Properties

Label 882.2.g.a.667.1
Level $882$
Weight $2$
Character 882.667
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(361,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 667.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.667
Dual form 882.2.g.a.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-2.00000 + 3.46410i) q^{5} +1.00000 q^{8} +(-2.00000 - 3.46410i) q^{10} +(-2.00000 - 3.46410i) q^{11} -4.00000 q^{13} +(-0.500000 + 0.866025i) q^{16} +(2.00000 - 3.46410i) q^{19} +4.00000 q^{20} +4.00000 q^{22} +(-5.50000 - 9.52628i) q^{25} +(2.00000 - 3.46410i) q^{26} -2.00000 q^{29} +(4.00000 + 6.92820i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(3.00000 - 5.19615i) q^{37} +(2.00000 + 3.46410i) q^{38} +(-2.00000 + 3.46410i) q^{40} +4.00000 q^{43} +(-2.00000 + 3.46410i) q^{44} +(4.00000 - 6.92820i) q^{47} +11.0000 q^{50} +(2.00000 + 3.46410i) q^{52} +(-5.00000 - 8.66025i) q^{53} +16.0000 q^{55} +(1.00000 - 1.73205i) q^{58} +(-2.00000 - 3.46410i) q^{59} +(-2.00000 + 3.46410i) q^{61} -8.00000 q^{62} +1.00000 q^{64} +(8.00000 - 13.8564i) q^{65} +(-2.00000 - 3.46410i) q^{67} -8.00000 q^{71} +(-8.00000 - 13.8564i) q^{73} +(3.00000 + 5.19615i) q^{74} -4.00000 q^{76} +(4.00000 - 6.92820i) q^{79} +(-2.00000 - 3.46410i) q^{80} -12.0000 q^{83} +(-2.00000 + 3.46410i) q^{86} +(-2.00000 - 3.46410i) q^{88} +(-4.00000 + 6.92820i) q^{89} +(4.00000 + 6.92820i) q^{94} +(8.00000 + 13.8564i) q^{95} -8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 4 q^{5} + 2 q^{8} - 4 q^{10} - 4 q^{11} - 8 q^{13} - q^{16} + 4 q^{19} + 8 q^{20} + 8 q^{22} - 11 q^{25} + 4 q^{26} - 4 q^{29} + 8 q^{31} - q^{32} + 6 q^{37} + 4 q^{38} - 4 q^{40}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.00000 + 3.46410i −0.894427 + 1.54919i −0.0599153 + 0.998203i \(0.519083\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.00000 3.46410i −0.632456 1.09545i
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i \(-0.681602\pi\)
0.998899 + 0.0469020i \(0.0149348\pi\)
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −5.50000 9.52628i −1.10000 1.90526i
\(26\) 2.00000 3.46410i 0.392232 0.679366i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 5.19615i 0.493197 0.854242i −0.506772 0.862080i \(-0.669162\pi\)
0.999969 + 0.00783774i \(0.00249486\pi\)
\(38\) 2.00000 + 3.46410i 0.324443 + 0.561951i
\(39\) 0 0
\(40\) −2.00000 + 3.46410i −0.316228 + 0.547723i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −2.00000 + 3.46410i −0.301511 + 0.522233i
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 6.92820i 0.583460 1.01058i −0.411606 0.911362i \(-0.635032\pi\)
0.995066 0.0992202i \(-0.0316348\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) −5.00000 8.66025i −0.686803 1.18958i −0.972867 0.231367i \(-0.925680\pi\)
0.286064 0.958211i \(-0.407653\pi\)
\(54\) 0 0
\(55\) 16.0000 2.15744
\(56\) 0 0
\(57\) 0 0
\(58\) 1.00000 1.73205i 0.131306 0.227429i
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0 0
\(61\) −2.00000 + 3.46410i −0.256074 + 0.443533i −0.965187 0.261562i \(-0.915762\pi\)
0.709113 + 0.705095i \(0.249096\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 8.00000 13.8564i 0.992278 1.71868i
\(66\) 0 0
\(67\) −2.00000 3.46410i −0.244339 0.423207i 0.717607 0.696449i \(-0.245238\pi\)
−0.961946 + 0.273241i \(0.911904\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −8.00000 13.8564i −0.936329 1.62177i −0.772246 0.635323i \(-0.780867\pi\)
−0.164083 0.986447i \(-0.552466\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) −2.00000 3.46410i −0.223607 0.387298i
\(81\) 0 0
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 + 3.46410i −0.215666 + 0.373544i
\(87\) 0 0
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) −4.00000 + 6.92820i −0.423999 + 0.734388i −0.996326 0.0856373i \(-0.972707\pi\)
0.572327 + 0.820025i \(0.306041\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 4.00000 + 6.92820i 0.412568 + 0.714590i
\(95\) 8.00000 + 13.8564i 0.820783 + 1.42164i
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.50000 + 9.52628i −0.550000 + 0.952628i
\(101\) −2.00000 3.46410i −0.199007 0.344691i 0.749199 0.662344i \(-0.230438\pi\)
−0.948207 + 0.317653i \(0.897105\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 10.0000 0.971286
\(107\) 2.00000 3.46410i 0.193347 0.334887i −0.753010 0.658009i \(-0.771399\pi\)
0.946357 + 0.323122i \(0.104732\pi\)
\(108\) 0 0
\(109\) 7.00000 + 12.1244i 0.670478 + 1.16130i 0.977769 + 0.209687i \(0.0672444\pi\)
−0.307290 + 0.951616i \(0.599422\pi\)
\(110\) −8.00000 + 13.8564i −0.762770 + 1.32116i
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.00000 + 1.73205i 0.0928477 + 0.160817i
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −2.00000 3.46410i −0.181071 0.313625i
\(123\) 0 0
\(124\) 4.00000 6.92820i 0.359211 0.622171i
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 8.00000 + 13.8564i 0.701646 + 1.21529i
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) −5.00000 8.66025i −0.427179 0.739895i 0.569442 0.822031i \(-0.307159\pi\)
−0.996621 + 0.0821359i \(0.973826\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.00000 6.92820i 0.335673 0.581402i
\(143\) 8.00000 + 13.8564i 0.668994 + 1.15873i
\(144\) 0 0
\(145\) 4.00000 6.92820i 0.332182 0.575356i
\(146\) 16.0000 1.32417
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 0 0
\(151\) 4.00000 + 6.92820i 0.325515 + 0.563809i 0.981617 0.190864i \(-0.0611289\pi\)
−0.656101 + 0.754673i \(0.727796\pi\)
\(152\) 2.00000 3.46410i 0.162221 0.280976i
\(153\) 0 0
\(154\) 0 0
\(155\) −32.0000 −2.57030
\(156\) 0 0
\(157\) 2.00000 + 3.46410i 0.159617 + 0.276465i 0.934731 0.355357i \(-0.115641\pi\)
−0.775113 + 0.631822i \(0.782307\pi\)
\(158\) 4.00000 + 6.92820i 0.318223 + 0.551178i
\(159\) 0 0
\(160\) 4.00000 0.316228
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 + 10.3923i −0.469956 + 0.813988i −0.999410 0.0343508i \(-0.989064\pi\)
0.529454 + 0.848339i \(0.322397\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 6.00000 10.3923i 0.465690 0.806599i
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −2.00000 3.46410i −0.152499 0.264135i
\(173\) 2.00000 3.46410i 0.152057 0.263371i −0.779926 0.625871i \(-0.784744\pi\)
0.931984 + 0.362500i \(0.118077\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) −4.00000 6.92820i −0.299813 0.519291i
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000 + 20.7846i 0.882258 + 1.52811i
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) −1.00000 1.73205i −0.0719816 0.124676i 0.827788 0.561041i \(-0.189599\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 4.00000 6.92820i 0.287183 0.497416i
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 4.00000 + 6.92820i 0.283552 + 0.491127i 0.972257 0.233915i \(-0.0751537\pi\)
−0.688705 + 0.725042i \(0.741820\pi\)
\(200\) −5.50000 9.52628i −0.388909 0.673610i
\(201\) 0 0
\(202\) 4.00000 0.281439
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −4.00000 6.92820i −0.278693 0.482711i
\(207\) 0 0
\(208\) 2.00000 3.46410i 0.138675 0.240192i
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) −5.00000 + 8.66025i −0.343401 + 0.594789i
\(213\) 0 0
\(214\) 2.00000 + 3.46410i 0.136717 + 0.236801i
\(215\) −8.00000 + 13.8564i −0.545595 + 0.944999i
\(216\) 0 0
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) 0 0
\(220\) −8.00000 13.8564i −0.539360 0.934199i
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7.00000 + 12.1244i −0.465633 + 0.806500i
\(227\) −10.0000 17.3205i −0.663723 1.14960i −0.979630 0.200812i \(-0.935642\pi\)
0.315906 0.948790i \(-0.397691\pi\)
\(228\) 0 0
\(229\) 2.00000 3.46410i 0.132164 0.228914i −0.792347 0.610071i \(-0.791141\pi\)
0.924510 + 0.381157i \(0.124474\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −5.00000 + 8.66025i −0.327561 + 0.567352i −0.982027 0.188739i \(-0.939560\pi\)
0.654466 + 0.756091i \(0.272893\pi\)
\(234\) 0 0
\(235\) 16.0000 + 27.7128i 1.04372 + 1.80778i
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 4.00000 + 6.92820i 0.257663 + 0.446285i 0.965615 0.259975i \(-0.0837143\pi\)
−0.707953 + 0.706260i \(0.750381\pi\)
\(242\) −2.50000 4.33013i −0.160706 0.278351i
\(243\) 0 0
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 + 13.8564i −0.509028 + 0.881662i
\(248\) 4.00000 + 6.92820i 0.254000 + 0.439941i
\(249\) 0 0
\(250\) −12.0000 + 20.7846i −0.758947 + 1.31453i
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 13.8564i 0.501965 0.869428i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −4.00000 + 6.92820i −0.249513 + 0.432169i −0.963391 0.268101i \(-0.913604\pi\)
0.713878 + 0.700270i \(0.246937\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −16.0000 −0.992278
\(261\) 0 0
\(262\) 6.00000 + 10.3923i 0.370681 + 0.642039i
\(263\) 4.00000 + 6.92820i 0.246651 + 0.427211i 0.962594 0.270947i \(-0.0873367\pi\)
−0.715944 + 0.698158i \(0.754003\pi\)
\(264\) 0 0
\(265\) 40.0000 2.45718
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 + 3.46410i −0.122169 + 0.211604i
\(269\) −14.0000 24.2487i −0.853595 1.47847i −0.877942 0.478766i \(-0.841084\pi\)
0.0243472 0.999704i \(-0.492249\pi\)
\(270\) 0 0
\(271\) −16.0000 + 27.7128i −0.971931 + 1.68343i −0.282218 + 0.959350i \(0.591070\pi\)
−0.689713 + 0.724083i \(0.742263\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −22.0000 + 38.1051i −1.32665 + 2.29783i
\(276\) 0 0
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) 6.00000 10.3923i 0.359856 0.623289i
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −14.0000 24.2487i −0.832214 1.44144i −0.896279 0.443491i \(-0.853740\pi\)
0.0640654 0.997946i \(-0.479593\pi\)
\(284\) 4.00000 + 6.92820i 0.237356 + 0.411113i
\(285\) 0 0
\(286\) −16.0000 −0.946100
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 4.00000 + 6.92820i 0.234888 + 0.406838i
\(291\) 0 0
\(292\) −8.00000 + 13.8564i −0.468165 + 0.810885i
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) 3.00000 5.19615i 0.174371 0.302020i
\(297\) 0 0
\(298\) −5.00000 8.66025i −0.289642 0.501675i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −8.00000 −0.460348
\(303\) 0 0
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) −8.00000 13.8564i −0.458079 0.793416i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 16.0000 27.7128i 0.908739 1.57398i
\(311\) −16.0000 27.7128i −0.907277 1.57145i −0.817832 0.575458i \(-0.804824\pi\)
−0.0894452 0.995992i \(-0.528509\pi\)
\(312\) 0 0
\(313\) 12.0000 20.7846i 0.678280 1.17482i −0.297218 0.954810i \(-0.596059\pi\)
0.975499 0.220006i \(-0.0706077\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 15.0000 25.9808i 0.842484 1.45922i −0.0453045 0.998973i \(-0.514426\pi\)
0.887788 0.460252i \(-0.152241\pi\)
\(318\) 0 0
\(319\) 4.00000 + 6.92820i 0.223957 + 0.387905i
\(320\) −2.00000 + 3.46410i −0.111803 + 0.193649i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 22.0000 + 38.1051i 1.22034 + 2.11369i
\(326\) −6.00000 10.3923i −0.332309 0.575577i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 6.00000 + 10.3923i 0.329293 + 0.570352i
\(333\) 0 0
\(334\) −4.00000 + 6.92820i −0.218870 + 0.379094i
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −1.50000 + 2.59808i −0.0815892 + 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 27.7128i 0.866449 1.50073i
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 2.00000 + 3.46410i 0.107521 + 0.186231i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 + 3.46410i −0.106600 + 0.184637i
\(353\) 12.0000 + 20.7846i 0.638696 + 1.10625i 0.985719 + 0.168397i \(0.0538590\pi\)
−0.347024 + 0.937856i \(0.612808\pi\)
\(354\) 0 0
\(355\) 16.0000 27.7128i 0.849192 1.47084i
\(356\) 8.00000 0.423999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 8.00000 13.8564i 0.422224 0.731313i −0.573933 0.818902i \(-0.694583\pi\)
0.996157 + 0.0875892i \(0.0279163\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 10.0000 17.3205i 0.525588 0.910346i
\(363\) 0 0
\(364\) 0 0
\(365\) 64.0000 3.34991
\(366\) 0 0
\(367\) −8.00000 13.8564i −0.417597 0.723299i 0.578101 0.815966i \(-0.303794\pi\)
−0.995697 + 0.0926670i \(0.970461\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −24.0000 −1.24770
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 + 19.0526i −0.569558 + 0.986504i 0.427051 + 0.904227i \(0.359552\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.00000 6.92820i 0.206284 0.357295i
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) 36.0000 1.84920 0.924598 0.380945i \(-0.124401\pi\)
0.924598 + 0.380945i \(0.124401\pi\)
\(380\) 8.00000 13.8564i 0.410391 0.710819i
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0000 + 20.7846i −0.613171 + 1.06204i 0.377531 + 0.925997i \(0.376773\pi\)
−0.990702 + 0.136047i \(0.956560\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) 4.00000 + 6.92820i 0.203069 + 0.351726i
\(389\) −3.00000 5.19615i −0.152106 0.263455i 0.779895 0.625910i \(-0.215272\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 3.00000 5.19615i 0.151138 0.261778i
\(395\) 16.0000 + 27.7128i 0.805047 + 1.39438i
\(396\) 0 0
\(397\) 2.00000 3.46410i 0.100377 0.173858i −0.811463 0.584404i \(-0.801328\pi\)
0.911840 + 0.410546i \(0.134662\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i \(-0.981709\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 0 0
\(403\) −16.0000 27.7128i −0.797017 1.38047i
\(404\) −2.00000 + 3.46410i −0.0995037 + 0.172345i
\(405\) 0 0
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −12.0000 20.7846i −0.593362 1.02773i −0.993776 0.111398i \(-0.964467\pi\)
0.400414 0.916334i \(-0.368866\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) 24.0000 41.5692i 1.17811 2.04055i
\(416\) 2.00000 + 3.46410i 0.0980581 + 0.169842i
\(417\) 0 0
\(418\) 8.00000 13.8564i 0.391293 0.677739i
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 14.0000 24.2487i 0.681509 1.18041i
\(423\) 0 0
\(424\) −5.00000 8.66025i −0.242821 0.420579i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) −8.00000 13.8564i −0.385794 0.668215i
\(431\) 20.0000 + 34.6410i 0.963366 + 1.66860i 0.713942 + 0.700205i \(0.246908\pi\)
0.249424 + 0.968394i \(0.419759\pi\)
\(432\) 0 0
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.00000 12.1244i 0.335239 0.580651i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 16.0000 0.762770
\(441\) 0 0
\(442\) 0 0
\(443\) −6.00000 + 10.3923i −0.285069 + 0.493753i −0.972626 0.232377i \(-0.925350\pi\)
0.687557 + 0.726130i \(0.258683\pi\)
\(444\) 0 0
\(445\) −16.0000 27.7128i −0.758473 1.31371i
\(446\) −8.00000 + 13.8564i −0.378811 + 0.656120i
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −7.00000 12.1244i −0.329252 0.570282i
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 19.0526i 0.514558 0.891241i −0.485299 0.874348i \(-0.661289\pi\)
0.999857 0.0168929i \(-0.00537742\pi\)
\(458\) 2.00000 + 3.46410i 0.0934539 + 0.161867i
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 1.00000 1.73205i 0.0464238 0.0804084i
\(465\) 0 0
\(466\) −5.00000 8.66025i −0.231621 0.401179i
\(467\) −10.0000 + 17.3205i −0.462745 + 0.801498i −0.999097 0.0424970i \(-0.986469\pi\)
0.536352 + 0.843995i \(0.319802\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −32.0000 −1.47605
\(471\) 0 0
\(472\) −2.00000 3.46410i −0.0920575 0.159448i
\(473\) −8.00000 13.8564i −0.367840 0.637118i
\(474\) 0 0
\(475\) −44.0000 −2.01886
\(476\) 0 0
\(477\) 0 0
\(478\) −12.0000 + 20.7846i −0.548867 + 0.950666i
\(479\) 12.0000 + 20.7846i 0.548294 + 0.949673i 0.998392 + 0.0566937i \(0.0180558\pi\)
−0.450098 + 0.892979i \(0.648611\pi\)
\(480\) 0 0
\(481\) −12.0000 + 20.7846i −0.547153 + 0.947697i
\(482\) −8.00000 −0.364390
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 16.0000 27.7128i 0.726523 1.25837i
\(486\) 0 0
\(487\) 4.00000 + 6.92820i 0.181257 + 0.313947i 0.942309 0.334744i \(-0.108650\pi\)
−0.761052 + 0.648691i \(0.775317\pi\)
\(488\) −2.00000 + 3.46410i −0.0905357 + 0.156813i
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.00000 13.8564i −0.359937 0.623429i
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00000 10.3923i 0.268597 0.465223i −0.699903 0.714238i \(-0.746773\pi\)
0.968500 + 0.249015i \(0.0801067\pi\)
\(500\) −12.0000 20.7846i −0.536656 0.929516i
\(501\) 0 0
\(502\) 10.0000 17.3205i 0.446322 0.773052i
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) 16.0000 0.711991
\(506\) 0 0
\(507\) 0 0
\(508\) 8.00000 + 13.8564i 0.354943 + 0.614779i
\(509\) 2.00000 3.46410i 0.0886484 0.153544i −0.818292 0.574803i \(-0.805079\pi\)
0.906940 + 0.421260i \(0.138412\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −4.00000 6.92820i −0.176432 0.305590i
\(515\) −16.0000 27.7128i −0.705044 1.22117i
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 0 0
\(519\) 0 0
\(520\) 8.00000 13.8564i 0.350823 0.607644i
\(521\) −16.0000 27.7128i −0.700973 1.21412i −0.968125 0.250466i \(-0.919416\pi\)
0.267153 0.963654i \(-0.413917\pi\)
\(522\) 0 0
\(523\) 2.00000 3.46410i 0.0874539 0.151475i −0.818980 0.573822i \(-0.805460\pi\)
0.906434 + 0.422347i \(0.138794\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −20.0000 + 34.6410i −0.868744 + 1.50471i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 8.00000 + 13.8564i 0.345870 + 0.599065i
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 0 0
\(538\) 28.0000 1.20717
\(539\) 0 0
\(540\) 0 0
\(541\) 1.00000 1.73205i 0.0429934 0.0744667i −0.843728 0.536771i \(-0.819644\pi\)
0.886721 + 0.462304i \(0.152977\pi\)
\(542\) −16.0000 27.7128i −0.687259 1.19037i
\(543\) 0 0
\(544\) 0 0
\(545\) −56.0000 −2.39878
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) −5.00000 + 8.66025i −0.213589 + 0.369948i
\(549\) 0 0
\(550\) −22.0000 38.1051i −0.938083 1.62481i
\(551\) −4.00000 + 6.92820i −0.170406 + 0.295151i
\(552\) 0 0
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 6.00000 + 10.3923i 0.254457 + 0.440732i
\(557\) −9.00000 15.5885i −0.381342 0.660504i 0.609912 0.792469i \(-0.291205\pi\)
−0.991254 + 0.131965i \(0.957871\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 5.19615i 0.126547 0.219186i
\(563\) 2.00000 + 3.46410i 0.0842900 + 0.145994i 0.905088 0.425223i \(-0.139804\pi\)
−0.820798 + 0.571218i \(0.806471\pi\)
\(564\) 0 0
\(565\) −28.0000 + 48.4974i −1.17797 + 2.04030i
\(566\) 28.0000 1.17693
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) 0 0
\(571\) −18.0000 31.1769i −0.753277 1.30471i −0.946227 0.323505i \(-0.895139\pi\)
0.192950 0.981209i \(-0.438194\pi\)
\(572\) 8.00000 13.8564i 0.334497 0.579365i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8.00000 13.8564i −0.333044 0.576850i 0.650063 0.759880i \(-0.274743\pi\)
−0.983107 + 0.183031i \(0.941409\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) 0 0
\(580\) −8.00000 −0.332182
\(581\) 0 0
\(582\) 0 0
\(583\) −20.0000 + 34.6410i −0.828315 + 1.43468i
\(584\) −8.00000 13.8564i −0.331042 0.573382i
\(585\) 0 0
\(586\) 6.00000 10.3923i 0.247858 0.429302i
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) −8.00000 + 13.8564i −0.329355 + 0.570459i
\(591\) 0 0
\(592\) 3.00000 + 5.19615i 0.123299 + 0.213561i
\(593\) 12.0000 20.7846i 0.492781 0.853522i −0.507184 0.861838i \(-0.669314\pi\)
0.999965 + 0.00831589i \(0.00264706\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 + 20.7846i 0.490307 + 0.849236i 0.999938 0.0111569i \(-0.00355143\pi\)
−0.509631 + 0.860393i \(0.670218\pi\)
\(600\) 0 0
\(601\) 32.0000 1.30531 0.652654 0.757656i \(-0.273656\pi\)
0.652654 + 0.757656i \(0.273656\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.00000 6.92820i 0.162758 0.281905i
\(605\) −10.0000 17.3205i −0.406558 0.704179i
\(606\) 0 0
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 16.0000 0.647821
\(611\) −16.0000 + 27.7128i −0.647291 + 1.12114i
\(612\) 0 0
\(613\) −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i \(-0.990708\pi\)
0.474509 0.880251i \(-0.342626\pi\)
\(614\) 10.0000 17.3205i 0.403567 0.698999i
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 10.0000 + 17.3205i 0.401934 + 0.696170i 0.993959 0.109749i \(-0.0350048\pi\)
−0.592025 + 0.805919i \(0.701671\pi\)
\(620\) 16.0000 + 27.7128i 0.642575 + 1.11297i
\(621\) 0 0
\(622\) 32.0000 1.28308
\(623\) 0 0
\(624\) 0 0
\(625\) −20.5000 + 35.5070i −0.820000 + 1.42028i
\(626\) 12.0000 + 20.7846i 0.479616 + 0.830720i
\(627\) 0 0
\(628\) 2.00000 3.46410i 0.0798087 0.138233i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 4.00000 6.92820i 0.159111 0.275589i
\(633\) 0 0
\(634\) 15.0000 + 25.9808i 0.595726 + 1.03183i
\(635\) 32.0000 55.4256i 1.26988 2.19950i
\(636\) 0 0
\(637\) 0 0
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) −2.00000 3.46410i −0.0790569 0.136931i
\(641\) −1.00000 1.73205i −0.0394976 0.0684119i 0.845601 0.533816i \(-0.179242\pi\)
−0.885098 + 0.465404i \(0.845909\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 + 20.7846i 0.471769 + 0.817127i 0.999478 0.0322975i \(-0.0102824\pi\)
−0.527710 + 0.849425i \(0.676949\pi\)
\(648\) 0 0
\(649\) −8.00000 + 13.8564i −0.314027 + 0.543912i
\(650\) −44.0000 −1.72582
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) −23.0000 + 39.8372i −0.900060 + 1.55895i −0.0726446 + 0.997358i \(0.523144\pi\)
−0.827415 + 0.561591i \(0.810189\pi\)
\(654\) 0 0
\(655\) 24.0000 + 41.5692i 0.937758 + 1.62424i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) 14.0000 + 24.2487i 0.544537 + 0.943166i 0.998636 + 0.0522143i \(0.0166279\pi\)
−0.454099 + 0.890951i \(0.650039\pi\)
\(662\) −10.0000 17.3205i −0.388661 0.673181i
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −4.00000 6.92820i −0.154765 0.268060i
\(669\) 0 0
\(670\) −8.00000 + 13.8564i −0.309067 + 0.535320i
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) −7.00000 + 12.1244i −0.269630 + 0.467013i
\(675\) 0 0
\(676\) −1.50000 2.59808i −0.0576923 0.0999260i
\(677\) −6.00000 + 10.3923i −0.230599 + 0.399409i −0.957984 0.286820i \(-0.907402\pi\)
0.727386 + 0.686229i \(0.240735\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 16.0000 + 27.7128i 0.612672 + 1.06118i
\(683\) −22.0000 38.1051i −0.841807 1.45805i −0.888366 0.459136i \(-0.848159\pi\)
0.0465592 0.998916i \(-0.485174\pi\)
\(684\) 0 0
\(685\) 40.0000 1.52832
\(686\) 0 0
\(687\) 0 0
\(688\) −2.00000 + 3.46410i −0.0762493 + 0.132068i
\(689\) 20.0000 + 34.6410i 0.761939 + 1.31972i
\(690\) 0 0
\(691\) 10.0000 17.3205i 0.380418 0.658903i −0.610704 0.791859i \(-0.709113\pi\)
0.991122 + 0.132956i \(0.0424468\pi\)
\(692\) −4.00000 −0.152057
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 24.0000 41.5692i 0.910372 1.57681i
\(696\) 0 0
\(697\) 0 0
\(698\) −6.00000 + 10.3923i −0.227103 + 0.393355i
\(699\) 0 0
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) −12.0000 20.7846i −0.452589 0.783906i
\(704\) −2.00000 3.46410i −0.0753778 0.130558i
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) 0 0
\(708\) 0 0
\(709\) 19.0000 32.9090i 0.713560 1.23592i −0.249952 0.968258i \(-0.580415\pi\)
0.963512 0.267664i \(-0.0862517\pi\)
\(710\) 16.0000 + 27.7128i 0.600469 + 1.04004i
\(711\) 0 0
\(712\) −4.00000 + 6.92820i −0.149906 + 0.259645i
\(713\) 0 0
\(714\) 0 0
\(715\) −64.0000 −2.39346
\(716\) 6.00000 10.3923i 0.224231 0.388379i
\(717\) 0 0
\(718\) 8.00000 + 13.8564i 0.298557 + 0.517116i
\(719\) 12.0000 20.7846i 0.447524 0.775135i −0.550700 0.834703i \(-0.685639\pi\)
0.998224 + 0.0595683i \(0.0189724\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 10.0000 + 17.3205i 0.371647 + 0.643712i
\(725\) 11.0000 + 19.0526i 0.408530 + 0.707594i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −32.0000 + 55.4256i −1.18437 + 2.05139i
\(731\) 0 0
\(732\) 0 0
\(733\) −2.00000 + 3.46410i −0.0738717 + 0.127950i −0.900595 0.434659i \(-0.856869\pi\)
0.826723 + 0.562609i \(0.190202\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 + 13.8564i −0.294684 + 0.510407i
\(738\) 0 0
\(739\) 10.0000 + 17.3205i 0.367856 + 0.637145i 0.989230 0.146369i \(-0.0467586\pi\)
−0.621374 + 0.783514i \(0.713425\pi\)
\(740\) 12.0000 20.7846i 0.441129 0.764057i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −20.0000 34.6410i −0.732743 1.26915i
\(746\) −11.0000 19.0526i −0.402739 0.697564i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(752\) 4.00000 + 6.92820i 0.145865 + 0.252646i
\(753\) 0 0
\(754\) −4.00000 + 6.92820i −0.145671 + 0.252310i
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) −18.0000 + 31.1769i −0.653789 + 1.13240i
\(759\) 0 0
\(760\) 8.00000 + 13.8564i 0.290191 + 0.502625i
\(761\) −8.00000 + 13.8564i −0.290000 + 0.502294i −0.973809 0.227366i \(-0.926989\pi\)
0.683810 + 0.729661i \(0.260322\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −12.0000 20.7846i −0.433578 0.750978i
\(767\) 8.00000 + 13.8564i 0.288863 + 0.500326i
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.00000 + 1.73205i −0.0359908 + 0.0623379i
\(773\) −18.0000 31.1769i −0.647415 1.12136i −0.983738 0.179609i \(-0.942517\pi\)
0.336323 0.941747i \(-0.390817\pi\)
\(774\) 0 0
\(775\) 44.0000 76.2102i 1.58053 2.73755i
\(776\) −8.00000 −0.287183
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 + 27.7128i 0.572525 + 0.991642i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16.0000 −0.571064
\(786\) 0 0
\(787\) 10.0000 + 17.3205i 0.356462 + 0.617409i 0.987367 0.158450i \(-0.0506498\pi\)
−0.630905 + 0.775860i \(0.717316\pi\)
\(788\) 3.00000 + 5.19615i 0.106871 + 0.185105i
\(789\) 0 0
\(790\) −32.0000 −1.13851
\(791\) 0 0
\(792\) 0 0
\(793\) 8.00000 13.8564i 0.284088 0.492055i
\(794\) 2.00000 + 3.46410i 0.0709773 + 0.122936i
\(795\) 0 0
\(796\) 4.00000 6.92820i 0.141776 0.245564i
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.50000 + 9.52628i −0.194454 + 0.336805i
\(801\) 0 0
\(802\) −9.00000 15.5885i −0.317801 0.550448i
\(803\) −32.0000 + 55.4256i −1.12926 + 1.95593i
\(804\) 0 0
\(805\) 0 0
\(806\) 32.0000 1.12715
\(807\) 0 0
\(808\) −2.00000 3.46410i −0.0703598 0.121867i
\(809\) 21.0000 + 36.3731i 0.738321 + 1.27881i 0.953251 + 0.302180i \(0.0977142\pi\)
−0.214930 + 0.976629i \(0.568952\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 12.0000 20.7846i 0.420600 0.728500i
\(815\) −24.0000 41.5692i −0.840683 1.45611i
\(816\) 0 0
\(817\) 8.00000 13.8564i 0.279885 0.484774i
\(818\) 24.0000 0.839140
\(819\) 0 0
\(820\) 0 0
\(821\) −5.00000 + 8.66025i −0.174501 + 0.302245i −0.939989 0.341206i \(-0.889165\pi\)
0.765487 + 0.643451i \(0.222498\pi\)
\(822\) 0 0
\(823\) −8.00000 13.8564i −0.278862 0.483004i 0.692240 0.721668i \(-0.256624\pi\)
−0.971102 + 0.238664i \(0.923291\pi\)
\(824\) −4.00000 + 6.92820i −0.139347 + 0.241355i
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −26.0000 45.0333i −0.903017 1.56407i −0.823557 0.567234i \(-0.808014\pi\)
−0.0794606 0.996838i \(-0.525320\pi\)
\(830\) 24.0000 + 41.5692i 0.833052 + 1.44289i
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 0 0
\(834\) 0 0
\(835\) −16.0000 + 27.7128i −0.553703 + 0.959041i
\(836\) 8.00000 + 13.8564i 0.276686 + 0.479234i
\(837\) 0 0
\(838\) −14.0000 + 24.2487i −0.483622 + 0.837658i
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −3.00000 + 5.19615i −0.103387 + 0.179071i
\(843\) 0 0
\(844\) 14.0000 + 24.2487i 0.481900 + 0.834675i
\(845\) −6.00000 + 10.3923i −0.206406 + 0.357506i
\(846\) 0 0
\(847\) 0 0
\(848\) 10.0000 0.343401
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −52.0000 −1.78045 −0.890223 0.455525i \(-0.849452\pi\)
−0.890223 + 0.455525i \(0.849452\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 3.46410i 0.0683586 0.118401i
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) −18.0000 + 31.1769i −0.614152 + 1.06374i 0.376381 + 0.926465i \(0.377169\pi\)
−0.990533 + 0.137277i \(0.956165\pi\)
\(860\) 16.0000 0.545595
\(861\) 0 0
\(862\) −40.0000 −1.36241
\(863\) 24.0000 41.5692i 0.816970 1.41503i −0.0909355 0.995857i \(-0.528986\pi\)
0.907905 0.419176i \(-0.137681\pi\)
\(864\) 0 0
\(865\) 8.00000 + 13.8564i 0.272008 + 0.471132i
\(866\) −4.00000 + 6.92820i −0.135926 + 0.235430i
\(867\) 0 0
\(868\) 0 0
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) 8.00000 + 13.8564i 0.271070 + 0.469506i
\(872\) 7.00000 + 12.1244i 0.237050 + 0.410582i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.00000 + 15.5885i −0.303908 + 0.526385i −0.977018 0.213158i \(-0.931625\pi\)
0.673109 + 0.739543i \(0.264958\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −8.00000 + 13.8564i −0.269680 + 0.467099i
\(881\) −8.00000 −0.269527 −0.134763 0.990878i \(-0.543027\pi\)
−0.134763 + 0.990878i \(0.543027\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.00000 10.3923i −0.201574 0.349136i
\(887\) −12.0000 + 20.7846i −0.402921 + 0.697879i −0.994077 0.108678i \(-0.965338\pi\)
0.591156 + 0.806557i \(0.298672\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 32.0000 1.07264
\(891\) 0 0
\(892\) −8.00000 13.8564i −0.267860 0.463947i
\(893\) −16.0000 27.7128i −0.535420 0.927374i
\(894\) 0 0
\(895\) −48.0000 −1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) −15.0000 + 25.9808i −0.500556 + 0.866989i
\(899\) −8.00000 13.8564i −0.266815 0.462137i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 14.0000 0.465633
\(905\) 40.0000 69.2820i 1.32964 2.30301i
\(906\) 0 0
\(907\) 10.0000 + 17.3205i 0.332045 + 0.575118i 0.982913 0.184073i \(-0.0589282\pi\)
−0.650868 + 0.759191i \(0.725595\pi\)
\(908\) −10.0000 + 17.3205i −0.331862 + 0.574801i
\(909\) 0 0
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) 24.0000 + 41.5692i 0.794284 + 1.37574i
\(914\) 11.0000 + 19.0526i 0.363848 + 0.630203i
\(915\) 0 0
\(916\) −4.00000 −0.132164
\(917\) 0 0
\(918\) 0 0
\(919\) 24.0000 41.5692i 0.791687 1.37124i −0.133235 0.991084i \(-0.542536\pi\)
0.924922 0.380158i \(-0.124130\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −6.00000 + 10.3923i −0.197599 + 0.342252i
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) −66.0000 −2.17007
\(926\) −4.00000 + 6.92820i −0.131448 + 0.227675i
\(927\) 0 0
\(928\) 1.00000 + 1.73205i 0.0328266 + 0.0568574i
\(929\) −24.0000 + 41.5692i −0.787414 + 1.36384i 0.140132 + 0.990133i \(0.455247\pi\)
−0.927546 + 0.373709i \(0.878086\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 10.0000 0.327561
\(933\) 0 0
\(934\) −10.0000 17.3205i −0.327210 0.566744i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 16.0000 27.7128i 0.521862 0.903892i
\(941\) 6.00000 + 10.3923i 0.195594 + 0.338779i 0.947095 0.320953i \(-0.104003\pi\)
−0.751501 + 0.659732i \(0.770670\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) −14.0000 + 24.2487i −0.454939 + 0.787977i −0.998685 0.0512727i \(-0.983672\pi\)
0.543746 + 0.839250i \(0.317006\pi\)
\(948\) 0 0
\(949\) 32.0000 + 55.4256i 1.03876 + 1.79919i
\(950\) 22.0000 38.1051i 0.713774 1.23629i
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −12.0000 20.7846i −0.388108 0.672222i
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) −12.0000 20.7846i −0.386896 0.670123i
\(963\) 0 0
\(964\) 4.00000 6.92820i 0.128831 0.223142i
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −2.50000 + 4.33013i −0.0803530 + 0.139176i
\(969\) 0 0
\(970\) 16.0000 + 27.7128i 0.513729 + 0.889805i
\(971\) −2.00000 + 3.46410i −0.0641831 + 0.111168i −0.896331 0.443385i \(-0.853777\pi\)
0.832148 + 0.554553i \(0.187111\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −2.00000 3.46410i −0.0640184 0.110883i
\(977\) 7.00000 + 12.1244i 0.223950 + 0.387893i 0.956004 0.293354i \(-0.0947715\pi\)
−0.732054 + 0.681247i \(0.761438\pi\)
\(978\) 0 0
\(979\) 32.0000 1.02272
\(980\) 0 0
\(981\) 0 0
\(982\) −6.00000 + 10.3923i −0.191468 + 0.331632i
\(983\) 4.00000 + 6.92820i 0.127580 + 0.220975i 0.922739 0.385426i \(-0.125946\pi\)
−0.795158 + 0.606402i \(0.792612\pi\)
\(984\) 0 0
\(985\) 12.0000 20.7846i 0.382352 0.662253i
\(986\) 0 0
\(987\) 0 0
\(988\) 16.0000 0.509028
\(989\) 0 0
\(990\) 0 0
\(991\) −4.00000 6.92820i −0.127064 0.220082i 0.795474 0.605988i \(-0.207222\pi\)
−0.922538 + 0.385906i \(0.873889\pi\)
\(992\) 4.00000 6.92820i 0.127000 0.219971i
\(993\) 0 0
\(994\) 0 0
\(995\) −32.0000 −1.01447
\(996\) 0 0
\(997\) 14.0000 + 24.2487i 0.443384 + 0.767964i 0.997938 0.0641836i \(-0.0204443\pi\)
−0.554554 + 0.832148i \(0.687111\pi\)
\(998\) 6.00000 + 10.3923i 0.189927 + 0.328963i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.g.a.667.1 2
3.2 odd 2 294.2.e.d.79.1 2
7.2 even 3 882.2.a.l.1.1 1
7.3 odd 6 882.2.g.f.361.1 2
7.4 even 3 inner 882.2.g.a.361.1 2
7.5 odd 6 882.2.a.f.1.1 1
7.6 odd 2 882.2.g.f.667.1 2
12.11 even 2 2352.2.q.y.961.1 2
21.2 odd 6 294.2.a.c.1.1 yes 1
21.5 even 6 294.2.a.b.1.1 1
21.11 odd 6 294.2.e.d.67.1 2
21.17 even 6 294.2.e.e.67.1 2
21.20 even 2 294.2.e.e.79.1 2
28.19 even 6 7056.2.a.a.1.1 1
28.23 odd 6 7056.2.a.ca.1.1 1
84.11 even 6 2352.2.q.y.1537.1 2
84.23 even 6 2352.2.a.b.1.1 1
84.47 odd 6 2352.2.a.y.1.1 1
84.59 odd 6 2352.2.q.a.1537.1 2
84.83 odd 2 2352.2.q.a.961.1 2
105.44 odd 6 7350.2.a.br.1.1 1
105.89 even 6 7350.2.a.cj.1.1 1
168.5 even 6 9408.2.a.br.1.1 1
168.107 even 6 9408.2.a.de.1.1 1
168.131 odd 6 9408.2.a.b.1.1 1
168.149 odd 6 9408.2.a.bo.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.2.a.b.1.1 1 21.5 even 6
294.2.a.c.1.1 yes 1 21.2 odd 6
294.2.e.d.67.1 2 21.11 odd 6
294.2.e.d.79.1 2 3.2 odd 2
294.2.e.e.67.1 2 21.17 even 6
294.2.e.e.79.1 2 21.20 even 2
882.2.a.f.1.1 1 7.5 odd 6
882.2.a.l.1.1 1 7.2 even 3
882.2.g.a.361.1 2 7.4 even 3 inner
882.2.g.a.667.1 2 1.1 even 1 trivial
882.2.g.f.361.1 2 7.3 odd 6
882.2.g.f.667.1 2 7.6 odd 2
2352.2.a.b.1.1 1 84.23 even 6
2352.2.a.y.1.1 1 84.47 odd 6
2352.2.q.a.961.1 2 84.83 odd 2
2352.2.q.a.1537.1 2 84.59 odd 6
2352.2.q.y.961.1 2 12.11 even 2
2352.2.q.y.1537.1 2 84.11 even 6
7056.2.a.a.1.1 1 28.19 even 6
7056.2.a.ca.1.1 1 28.23 odd 6
7350.2.a.br.1.1 1 105.44 odd 6
7350.2.a.cj.1.1 1 105.89 even 6
9408.2.a.b.1.1 1 168.131 odd 6
9408.2.a.bo.1.1 1 168.149 odd 6
9408.2.a.br.1.1 1 168.5 even 6
9408.2.a.de.1.1 1 168.107 even 6