Properties

Label 882.2.g.a.361.1
Level $882$
Weight $2$
Character 882.361
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(361,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.361
Dual form 882.2.g.a.667.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-2.00000 - 3.46410i) q^{5} +1.00000 q^{8} +(-2.00000 + 3.46410i) q^{10} +(-2.00000 + 3.46410i) q^{11} -4.00000 q^{13} +(-0.500000 - 0.866025i) q^{16} +(2.00000 + 3.46410i) q^{19} +4.00000 q^{20} +4.00000 q^{22} +(-5.50000 + 9.52628i) q^{25} +(2.00000 + 3.46410i) q^{26} -2.00000 q^{29} +(4.00000 - 6.92820i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.00000 + 5.19615i) q^{37} +(2.00000 - 3.46410i) q^{38} +(-2.00000 - 3.46410i) q^{40} +4.00000 q^{43} +(-2.00000 - 3.46410i) q^{44} +(4.00000 + 6.92820i) q^{47} +11.0000 q^{50} +(2.00000 - 3.46410i) q^{52} +(-5.00000 + 8.66025i) q^{53} +16.0000 q^{55} +(1.00000 + 1.73205i) q^{58} +(-2.00000 + 3.46410i) q^{59} +(-2.00000 - 3.46410i) q^{61} -8.00000 q^{62} +1.00000 q^{64} +(8.00000 + 13.8564i) q^{65} +(-2.00000 + 3.46410i) q^{67} -8.00000 q^{71} +(-8.00000 + 13.8564i) q^{73} +(3.00000 - 5.19615i) q^{74} -4.00000 q^{76} +(4.00000 + 6.92820i) q^{79} +(-2.00000 + 3.46410i) q^{80} -12.0000 q^{83} +(-2.00000 - 3.46410i) q^{86} +(-2.00000 + 3.46410i) q^{88} +(-4.00000 - 6.92820i) q^{89} +(4.00000 - 6.92820i) q^{94} +(8.00000 - 13.8564i) q^{95} -8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 4 q^{5} + 2 q^{8} - 4 q^{10} - 4 q^{11} - 8 q^{13} - q^{16} + 4 q^{19} + 8 q^{20} + 8 q^{22} - 11 q^{25} + 4 q^{26} - 4 q^{29} + 8 q^{31} - q^{32} + 6 q^{37} + 4 q^{38} - 4 q^{40}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −2.00000 3.46410i −0.894427 1.54919i −0.834512 0.550990i \(-0.814250\pi\)
−0.0599153 0.998203i \(-0.519083\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.00000 + 3.46410i −0.632456 + 1.09545i
\(11\) −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) 2.00000 + 3.46410i 0.458831 + 0.794719i 0.998899 0.0469020i \(-0.0149348\pi\)
−0.540068 + 0.841621i \(0.681602\pi\)
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) 2.00000 + 3.46410i 0.392232 + 0.679366i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000 6.92820i 0.718421 1.24434i −0.243204 0.969975i \(-0.578198\pi\)
0.961625 0.274367i \(-0.0884683\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 + 5.19615i 0.493197 + 0.854242i 0.999969 0.00783774i \(-0.00249486\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) 2.00000 3.46410i 0.324443 0.561951i
\(39\) 0 0
\(40\) −2.00000 3.46410i −0.316228 0.547723i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −2.00000 3.46410i −0.301511 0.522233i
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 + 6.92820i 0.583460 + 1.01058i 0.995066 + 0.0992202i \(0.0316348\pi\)
−0.411606 + 0.911362i \(0.635032\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) −5.00000 + 8.66025i −0.686803 + 1.18958i 0.286064 + 0.958211i \(0.407653\pi\)
−0.972867 + 0.231367i \(0.925680\pi\)
\(54\) 0 0
\(55\) 16.0000 2.15744
\(56\) 0 0
\(57\) 0 0
\(58\) 1.00000 + 1.73205i 0.131306 + 0.227429i
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) −2.00000 3.46410i −0.256074 0.443533i 0.709113 0.705095i \(-0.249096\pi\)
−0.965187 + 0.261562i \(0.915762\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 8.00000 + 13.8564i 0.992278 + 1.71868i
\(66\) 0 0
\(67\) −2.00000 + 3.46410i −0.244339 + 0.423207i −0.961946 0.273241i \(-0.911904\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −8.00000 + 13.8564i −0.936329 + 1.62177i −0.164083 + 0.986447i \(0.552466\pi\)
−0.772246 + 0.635323i \(0.780867\pi\)
\(74\) 3.00000 5.19615i 0.348743 0.604040i
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 + 6.92820i 0.450035 + 0.779484i 0.998388 0.0567635i \(-0.0180781\pi\)
−0.548352 + 0.836247i \(0.684745\pi\)
\(80\) −2.00000 + 3.46410i −0.223607 + 0.387298i
\(81\) 0 0
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) 0 0
\(88\) −2.00000 + 3.46410i −0.213201 + 0.369274i
\(89\) −4.00000 6.92820i −0.423999 0.734388i 0.572327 0.820025i \(-0.306041\pi\)
−0.996326 + 0.0856373i \(0.972707\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 4.00000 6.92820i 0.412568 0.714590i
\(95\) 8.00000 13.8564i 0.820783 1.42164i
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.50000 9.52628i −0.550000 0.952628i
\(101\) −2.00000 + 3.46410i −0.199007 + 0.344691i −0.948207 0.317653i \(-0.897105\pi\)
0.749199 + 0.662344i \(0.230438\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 10.0000 0.971286
\(107\) 2.00000 + 3.46410i 0.193347 + 0.334887i 0.946357 0.323122i \(-0.104732\pi\)
−0.753010 + 0.658009i \(0.771399\pi\)
\(108\) 0 0
\(109\) 7.00000 12.1244i 0.670478 1.16130i −0.307290 0.951616i \(-0.599422\pi\)
0.977769 0.209687i \(-0.0672444\pi\)
\(110\) −8.00000 13.8564i −0.762770 1.32116i
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.00000 1.73205i 0.0928477 0.160817i
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) −2.00000 + 3.46410i −0.181071 + 0.313625i
\(123\) 0 0
\(124\) 4.00000 + 6.92820i 0.359211 + 0.622171i
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 8.00000 13.8564i 0.701646 1.21529i
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) −5.00000 + 8.66025i −0.427179 + 0.739895i −0.996621 0.0821359i \(-0.973826\pi\)
0.569442 + 0.822031i \(0.307159\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.00000 + 6.92820i 0.335673 + 0.581402i
\(143\) 8.00000 13.8564i 0.668994 1.15873i
\(144\) 0 0
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) 16.0000 1.32417
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) −5.00000 8.66025i −0.409616 0.709476i 0.585231 0.810867i \(-0.301004\pi\)
−0.994847 + 0.101391i \(0.967671\pi\)
\(150\) 0 0
\(151\) 4.00000 6.92820i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 2.00000 + 3.46410i 0.162221 + 0.280976i
\(153\) 0 0
\(154\) 0 0
\(155\) −32.0000 −2.57030
\(156\) 0 0
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) 4.00000 6.92820i 0.318223 0.551178i
\(159\) 0 0
\(160\) 4.00000 0.316228
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 10.3923i −0.469956 0.813988i 0.529454 0.848339i \(-0.322397\pi\)
−0.999410 + 0.0343508i \(0.989064\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −2.00000 + 3.46410i −0.152499 + 0.264135i
\(173\) 2.00000 + 3.46410i 0.152057 + 0.263371i 0.931984 0.362500i \(-0.118077\pi\)
−0.779926 + 0.625871i \(0.784744\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) −4.00000 + 6.92820i −0.299813 + 0.519291i
\(179\) 6.00000 10.3923i 0.448461 0.776757i −0.549825 0.835280i \(-0.685306\pi\)
0.998286 + 0.0585225i \(0.0186389\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000 20.7846i 0.882258 1.52811i
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 4.00000 + 6.92820i 0.287183 + 0.497416i
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 4.00000 6.92820i 0.283552 0.491127i −0.688705 0.725042i \(-0.741820\pi\)
0.972257 + 0.233915i \(0.0751537\pi\)
\(200\) −5.50000 + 9.52628i −0.388909 + 0.673610i
\(201\) 0 0
\(202\) 4.00000 0.281439
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −4.00000 + 6.92820i −0.278693 + 0.482711i
\(207\) 0 0
\(208\) 2.00000 + 3.46410i 0.138675 + 0.240192i
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) −5.00000 8.66025i −0.343401 0.594789i
\(213\) 0 0
\(214\) 2.00000 3.46410i 0.136717 0.236801i
\(215\) −8.00000 13.8564i −0.545595 0.944999i
\(216\) 0 0
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) 0 0
\(220\) −8.00000 + 13.8564i −0.539360 + 0.934199i
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7.00000 12.1244i −0.465633 0.806500i
\(227\) −10.0000 + 17.3205i −0.663723 + 1.14960i 0.315906 + 0.948790i \(0.397691\pi\)
−0.979630 + 0.200812i \(0.935642\pi\)
\(228\) 0 0
\(229\) 2.00000 + 3.46410i 0.132164 + 0.228914i 0.924510 0.381157i \(-0.124474\pi\)
−0.792347 + 0.610071i \(0.791141\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −5.00000 8.66025i −0.327561 0.567352i 0.654466 0.756091i \(-0.272893\pi\)
−0.982027 + 0.188739i \(0.939560\pi\)
\(234\) 0 0
\(235\) 16.0000 27.7128i 1.04372 1.80778i
\(236\) −2.00000 3.46410i −0.130189 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 4.00000 6.92820i 0.257663 0.446285i −0.707953 0.706260i \(-0.750381\pi\)
0.965615 + 0.259975i \(0.0837143\pi\)
\(242\) −2.50000 + 4.33013i −0.160706 + 0.278351i
\(243\) 0 0
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 13.8564i −0.509028 0.881662i
\(248\) 4.00000 6.92820i 0.254000 0.439941i
\(249\) 0 0
\(250\) −12.0000 20.7846i −0.758947 1.31453i
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 + 13.8564i 0.501965 + 0.869428i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −4.00000 6.92820i −0.249513 0.432169i 0.713878 0.700270i \(-0.246937\pi\)
−0.963391 + 0.268101i \(0.913604\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −16.0000 −0.992278
\(261\) 0 0
\(262\) 6.00000 10.3923i 0.370681 0.642039i
\(263\) 4.00000 6.92820i 0.246651 0.427211i −0.715944 0.698158i \(-0.754003\pi\)
0.962594 + 0.270947i \(0.0873367\pi\)
\(264\) 0 0
\(265\) 40.0000 2.45718
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 3.46410i −0.122169 0.211604i
\(269\) −14.0000 + 24.2487i −0.853595 + 1.47847i 0.0243472 + 0.999704i \(0.492249\pi\)
−0.877942 + 0.478766i \(0.841084\pi\)
\(270\) 0 0
\(271\) −16.0000 27.7128i −0.971931 1.68343i −0.689713 0.724083i \(-0.742263\pi\)
−0.282218 0.959350i \(-0.591070\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −22.0000 38.1051i −1.32665 2.29783i
\(276\) 0 0
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) 6.00000 + 10.3923i 0.359856 + 0.623289i
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −14.0000 + 24.2487i −0.832214 + 1.44144i 0.0640654 + 0.997946i \(0.479593\pi\)
−0.896279 + 0.443491i \(0.853740\pi\)
\(284\) 4.00000 6.92820i 0.237356 0.411113i
\(285\) 0 0
\(286\) −16.0000 −0.946100
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 4.00000 6.92820i 0.234888 0.406838i
\(291\) 0 0
\(292\) −8.00000 13.8564i −0.468165 0.810885i
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) 3.00000 + 5.19615i 0.174371 + 0.302020i
\(297\) 0 0
\(298\) −5.00000 + 8.66025i −0.289642 + 0.501675i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −8.00000 −0.460348
\(303\) 0 0
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) −8.00000 + 13.8564i −0.458079 + 0.793416i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 16.0000 + 27.7128i 0.908739 + 1.57398i
\(311\) −16.0000 + 27.7128i −0.907277 + 1.57145i −0.0894452 + 0.995992i \(0.528509\pi\)
−0.817832 + 0.575458i \(0.804824\pi\)
\(312\) 0 0
\(313\) 12.0000 + 20.7846i 0.678280 + 1.17482i 0.975499 + 0.220006i \(0.0706077\pi\)
−0.297218 + 0.954810i \(0.596059\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 15.0000 + 25.9808i 0.842484 + 1.45922i 0.887788 + 0.460252i \(0.152241\pi\)
−0.0453045 + 0.998973i \(0.514426\pi\)
\(318\) 0 0
\(319\) 4.00000 6.92820i 0.223957 0.387905i
\(320\) −2.00000 3.46410i −0.111803 0.193649i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 22.0000 38.1051i 1.22034 2.11369i
\(326\) −6.00000 + 10.3923i −0.332309 + 0.575577i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) 6.00000 10.3923i 0.329293 0.570352i
\(333\) 0 0
\(334\) −4.00000 6.92820i −0.218870 0.379094i
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 + 27.7128i 0.866449 + 1.50073i
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 2.00000 3.46410i 0.107521 0.186231i
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 3.46410i −0.106600 0.184637i
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) 16.0000 + 27.7128i 0.849192 + 1.47084i
\(356\) 8.00000 0.423999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 8.00000 + 13.8564i 0.422224 + 0.731313i 0.996157 0.0875892i \(-0.0279163\pi\)
−0.573933 + 0.818902i \(0.694583\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 10.0000 + 17.3205i 0.525588 + 0.910346i
\(363\) 0 0
\(364\) 0 0
\(365\) 64.0000 3.34991
\(366\) 0 0
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −24.0000 −1.24770
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.00000 + 6.92820i 0.206284 + 0.357295i
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) 36.0000 1.84920 0.924598 0.380945i \(-0.124401\pi\)
0.924598 + 0.380945i \(0.124401\pi\)
\(380\) 8.00000 + 13.8564i 0.410391 + 0.710819i
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0000 20.7846i −0.613171 1.06204i −0.990702 0.136047i \(-0.956560\pi\)
0.377531 0.925997i \(-0.376773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) 4.00000 6.92820i 0.203069 0.351726i
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 3.00000 + 5.19615i 0.151138 + 0.261778i
\(395\) 16.0000 27.7128i 0.805047 1.39438i
\(396\) 0 0
\(397\) 2.00000 + 3.46410i 0.100377 + 0.173858i 0.911840 0.410546i \(-0.134662\pi\)
−0.811463 + 0.584404i \(0.801328\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) −16.0000 + 27.7128i −0.797017 + 1.38047i
\(404\) −2.00000 3.46410i −0.0995037 0.172345i
\(405\) 0 0
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −12.0000 + 20.7846i −0.593362 + 1.02773i 0.400414 + 0.916334i \(0.368866\pi\)
−0.993776 + 0.111398i \(0.964467\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) 24.0000 + 41.5692i 1.17811 + 2.04055i
\(416\) 2.00000 3.46410i 0.0980581 0.169842i
\(417\) 0 0
\(418\) 8.00000 + 13.8564i 0.391293 + 0.677739i
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 14.0000 + 24.2487i 0.681509 + 1.18041i
\(423\) 0 0
\(424\) −5.00000 + 8.66025i −0.242821 + 0.420579i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) −8.00000 + 13.8564i −0.385794 + 0.668215i
\(431\) 20.0000 34.6410i 0.963366 1.66860i 0.249424 0.968394i \(-0.419759\pi\)
0.713942 0.700205i \(-0.246908\pi\)
\(432\) 0 0
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.00000 + 12.1244i 0.335239 + 0.580651i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 16.0000 0.762770
\(441\) 0 0
\(442\) 0 0
\(443\) −6.00000 10.3923i −0.285069 0.493753i 0.687557 0.726130i \(-0.258683\pi\)
−0.972626 + 0.232377i \(0.925350\pi\)
\(444\) 0 0
\(445\) −16.0000 + 27.7128i −0.758473 + 1.31371i
\(446\) −8.00000 13.8564i −0.378811 0.656120i
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −7.00000 + 12.1244i −0.329252 + 0.570282i
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 + 19.0526i 0.514558 + 0.891241i 0.999857 + 0.0168929i \(0.00537742\pi\)
−0.485299 + 0.874348i \(0.661289\pi\)
\(458\) 2.00000 3.46410i 0.0934539 0.161867i
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 1.00000 + 1.73205i 0.0464238 + 0.0804084i
\(465\) 0 0
\(466\) −5.00000 + 8.66025i −0.231621 + 0.401179i
\(467\) −10.0000 17.3205i −0.462745 0.801498i 0.536352 0.843995i \(-0.319802\pi\)
−0.999097 + 0.0424970i \(0.986469\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −32.0000 −1.47605
\(471\) 0 0
\(472\) −2.00000 + 3.46410i −0.0920575 + 0.159448i
\(473\) −8.00000 + 13.8564i −0.367840 + 0.637118i
\(474\) 0 0
\(475\) −44.0000 −2.01886
\(476\) 0 0
\(477\) 0 0
\(478\) −12.0000 20.7846i −0.548867 0.950666i
\(479\) 12.0000 20.7846i 0.548294 0.949673i −0.450098 0.892979i \(-0.648611\pi\)
0.998392 0.0566937i \(-0.0180558\pi\)
\(480\) 0 0
\(481\) −12.0000 20.7846i −0.547153 0.947697i
\(482\) −8.00000 −0.364390
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 16.0000 + 27.7128i 0.726523 + 1.25837i
\(486\) 0 0
\(487\) 4.00000 6.92820i 0.181257 0.313947i −0.761052 0.648691i \(-0.775317\pi\)
0.942309 + 0.334744i \(0.108650\pi\)
\(488\) −2.00000 3.46410i −0.0905357 0.156813i
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.00000 + 13.8564i −0.359937 + 0.623429i
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00000 + 10.3923i 0.268597 + 0.465223i 0.968500 0.249015i \(-0.0801067\pi\)
−0.699903 + 0.714238i \(0.746773\pi\)
\(500\) −12.0000 + 20.7846i −0.536656 + 0.929516i
\(501\) 0 0
\(502\) 10.0000 + 17.3205i 0.446322 + 0.773052i
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) 16.0000 0.711991
\(506\) 0 0
\(507\) 0 0
\(508\) 8.00000 13.8564i 0.354943 0.614779i
\(509\) 2.00000 + 3.46410i 0.0886484 + 0.153544i 0.906940 0.421260i \(-0.138412\pi\)
−0.818292 + 0.574803i \(0.805079\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −4.00000 + 6.92820i −0.176432 + 0.305590i
\(515\) −16.0000 + 27.7128i −0.705044 + 1.22117i
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 0 0
\(519\) 0 0
\(520\) 8.00000 + 13.8564i 0.350823 + 0.607644i
\(521\) −16.0000 + 27.7128i −0.700973 + 1.21412i 0.267153 + 0.963654i \(0.413917\pi\)
−0.968125 + 0.250466i \(0.919416\pi\)
\(522\) 0 0
\(523\) 2.00000 + 3.46410i 0.0874539 + 0.151475i 0.906434 0.422347i \(-0.138794\pi\)
−0.818980 + 0.573822i \(0.805460\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) −20.0000 34.6410i −0.868744 1.50471i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 8.00000 13.8564i 0.345870 0.599065i
\(536\) −2.00000 + 3.46410i −0.0863868 + 0.149626i
\(537\) 0 0
\(538\) 28.0000 1.20717
\(539\) 0 0
\(540\) 0 0
\(541\) 1.00000 + 1.73205i 0.0429934 + 0.0744667i 0.886721 0.462304i \(-0.152977\pi\)
−0.843728 + 0.536771i \(0.819644\pi\)
\(542\) −16.0000 + 27.7128i −0.687259 + 1.19037i
\(543\) 0 0
\(544\) 0 0
\(545\) −56.0000 −2.39878
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) −5.00000 8.66025i −0.213589 0.369948i
\(549\) 0 0
\(550\) −22.0000 + 38.1051i −0.938083 + 1.62481i
\(551\) −4.00000 6.92820i −0.170406 0.295151i
\(552\) 0 0
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 6.00000 10.3923i 0.254457 0.440732i
\(557\) −9.00000 + 15.5885i −0.381342 + 0.660504i −0.991254 0.131965i \(-0.957871\pi\)
0.609912 + 0.792469i \(0.291205\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 + 5.19615i 0.126547 + 0.219186i
\(563\) 2.00000 3.46410i 0.0842900 0.145994i −0.820798 0.571218i \(-0.806471\pi\)
0.905088 + 0.425223i \(0.139804\pi\)
\(564\) 0 0
\(565\) −28.0000 48.4974i −1.17797 2.04030i
\(566\) 28.0000 1.17693
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) −18.0000 + 31.1769i −0.753277 + 1.30471i 0.192950 + 0.981209i \(0.438194\pi\)
−0.946227 + 0.323505i \(0.895139\pi\)
\(572\) 8.00000 + 13.8564i 0.334497 + 0.579365i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8.00000 + 13.8564i −0.333044 + 0.576850i −0.983107 0.183031i \(-0.941409\pi\)
0.650063 + 0.759880i \(0.274743\pi\)
\(578\) 8.50000 14.7224i 0.353553 0.612372i
\(579\) 0 0
\(580\) −8.00000 −0.332182
\(581\) 0 0
\(582\) 0 0
\(583\) −20.0000 34.6410i −0.828315 1.43468i
\(584\) −8.00000 + 13.8564i −0.331042 + 0.573382i
\(585\) 0 0
\(586\) 6.00000 + 10.3923i 0.247858 + 0.429302i
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) −8.00000 13.8564i −0.329355 0.570459i
\(591\) 0 0
\(592\) 3.00000 5.19615i 0.123299 0.213561i
\(593\) 12.0000 + 20.7846i 0.492781 + 0.853522i 0.999965 0.00831589i \(-0.00264706\pi\)
−0.507184 + 0.861838i \(0.669314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) 0 0
\(601\) 32.0000 1.30531 0.652654 0.757656i \(-0.273656\pi\)
0.652654 + 0.757656i \(0.273656\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.00000 + 6.92820i 0.162758 + 0.281905i
\(605\) −10.0000 + 17.3205i −0.406558 + 0.704179i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 16.0000 0.647821
\(611\) −16.0000 27.7128i −0.647291 1.12114i
\(612\) 0 0
\(613\) −13.0000 + 22.5167i −0.525065 + 0.909439i 0.474509 + 0.880251i \(0.342626\pi\)
−0.999574 + 0.0291886i \(0.990708\pi\)
\(614\) 10.0000 + 17.3205i 0.403567 + 0.698999i
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 10.0000 17.3205i 0.401934 0.696170i −0.592025 0.805919i \(-0.701671\pi\)
0.993959 + 0.109749i \(0.0350048\pi\)
\(620\) 16.0000 27.7128i 0.642575 1.11297i
\(621\) 0 0
\(622\) 32.0000 1.28308
\(623\) 0 0
\(624\) 0 0
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) 12.0000 20.7846i 0.479616 0.830720i
\(627\) 0 0
\(628\) 2.00000 + 3.46410i 0.0798087 + 0.138233i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 4.00000 + 6.92820i 0.159111 + 0.275589i
\(633\) 0 0
\(634\) 15.0000 25.9808i 0.595726 1.03183i
\(635\) 32.0000 + 55.4256i 1.26988 + 2.19950i
\(636\) 0 0
\(637\) 0 0
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) −2.00000 + 3.46410i −0.0790569 + 0.136931i
\(641\) −1.00000 + 1.73205i −0.0394976 + 0.0684119i −0.885098 0.465404i \(-0.845909\pi\)
0.845601 + 0.533816i \(0.179242\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 20.7846i 0.471769 0.817127i −0.527710 0.849425i \(-0.676949\pi\)
0.999478 + 0.0322975i \(0.0102824\pi\)
\(648\) 0 0
\(649\) −8.00000 13.8564i −0.314027 0.543912i
\(650\) −44.0000 −1.72582
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) −23.0000 39.8372i −0.900060 1.55895i −0.827415 0.561591i \(-0.810189\pi\)
−0.0726446 0.997358i \(-0.523144\pi\)
\(654\) 0 0
\(655\) 24.0000 41.5692i 0.937758 1.62424i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) 14.0000 24.2487i 0.544537 0.943166i −0.454099 0.890951i \(-0.650039\pi\)
0.998636 0.0522143i \(-0.0166279\pi\)
\(662\) −10.0000 + 17.3205i −0.388661 + 0.673181i
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −4.00000 + 6.92820i −0.154765 + 0.268060i
\(669\) 0 0
\(670\) −8.00000 13.8564i −0.309067 0.535320i
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) −7.00000 12.1244i −0.269630 0.467013i
\(675\) 0 0
\(676\) −1.50000 + 2.59808i −0.0576923 + 0.0999260i
\(677\) −6.00000 10.3923i −0.230599 0.399409i 0.727386 0.686229i \(-0.240735\pi\)
−0.957984 + 0.286820i \(0.907402\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 16.0000 27.7128i 0.612672 1.06118i
\(683\) −22.0000 + 38.1051i −0.841807 + 1.45805i 0.0465592 + 0.998916i \(0.485174\pi\)
−0.888366 + 0.459136i \(0.848159\pi\)
\(684\) 0 0
\(685\) 40.0000 1.52832
\(686\) 0 0
\(687\) 0 0
\(688\) −2.00000 3.46410i −0.0762493 0.132068i
\(689\) 20.0000 34.6410i 0.761939 1.31972i
\(690\) 0 0
\(691\) 10.0000 + 17.3205i 0.380418 + 0.658903i 0.991122 0.132956i \(-0.0424468\pi\)
−0.610704 + 0.791859i \(0.709113\pi\)
\(692\) −4.00000 −0.152057
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 24.0000 + 41.5692i 0.910372 + 1.57681i
\(696\) 0 0
\(697\) 0 0
\(698\) −6.00000 10.3923i −0.227103 0.393355i
\(699\) 0 0
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) −12.0000 + 20.7846i −0.452589 + 0.783906i
\(704\) −2.00000 + 3.46410i −0.0753778 + 0.130558i
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) 0 0
\(708\) 0 0
\(709\) 19.0000 + 32.9090i 0.713560 + 1.23592i 0.963512 + 0.267664i \(0.0862517\pi\)
−0.249952 + 0.968258i \(0.580415\pi\)
\(710\) 16.0000 27.7128i 0.600469 1.04004i
\(711\) 0 0
\(712\) −4.00000 6.92820i −0.149906 0.259645i
\(713\) 0 0
\(714\) 0 0
\(715\) −64.0000 −2.39346
\(716\) 6.00000 + 10.3923i 0.224231 + 0.388379i
\(717\) 0 0
\(718\) 8.00000 13.8564i 0.298557 0.517116i
\(719\) 12.0000 + 20.7846i 0.447524 + 0.775135i 0.998224 0.0595683i \(-0.0189724\pi\)
−0.550700 + 0.834703i \(0.685639\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 10.0000 17.3205i 0.371647 0.643712i
\(725\) 11.0000 19.0526i 0.408530 0.707594i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −32.0000 55.4256i −1.18437 2.05139i
\(731\) 0 0
\(732\) 0 0
\(733\) −2.00000 3.46410i −0.0738717 0.127950i 0.826723 0.562609i \(-0.190202\pi\)
−0.900595 + 0.434659i \(0.856869\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 13.8564i −0.294684 0.510407i
\(738\) 0 0
\(739\) 10.0000 17.3205i 0.367856 0.637145i −0.621374 0.783514i \(-0.713425\pi\)
0.989230 + 0.146369i \(0.0467586\pi\)
\(740\) 12.0000 + 20.7846i 0.441129 + 0.764057i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −20.0000 + 34.6410i −0.732743 + 1.26915i
\(746\) −11.0000 + 19.0526i −0.402739 + 0.697564i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 4.00000 6.92820i 0.145865 0.252646i
\(753\) 0 0
\(754\) −4.00000 6.92820i −0.145671 0.252310i
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) −18.0000 31.1769i −0.653789 1.13240i
\(759\) 0 0
\(760\) 8.00000 13.8564i 0.290191 0.502625i
\(761\) −8.00000 13.8564i −0.290000 0.502294i 0.683810 0.729661i \(-0.260322\pi\)
−0.973809 + 0.227366i \(0.926989\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −12.0000 + 20.7846i −0.433578 + 0.750978i
\(767\) 8.00000 13.8564i 0.288863 0.500326i
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.00000 1.73205i −0.0359908 0.0623379i
\(773\) −18.0000 + 31.1769i −0.647415 + 1.12136i 0.336323 + 0.941747i \(0.390817\pi\)
−0.983738 + 0.179609i \(0.942517\pi\)
\(774\) 0 0
\(775\) 44.0000 + 76.2102i 1.58053 + 2.73755i
\(776\) −8.00000 −0.287183
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 27.7128i 0.572525 0.991642i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16.0000 −0.571064
\(786\) 0 0
\(787\) 10.0000 17.3205i 0.356462 0.617409i −0.630905 0.775860i \(-0.717316\pi\)
0.987367 + 0.158450i \(0.0506498\pi\)
\(788\) 3.00000 5.19615i 0.106871 0.185105i
\(789\) 0 0
\(790\) −32.0000 −1.13851
\(791\) 0 0
\(792\) 0 0
\(793\) 8.00000 + 13.8564i 0.284088 + 0.492055i
\(794\) 2.00000 3.46410i 0.0709773 0.122936i
\(795\) 0 0
\(796\) 4.00000 + 6.92820i 0.141776 + 0.245564i
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.50000 9.52628i −0.194454 0.336805i
\(801\) 0 0
\(802\) −9.00000 + 15.5885i −0.317801 + 0.550448i
\(803\) −32.0000 55.4256i −1.12926 1.95593i
\(804\) 0 0
\(805\) 0 0
\(806\) 32.0000 1.12715
\(807\) 0 0
\(808\) −2.00000 + 3.46410i −0.0703598 + 0.121867i
\(809\) 21.0000 36.3731i 0.738321 1.27881i −0.214930 0.976629i \(-0.568952\pi\)
0.953251 0.302180i \(-0.0977142\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 12.0000 + 20.7846i 0.420600 + 0.728500i
\(815\) −24.0000 + 41.5692i −0.840683 + 1.45611i
\(816\) 0 0
\(817\) 8.00000 + 13.8564i 0.279885 + 0.484774i
\(818\) 24.0000 0.839140
\(819\) 0 0
\(820\) 0 0
\(821\) −5.00000 8.66025i −0.174501 0.302245i 0.765487 0.643451i \(-0.222498\pi\)
−0.939989 + 0.341206i \(0.889165\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) −4.00000 6.92820i −0.139347 0.241355i
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −26.0000 + 45.0333i −0.903017 + 1.56407i −0.0794606 + 0.996838i \(0.525320\pi\)
−0.823557 + 0.567234i \(0.808014\pi\)
\(830\) 24.0000 41.5692i 0.833052 1.44289i
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 0 0
\(834\) 0 0
\(835\) −16.0000 27.7128i −0.553703 0.959041i
\(836\) 8.00000 13.8564i 0.276686 0.479234i
\(837\) 0 0
\(838\) −14.0000 24.2487i −0.483622 0.837658i
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −3.00000 5.19615i −0.103387 0.179071i
\(843\) 0 0
\(844\) 14.0000 24.2487i 0.481900 0.834675i
\(845\) −6.00000 10.3923i −0.206406 0.357506i
\(846\) 0 0
\(847\) 0 0
\(848\) 10.0000 0.343401
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −52.0000 −1.78045 −0.890223 0.455525i \(-0.849452\pi\)
−0.890223 + 0.455525i \(0.849452\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 + 3.46410i 0.0683586 + 0.118401i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) −18.0000 31.1769i −0.614152 1.06374i −0.990533 0.137277i \(-0.956165\pi\)
0.376381 0.926465i \(-0.377169\pi\)
\(860\) 16.0000 0.545595
\(861\) 0 0
\(862\) −40.0000 −1.36241
\(863\) 24.0000 + 41.5692i 0.816970 + 1.41503i 0.907905 + 0.419176i \(0.137681\pi\)
−0.0909355 + 0.995857i \(0.528986\pi\)
\(864\) 0 0
\(865\) 8.00000 13.8564i 0.272008 0.471132i
\(866\) −4.00000 6.92820i −0.135926 0.235430i
\(867\) 0 0
\(868\) 0 0
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) 8.00000 13.8564i 0.271070 0.469506i
\(872\) 7.00000 12.1244i 0.237050 0.410582i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.00000 15.5885i −0.303908 0.526385i 0.673109 0.739543i \(-0.264958\pi\)
−0.977018 + 0.213158i \(0.931625\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −8.00000 13.8564i −0.269680 0.467099i
\(881\) −8.00000 −0.269527 −0.134763 0.990878i \(-0.543027\pi\)
−0.134763 + 0.990878i \(0.543027\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.00000 + 10.3923i −0.201574 + 0.349136i
\(887\) −12.0000 20.7846i −0.402921 0.697879i 0.591156 0.806557i \(-0.298672\pi\)
−0.994077 + 0.108678i \(0.965338\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 32.0000 1.07264
\(891\) 0 0
\(892\) −8.00000 + 13.8564i −0.267860 + 0.463947i
\(893\) −16.0000 + 27.7128i −0.535420 + 0.927374i
\(894\) 0 0
\(895\) −48.0000 −1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) −15.0000 25.9808i −0.500556 0.866989i
\(899\) −8.00000 + 13.8564i −0.266815 + 0.462137i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 14.0000 0.465633
\(905\) 40.0000 + 69.2820i 1.32964 + 2.30301i
\(906\) 0 0
\(907\) 10.0000 17.3205i 0.332045 0.575118i −0.650868 0.759191i \(-0.725595\pi\)
0.982913 + 0.184073i \(0.0589282\pi\)
\(908\) −10.0000 17.3205i −0.331862 0.574801i
\(909\) 0 0
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) 24.0000 41.5692i 0.794284 1.37574i
\(914\) 11.0000 19.0526i 0.363848 0.630203i
\(915\) 0 0
\(916\) −4.00000 −0.132164
\(917\) 0 0
\(918\) 0 0
\(919\) 24.0000 + 41.5692i 0.791687 + 1.37124i 0.924922 + 0.380158i \(0.124130\pi\)
−0.133235 + 0.991084i \(0.542536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −6.00000 10.3923i −0.197599 0.342252i
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) −66.0000 −2.17007
\(926\) −4.00000 6.92820i −0.131448 0.227675i
\(927\) 0 0
\(928\) 1.00000 1.73205i 0.0328266 0.0568574i
\(929\) −24.0000 41.5692i −0.787414 1.36384i −0.927546 0.373709i \(-0.878086\pi\)
0.140132 0.990133i \(-0.455247\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 10.0000 0.327561
\(933\) 0 0
\(934\) −10.0000 + 17.3205i −0.327210 + 0.566744i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 16.0000 + 27.7128i 0.521862 + 0.903892i
\(941\) 6.00000 10.3923i 0.195594 0.338779i −0.751501 0.659732i \(-0.770670\pi\)
0.947095 + 0.320953i \(0.104003\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) −14.0000 24.2487i −0.454939 0.787977i 0.543746 0.839250i \(-0.317006\pi\)
−0.998685 + 0.0512727i \(0.983672\pi\)
\(948\) 0 0
\(949\) 32.0000 55.4256i 1.03876 1.79919i
\(950\) 22.0000 + 38.1051i 0.713774 + 1.23629i
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −12.0000 + 20.7846i −0.388108 + 0.672222i
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) −12.0000 + 20.7846i −0.386896 + 0.670123i
\(963\) 0 0
\(964\) 4.00000 + 6.92820i 0.128831 + 0.223142i
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −2.50000 4.33013i −0.0803530 0.139176i
\(969\) 0 0
\(970\) 16.0000 27.7128i 0.513729 0.889805i
\(971\) −2.00000 3.46410i −0.0641831 0.111168i 0.832148 0.554553i \(-0.187111\pi\)
−0.896331 + 0.443385i \(0.853777\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −2.00000 + 3.46410i −0.0640184 + 0.110883i
\(977\) 7.00000 12.1244i 0.223950 0.387893i −0.732054 0.681247i \(-0.761438\pi\)
0.956004 + 0.293354i \(0.0947715\pi\)
\(978\) 0 0
\(979\) 32.0000 1.02272
\(980\) 0 0
\(981\) 0 0
\(982\) −6.00000 10.3923i −0.191468 0.331632i
\(983\) 4.00000 6.92820i 0.127580 0.220975i −0.795158 0.606402i \(-0.792612\pi\)
0.922739 + 0.385426i \(0.125946\pi\)
\(984\) 0 0
\(985\) 12.0000 + 20.7846i 0.382352 + 0.662253i
\(986\) 0 0
\(987\) 0 0
\(988\) 16.0000 0.509028
\(989\) 0 0
\(990\) 0 0
\(991\) −4.00000 + 6.92820i −0.127064 + 0.220082i −0.922538 0.385906i \(-0.873889\pi\)
0.795474 + 0.605988i \(0.207222\pi\)
\(992\) 4.00000 + 6.92820i 0.127000 + 0.219971i
\(993\) 0 0
\(994\) 0 0
\(995\) −32.0000 −1.01447
\(996\) 0 0
\(997\) 14.0000 24.2487i 0.443384 0.767964i −0.554554 0.832148i \(-0.687111\pi\)
0.997938 + 0.0641836i \(0.0204443\pi\)
\(998\) 6.00000 10.3923i 0.189927 0.328963i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.g.a.361.1 2
3.2 odd 2 294.2.e.d.67.1 2
7.2 even 3 inner 882.2.g.a.667.1 2
7.3 odd 6 882.2.a.f.1.1 1
7.4 even 3 882.2.a.l.1.1 1
7.5 odd 6 882.2.g.f.667.1 2
7.6 odd 2 882.2.g.f.361.1 2
12.11 even 2 2352.2.q.y.1537.1 2
21.2 odd 6 294.2.e.d.79.1 2
21.5 even 6 294.2.e.e.79.1 2
21.11 odd 6 294.2.a.c.1.1 yes 1
21.17 even 6 294.2.a.b.1.1 1
21.20 even 2 294.2.e.e.67.1 2
28.3 even 6 7056.2.a.a.1.1 1
28.11 odd 6 7056.2.a.ca.1.1 1
84.11 even 6 2352.2.a.b.1.1 1
84.23 even 6 2352.2.q.y.961.1 2
84.47 odd 6 2352.2.q.a.961.1 2
84.59 odd 6 2352.2.a.y.1.1 1
84.83 odd 2 2352.2.q.a.1537.1 2
105.59 even 6 7350.2.a.cj.1.1 1
105.74 odd 6 7350.2.a.br.1.1 1
168.11 even 6 9408.2.a.de.1.1 1
168.53 odd 6 9408.2.a.bo.1.1 1
168.59 odd 6 9408.2.a.b.1.1 1
168.101 even 6 9408.2.a.br.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.2.a.b.1.1 1 21.17 even 6
294.2.a.c.1.1 yes 1 21.11 odd 6
294.2.e.d.67.1 2 3.2 odd 2
294.2.e.d.79.1 2 21.2 odd 6
294.2.e.e.67.1 2 21.20 even 2
294.2.e.e.79.1 2 21.5 even 6
882.2.a.f.1.1 1 7.3 odd 6
882.2.a.l.1.1 1 7.4 even 3
882.2.g.a.361.1 2 1.1 even 1 trivial
882.2.g.a.667.1 2 7.2 even 3 inner
882.2.g.f.361.1 2 7.6 odd 2
882.2.g.f.667.1 2 7.5 odd 6
2352.2.a.b.1.1 1 84.11 even 6
2352.2.a.y.1.1 1 84.59 odd 6
2352.2.q.a.961.1 2 84.47 odd 6
2352.2.q.a.1537.1 2 84.83 odd 2
2352.2.q.y.961.1 2 84.23 even 6
2352.2.q.y.1537.1 2 12.11 even 2
7056.2.a.a.1.1 1 28.3 even 6
7056.2.a.ca.1.1 1 28.11 odd 6
7350.2.a.br.1.1 1 105.74 odd 6
7350.2.a.cj.1.1 1 105.59 even 6
9408.2.a.b.1.1 1 168.59 odd 6
9408.2.a.bo.1.1 1 168.53 odd 6
9408.2.a.br.1.1 1 168.101 even 6
9408.2.a.de.1.1 1 168.11 even 6