\(887\) 26.8712 + 52.7376i 0.902246 + 1.77076i 0.551111 + 0.834432i \(0.314204\pi\)
0.351134 + 0.936325i \(0.385796\pi\)
\(888\) 0 0
\(889\) 15.2015 + 20.9231i 0.509843 + 0.701738i
\(890\) −17.8766 15.3990i −0.599224 0.516175i
\(891\) 0 0
\(892\) −3.52584 3.52584i −0.118054 0.118054i
\(893\) −27.4601 4.34926i −0.918918 0.145542i
\(894\) 0 0
\(895\) −29.4358 7.19839i −0.983929 0.240616i
\(896\) −1.23329 0.896038i −0.0412014 0.0299345i
\(897\) 0 0
\(898\) −37.4672 + 19.0905i −1.25030 + 0.637058i
\(899\) 4.02649 + 12.3922i 0.134291 + 0.413305i
\(900\) 0 0
\(901\) 8.45716i 0.281749i
\(902\) −5.81141 5.94353i −0.193499 0.197898i
\(903\) 0 0
\(904\) 3.22746 2.34489i 0.107344 0.0779899i
\(905\) −14.6064 35.6882i −0.485534 1.18632i
\(906\) 0 0
\(907\) −2.36980 14.9623i −0.0786880 0.496817i −0.995284 0.0970022i \(-0.969075\pi\)
0.916596 0.399814i \(-0.130925\pi\)
\(908\) 0.319245 + 2.01564i 0.0105945 + 0.0668912i
\(909\) 0 0
\(910\) 3.32782 + 1.39491i 0.110316 + 0.0462408i
\(911\) −5.44856 + 3.95861i −0.180519 + 0.131155i −0.674375 0.738389i \(-0.735587\pi\)
0.493856 + 0.869544i \(0.335587\pi\)
\(912\) 0 0
\(913\) 2.96573 + 3.03315i 0.0981512 + 0.100383i
\(914\) 10.1208i 0.334766i
\(915\) 0 0
\(916\) 0.470996 + 1.44958i 0.0155622 + 0.0478954i
\(917\) −13.2792 + 6.76610i −0.438518 + 0.223436i
\(918\) 0 0
\(919\) 47.2044 + 34.2960i 1.55713 + 1.13132i 0.938315 + 0.345782i \(0.112386\pi\)
0.618813 + 0.785538i \(0.287614\pi\)
\(920\) 2.29706 9.39316i 0.0757318 0.309683i
\(921\) 0 0
\(922\) −27.1134 4.29433i −0.892931 0.141426i
\(923\) 6.66028 + 6.66028i 0.219226 + 0.219226i
\(924\) 0 0
\(925\) 5.59558 + 4.13802i 0.183982 + 0.136057i
\(926\) 10.6467 + 14.6539i 0.349872 + 0.481557i
\(927\) 0 0
\(928\) −2.05589 4.03492i −0.0674881 0.132453i
\(929\) −5.89306 + 8.11110i −0.193345 + 0.266117i −0.894672 0.446723i \(-0.852591\pi\)
0.701327 + 0.712839i \(0.252591\pi\)
\(930\) 0 0
\(931\) −27.5598 8.95473i −0.903237 0.293480i
\(932\) 19.7711 + 10.0739i 0.647624 + 0.329981i
\(933\) 0 0
\(934\) −21.8363 −0.714505
\(935\) 16.0921 3.60124i 0.526269 0.117773i
\(936\) 0 0
\(937\) 6.52746 41.2128i 0.213243 1.34636i −0.616120 0.787652i \(-0.711297\pi\)
0.829363 0.558710i \(-0.188703\pi\)
\(938\) 10.3877 + 5.29282i 0.339172 + 0.172817i
\(939\) 0 0
\(940\) −9.76448 + 2.30071i −0.318482 + 0.0750410i
\(941\) −14.4754 + 19.9237i −0.471885 + 0.649494i −0.976920 0.213605i \(-0.931480\pi\)
0.505035 + 0.863099i \(0.331480\pi\)
\(942\) 0 0
\(943\) −4.92065 + 9.65732i −0.160238 + 0.314486i
\(944\) −2.63995 3.63358i −0.0859232 0.118263i
\(945\) 0 0
\(946\) −9.61089 + 28.4859i −0.312477 + 0.926157i
\(947\) 6.72877 + 6.72877i 0.218656 + 0.218656i 0.807932 0.589276i \(-0.200587\pi\)
−0.589276 + 0.807932i \(0.700587\pi\)
\(948\) 0 0
\(949\) −11.4836 + 3.73124i −0.372772 + 0.121121i
\(950\) 18.0005 + 25.2204i 0.584014 + 0.818259i
\(951\) 0 0
\(952\) −3.34789 + 0.530254i −0.108506 + 0.0171856i
\(953\) 31.2897 15.9429i 1.01357 0.516441i 0.133384 0.991064i \(-0.457416\pi\)
0.880189 + 0.474623i \(0.157416\pi\)
\(954\) 0 0
\(955\) 21.4886 18.1967i 0.695354 0.588833i
\(956\) 24.7841i 0.801574i
\(957\) 0 0
\(958\) 4.61171 4.61171i 0.148998 0.148998i
\(959\) 3.04719 2.21391i 0.0983989 0.0714910i
\(960\) 0 0
\(961\) −7.02117 + 21.6089i −0.226489 + 0.697062i
\(962\) 0.230490 + 1.45526i 0.00743130 + 0.0469194i
\(963\) 0 0
\(964\) −0.0173846 + 0.0535042i −0.000559919 + 0.00172325i
\(965\) −3.31529 + 7.90927i −0.106723 + 0.254608i
\(966\) 0 0
\(967\) −43.6347 + 43.6347i −1.40320 + 1.40320i −0.613512 + 0.789685i \(0.710244\pi\)
−0.789685 + 0.613512i \(0.789756\pi\)
\(968\) −7.60139 7.95103i −0.244318 0.255556i
\(969\) 0 0
\(970\) −11.9560 + 10.1245i −0.383885 + 0.325078i
\(971\) −8.80597 27.1020i −0.282597 0.869744i −0.987109 0.160052i \(-0.948834\pi\)
0.704512 0.709693i \(-0.251166\pi\)
\(972\) 0 0
\(973\) −11.3119 + 1.79163i −0.362642 + 0.0574369i
\(974\) 2.37265 + 1.72383i 0.0760245 + 0.0552350i
\(975\) 0 0
\(976\) 5.63262 1.83015i 0.180296 0.0585817i
\(977\) 51.0116 + 8.07944i 1.63201 + 0.258484i 0.904140 0.427236i \(-0.140513\pi\)
0.727865 + 0.685720i \(0.240513\pi\)
\(978\) 0 0
\(979\) 20.2508 + 28.5420i 0.647219 + 0.912206i
\(980\) −10.4272 + 0.776386i −0.333086 + 0.0248007i
\(981\) 0 0
\(982\) 6.04634 11.8666i 0.192946 0.378679i
\(983\) −24.7809 48.6352i −0.790387 1.55122i −0.833737 0.552161i \(-0.813803\pi\)
0.0433506 0.999060i \(-0.486197\pi\)
\(984\) 0 0
\(985\) 22.7775 5.36686i 0.725753 0.171002i
\(986\) −9.57644 3.11157i −0.304976 0.0990927i
\(987\) 0 0
\(988\) −1.02620 + 6.47920i −0.0326479 + 0.206131i
\(989\) 39.1997 1.24648
\(990\) 0 0
\(991\) 1.67436 0.0531879 0.0265939 0.999646i \(-0.491534\pi\)
0.0265939 + 0.999646i \(0.491534\pi\)
\(992\) −0.450114 + 2.84191i −0.0142911 + 0.0902306i
\(993\) 0 0
\(994\) 12.9005 + 4.19162i 0.409178 + 0.132950i
\(995\) −10.7138 + 17.3188i −0.339649 + 0.549043i
\(996\) 0 0
\(997\) −13.5579 26.6089i −0.429384 0.842713i −0.999772 0.0213379i \(-0.993207\pi\)
0.570389 0.821375i \(-0.306793\pi\)
\(998\) 10.6099 20.8231i 0.335850 0.659143i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.bh.c.217.2 48
3.2 odd 2 110.2.k.a.107.6 yes 48
5.3 odd 4 inner 990.2.bh.c.613.6 48
11.7 odd 10 inner 990.2.bh.c.667.6 48
12.11 even 2 880.2.cm.c.657.1 48
15.2 even 4 550.2.bh.b.393.6 48
15.8 even 4 110.2.k.a.63.1 yes 48
15.14 odd 2 550.2.bh.b.107.1 48
33.29 even 10 110.2.k.a.7.1 48
55.18 even 20 inner 990.2.bh.c.73.2 48
60.23 odd 4 880.2.cm.c.833.6 48
132.95 odd 10 880.2.cm.c.337.6 48
165.29 even 10 550.2.bh.b.7.6 48
165.62 odd 20 550.2.bh.b.293.1 48
165.128 odd 20 110.2.k.a.73.6 yes 48
660.623 even 20 880.2.cm.c.513.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.k.a.7.1 48 33.29 even 10
110.2.k.a.63.1 yes 48 15.8 even 4
110.2.k.a.73.6 yes 48 165.128 odd 20
110.2.k.a.107.6 yes 48 3.2 odd 2
550.2.bh.b.7.6 48 165.29 even 10
550.2.bh.b.107.1 48 15.14 odd 2
550.2.bh.b.293.1 48 165.62 odd 20
550.2.bh.b.393.6 48 15.2 even 4
880.2.cm.c.337.6 48 132.95 odd 10
880.2.cm.c.513.1 48 660.623 even 20
880.2.cm.c.657.1 48 12.11 even 2
880.2.cm.c.833.6 48 60.23 odd 4
990.2.bh.c.73.2 48 55.18 even 20 inner
990.2.bh.c.217.2 48 1.1 even 1 trivial
990.2.bh.c.613.6 48 5.3 odd 4 inner
990.2.bh.c.667.6 48 11.7 odd 10 inner