Properties

Label 880.4.b.h.529.1
Level $880$
Weight $4$
Character 880.529
Analytic conductor $51.922$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,4,Mod(529,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.529");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.9216808051\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.1
Root \(-6.63700i\) of defining polynomial
Character \(\chi\) \(=\) 880.529
Dual form 880.4.b.h.529.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.63700i q^{3} +(11.1511 + 0.807757i) q^{5} -0.978517i q^{7} -47.5977 q^{9} +11.0000 q^{11} +89.2090i q^{13} +(6.97659 - 96.3122i) q^{15} +46.3299i q^{17} +44.2390 q^{19} -8.45144 q^{21} +111.380i q^{23} +(123.695 + 18.0148i) q^{25} +177.902i q^{27} -28.6875 q^{29} -83.6519 q^{31} -95.0070i q^{33} +(0.790404 - 10.9116i) q^{35} +222.770i q^{37} +770.498 q^{39} +421.768 q^{41} +273.936i q^{43} +(-530.768 - 38.4474i) q^{45} +469.468i q^{47} +342.043 q^{49} +400.151 q^{51} +220.572i q^{53} +(122.662 + 8.88533i) q^{55} -382.092i q^{57} -180.884 q^{59} -517.166 q^{61} +46.5752i q^{63} +(-72.0592 + 994.780i) q^{65} +193.831i q^{67} +961.988 q^{69} -1016.64 q^{71} -958.858i q^{73} +(155.594 - 1068.35i) q^{75} -10.7637i q^{77} -567.225 q^{79} +251.405 q^{81} -642.773i q^{83} +(-37.4233 + 516.631i) q^{85} +247.774i q^{87} +1406.68 q^{89} +87.2925 q^{91} +722.501i q^{93} +(493.314 + 35.7343i) q^{95} -342.110i q^{97} -523.575 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 110 q^{9} + 88 q^{11} - 8 q^{15} + 302 q^{19} + 230 q^{21} - 162 q^{25} - 58 q^{29} - 1022 q^{31} + 1058 q^{35} + 320 q^{39} + 452 q^{41} - 622 q^{45} + 222 q^{49} - 834 q^{51} + 176 q^{55}+ \cdots - 1210 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.63700i 1.66219i −0.556130 0.831095i \(-0.687714\pi\)
0.556130 0.831095i \(-0.312286\pi\)
\(4\) 0 0
\(5\) 11.1511 + 0.807757i 0.997387 + 0.0722480i
\(6\) 0 0
\(7\) 0.978517i 0.0528349i −0.999651 0.0264175i \(-0.991590\pi\)
0.999651 0.0264175i \(-0.00840992\pi\)
\(8\) 0 0
\(9\) −47.5977 −1.76288
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 89.2090i 1.90324i 0.307277 + 0.951620i \(0.400582\pi\)
−0.307277 + 0.951620i \(0.599418\pi\)
\(14\) 0 0
\(15\) 6.97659 96.3122i 0.120090 1.65785i
\(16\) 0 0
\(17\) 46.3299i 0.660980i 0.943810 + 0.330490i \(0.107214\pi\)
−0.943810 + 0.330490i \(0.892786\pi\)
\(18\) 0 0
\(19\) 44.2390 0.534164 0.267082 0.963674i \(-0.413941\pi\)
0.267082 + 0.963674i \(0.413941\pi\)
\(20\) 0 0
\(21\) −8.45144 −0.0878217
\(22\) 0 0
\(23\) 111.380i 1.00975i 0.863192 + 0.504876i \(0.168462\pi\)
−0.863192 + 0.504876i \(0.831538\pi\)
\(24\) 0 0
\(25\) 123.695 + 18.0148i 0.989560 + 0.144118i
\(26\) 0 0
\(27\) 177.902i 1.26805i
\(28\) 0 0
\(29\) −28.6875 −0.183694 −0.0918472 0.995773i \(-0.529277\pi\)
−0.0918472 + 0.995773i \(0.529277\pi\)
\(30\) 0 0
\(31\) −83.6519 −0.484655 −0.242328 0.970194i \(-0.577911\pi\)
−0.242328 + 0.970194i \(0.577911\pi\)
\(32\) 0 0
\(33\) 95.0070i 0.501169i
\(34\) 0 0
\(35\) 0.790404 10.9116i 0.00381722 0.0526969i
\(36\) 0 0
\(37\) 222.770i 0.989817i 0.868945 + 0.494909i \(0.164799\pi\)
−0.868945 + 0.494909i \(0.835201\pi\)
\(38\) 0 0
\(39\) 770.498 3.16355
\(40\) 0 0
\(41\) 421.768 1.60656 0.803282 0.595599i \(-0.203085\pi\)
0.803282 + 0.595599i \(0.203085\pi\)
\(42\) 0 0
\(43\) 273.936i 0.971509i 0.874095 + 0.485754i \(0.161455\pi\)
−0.874095 + 0.485754i \(0.838545\pi\)
\(44\) 0 0
\(45\) −530.768 38.4474i −1.75827 0.127364i
\(46\) 0 0
\(47\) 469.468i 1.45700i 0.685046 + 0.728500i \(0.259782\pi\)
−0.685046 + 0.728500i \(0.740218\pi\)
\(48\) 0 0
\(49\) 342.043 0.997208
\(50\) 0 0
\(51\) 400.151 1.09867
\(52\) 0 0
\(53\) 220.572i 0.571657i 0.958281 + 0.285829i \(0.0922688\pi\)
−0.958281 + 0.285829i \(0.907731\pi\)
\(54\) 0 0
\(55\) 122.662 + 8.88533i 0.300723 + 0.0217836i
\(56\) 0 0
\(57\) 382.092i 0.887883i
\(58\) 0 0
\(59\) −180.884 −0.399137 −0.199568 0.979884i \(-0.563954\pi\)
−0.199568 + 0.979884i \(0.563954\pi\)
\(60\) 0 0
\(61\) −517.166 −1.08551 −0.542756 0.839890i \(-0.682619\pi\)
−0.542756 + 0.839890i \(0.682619\pi\)
\(62\) 0 0
\(63\) 46.5752i 0.0931416i
\(64\) 0 0
\(65\) −72.0592 + 994.780i −0.137505 + 1.89827i
\(66\) 0 0
\(67\) 193.831i 0.353436i 0.984261 + 0.176718i \(0.0565481\pi\)
−0.984261 + 0.176718i \(0.943452\pi\)
\(68\) 0 0
\(69\) 961.988 1.67840
\(70\) 0 0
\(71\) −1016.64 −1.69935 −0.849673 0.527311i \(-0.823200\pi\)
−0.849673 + 0.527311i \(0.823200\pi\)
\(72\) 0 0
\(73\) 958.858i 1.53734i −0.639645 0.768670i \(-0.720919\pi\)
0.639645 0.768670i \(-0.279081\pi\)
\(74\) 0 0
\(75\) 155.594 1068.35i 0.239552 1.64484i
\(76\) 0 0
\(77\) 10.7637i 0.0159303i
\(78\) 0 0
\(79\) −567.225 −0.807821 −0.403910 0.914799i \(-0.632349\pi\)
−0.403910 + 0.914799i \(0.632349\pi\)
\(80\) 0 0
\(81\) 251.405 0.344862
\(82\) 0 0
\(83\) 642.773i 0.850043i −0.905183 0.425021i \(-0.860267\pi\)
0.905183 0.425021i \(-0.139733\pi\)
\(84\) 0 0
\(85\) −37.4233 + 516.631i −0.0477545 + 0.659253i
\(86\) 0 0
\(87\) 247.774i 0.305335i
\(88\) 0 0
\(89\) 1406.68 1.67537 0.837687 0.546151i \(-0.183908\pi\)
0.837687 + 0.546151i \(0.183908\pi\)
\(90\) 0 0
\(91\) 87.2925 0.100558
\(92\) 0 0
\(93\) 722.501i 0.805590i
\(94\) 0 0
\(95\) 493.314 + 35.7343i 0.532768 + 0.0385923i
\(96\) 0 0
\(97\) 342.110i 0.358103i −0.983840 0.179052i \(-0.942697\pi\)
0.983840 0.179052i \(-0.0573029\pi\)
\(98\) 0 0
\(99\) −523.575 −0.531528
\(100\) 0 0
\(101\) −1765.24 −1.73909 −0.869546 0.493851i \(-0.835589\pi\)
−0.869546 + 0.493851i \(0.835589\pi\)
\(102\) 0 0
\(103\) 1453.44i 1.39041i 0.718813 + 0.695203i \(0.244686\pi\)
−0.718813 + 0.695203i \(0.755314\pi\)
\(104\) 0 0
\(105\) −94.2431 6.82671i −0.0875922 0.00634494i
\(106\) 0 0
\(107\) 1094.66i 0.989014i −0.869174 0.494507i \(-0.835349\pi\)
0.869174 0.494507i \(-0.164651\pi\)
\(108\) 0 0
\(109\) −3.89452 −0.00342227 −0.00171113 0.999999i \(-0.500545\pi\)
−0.00171113 + 0.999999i \(0.500545\pi\)
\(110\) 0 0
\(111\) 1924.07 1.64527
\(112\) 0 0
\(113\) 1941.77i 1.61652i 0.588829 + 0.808258i \(0.299589\pi\)
−0.588829 + 0.808258i \(0.700411\pi\)
\(114\) 0 0
\(115\) −89.9679 + 1242.01i −0.0729526 + 1.00711i
\(116\) 0 0
\(117\) 4246.14i 3.35518i
\(118\) 0 0
\(119\) 45.3346 0.0349228
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 3642.81i 2.67042i
\(124\) 0 0
\(125\) 1364.79 + 300.801i 0.976562 + 0.215235i
\(126\) 0 0
\(127\) 1604.89i 1.12134i −0.828038 0.560672i \(-0.810543\pi\)
0.828038 0.560672i \(-0.189457\pi\)
\(128\) 0 0
\(129\) 2365.99 1.61483
\(130\) 0 0
\(131\) 1093.94 0.729604 0.364802 0.931085i \(-0.381137\pi\)
0.364802 + 0.931085i \(0.381137\pi\)
\(132\) 0 0
\(133\) 43.2886i 0.0282225i
\(134\) 0 0
\(135\) −143.702 + 1983.81i −0.0916140 + 1.26474i
\(136\) 0 0
\(137\) 1421.29i 0.886344i −0.896437 0.443172i \(-0.853853\pi\)
0.896437 0.443172i \(-0.146147\pi\)
\(138\) 0 0
\(139\) 1508.41 0.920445 0.460222 0.887804i \(-0.347770\pi\)
0.460222 + 0.887804i \(0.347770\pi\)
\(140\) 0 0
\(141\) 4054.80 2.42181
\(142\) 0 0
\(143\) 981.299i 0.573848i
\(144\) 0 0
\(145\) −319.898 23.1725i −0.183214 0.0132715i
\(146\) 0 0
\(147\) 2954.22i 1.65755i
\(148\) 0 0
\(149\) 3090.28 1.69910 0.849550 0.527509i \(-0.176874\pi\)
0.849550 + 0.527509i \(0.176874\pi\)
\(150\) 0 0
\(151\) 1925.90 1.03793 0.518965 0.854795i \(-0.326317\pi\)
0.518965 + 0.854795i \(0.326317\pi\)
\(152\) 0 0
\(153\) 2205.20i 1.16523i
\(154\) 0 0
\(155\) −932.812 67.5704i −0.483389 0.0350154i
\(156\) 0 0
\(157\) 2335.62i 1.18728i −0.804730 0.593640i \(-0.797690\pi\)
0.804730 0.593640i \(-0.202310\pi\)
\(158\) 0 0
\(159\) 1905.08 0.950203
\(160\) 0 0
\(161\) 108.987 0.0533502
\(162\) 0 0
\(163\) 1631.87i 0.784161i −0.919931 0.392080i \(-0.871756\pi\)
0.919931 0.392080i \(-0.128244\pi\)
\(164\) 0 0
\(165\) 76.7425 1059.43i 0.0362085 0.499860i
\(166\) 0 0
\(167\) 92.7954i 0.0429983i 0.999769 + 0.0214992i \(0.00684393\pi\)
−0.999769 + 0.0214992i \(0.993156\pi\)
\(168\) 0 0
\(169\) −5761.24 −2.62232
\(170\) 0 0
\(171\) −2105.67 −0.941666
\(172\) 0 0
\(173\) 820.888i 0.360757i 0.983597 + 0.180378i \(0.0577323\pi\)
−0.983597 + 0.180378i \(0.942268\pi\)
\(174\) 0 0
\(175\) 17.6278 121.038i 0.00761448 0.0522834i
\(176\) 0 0
\(177\) 1562.29i 0.663442i
\(178\) 0 0
\(179\) 3753.53 1.56733 0.783664 0.621184i \(-0.213348\pi\)
0.783664 + 0.621184i \(0.213348\pi\)
\(180\) 0 0
\(181\) −2386.11 −0.979877 −0.489939 0.871757i \(-0.662981\pi\)
−0.489939 + 0.871757i \(0.662981\pi\)
\(182\) 0 0
\(183\) 4466.76i 1.80433i
\(184\) 0 0
\(185\) −179.944 + 2484.14i −0.0715123 + 0.987231i
\(186\) 0 0
\(187\) 509.629i 0.199293i
\(188\) 0 0
\(189\) 174.081 0.0669973
\(190\) 0 0
\(191\) 1157.89 0.438649 0.219324 0.975652i \(-0.429615\pi\)
0.219324 + 0.975652i \(0.429615\pi\)
\(192\) 0 0
\(193\) 1672.44i 0.623756i −0.950122 0.311878i \(-0.899042\pi\)
0.950122 0.311878i \(-0.100958\pi\)
\(194\) 0 0
\(195\) 8591.91 + 622.375i 3.15528 + 0.228560i
\(196\) 0 0
\(197\) 2072.54i 0.749554i −0.927115 0.374777i \(-0.877719\pi\)
0.927115 0.374777i \(-0.122281\pi\)
\(198\) 0 0
\(199\) −3351.65 −1.19393 −0.596966 0.802267i \(-0.703627\pi\)
−0.596966 + 0.802267i \(0.703627\pi\)
\(200\) 0 0
\(201\) 1674.12 0.587479
\(202\) 0 0
\(203\) 28.0712i 0.00970548i
\(204\) 0 0
\(205\) 4703.19 + 340.686i 1.60237 + 0.116071i
\(206\) 0 0
\(207\) 5301.43i 1.78007i
\(208\) 0 0
\(209\) 486.629 0.161057
\(210\) 0 0
\(211\) −1466.51 −0.478477 −0.239238 0.970961i \(-0.576898\pi\)
−0.239238 + 0.970961i \(0.576898\pi\)
\(212\) 0 0
\(213\) 8780.76i 2.82464i
\(214\) 0 0
\(215\) −221.274 + 3054.70i −0.0701896 + 0.968970i
\(216\) 0 0
\(217\) 81.8547i 0.0256067i
\(218\) 0 0
\(219\) −8281.65 −2.55535
\(220\) 0 0
\(221\) −4133.05 −1.25800
\(222\) 0 0
\(223\) 2199.18i 0.660393i 0.943912 + 0.330197i \(0.107115\pi\)
−0.943912 + 0.330197i \(0.892885\pi\)
\(224\) 0 0
\(225\) −5887.60 857.463i −1.74447 0.254063i
\(226\) 0 0
\(227\) 1334.50i 0.390193i −0.980784 0.195097i \(-0.937498\pi\)
0.980784 0.195097i \(-0.0625021\pi\)
\(228\) 0 0
\(229\) 316.001 0.0911876 0.0455938 0.998960i \(-0.485482\pi\)
0.0455938 + 0.998960i \(0.485482\pi\)
\(230\) 0 0
\(231\) −92.9659 −0.0264792
\(232\) 0 0
\(233\) 489.572i 0.137652i −0.997629 0.0688261i \(-0.978075\pi\)
0.997629 0.0688261i \(-0.0219253\pi\)
\(234\) 0 0
\(235\) −379.216 + 5235.10i −0.105265 + 1.45319i
\(236\) 0 0
\(237\) 4899.12i 1.34275i
\(238\) 0 0
\(239\) −3894.02 −1.05390 −0.526952 0.849895i \(-0.676665\pi\)
−0.526952 + 0.849895i \(0.676665\pi\)
\(240\) 0 0
\(241\) −374.939 −0.100216 −0.0501078 0.998744i \(-0.515956\pi\)
−0.0501078 + 0.998744i \(0.515956\pi\)
\(242\) 0 0
\(243\) 2631.99i 0.694823i
\(244\) 0 0
\(245\) 3814.16 + 276.287i 0.994602 + 0.0720463i
\(246\) 0 0
\(247\) 3946.51i 1.01664i
\(248\) 0 0
\(249\) −5551.63 −1.41293
\(250\) 0 0
\(251\) −578.849 −0.145564 −0.0727821 0.997348i \(-0.523188\pi\)
−0.0727821 + 0.997348i \(0.523188\pi\)
\(252\) 0 0
\(253\) 1225.18i 0.304452i
\(254\) 0 0
\(255\) 4462.14 + 323.225i 1.09580 + 0.0793770i
\(256\) 0 0
\(257\) 1498.89i 0.363806i 0.983316 + 0.181903i \(0.0582257\pi\)
−0.983316 + 0.181903i \(0.941774\pi\)
\(258\) 0 0
\(259\) 217.985 0.0522969
\(260\) 0 0
\(261\) 1365.46 0.323831
\(262\) 0 0
\(263\) 4807.78i 1.12723i −0.826039 0.563613i \(-0.809411\pi\)
0.826039 0.563613i \(-0.190589\pi\)
\(264\) 0 0
\(265\) −178.168 + 2459.62i −0.0413011 + 0.570163i
\(266\) 0 0
\(267\) 12149.5i 2.78479i
\(268\) 0 0
\(269\) 2687.00 0.609031 0.304515 0.952507i \(-0.401506\pi\)
0.304515 + 0.952507i \(0.401506\pi\)
\(270\) 0 0
\(271\) 3564.99 0.799106 0.399553 0.916710i \(-0.369165\pi\)
0.399553 + 0.916710i \(0.369165\pi\)
\(272\) 0 0
\(273\) 753.945i 0.167146i
\(274\) 0 0
\(275\) 1360.65 + 198.163i 0.298364 + 0.0434533i
\(276\) 0 0
\(277\) 4414.81i 0.957618i 0.877919 + 0.478809i \(0.158931\pi\)
−0.877919 + 0.478809i \(0.841069\pi\)
\(278\) 0 0
\(279\) 3981.64 0.854389
\(280\) 0 0
\(281\) 1223.49 0.259740 0.129870 0.991531i \(-0.458544\pi\)
0.129870 + 0.991531i \(0.458544\pi\)
\(282\) 0 0
\(283\) 1065.06i 0.223714i 0.993724 + 0.111857i \(0.0356799\pi\)
−0.993724 + 0.111857i \(0.964320\pi\)
\(284\) 0 0
\(285\) 308.637 4260.75i 0.0641477 0.885562i
\(286\) 0 0
\(287\) 412.707i 0.0848827i
\(288\) 0 0
\(289\) 2766.54 0.563106
\(290\) 0 0
\(291\) −2954.80 −0.595236
\(292\) 0 0
\(293\) 1854.51i 0.369766i −0.982761 0.184883i \(-0.940809\pi\)
0.982761 0.184883i \(-0.0591906\pi\)
\(294\) 0 0
\(295\) −2017.06 146.110i −0.398094 0.0288368i
\(296\) 0 0
\(297\) 1956.93i 0.382331i
\(298\) 0 0
\(299\) −9936.08 −1.92180
\(300\) 0 0
\(301\) 268.051 0.0513296
\(302\) 0 0
\(303\) 15246.4i 2.89070i
\(304\) 0 0
\(305\) −5766.98 417.744i −1.08268 0.0784261i
\(306\) 0 0
\(307\) 2022.38i 0.375971i 0.982172 + 0.187985i \(0.0601958\pi\)
−0.982172 + 0.187985i \(0.939804\pi\)
\(308\) 0 0
\(309\) 12553.4 2.31112
\(310\) 0 0
\(311\) −9535.87 −1.73868 −0.869340 0.494214i \(-0.835456\pi\)
−0.869340 + 0.494214i \(0.835456\pi\)
\(312\) 0 0
\(313\) 5724.18i 1.03370i −0.856075 0.516852i \(-0.827104\pi\)
0.856075 0.516852i \(-0.172896\pi\)
\(314\) 0 0
\(315\) −37.6214 + 519.365i −0.00672929 + 0.0928982i
\(316\) 0 0
\(317\) 7425.96i 1.31572i −0.753140 0.657860i \(-0.771462\pi\)
0.753140 0.657860i \(-0.228538\pi\)
\(318\) 0 0
\(319\) −315.563 −0.0553859
\(320\) 0 0
\(321\) −9454.55 −1.64393
\(322\) 0 0
\(323\) 2049.59i 0.353072i
\(324\) 0 0
\(325\) −1607.08 + 11034.7i −0.274292 + 1.88337i
\(326\) 0 0
\(327\) 33.6369i 0.00568846i
\(328\) 0 0
\(329\) 459.383 0.0769805
\(330\) 0 0
\(331\) 2341.24 0.388780 0.194390 0.980924i \(-0.437727\pi\)
0.194390 + 0.980924i \(0.437727\pi\)
\(332\) 0 0
\(333\) 10603.4i 1.74493i
\(334\) 0 0
\(335\) −156.568 + 2161.43i −0.0255351 + 0.352513i
\(336\) 0 0
\(337\) 1651.96i 0.267027i 0.991047 + 0.133514i \(0.0426260\pi\)
−0.991047 + 0.133514i \(0.957374\pi\)
\(338\) 0 0
\(339\) 16771.1 2.68696
\(340\) 0 0
\(341\) −920.171 −0.146129
\(342\) 0 0
\(343\) 670.325i 0.105522i
\(344\) 0 0
\(345\) 10727.2 + 777.052i 1.67402 + 0.121261i
\(346\) 0 0
\(347\) 7450.35i 1.15261i 0.817235 + 0.576305i \(0.195506\pi\)
−0.817235 + 0.576305i \(0.804494\pi\)
\(348\) 0 0
\(349\) 1553.54 0.238278 0.119139 0.992878i \(-0.461987\pi\)
0.119139 + 0.992878i \(0.461987\pi\)
\(350\) 0 0
\(351\) −15870.5 −2.41340
\(352\) 0 0
\(353\) 11352.5i 1.71170i 0.517221 + 0.855852i \(0.326967\pi\)
−0.517221 + 0.855852i \(0.673033\pi\)
\(354\) 0 0
\(355\) −11336.7 821.202i −1.69490 0.122774i
\(356\) 0 0
\(357\) 391.555i 0.0580484i
\(358\) 0 0
\(359\) 4719.79 0.693875 0.346938 0.937888i \(-0.387222\pi\)
0.346938 + 0.937888i \(0.387222\pi\)
\(360\) 0 0
\(361\) −4901.91 −0.714669
\(362\) 0 0
\(363\) 1045.08i 0.151108i
\(364\) 0 0
\(365\) 774.524 10692.3i 0.111070 1.53332i
\(366\) 0 0
\(367\) 8340.57i 1.18631i 0.805090 + 0.593153i \(0.202117\pi\)
−0.805090 + 0.593153i \(0.797883\pi\)
\(368\) 0 0
\(369\) −20075.2 −2.83218
\(370\) 0 0
\(371\) 215.833 0.0302035
\(372\) 0 0
\(373\) 2980.70i 0.413766i 0.978366 + 0.206883i \(0.0663320\pi\)
−0.978366 + 0.206883i \(0.933668\pi\)
\(374\) 0 0
\(375\) 2598.01 11787.7i 0.357762 1.62323i
\(376\) 0 0
\(377\) 2559.18i 0.349614i
\(378\) 0 0
\(379\) 3600.70 0.488010 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(380\) 0 0
\(381\) −13861.4 −1.86389
\(382\) 0 0
\(383\) 1286.00i 0.171571i −0.996314 0.0857853i \(-0.972660\pi\)
0.996314 0.0857853i \(-0.0273399\pi\)
\(384\) 0 0
\(385\) 8.69444 120.027i 0.00115093 0.0158887i
\(386\) 0 0
\(387\) 13038.7i 1.71265i
\(388\) 0 0
\(389\) −7592.64 −0.989620 −0.494810 0.869001i \(-0.664762\pi\)
−0.494810 + 0.869001i \(0.664762\pi\)
\(390\) 0 0
\(391\) −5160.22 −0.667426
\(392\) 0 0
\(393\) 9448.37i 1.21274i
\(394\) 0 0
\(395\) −6325.20 458.180i −0.805710 0.0583634i
\(396\) 0 0
\(397\) 1778.51i 0.224838i −0.993661 0.112419i \(-0.964140\pi\)
0.993661 0.112419i \(-0.0358599\pi\)
\(398\) 0 0
\(399\) −373.883 −0.0469112
\(400\) 0 0
\(401\) 11742.5 1.46233 0.731164 0.682202i \(-0.238977\pi\)
0.731164 + 0.682202i \(0.238977\pi\)
\(402\) 0 0
\(403\) 7462.50i 0.922416i
\(404\) 0 0
\(405\) 2803.44 + 203.074i 0.343961 + 0.0249156i
\(406\) 0 0
\(407\) 2450.48i 0.298441i
\(408\) 0 0
\(409\) −2878.13 −0.347957 −0.173978 0.984749i \(-0.555662\pi\)
−0.173978 + 0.984749i \(0.555662\pi\)
\(410\) 0 0
\(411\) −12275.7 −1.47327
\(412\) 0 0
\(413\) 176.998i 0.0210884i
\(414\) 0 0
\(415\) 519.205 7167.64i 0.0614139 0.847821i
\(416\) 0 0
\(417\) 13028.2i 1.52996i
\(418\) 0 0
\(419\) −7834.84 −0.913501 −0.456750 0.889595i \(-0.650987\pi\)
−0.456750 + 0.889595i \(0.650987\pi\)
\(420\) 0 0
\(421\) −1895.97 −0.219486 −0.109743 0.993960i \(-0.535003\pi\)
−0.109743 + 0.993960i \(0.535003\pi\)
\(422\) 0 0
\(423\) 22345.6i 2.56851i
\(424\) 0 0
\(425\) −834.624 + 5730.78i −0.0952593 + 0.654080i
\(426\) 0 0
\(427\) 506.055i 0.0573530i
\(428\) 0 0
\(429\) 8475.47 0.953846
\(430\) 0 0
\(431\) 8058.24 0.900584 0.450292 0.892881i \(-0.351320\pi\)
0.450292 + 0.892881i \(0.351320\pi\)
\(432\) 0 0
\(433\) 10461.0i 1.16102i 0.814253 + 0.580510i \(0.197147\pi\)
−0.814253 + 0.580510i \(0.802853\pi\)
\(434\) 0 0
\(435\) −200.141 + 2762.96i −0.0220598 + 0.304537i
\(436\) 0 0
\(437\) 4927.33i 0.539374i
\(438\) 0 0
\(439\) 16492.0 1.79298 0.896492 0.443061i \(-0.146107\pi\)
0.896492 + 0.443061i \(0.146107\pi\)
\(440\) 0 0
\(441\) −16280.4 −1.75796
\(442\) 0 0
\(443\) 1914.10i 0.205286i 0.994718 + 0.102643i \(0.0327300\pi\)
−0.994718 + 0.102643i \(0.967270\pi\)
\(444\) 0 0
\(445\) 15686.1 + 1136.26i 1.67100 + 0.121042i
\(446\) 0 0
\(447\) 26690.8i 2.82423i
\(448\) 0 0
\(449\) 6519.69 0.685263 0.342632 0.939470i \(-0.388682\pi\)
0.342632 + 0.939470i \(0.388682\pi\)
\(450\) 0 0
\(451\) 4639.45 0.484397
\(452\) 0 0
\(453\) 16634.0i 1.72524i
\(454\) 0 0
\(455\) 973.409 + 70.5111i 0.100295 + 0.00726508i
\(456\) 0 0
\(457\) 5801.01i 0.593785i 0.954911 + 0.296892i \(0.0959502\pi\)
−0.954911 + 0.296892i \(0.904050\pi\)
\(458\) 0 0
\(459\) −8242.21 −0.838155
\(460\) 0 0
\(461\) −6575.41 −0.664311 −0.332155 0.943225i \(-0.607776\pi\)
−0.332155 + 0.943225i \(0.607776\pi\)
\(462\) 0 0
\(463\) 6527.03i 0.655155i −0.944824 0.327577i \(-0.893768\pi\)
0.944824 0.327577i \(-0.106232\pi\)
\(464\) 0 0
\(465\) −583.605 + 8056.70i −0.0582022 + 0.803485i
\(466\) 0 0
\(467\) 15800.2i 1.56562i 0.622258 + 0.782812i \(0.286216\pi\)
−0.622258 + 0.782812i \(0.713784\pi\)
\(468\) 0 0
\(469\) 189.667 0.0186738
\(470\) 0 0
\(471\) −20172.8 −1.97349
\(472\) 0 0
\(473\) 3013.30i 0.292921i
\(474\) 0 0
\(475\) 5472.14 + 796.956i 0.528588 + 0.0769828i
\(476\) 0 0
\(477\) 10498.7i 1.00776i
\(478\) 0 0
\(479\) −3788.84 −0.361412 −0.180706 0.983537i \(-0.557838\pi\)
−0.180706 + 0.983537i \(0.557838\pi\)
\(480\) 0 0
\(481\) −19873.1 −1.88386
\(482\) 0 0
\(483\) 941.321i 0.0886782i
\(484\) 0 0
\(485\) 276.342 3814.91i 0.0258722 0.357167i
\(486\) 0 0
\(487\) 10097.7i 0.939570i −0.882781 0.469785i \(-0.844331\pi\)
0.882781 0.469785i \(-0.155669\pi\)
\(488\) 0 0
\(489\) −14094.5 −1.30342
\(490\) 0 0
\(491\) 4335.49 0.398488 0.199244 0.979950i \(-0.436151\pi\)
0.199244 + 0.979950i \(0.436151\pi\)
\(492\) 0 0
\(493\) 1329.09i 0.121418i
\(494\) 0 0
\(495\) −5838.45 422.921i −0.530139 0.0384018i
\(496\) 0 0
\(497\) 994.804i 0.0897848i
\(498\) 0 0
\(499\) 20837.6 1.86938 0.934690 0.355463i \(-0.115677\pi\)
0.934690 + 0.355463i \(0.115677\pi\)
\(500\) 0 0
\(501\) 801.474 0.0714714
\(502\) 0 0
\(503\) 9933.90i 0.880578i 0.897856 + 0.440289i \(0.145124\pi\)
−0.897856 + 0.440289i \(0.854876\pi\)
\(504\) 0 0
\(505\) −19684.5 1425.89i −1.73455 0.125646i
\(506\) 0 0
\(507\) 49759.8i 4.35880i
\(508\) 0 0
\(509\) 5123.45 0.446155 0.223078 0.974801i \(-0.428390\pi\)
0.223078 + 0.974801i \(0.428390\pi\)
\(510\) 0 0
\(511\) −938.258 −0.0812253
\(512\) 0 0
\(513\) 7870.22i 0.677347i
\(514\) 0 0
\(515\) −1174.03 + 16207.5i −0.100454 + 1.38677i
\(516\) 0 0
\(517\) 5164.15i 0.439302i
\(518\) 0 0
\(519\) 7090.01 0.599647
\(520\) 0 0
\(521\) −11977.7 −1.00720 −0.503602 0.863936i \(-0.667992\pi\)
−0.503602 + 0.863936i \(0.667992\pi\)
\(522\) 0 0
\(523\) 2907.10i 0.243056i −0.992588 0.121528i \(-0.961221\pi\)
0.992588 0.121528i \(-0.0387795\pi\)
\(524\) 0 0
\(525\) −1045.40 152.251i −0.0869049 0.0126567i
\(526\) 0 0
\(527\) 3875.58i 0.320348i
\(528\) 0 0
\(529\) −238.475 −0.0196001
\(530\) 0 0
\(531\) 8609.66 0.703630
\(532\) 0 0
\(533\) 37625.5i 3.05768i
\(534\) 0 0
\(535\) 884.217 12206.7i 0.0714543 0.986430i
\(536\) 0 0
\(537\) 32419.2i 2.60520i
\(538\) 0 0
\(539\) 3762.47 0.300670
\(540\) 0 0
\(541\) 19670.0 1.56317 0.781587 0.623796i \(-0.214410\pi\)
0.781587 + 0.623796i \(0.214410\pi\)
\(542\) 0 0
\(543\) 20608.8i 1.62874i
\(544\) 0 0
\(545\) −43.4282 3.14582i −0.00341332 0.000247252i
\(546\) 0 0
\(547\) 13942.0i 1.08980i 0.838503 + 0.544898i \(0.183431\pi\)
−0.838503 + 0.544898i \(0.816569\pi\)
\(548\) 0 0
\(549\) 24615.9 1.91363
\(550\) 0 0
\(551\) −1269.11 −0.0981229
\(552\) 0 0
\(553\) 555.039i 0.0426811i
\(554\) 0 0
\(555\) 21455.5 + 1554.18i 1.64097 + 0.118867i
\(556\) 0 0
\(557\) 16663.1i 1.26757i −0.773507 0.633787i \(-0.781499\pi\)
0.773507 0.633787i \(-0.218501\pi\)
\(558\) 0 0
\(559\) −24437.6 −1.84901
\(560\) 0 0
\(561\) 4401.67 0.331263
\(562\) 0 0
\(563\) 18078.7i 1.35333i −0.736290 0.676666i \(-0.763424\pi\)
0.736290 0.676666i \(-0.236576\pi\)
\(564\) 0 0
\(565\) −1568.48 + 21652.9i −0.116790 + 1.61229i
\(566\) 0 0
\(567\) 246.004i 0.0182208i
\(568\) 0 0
\(569\) −13257.7 −0.976789 −0.488394 0.872623i \(-0.662417\pi\)
−0.488394 + 0.872623i \(0.662417\pi\)
\(570\) 0 0
\(571\) −26187.8 −1.91931 −0.959656 0.281178i \(-0.909275\pi\)
−0.959656 + 0.281178i \(0.909275\pi\)
\(572\) 0 0
\(573\) 10000.7i 0.729118i
\(574\) 0 0
\(575\) −2006.49 + 13777.1i −0.145524 + 0.999211i
\(576\) 0 0
\(577\) 3405.70i 0.245721i −0.992424 0.122861i \(-0.960793\pi\)
0.992424 0.122861i \(-0.0392069\pi\)
\(578\) 0 0
\(579\) −14444.9 −1.03680
\(580\) 0 0
\(581\) −628.964 −0.0449119
\(582\) 0 0
\(583\) 2426.29i 0.172361i
\(584\) 0 0
\(585\) 3429.85 47349.3i 0.242405 3.34641i
\(586\) 0 0
\(587\) 17944.4i 1.26175i 0.775885 + 0.630874i \(0.217304\pi\)
−0.775885 + 0.630874i \(0.782696\pi\)
\(588\) 0 0
\(589\) −3700.67 −0.258886
\(590\) 0 0
\(591\) −17900.5 −1.24590
\(592\) 0 0
\(593\) 8166.27i 0.565512i 0.959192 + 0.282756i \(0.0912487\pi\)
−0.959192 + 0.282756i \(0.908751\pi\)
\(594\) 0 0
\(595\) 505.532 + 36.6193i 0.0348316 + 0.00252310i
\(596\) 0 0
\(597\) 28948.2i 1.98454i
\(598\) 0 0
\(599\) −14949.2 −1.01971 −0.509855 0.860260i \(-0.670301\pi\)
−0.509855 + 0.860260i \(0.670301\pi\)
\(600\) 0 0
\(601\) 21067.5 1.42989 0.714944 0.699181i \(-0.246452\pi\)
0.714944 + 0.699181i \(0.246452\pi\)
\(602\) 0 0
\(603\) 9225.92i 0.623065i
\(604\) 0 0
\(605\) 1349.29 + 97.7386i 0.0906715 + 0.00656800i
\(606\) 0 0
\(607\) 3367.68i 0.225189i 0.993641 + 0.112595i \(0.0359161\pi\)
−0.993641 + 0.112595i \(0.964084\pi\)
\(608\) 0 0
\(609\) 242.451 0.0161324
\(610\) 0 0
\(611\) −41880.8 −2.77302
\(612\) 0 0
\(613\) 24536.6i 1.61668i −0.588715 0.808341i \(-0.700366\pi\)
0.588715 0.808341i \(-0.299634\pi\)
\(614\) 0 0
\(615\) 2942.51 40621.4i 0.192932 2.66344i
\(616\) 0 0
\(617\) 14937.9i 0.974682i 0.873212 + 0.487341i \(0.162033\pi\)
−0.873212 + 0.487341i \(0.837967\pi\)
\(618\) 0 0
\(619\) 12094.4 0.785326 0.392663 0.919682i \(-0.371554\pi\)
0.392663 + 0.919682i \(0.371554\pi\)
\(620\) 0 0
\(621\) −19814.8 −1.28042
\(622\) 0 0
\(623\) 1376.46i 0.0885182i
\(624\) 0 0
\(625\) 14975.9 + 4456.68i 0.958460 + 0.285228i
\(626\) 0 0
\(627\) 4203.01i 0.267707i
\(628\) 0 0
\(629\) −10320.9 −0.654249
\(630\) 0 0
\(631\) 27940.5 1.76275 0.881375 0.472418i \(-0.156619\pi\)
0.881375 + 0.472418i \(0.156619\pi\)
\(632\) 0 0
\(633\) 12666.2i 0.795320i
\(634\) 0 0
\(635\) 1296.36 17896.3i 0.0810149 1.11841i
\(636\) 0 0
\(637\) 30513.3i 1.89793i
\(638\) 0 0
\(639\) 48390.0 2.99574
\(640\) 0 0
\(641\) −11648.8 −0.717787 −0.358894 0.933378i \(-0.616846\pi\)
−0.358894 + 0.933378i \(0.616846\pi\)
\(642\) 0 0
\(643\) 16950.2i 1.03958i −0.854293 0.519791i \(-0.826010\pi\)
0.854293 0.519791i \(-0.173990\pi\)
\(644\) 0 0
\(645\) 26383.4 + 1911.14i 1.61061 + 0.116668i
\(646\) 0 0
\(647\) 2182.00i 0.132586i 0.997800 + 0.0662930i \(0.0211172\pi\)
−0.997800 + 0.0662930i \(0.978883\pi\)
\(648\) 0 0
\(649\) −1989.72 −0.120344
\(650\) 0 0
\(651\) 706.979 0.0425633
\(652\) 0 0
\(653\) 218.057i 0.0130677i −0.999979 0.00653387i \(-0.997920\pi\)
0.999979 0.00653387i \(-0.00207981\pi\)
\(654\) 0 0
\(655\) 12198.7 + 883.639i 0.727697 + 0.0527124i
\(656\) 0 0
\(657\) 45639.5i 2.71014i
\(658\) 0 0
\(659\) 26262.6 1.55242 0.776209 0.630475i \(-0.217140\pi\)
0.776209 + 0.630475i \(0.217140\pi\)
\(660\) 0 0
\(661\) 25877.8 1.52274 0.761368 0.648319i \(-0.224528\pi\)
0.761368 + 0.648319i \(0.224528\pi\)
\(662\) 0 0
\(663\) 35697.1i 2.09104i
\(664\) 0 0
\(665\) 34.9666 482.716i 0.00203902 0.0281488i
\(666\) 0 0
\(667\) 3195.21i 0.185486i
\(668\) 0 0
\(669\) 18994.3 1.09770
\(670\) 0 0
\(671\) −5688.82 −0.327294
\(672\) 0 0
\(673\) 5075.20i 0.290691i −0.989381 0.145345i \(-0.953571\pi\)
0.989381 0.145345i \(-0.0464293\pi\)
\(674\) 0 0
\(675\) −3204.88 + 22005.7i −0.182749 + 1.25481i
\(676\) 0 0
\(677\) 15208.4i 0.863377i 0.902023 + 0.431688i \(0.142082\pi\)
−0.902023 + 0.431688i \(0.857918\pi\)
\(678\) 0 0
\(679\) −334.760 −0.0189204
\(680\) 0 0
\(681\) −11526.1 −0.648576
\(682\) 0 0
\(683\) 12739.6i 0.713718i −0.934158 0.356859i \(-0.883848\pi\)
0.934158 0.356859i \(-0.116152\pi\)
\(684\) 0 0
\(685\) 1148.06 15849.0i 0.0640366 0.884028i
\(686\) 0 0
\(687\) 2729.30i 0.151571i
\(688\) 0 0
\(689\) −19677.0 −1.08800
\(690\) 0 0
\(691\) 24964.7 1.37439 0.687195 0.726473i \(-0.258842\pi\)
0.687195 + 0.726473i \(0.258842\pi\)
\(692\) 0 0
\(693\) 512.327i 0.0280832i
\(694\) 0 0
\(695\) 16820.5 + 1218.43i 0.918040 + 0.0665003i
\(696\) 0 0
\(697\) 19540.5i 1.06191i
\(698\) 0 0
\(699\) −4228.43 −0.228804
\(700\) 0 0
\(701\) 13561.1 0.730662 0.365331 0.930878i \(-0.380956\pi\)
0.365331 + 0.930878i \(0.380956\pi\)
\(702\) 0 0
\(703\) 9855.14i 0.528725i
\(704\) 0 0
\(705\) 45215.5 + 3275.29i 2.41548 + 0.174971i
\(706\) 0 0
\(707\) 1727.32i 0.0918848i
\(708\) 0 0
\(709\) 1963.83 0.104024 0.0520121 0.998646i \(-0.483437\pi\)
0.0520121 + 0.998646i \(0.483437\pi\)
\(710\) 0 0
\(711\) 26998.6 1.42409
\(712\) 0 0
\(713\) 9317.13i 0.489382i
\(714\) 0 0
\(715\) −792.651 + 10942.6i −0.0414594 + 0.572349i
\(716\) 0 0
\(717\) 33632.6i 1.75179i
\(718\) 0 0
\(719\) −17304.4 −0.897558 −0.448779 0.893643i \(-0.648141\pi\)
−0.448779 + 0.893643i \(0.648141\pi\)
\(720\) 0 0
\(721\) 1422.22 0.0734620
\(722\) 0 0
\(723\) 3238.35i 0.166577i
\(724\) 0 0
\(725\) −3548.50 516.799i −0.181777 0.0264737i
\(726\) 0 0
\(727\) 32160.5i 1.64067i 0.571883 + 0.820335i \(0.306213\pi\)
−0.571883 + 0.820335i \(0.693787\pi\)
\(728\) 0 0
\(729\) 29520.4 1.49979
\(730\) 0 0
\(731\) −12691.4 −0.642148
\(732\) 0 0
\(733\) 33231.1i 1.67451i −0.546809 0.837257i \(-0.684158\pi\)
0.546809 0.837257i \(-0.315842\pi\)
\(734\) 0 0
\(735\) 2386.29 32942.9i 0.119755 1.65322i
\(736\) 0 0
\(737\) 2132.14i 0.106565i
\(738\) 0 0
\(739\) −12842.4 −0.639262 −0.319631 0.947542i \(-0.603559\pi\)
−0.319631 + 0.947542i \(0.603559\pi\)
\(740\) 0 0
\(741\) 34086.0 1.68985
\(742\) 0 0
\(743\) 8287.91i 0.409225i −0.978843 0.204612i \(-0.934407\pi\)
0.978843 0.204612i \(-0.0655934\pi\)
\(744\) 0 0
\(745\) 34460.1 + 2496.20i 1.69466 + 0.122756i
\(746\) 0 0
\(747\) 30594.5i 1.49852i
\(748\) 0 0
\(749\) −1071.14 −0.0522545
\(750\) 0 0
\(751\) −13051.5 −0.634163 −0.317081 0.948398i \(-0.602703\pi\)
−0.317081 + 0.948398i \(0.602703\pi\)
\(752\) 0 0
\(753\) 4999.52i 0.241956i
\(754\) 0 0
\(755\) 21475.9 + 1555.66i 1.03522 + 0.0749884i
\(756\) 0 0
\(757\) 23237.5i 1.11570i −0.829943 0.557848i \(-0.811627\pi\)
0.829943 0.557848i \(-0.188373\pi\)
\(758\) 0 0
\(759\) 10581.9 0.506057
\(760\) 0 0
\(761\) −10557.8 −0.502919 −0.251460 0.967868i \(-0.580911\pi\)
−0.251460 + 0.967868i \(0.580911\pi\)
\(762\) 0 0
\(763\) 3.81085i 0.000180815i
\(764\) 0 0
\(765\) 1781.26 24590.4i 0.0841853 1.16218i
\(766\) 0 0
\(767\) 16136.5i 0.759653i
\(768\) 0 0
\(769\) 23640.8 1.10859 0.554297 0.832319i \(-0.312987\pi\)
0.554297 + 0.832319i \(0.312987\pi\)
\(770\) 0 0
\(771\) 12945.9 0.604715
\(772\) 0 0
\(773\) 24827.7i 1.15523i −0.816311 0.577613i \(-0.803984\pi\)
0.816311 0.577613i \(-0.196016\pi\)
\(774\) 0 0
\(775\) −10347.3 1506.97i −0.479596 0.0698477i
\(776\) 0 0
\(777\) 1882.73i 0.0869275i
\(778\) 0 0
\(779\) 18658.6 0.858169
\(780\) 0 0
\(781\) −11183.1 −0.512372
\(782\) 0 0
\(783\) 5103.58i 0.232934i
\(784\) 0 0
\(785\) 1886.62 26044.8i 0.0857786 1.18418i
\(786\) 0 0
\(787\) 16933.3i 0.766972i −0.923547 0.383486i \(-0.874723\pi\)
0.923547 0.383486i \(-0.125277\pi\)
\(788\) 0 0
\(789\) −41524.8 −1.87366
\(790\) 0 0
\(791\) 1900.05 0.0854085
\(792\) 0 0
\(793\) 46135.8i 2.06599i
\(794\) 0 0
\(795\) 21243.7 + 1538.84i 0.947720 + 0.0686503i
\(796\) 0 0
\(797\) 1234.97i 0.0548871i −0.999623 0.0274436i \(-0.991263\pi\)
0.999623 0.0274436i \(-0.00873665\pi\)
\(798\) 0 0
\(799\) −21750.4 −0.963048
\(800\) 0 0
\(801\) −66955.0 −2.95348
\(802\) 0 0
\(803\) 10547.4i 0.463526i
\(804\) 0 0
\(805\) 1215.33 + 88.0350i 0.0532108 + 0.00385444i
\(806\) 0 0
\(807\) 23207.6i 1.01233i
\(808\) 0 0
\(809\) 3622.10 0.157412 0.0787059 0.996898i \(-0.474921\pi\)
0.0787059 + 0.996898i \(0.474921\pi\)
\(810\) 0 0
\(811\) 5976.02 0.258750 0.129375 0.991596i \(-0.458703\pi\)
0.129375 + 0.991596i \(0.458703\pi\)
\(812\) 0 0
\(813\) 30790.8i 1.32827i
\(814\) 0 0
\(815\) 1318.16 18197.2i 0.0566540 0.782111i
\(816\) 0 0
\(817\) 12118.7i 0.518945i
\(818\) 0 0
\(819\) −4154.92 −0.177271
\(820\) 0 0
\(821\) −17550.7 −0.746069 −0.373035 0.927817i \(-0.621683\pi\)
−0.373035 + 0.927817i \(0.621683\pi\)
\(822\) 0 0
\(823\) 11061.6i 0.468509i 0.972175 + 0.234254i \(0.0752649\pi\)
−0.972175 + 0.234254i \(0.924735\pi\)
\(824\) 0 0
\(825\) 1711.53 11751.9i 0.0722277 0.495937i
\(826\) 0 0
\(827\) 18647.8i 0.784096i −0.919945 0.392048i \(-0.871767\pi\)
0.919945 0.392048i \(-0.128233\pi\)
\(828\) 0 0
\(829\) 22790.7 0.954828 0.477414 0.878679i \(-0.341574\pi\)
0.477414 + 0.878679i \(0.341574\pi\)
\(830\) 0 0
\(831\) 38130.7 1.59174
\(832\) 0 0
\(833\) 15846.8i 0.659135i
\(834\) 0 0
\(835\) −74.9561 + 1034.77i −0.00310654 + 0.0428860i
\(836\) 0 0
\(837\) 14881.9i 0.614567i
\(838\) 0 0
\(839\) 4391.21 0.180693 0.0903465 0.995910i \(-0.471203\pi\)
0.0903465 + 0.995910i \(0.471203\pi\)
\(840\) 0 0
\(841\) −23566.0 −0.966256
\(842\) 0 0
\(843\) 10567.2i 0.431738i
\(844\) 0 0
\(845\) −64244.3 4653.68i −2.61547 0.189457i
\(846\) 0 0
\(847\) 118.401i 0.00480318i
\(848\) 0 0
\(849\) 9198.91 0.371856
\(850\) 0 0
\(851\) −24812.1 −0.999471
\(852\) 0 0
\(853\) 24829.8i 0.996668i −0.866985 0.498334i \(-0.833945\pi\)
0.866985 0.498334i \(-0.166055\pi\)
\(854\) 0 0
\(855\) −23480.6 1700.87i −0.939206 0.0680335i
\(856\) 0 0
\(857\) 31142.7i 1.24132i −0.784079 0.620661i \(-0.786864\pi\)
0.784079 0.620661i \(-0.213136\pi\)
\(858\) 0 0
\(859\) 12063.2 0.479151 0.239575 0.970878i \(-0.422992\pi\)
0.239575 + 0.970878i \(0.422992\pi\)
\(860\) 0 0
\(861\) −3564.55 −0.141091
\(862\) 0 0
\(863\) 31698.6i 1.25033i 0.780494 + 0.625164i \(0.214968\pi\)
−0.780494 + 0.625164i \(0.785032\pi\)
\(864\) 0 0
\(865\) −663.078 + 9153.82i −0.0260640 + 0.359814i
\(866\) 0 0
\(867\) 23894.6i 0.935989i
\(868\) 0 0
\(869\) −6239.48 −0.243567
\(870\) 0 0
\(871\) −17291.5 −0.672674
\(872\) 0 0
\(873\) 16283.7i 0.631292i
\(874\) 0 0
\(875\) 294.338 1335.47i 0.0113719 0.0515966i
\(876\) 0 0
\(877\) 29044.8i 1.11833i −0.829057 0.559164i \(-0.811122\pi\)
0.829057 0.559164i \(-0.188878\pi\)
\(878\) 0 0
\(879\) −16017.4 −0.614622
\(880\) 0 0
\(881\) 17026.4 0.651116 0.325558 0.945522i \(-0.394448\pi\)
0.325558 + 0.945522i \(0.394448\pi\)
\(882\) 0 0
\(883\) 22720.2i 0.865909i −0.901416 0.432954i \(-0.857471\pi\)
0.901416 0.432954i \(-0.142529\pi\)
\(884\) 0 0
\(885\) −1261.95 + 17421.3i −0.0479323 + 0.661708i
\(886\) 0 0
\(887\) 32966.9i 1.24794i 0.781450 + 0.623968i \(0.214480\pi\)
−0.781450 + 0.623968i \(0.785520\pi\)
\(888\) 0 0
\(889\) −1570.41 −0.0592462
\(890\) 0 0
\(891\) 2765.45 0.103980
\(892\) 0 0
\(893\) 20768.8i 0.778277i
\(894\) 0 0
\(895\) 41856.0 + 3031.94i 1.56323 + 0.113236i
\(896\) 0 0
\(897\) 85817.9i 3.19440i
\(898\) 0 0
\(899\) 2399.76 0.0890284
\(900\) 0 0
\(901\) −10219.1 −0.377854
\(902\) 0 0
\(903\) 2315.16i 0.0853196i
\(904\) 0 0
\(905\) −26607.7 1927.39i −0.977317 0.0707942i
\(906\) 0 0
\(907\) 8561.99i 0.313447i −0.987643 0.156723i \(-0.949907\pi\)
0.987643 0.156723i \(-0.0500931\pi\)
\(908\) 0 0
\(909\) 84021.6 3.06581
\(910\) 0 0
\(911\) −21637.2 −0.786909 −0.393454 0.919344i \(-0.628720\pi\)
−0.393454 + 0.919344i \(0.628720\pi\)
\(912\) 0 0
\(913\) 7070.51i 0.256297i
\(914\) 0 0
\(915\) −3608.06 + 49809.4i −0.130359 + 1.79961i
\(916\) 0 0
\(917\) 1070.44i 0.0385486i
\(918\) 0 0
\(919\) 35544.0 1.27583 0.637915 0.770107i \(-0.279797\pi\)
0.637915 + 0.770107i \(0.279797\pi\)
\(920\) 0 0
\(921\) 17467.3 0.624935
\(922\) 0 0
\(923\) 90693.8i 3.23426i
\(924\) 0 0
\(925\) −4013.16 + 27555.6i −0.142651 + 0.979484i
\(926\) 0 0
\(927\) 69180.5i 2.45112i
\(928\) 0 0
\(929\) −20189.4 −0.713016 −0.356508 0.934292i \(-0.616033\pi\)
−0.356508 + 0.934292i \(0.616033\pi\)
\(930\) 0 0
\(931\) 15131.6 0.532673
\(932\) 0 0
\(933\) 82361.3i 2.89002i
\(934\) 0 0
\(935\) −411.657 + 5682.94i −0.0143985 + 0.198772i
\(936\) 0 0
\(937\) 11852.5i 0.413237i −0.978422 0.206619i \(-0.933754\pi\)
0.978422 0.206619i \(-0.0662460\pi\)
\(938\) 0 0
\(939\) −49439.7 −1.71821
\(940\) 0 0
\(941\) −22307.5 −0.772798 −0.386399 0.922332i \(-0.626281\pi\)
−0.386399 + 0.922332i \(0.626281\pi\)
\(942\) 0 0
\(943\) 46976.5i 1.62223i
\(944\) 0 0
\(945\) 1941.19 + 140.615i 0.0668222 + 0.00484042i
\(946\) 0 0
\(947\) 27787.3i 0.953501i −0.879039 0.476750i \(-0.841815\pi\)
0.879039 0.476750i \(-0.158185\pi\)
\(948\) 0 0
\(949\) 85538.7 2.92593
\(950\) 0 0
\(951\) −64138.0 −2.18698
\(952\) 0 0
\(953\) 13506.2i 0.459086i −0.973298 0.229543i \(-0.926277\pi\)
0.973298 0.229543i \(-0.0737232\pi\)
\(954\) 0 0
\(955\) 12911.8 + 935.293i 0.437503 + 0.0316915i
\(956\) 0 0
\(957\) 2725.51i 0.0920620i
\(958\) 0 0
\(959\) −1390.76 −0.0468299
\(960\) 0 0
\(961\) −22793.4 −0.765109
\(962\) 0 0
\(963\) 52103.2i 1.74351i
\(964\) 0 0
\(965\) 1350.93 18649.6i 0.0450651 0.622126i
\(966\) 0 0
\(967\) 45849.6i 1.52474i 0.647142 + 0.762370i \(0.275964\pi\)
−0.647142 + 0.762370i \(0.724036\pi\)
\(968\) 0 0
\(969\) 17702.3 0.586873
\(970\) 0 0
\(971\) 28811.8 0.952230 0.476115 0.879383i \(-0.342045\pi\)
0.476115 + 0.879383i \(0.342045\pi\)
\(972\) 0 0
\(973\) 1476.01i 0.0486316i
\(974\) 0 0
\(975\) 95306.8 + 13880.4i 3.13052 + 0.455925i
\(976\) 0 0
\(977\) 25775.2i 0.844035i −0.906588 0.422017i \(-0.861322\pi\)
0.906588 0.422017i \(-0.138678\pi\)
\(978\) 0 0
\(979\) 15473.5 0.505144
\(980\) 0 0
\(981\) 185.370 0.00603304
\(982\) 0 0
\(983\) 6675.30i 0.216591i −0.994119 0.108295i \(-0.965461\pi\)
0.994119 0.108295i \(-0.0345393\pi\)
\(984\) 0 0
\(985\) 1674.11 23111.1i 0.0541537 0.747595i
\(986\) 0 0
\(987\) 3967.69i 0.127956i
\(988\) 0 0
\(989\) −30511.0 −0.980984
\(990\) 0 0
\(991\) 20453.3 0.655622 0.327811 0.944743i \(-0.393689\pi\)
0.327811 + 0.944743i \(0.393689\pi\)
\(992\) 0 0
\(993\) 20221.3i 0.646227i
\(994\) 0 0
\(995\) −37374.7 2707.32i −1.19081 0.0862592i
\(996\) 0 0
\(997\) 12458.0i 0.395737i 0.980229 + 0.197868i \(0.0634019\pi\)
−0.980229 + 0.197868i \(0.936598\pi\)
\(998\) 0 0
\(999\) −39631.4 −1.25514
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.4.b.h.529.1 8
4.3 odd 2 110.4.b.c.89.4 8
5.4 even 2 inner 880.4.b.h.529.8 8
12.11 even 2 990.4.c.i.199.5 8
20.3 even 4 550.4.a.ba.1.1 4
20.7 even 4 550.4.a.bb.1.4 4
20.19 odd 2 110.4.b.c.89.5 yes 8
60.59 even 2 990.4.c.i.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.b.c.89.4 8 4.3 odd 2
110.4.b.c.89.5 yes 8 20.19 odd 2
550.4.a.ba.1.1 4 20.3 even 4
550.4.a.bb.1.4 4 20.7 even 4
880.4.b.h.529.1 8 1.1 even 1 trivial
880.4.b.h.529.8 8 5.4 even 2 inner
990.4.c.i.199.1 8 60.59 even 2
990.4.c.i.199.5 8 12.11 even 2