Properties

Label 882.2.h.q.67.4
Level $882$
Weight $2$
Character 882.67
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(67,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.4
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 882.67
Dual form 882.2.h.q.79.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.22474 + 1.22474i) q^{3} +(-0.500000 - 0.866025i) q^{4} -3.86370 q^{5} +(-1.67303 + 0.448288i) q^{6} +1.00000 q^{8} +3.00000i q^{9} +(1.93185 - 3.34607i) q^{10} -3.73205 q^{11} +(0.448288 - 1.67303i) q^{12} +(3.34607 - 5.79555i) q^{13} +(-4.73205 - 4.73205i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.70831 - 4.69093i) q^{17} +(-2.59808 - 1.50000i) q^{18} +(-1.48356 - 2.56961i) q^{19} +(1.93185 + 3.34607i) q^{20} +(1.86603 - 3.23205i) q^{22} -1.46410 q^{23} +(1.22474 + 1.22474i) q^{24} +9.92820 q^{25} +(3.34607 + 5.79555i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(2.00000 + 3.46410i) q^{29} +(6.46410 - 1.73205i) q^{30} +(0.896575 + 1.55291i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-4.57081 - 4.57081i) q^{33} +(2.70831 + 4.69093i) q^{34} +(2.59808 - 1.50000i) q^{36} +(-0.267949 - 0.464102i) q^{37} +2.96713 q^{38} +(11.1962 - 3.00000i) q^{39} -3.86370 q^{40} +(-0.637756 + 1.10463i) q^{41} +(-1.86603 - 3.23205i) q^{43} +(1.86603 + 3.23205i) q^{44} -11.5911i q^{45} +(0.732051 - 1.26795i) q^{46} +(5.27792 - 9.14162i) q^{47} +(-1.67303 + 0.448288i) q^{48} +(-4.96410 + 8.59808i) q^{50} +(9.06218 - 2.42820i) q^{51} -6.69213 q^{52} +(1.46410 - 2.53590i) q^{53} +(-1.34486 - 5.01910i) q^{54} +14.4195 q^{55} +(1.33013 - 4.96410i) q^{57} -4.00000 q^{58} +(-4.31199 - 7.46859i) q^{59} +(-1.73205 + 6.46410i) q^{60} +(3.48477 - 6.03579i) q^{61} -1.79315 q^{62} +1.00000 q^{64} +(-12.9282 + 22.3923i) q^{65} +(6.24384 - 1.67303i) q^{66} +(-2.76795 - 4.79423i) q^{67} -5.41662 q^{68} +(-1.79315 - 1.79315i) q^{69} +2.53590 q^{71} +3.00000i q^{72} +(-3.41542 + 5.91567i) q^{73} +0.535898 q^{74} +(12.1595 + 12.1595i) q^{75} +(-1.48356 + 2.56961i) q^{76} +(-3.00000 + 11.1962i) q^{78} +(2.46410 - 4.26795i) q^{79} +(1.93185 - 3.34607i) q^{80} -9.00000 q^{81} +(-0.637756 - 1.10463i) q^{82} +(-8.95215 - 15.5056i) q^{83} +(-10.4641 + 18.1244i) q^{85} +3.73205 q^{86} +(-1.79315 + 6.69213i) q^{87} -3.73205 q^{88} +(3.53553 + 6.12372i) q^{89} +(10.0382 + 5.79555i) q^{90} +(0.732051 + 1.26795i) q^{92} +(-0.803848 + 3.00000i) q^{93} +(5.27792 + 9.14162i) q^{94} +(5.73205 + 9.92820i) q^{95} +(0.448288 - 1.67303i) q^{96} +(-2.94855 - 5.10703i) q^{97} -11.1962i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} - 16 q^{11} - 24 q^{15} - 4 q^{16} + 8 q^{22} + 16 q^{23} + 24 q^{25} + 16 q^{29} + 24 q^{30} - 4 q^{32} - 16 q^{37} + 48 q^{39} - 8 q^{43} + 8 q^{44} - 8 q^{46} - 12 q^{50}+ \cdots + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 1.22474 + 1.22474i 0.707107 + 0.707107i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −3.86370 −1.72790 −0.863950 0.503577i \(-0.832017\pi\)
−0.863950 + 0.503577i \(0.832017\pi\)
\(6\) −1.67303 + 0.448288i −0.683013 + 0.183013i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 3.00000i 1.00000i
\(10\) 1.93185 3.34607i 0.610905 1.05812i
\(11\) −3.73205 −1.12526 −0.562628 0.826710i \(-0.690210\pi\)
−0.562628 + 0.826710i \(0.690210\pi\)
\(12\) 0.448288 1.67303i 0.129410 0.482963i
\(13\) 3.34607 5.79555i 0.928032 1.60740i 0.141420 0.989950i \(-0.454833\pi\)
0.786612 0.617448i \(-0.211833\pi\)
\(14\) 0 0
\(15\) −4.73205 4.73205i −1.22181 1.22181i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.70831 4.69093i 0.656861 1.13772i −0.324562 0.945864i \(-0.605217\pi\)
0.981424 0.191853i \(-0.0614497\pi\)
\(18\) −2.59808 1.50000i −0.612372 0.353553i
\(19\) −1.48356 2.56961i −0.340353 0.589509i 0.644145 0.764903i \(-0.277213\pi\)
−0.984498 + 0.175395i \(0.943880\pi\)
\(20\) 1.93185 + 3.34607i 0.431975 + 0.748203i
\(21\) 0 0
\(22\) 1.86603 3.23205i 0.397838 0.689076i
\(23\) −1.46410 −0.305286 −0.152643 0.988281i \(-0.548779\pi\)
−0.152643 + 0.988281i \(0.548779\pi\)
\(24\) 1.22474 + 1.22474i 0.250000 + 0.250000i
\(25\) 9.92820 1.98564
\(26\) 3.34607 + 5.79555i 0.656217 + 1.13660i
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) 2.00000 + 3.46410i 0.371391 + 0.643268i 0.989780 0.142605i \(-0.0455477\pi\)
−0.618389 + 0.785872i \(0.712214\pi\)
\(30\) 6.46410 1.73205i 1.18018 0.316228i
\(31\) 0.896575 + 1.55291i 0.161030 + 0.278912i 0.935238 0.354019i \(-0.115185\pi\)
−0.774209 + 0.632931i \(0.781852\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −4.57081 4.57081i −0.795676 0.795676i
\(34\) 2.70831 + 4.69093i 0.464471 + 0.804488i
\(35\) 0 0
\(36\) 2.59808 1.50000i 0.433013 0.250000i
\(37\) −0.267949 0.464102i −0.0440506 0.0762978i 0.843159 0.537664i \(-0.180693\pi\)
−0.887210 + 0.461366i \(0.847360\pi\)
\(38\) 2.96713 0.481332
\(39\) 11.1962 3.00000i 1.79282 0.480384i
\(40\) −3.86370 −0.610905
\(41\) −0.637756 + 1.10463i −0.0996008 + 0.172514i −0.911519 0.411257i \(-0.865090\pi\)
0.811919 + 0.583771i \(0.198423\pi\)
\(42\) 0 0
\(43\) −1.86603 3.23205i −0.284566 0.492883i 0.687938 0.725770i \(-0.258516\pi\)
−0.972504 + 0.232887i \(0.925183\pi\)
\(44\) 1.86603 + 3.23205i 0.281314 + 0.487250i
\(45\) 11.5911i 1.72790i
\(46\) 0.732051 1.26795i 0.107935 0.186949i
\(47\) 5.27792 9.14162i 0.769863 1.33344i −0.167773 0.985826i \(-0.553658\pi\)
0.937637 0.347617i \(-0.113009\pi\)
\(48\) −1.67303 + 0.448288i −0.241481 + 0.0647048i
\(49\) 0 0
\(50\) −4.96410 + 8.59808i −0.702030 + 1.21595i
\(51\) 9.06218 2.42820i 1.26896 0.340016i
\(52\) −6.69213 −0.928032
\(53\) 1.46410 2.53590i 0.201110 0.348332i −0.747776 0.663951i \(-0.768879\pi\)
0.948886 + 0.315618i \(0.102212\pi\)
\(54\) −1.34486 5.01910i −0.183013 0.683013i
\(55\) 14.4195 1.94433
\(56\) 0 0
\(57\) 1.33013 4.96410i 0.176180 0.657511i
\(58\) −4.00000 −0.525226
\(59\) −4.31199 7.46859i −0.561373 0.972327i −0.997377 0.0723823i \(-0.976940\pi\)
0.436004 0.899945i \(-0.356394\pi\)
\(60\) −1.73205 + 6.46410i −0.223607 + 0.834512i
\(61\) 3.48477 6.03579i 0.446179 0.772804i −0.551955 0.833874i \(-0.686118\pi\)
0.998133 + 0.0610700i \(0.0194513\pi\)
\(62\) −1.79315 −0.227730
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −12.9282 + 22.3923i −1.60355 + 2.77742i
\(66\) 6.24384 1.67303i 0.768564 0.205936i
\(67\) −2.76795 4.79423i −0.338159 0.585708i 0.645928 0.763399i \(-0.276471\pi\)
−0.984086 + 0.177690i \(0.943137\pi\)
\(68\) −5.41662 −0.656861
\(69\) −1.79315 1.79315i −0.215870 0.215870i
\(70\) 0 0
\(71\) 2.53590 0.300956 0.150478 0.988613i \(-0.451919\pi\)
0.150478 + 0.988613i \(0.451919\pi\)
\(72\) 3.00000i 0.353553i
\(73\) −3.41542 + 5.91567i −0.399744 + 0.692377i −0.993694 0.112125i \(-0.964234\pi\)
0.593950 + 0.804502i \(0.297568\pi\)
\(74\) 0.535898 0.0622969
\(75\) 12.1595 + 12.1595i 1.40406 + 1.40406i
\(76\) −1.48356 + 2.56961i −0.170176 + 0.294754i
\(77\) 0 0
\(78\) −3.00000 + 11.1962i −0.339683 + 1.26771i
\(79\) 2.46410 4.26795i 0.277233 0.480182i −0.693463 0.720492i \(-0.743916\pi\)
0.970696 + 0.240310i \(0.0772492\pi\)
\(80\) 1.93185 3.34607i 0.215988 0.374101i
\(81\) −9.00000 −1.00000
\(82\) −0.637756 1.10463i −0.0704284 0.121986i
\(83\) −8.95215 15.5056i −0.982626 1.70196i −0.652043 0.758182i \(-0.726088\pi\)
−0.330583 0.943777i \(-0.607245\pi\)
\(84\) 0 0
\(85\) −10.4641 + 18.1244i −1.13499 + 1.96586i
\(86\) 3.73205 0.402437
\(87\) −1.79315 + 6.69213i −0.192246 + 0.717472i
\(88\) −3.73205 −0.397838
\(89\) 3.53553 + 6.12372i 0.374766 + 0.649113i 0.990292 0.139003i \(-0.0443898\pi\)
−0.615526 + 0.788116i \(0.711056\pi\)
\(90\) 10.0382 + 5.79555i 1.05812 + 0.610905i
\(91\) 0 0
\(92\) 0.732051 + 1.26795i 0.0763216 + 0.132193i
\(93\) −0.803848 + 3.00000i −0.0833551 + 0.311086i
\(94\) 5.27792 + 9.14162i 0.544376 + 0.942886i
\(95\) 5.73205 + 9.92820i 0.588096 + 1.01861i
\(96\) 0.448288 1.67303i 0.0457532 0.170753i
\(97\) −2.94855 5.10703i −0.299379 0.518540i 0.676615 0.736337i \(-0.263446\pi\)
−0.975994 + 0.217797i \(0.930113\pi\)
\(98\) 0 0
\(99\) 11.1962i 1.12526i
\(100\) −4.96410 8.59808i −0.496410 0.859808i
\(101\) −4.89898 −0.487467 −0.243733 0.969842i \(-0.578372\pi\)
−0.243733 + 0.969842i \(0.578372\pi\)
\(102\) −2.42820 + 9.06218i −0.240428 + 0.897289i
\(103\) −7.45001 −0.734071 −0.367035 0.930207i \(-0.619627\pi\)
−0.367035 + 0.930207i \(0.619627\pi\)
\(104\) 3.34607 5.79555i 0.328109 0.568301i
\(105\) 0 0
\(106\) 1.46410 + 2.53590i 0.142206 + 0.246308i
\(107\) −1.69615 2.93782i −0.163973 0.284010i 0.772317 0.635237i \(-0.219098\pi\)
−0.936290 + 0.351227i \(0.885764\pi\)
\(108\) 5.01910 + 1.34486i 0.482963 + 0.129410i
\(109\) 4.46410 7.73205i 0.427583 0.740596i −0.569074 0.822286i \(-0.692698\pi\)
0.996658 + 0.0816899i \(0.0260317\pi\)
\(110\) −7.20977 + 12.4877i −0.687424 + 1.19065i
\(111\) 0.240237 0.896575i 0.0228023 0.0850992i
\(112\) 0 0
\(113\) −3.46410 + 6.00000i −0.325875 + 0.564433i −0.981689 0.190490i \(-0.938992\pi\)
0.655814 + 0.754923i \(0.272326\pi\)
\(114\) 3.63397 + 3.63397i 0.340353 + 0.340353i
\(115\) 5.65685 0.527504
\(116\) 2.00000 3.46410i 0.185695 0.321634i
\(117\) 17.3867 + 10.0382i 1.60740 + 0.928032i
\(118\) 8.62398 0.793902
\(119\) 0 0
\(120\) −4.73205 4.73205i −0.431975 0.431975i
\(121\) 2.92820 0.266200
\(122\) 3.48477 + 6.03579i 0.315496 + 0.546455i
\(123\) −2.13397 + 0.571797i −0.192414 + 0.0515572i
\(124\) 0.896575 1.55291i 0.0805149 0.139456i
\(125\) −19.0411 −1.70309
\(126\) 0 0
\(127\) 6.53590 0.579967 0.289984 0.957032i \(-0.406350\pi\)
0.289984 + 0.957032i \(0.406350\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 1.67303 6.24384i 0.147302 0.549740i
\(130\) −12.9282 22.3923i −1.13388 1.96394i
\(131\) −6.03579 −0.527350 −0.263675 0.964612i \(-0.584935\pi\)
−0.263675 + 0.964612i \(0.584935\pi\)
\(132\) −1.67303 + 6.24384i −0.145619 + 0.543457i
\(133\) 0 0
\(134\) 5.53590 0.478229
\(135\) 14.1962 14.1962i 1.22181 1.22181i
\(136\) 2.70831 4.69093i 0.232236 0.402244i
\(137\) −8.66025 −0.739895 −0.369948 0.929053i \(-0.620624\pi\)
−0.369948 + 0.929053i \(0.620624\pi\)
\(138\) 2.44949 0.656339i 0.208514 0.0558713i
\(139\) −8.17569 + 14.1607i −0.693453 + 1.20110i 0.277246 + 0.960799i \(0.410578\pi\)
−0.970699 + 0.240297i \(0.922755\pi\)
\(140\) 0 0
\(141\) 17.6603 4.73205i 1.48726 0.398511i
\(142\) −1.26795 + 2.19615i −0.106404 + 0.184297i
\(143\) −12.4877 + 21.6293i −1.04427 + 1.80873i
\(144\) −2.59808 1.50000i −0.216506 0.125000i
\(145\) −7.72741 13.3843i −0.641726 1.11150i
\(146\) −3.41542 5.91567i −0.282662 0.489585i
\(147\) 0 0
\(148\) −0.267949 + 0.464102i −0.0220253 + 0.0381489i
\(149\) 9.07180 0.743191 0.371595 0.928395i \(-0.378811\pi\)
0.371595 + 0.928395i \(0.378811\pi\)
\(150\) −16.6102 + 4.45069i −1.35622 + 0.363397i
\(151\) −2.39230 −0.194683 −0.0973415 0.995251i \(-0.531034\pi\)
−0.0973415 + 0.995251i \(0.531034\pi\)
\(152\) −1.48356 2.56961i −0.120333 0.208423i
\(153\) 14.0728 + 8.12493i 1.13772 + 0.656861i
\(154\) 0 0
\(155\) −3.46410 6.00000i −0.278243 0.481932i
\(156\) −8.19615 8.19615i −0.656217 0.656217i
\(157\) 2.31079 + 4.00240i 0.184421 + 0.319427i 0.943381 0.331710i \(-0.107626\pi\)
−0.758960 + 0.651137i \(0.774292\pi\)
\(158\) 2.46410 + 4.26795i 0.196033 + 0.339540i
\(159\) 4.89898 1.31268i 0.388514 0.104102i
\(160\) 1.93185 + 3.34607i 0.152726 + 0.264530i
\(161\) 0 0
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) −10.6603 18.4641i −0.834976 1.44622i −0.894050 0.447966i \(-0.852148\pi\)
0.0590748 0.998254i \(-0.481185\pi\)
\(164\) 1.27551 0.0996008
\(165\) 17.6603 + 17.6603i 1.37485 + 1.37485i
\(166\) 17.9043 1.38964
\(167\) 10.5558 18.2832i 0.816835 1.41480i −0.0911679 0.995836i \(-0.529060\pi\)
0.908003 0.418964i \(-0.137607\pi\)
\(168\) 0 0
\(169\) −15.8923 27.5263i −1.22248 2.11741i
\(170\) −10.4641 18.1244i −0.802560 1.39007i
\(171\) 7.70882 4.45069i 0.589509 0.340353i
\(172\) −1.86603 + 3.23205i −0.142283 + 0.246442i
\(173\) 0.896575 1.55291i 0.0681654 0.118066i −0.829928 0.557870i \(-0.811619\pi\)
0.898094 + 0.439804i \(0.144952\pi\)
\(174\) −4.89898 4.89898i −0.371391 0.371391i
\(175\) 0 0
\(176\) 1.86603 3.23205i 0.140657 0.243625i
\(177\) 3.86603 14.4282i 0.290588 1.08449i
\(178\) −7.07107 −0.529999
\(179\) −9.46410 + 16.3923i −0.707380 + 1.22522i 0.258446 + 0.966026i \(0.416790\pi\)
−0.965826 + 0.259193i \(0.916544\pi\)
\(180\) −10.0382 + 5.79555i −0.748203 + 0.431975i
\(181\) 16.9706 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(182\) 0 0
\(183\) 11.6603 3.12436i 0.861951 0.230959i
\(184\) −1.46410 −0.107935
\(185\) 1.03528 + 1.79315i 0.0761150 + 0.131835i
\(186\) −2.19615 2.19615i −0.161030 0.161030i
\(187\) −10.1075 + 17.5068i −0.739137 + 1.28022i
\(188\) −10.5558 −0.769863
\(189\) 0 0
\(190\) −11.4641 −0.831693
\(191\) −0.535898 + 0.928203i −0.0387762 + 0.0671624i −0.884762 0.466043i \(-0.845679\pi\)
0.845986 + 0.533205i \(0.179013\pi\)
\(192\) 1.22474 + 1.22474i 0.0883883 + 0.0883883i
\(193\) 11.5263 + 19.9641i 0.829680 + 1.43705i 0.898290 + 0.439404i \(0.144810\pi\)
−0.0686098 + 0.997644i \(0.521856\pi\)
\(194\) 5.89709 0.423386
\(195\) −43.2586 + 11.5911i −3.09781 + 0.830057i
\(196\) 0 0
\(197\) −3.07180 −0.218856 −0.109428 0.993995i \(-0.534902\pi\)
−0.109428 + 0.993995i \(0.534902\pi\)
\(198\) 9.69615 + 5.59808i 0.689076 + 0.397838i
\(199\) −8.90138 + 15.4176i −0.631002 + 1.09293i 0.356345 + 0.934355i \(0.384023\pi\)
−0.987347 + 0.158574i \(0.949310\pi\)
\(200\) 9.92820 0.702030
\(201\) 2.48168 9.26174i 0.175044 0.653273i
\(202\) 2.44949 4.24264i 0.172345 0.298511i
\(203\) 0 0
\(204\) −6.63397 6.63397i −0.464471 0.464471i
\(205\) 2.46410 4.26795i 0.172100 0.298087i
\(206\) 3.72500 6.45189i 0.259533 0.449525i
\(207\) 4.39230i 0.305286i
\(208\) 3.34607 + 5.79555i 0.232008 + 0.401849i
\(209\) 5.53674 + 9.58991i 0.382984 + 0.663348i
\(210\) 0 0
\(211\) −2.53590 + 4.39230i −0.174578 + 0.302379i −0.940015 0.341132i \(-0.889190\pi\)
0.765437 + 0.643511i \(0.222523\pi\)
\(212\) −2.92820 −0.201110
\(213\) 3.10583 + 3.10583i 0.212808 + 0.212808i
\(214\) 3.39230 0.231893
\(215\) 7.20977 + 12.4877i 0.491702 + 0.851653i
\(216\) −3.67423 + 3.67423i −0.250000 + 0.250000i
\(217\) 0 0
\(218\) 4.46410 + 7.73205i 0.302347 + 0.523681i
\(219\) −11.4282 + 3.06218i −0.772246 + 0.206923i
\(220\) −7.20977 12.4877i −0.486082 0.841920i
\(221\) −18.1244 31.3923i −1.21918 2.11167i
\(222\) 0.656339 + 0.656339i 0.0440506 + 0.0440506i
\(223\) −13.3843 23.1822i −0.896276 1.55240i −0.832217 0.554450i \(-0.812929\pi\)
−0.0640595 0.997946i \(-0.520405\pi\)
\(224\) 0 0
\(225\) 29.7846i 1.98564i
\(226\) −3.46410 6.00000i −0.230429 0.399114i
\(227\) 10.5187 0.698149 0.349074 0.937095i \(-0.386496\pi\)
0.349074 + 0.937095i \(0.386496\pi\)
\(228\) −4.96410 + 1.33013i −0.328756 + 0.0880898i
\(229\) −24.9754 −1.65042 −0.825209 0.564827i \(-0.808943\pi\)
−0.825209 + 0.564827i \(0.808943\pi\)
\(230\) −2.82843 + 4.89898i −0.186501 + 0.323029i
\(231\) 0 0
\(232\) 2.00000 + 3.46410i 0.131306 + 0.227429i
\(233\) 12.0622 + 20.8923i 0.790220 + 1.36870i 0.925831 + 0.377938i \(0.123367\pi\)
−0.135611 + 0.990762i \(0.543300\pi\)
\(234\) −17.3867 + 10.0382i −1.13660 + 0.656217i
\(235\) −20.3923 + 35.3205i −1.33025 + 2.30406i
\(236\) −4.31199 + 7.46859i −0.280687 + 0.486164i
\(237\) 8.24504 2.20925i 0.535573 0.143506i
\(238\) 0 0
\(239\) 6.46410 11.1962i 0.418128 0.724219i −0.577623 0.816304i \(-0.696020\pi\)
0.995751 + 0.0920846i \(0.0293530\pi\)
\(240\) 6.46410 1.73205i 0.417256 0.111803i
\(241\) −23.4225 −1.50877 −0.754387 0.656430i \(-0.772066\pi\)
−0.754387 + 0.656430i \(0.772066\pi\)
\(242\) −1.46410 + 2.53590i −0.0941160 + 0.163014i
\(243\) −11.0227 11.0227i −0.707107 0.707107i
\(244\) −6.96953 −0.446179
\(245\) 0 0
\(246\) 0.571797 2.13397i 0.0364564 0.136057i
\(247\) −19.8564 −1.26343
\(248\) 0.896575 + 1.55291i 0.0569326 + 0.0986102i
\(249\) 8.02628 29.9545i 0.508645 1.89829i
\(250\) 9.52056 16.4901i 0.602133 1.04292i
\(251\) 16.3514 1.03209 0.516045 0.856561i \(-0.327404\pi\)
0.516045 + 0.856561i \(0.327404\pi\)
\(252\) 0 0
\(253\) 5.46410 0.343525
\(254\) −3.26795 + 5.66025i −0.205049 + 0.355156i
\(255\) −35.0136 + 9.38186i −2.19263 + 0.587515i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.68973 −0.167781 −0.0838903 0.996475i \(-0.526735\pi\)
−0.0838903 + 0.996475i \(0.526735\pi\)
\(258\) 4.57081 + 4.57081i 0.284566 + 0.284566i
\(259\) 0 0
\(260\) 25.8564 1.60355
\(261\) −10.3923 + 6.00000i −0.643268 + 0.371391i
\(262\) 3.01790 5.22715i 0.186446 0.322934i
\(263\) −15.4641 −0.953557 −0.476779 0.879023i \(-0.658196\pi\)
−0.476779 + 0.879023i \(0.658196\pi\)
\(264\) −4.57081 4.57081i −0.281314 0.281314i
\(265\) −5.65685 + 9.79796i −0.347498 + 0.601884i
\(266\) 0 0
\(267\) −3.16987 + 11.8301i −0.193993 + 0.723992i
\(268\) −2.76795 + 4.79423i −0.169079 + 0.292854i
\(269\) −2.82843 + 4.89898i −0.172452 + 0.298696i −0.939277 0.343161i \(-0.888502\pi\)
0.766824 + 0.641857i \(0.221836\pi\)
\(270\) 5.19615 + 19.3923i 0.316228 + 1.18018i
\(271\) 9.00292 + 15.5935i 0.546888 + 0.947239i 0.998485 + 0.0550165i \(0.0175211\pi\)
−0.451597 + 0.892222i \(0.649146\pi\)
\(272\) 2.70831 + 4.69093i 0.164215 + 0.284429i
\(273\) 0 0
\(274\) 4.33013 7.50000i 0.261593 0.453092i
\(275\) −37.0526 −2.23435
\(276\) −0.656339 + 2.44949i −0.0395070 + 0.147442i
\(277\) 24.5359 1.47422 0.737110 0.675773i \(-0.236190\pi\)
0.737110 + 0.675773i \(0.236190\pi\)
\(278\) −8.17569 14.1607i −0.490346 0.849303i
\(279\) −4.65874 + 2.68973i −0.278912 + 0.161030i
\(280\) 0 0
\(281\) 4.92820 + 8.53590i 0.293992 + 0.509209i 0.974750 0.223299i \(-0.0716828\pi\)
−0.680758 + 0.732508i \(0.738349\pi\)
\(282\) −4.73205 + 17.6603i −0.281790 + 1.05165i
\(283\) 4.70951 + 8.15711i 0.279951 + 0.484890i 0.971372 0.237562i \(-0.0763483\pi\)
−0.691421 + 0.722452i \(0.743015\pi\)
\(284\) −1.26795 2.19615i −0.0752389 0.130318i
\(285\) −5.13922 + 19.1798i −0.304421 + 1.13611i
\(286\) −12.4877 21.6293i −0.738412 1.27897i
\(287\) 0 0
\(288\) 2.59808 1.50000i 0.153093 0.0883883i
\(289\) −6.16987 10.6865i −0.362934 0.628620i
\(290\) 15.4548 0.907538
\(291\) 2.64359 9.86603i 0.154970 0.578357i
\(292\) 6.83083 0.399744
\(293\) −9.52056 + 16.4901i −0.556197 + 0.963361i 0.441612 + 0.897206i \(0.354407\pi\)
−0.997809 + 0.0661554i \(0.978927\pi\)
\(294\) 0 0
\(295\) 16.6603 + 28.8564i 0.969997 + 1.68008i
\(296\) −0.267949 0.464102i −0.0155742 0.0269754i
\(297\) 13.7124 13.7124i 0.795676 0.795676i
\(298\) −4.53590 + 7.85641i −0.262758 + 0.455109i
\(299\) −4.89898 + 8.48528i −0.283315 + 0.490716i
\(300\) 4.45069 16.6102i 0.256961 0.958991i
\(301\) 0 0
\(302\) 1.19615 2.07180i 0.0688308 0.119219i
\(303\) −6.00000 6.00000i −0.344691 0.344691i
\(304\) 2.96713 0.170176
\(305\) −13.4641 + 23.3205i −0.770952 + 1.33533i
\(306\) −14.0728 + 8.12493i −0.804488 + 0.464471i
\(307\) 11.0735 0.631996 0.315998 0.948760i \(-0.397661\pi\)
0.315998 + 0.948760i \(0.397661\pi\)
\(308\) 0 0
\(309\) −9.12436 9.12436i −0.519066 0.519066i
\(310\) 6.92820 0.393496
\(311\) −6.17449 10.6945i −0.350123 0.606431i 0.636147 0.771568i \(-0.280527\pi\)
−0.986271 + 0.165136i \(0.947194\pi\)
\(312\) 11.1962 3.00000i 0.633857 0.169842i
\(313\) 11.7112 20.2844i 0.661958 1.14654i −0.318143 0.948043i \(-0.603059\pi\)
0.980101 0.198502i \(-0.0636075\pi\)
\(314\) −4.62158 −0.260811
\(315\) 0 0
\(316\) −4.92820 −0.277233
\(317\) 13.0000 22.5167i 0.730153 1.26466i −0.226665 0.973973i \(-0.572782\pi\)
0.956818 0.290689i \(-0.0938844\pi\)
\(318\) −1.31268 + 4.89898i −0.0736113 + 0.274721i
\(319\) −7.46410 12.9282i −0.417909 0.723840i
\(320\) −3.86370 −0.215988
\(321\) 1.52073 5.67544i 0.0848788 0.316772i
\(322\) 0 0
\(323\) −16.0718 −0.894259
\(324\) 4.50000 + 7.79423i 0.250000 + 0.433013i
\(325\) 33.2204 57.5394i 1.84274 3.19171i
\(326\) 21.3205 1.18083
\(327\) 14.9372 4.00240i 0.826028 0.221333i
\(328\) −0.637756 + 1.10463i −0.0352142 + 0.0609928i
\(329\) 0 0
\(330\) −24.1244 + 6.46410i −1.32800 + 0.355837i
\(331\) 2.26795 3.92820i 0.124658 0.215914i −0.796941 0.604057i \(-0.793550\pi\)
0.921599 + 0.388143i \(0.126883\pi\)
\(332\) −8.95215 + 15.5056i −0.491313 + 0.850979i
\(333\) 1.39230 0.803848i 0.0762978 0.0440506i
\(334\) 10.5558 + 18.2832i 0.577590 + 1.00041i
\(335\) 10.6945 + 18.5235i 0.584305 + 1.01205i
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) 31.7846 1.72885
\(339\) −11.5911 + 3.10583i −0.629543 + 0.168685i
\(340\) 20.9282 1.13499
\(341\) −3.34607 5.79555i −0.181200 0.313847i
\(342\) 8.90138i 0.481332i
\(343\) 0 0
\(344\) −1.86603 3.23205i −0.100609 0.174261i
\(345\) 6.92820 + 6.92820i 0.373002 + 0.373002i
\(346\) 0.896575 + 1.55291i 0.0482002 + 0.0834852i
\(347\) −10.7942 18.6962i −0.579465 1.00366i −0.995541 0.0943323i \(-0.969928\pi\)
0.416076 0.909330i \(-0.363405\pi\)
\(348\) 6.69213 1.79315i 0.358736 0.0961230i
\(349\) 8.24504 + 14.2808i 0.441347 + 0.764436i 0.997790 0.0664504i \(-0.0211674\pi\)
−0.556443 + 0.830886i \(0.687834\pi\)
\(350\) 0 0
\(351\) 9.00000 + 33.5885i 0.480384 + 1.79282i
\(352\) 1.86603 + 3.23205i 0.0994595 + 0.172269i
\(353\) 26.4267 1.40655 0.703277 0.710916i \(-0.251719\pi\)
0.703277 + 0.710916i \(0.251719\pi\)
\(354\) 10.5622 + 10.5622i 0.561373 + 0.561373i
\(355\) −9.79796 −0.520022
\(356\) 3.53553 6.12372i 0.187383 0.324557i
\(357\) 0 0
\(358\) −9.46410 16.3923i −0.500193 0.866360i
\(359\) −0.267949 0.464102i −0.0141418 0.0244943i 0.858868 0.512197i \(-0.171168\pi\)
−0.873010 + 0.487703i \(0.837835\pi\)
\(360\) 11.5911i 0.610905i
\(361\) 5.09808 8.83013i 0.268320 0.464744i
\(362\) −8.48528 + 14.6969i −0.445976 + 0.772454i
\(363\) 3.58630 + 3.58630i 0.188232 + 0.188232i
\(364\) 0 0
\(365\) 13.1962 22.8564i 0.690718 1.19636i
\(366\) −3.12436 + 11.6603i −0.163313 + 0.609491i
\(367\) 15.7322 0.821215 0.410607 0.911812i \(-0.365317\pi\)
0.410607 + 0.911812i \(0.365317\pi\)
\(368\) 0.732051 1.26795i 0.0381608 0.0660964i
\(369\) −3.31388 1.91327i −0.172514 0.0996008i
\(370\) −2.07055 −0.107643
\(371\) 0 0
\(372\) 3.00000 0.803848i 0.155543 0.0416776i
\(373\) 30.7846 1.59397 0.796983 0.604001i \(-0.206428\pi\)
0.796983 + 0.604001i \(0.206428\pi\)
\(374\) −10.1075 17.5068i −0.522649 0.905254i
\(375\) −23.3205 23.3205i −1.20427 1.20427i
\(376\) 5.27792 9.14162i 0.272188 0.471443i
\(377\) 26.7685 1.37865
\(378\) 0 0
\(379\) −17.5885 −0.903458 −0.451729 0.892155i \(-0.649193\pi\)
−0.451729 + 0.892155i \(0.649193\pi\)
\(380\) 5.73205 9.92820i 0.294048 0.509306i
\(381\) 8.00481 + 8.00481i 0.410099 + 0.410099i
\(382\) −0.535898 0.928203i −0.0274189 0.0474910i
\(383\) 21.6665 1.10710 0.553552 0.832814i \(-0.313272\pi\)
0.553552 + 0.832814i \(0.313272\pi\)
\(384\) −1.67303 + 0.448288i −0.0853766 + 0.0228766i
\(385\) 0 0
\(386\) −23.0526 −1.17334
\(387\) 9.69615 5.59808i 0.492883 0.284566i
\(388\) −2.94855 + 5.10703i −0.149690 + 0.259270i
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) 11.5911 43.2586i 0.586939 2.19048i
\(391\) −3.96524 + 6.86800i −0.200531 + 0.347329i
\(392\) 0 0
\(393\) −7.39230 7.39230i −0.372892 0.372892i
\(394\) 1.53590 2.66025i 0.0773774 0.134022i
\(395\) −9.52056 + 16.4901i −0.479031 + 0.829706i
\(396\) −9.69615 + 5.59808i −0.487250 + 0.281314i
\(397\) 9.00292 + 15.5935i 0.451844 + 0.782616i 0.998501 0.0547406i \(-0.0174332\pi\)
−0.546657 + 0.837357i \(0.684100\pi\)
\(398\) −8.90138 15.4176i −0.446186 0.772817i
\(399\) 0 0
\(400\) −4.96410 + 8.59808i −0.248205 + 0.429904i
\(401\) 17.7846 0.888121 0.444061 0.895997i \(-0.353538\pi\)
0.444061 + 0.895997i \(0.353538\pi\)
\(402\) 6.78006 + 6.78006i 0.338159 + 0.338159i
\(403\) 12.0000 0.597763
\(404\) 2.44949 + 4.24264i 0.121867 + 0.211079i
\(405\) 34.7733 1.72790
\(406\) 0 0
\(407\) 1.00000 + 1.73205i 0.0495682 + 0.0858546i
\(408\) 9.06218 2.42820i 0.448645 0.120214i
\(409\) 8.36516 + 14.4889i 0.413631 + 0.716429i 0.995284 0.0970077i \(-0.0309271\pi\)
−0.581653 + 0.813437i \(0.697594\pi\)
\(410\) 2.46410 + 4.26795i 0.121693 + 0.210779i
\(411\) −10.6066 10.6066i −0.523185 0.523185i
\(412\) 3.72500 + 6.45189i 0.183518 + 0.317862i
\(413\) 0 0
\(414\) 3.80385 + 2.19615i 0.186949 + 0.107935i
\(415\) 34.5885 + 59.9090i 1.69788 + 2.94082i
\(416\) −6.69213 −0.328109
\(417\) −27.3564 + 7.33013i −1.33965 + 0.358958i
\(418\) −11.0735 −0.541621
\(419\) −3.95164 + 6.84443i −0.193050 + 0.334373i −0.946260 0.323408i \(-0.895171\pi\)
0.753209 + 0.657781i \(0.228505\pi\)
\(420\) 0 0
\(421\) −14.1962 24.5885i −0.691878 1.19837i −0.971222 0.238177i \(-0.923450\pi\)
0.279344 0.960191i \(-0.409883\pi\)
\(422\) −2.53590 4.39230i −0.123446 0.213814i
\(423\) 27.4249 + 15.8338i 1.33344 + 0.769863i
\(424\) 1.46410 2.53590i 0.0711031 0.123154i
\(425\) 26.8886 46.5725i 1.30429 2.25910i
\(426\) −4.24264 + 1.13681i −0.205557 + 0.0550787i
\(427\) 0 0
\(428\) −1.69615 + 2.93782i −0.0819866 + 0.142005i
\(429\) −41.7846 + 11.1962i −2.01738 + 0.540555i
\(430\) −14.4195 −0.695372
\(431\) 18.9282 32.7846i 0.911739 1.57918i 0.100133 0.994974i \(-0.468073\pi\)
0.811606 0.584205i \(-0.198594\pi\)
\(432\) −1.34486 5.01910i −0.0647048 0.241481i
\(433\) −7.10823 −0.341600 −0.170800 0.985306i \(-0.554635\pi\)
−0.170800 + 0.985306i \(0.554635\pi\)
\(434\) 0 0
\(435\) 6.92820 25.8564i 0.332182 1.23972i
\(436\) −8.92820 −0.427583
\(437\) 2.17209 + 3.76217i 0.103905 + 0.179969i
\(438\) 3.06218 11.4282i 0.146317 0.546061i
\(439\) −9.79796 + 16.9706i −0.467631 + 0.809961i −0.999316 0.0369815i \(-0.988226\pi\)
0.531685 + 0.846942i \(0.321559\pi\)
\(440\) 14.4195 0.687424
\(441\) 0 0
\(442\) 36.2487 1.72418
\(443\) 9.16025 15.8660i 0.435217 0.753818i −0.562097 0.827072i \(-0.690005\pi\)
0.997313 + 0.0732540i \(0.0233384\pi\)
\(444\) −0.896575 + 0.240237i −0.0425496 + 0.0114011i
\(445\) −13.6603 23.6603i −0.647558 1.12160i
\(446\) 26.7685 1.26753
\(447\) 11.1106 + 11.1106i 0.525515 + 0.525515i
\(448\) 0 0
\(449\) −17.7846 −0.839308 −0.419654 0.907684i \(-0.637849\pi\)
−0.419654 + 0.907684i \(0.637849\pi\)
\(450\) −25.7942 14.8923i −1.21595 0.702030i
\(451\) 2.38014 4.12252i 0.112076 0.194122i
\(452\) 6.92820 0.325875
\(453\) −2.92996 2.92996i −0.137662 0.137662i
\(454\) −5.25933 + 9.10943i −0.246833 + 0.427527i
\(455\) 0 0
\(456\) 1.33013 4.96410i 0.0622889 0.232465i
\(457\) −3.52628 + 6.10770i −0.164952 + 0.285706i −0.936638 0.350298i \(-0.886080\pi\)
0.771686 + 0.636004i \(0.219414\pi\)
\(458\) 12.4877 21.6293i 0.583511 1.01067i
\(459\) 7.28461 + 27.1865i 0.340016 + 1.26896i
\(460\) −2.82843 4.89898i −0.131876 0.228416i
\(461\) −12.8666 22.2856i −0.599258 1.03795i −0.992931 0.118695i \(-0.962129\pi\)
0.393672 0.919251i \(-0.371204\pi\)
\(462\) 0 0
\(463\) −19.3205 + 33.4641i −0.897900 + 1.55521i −0.0677264 + 0.997704i \(0.521575\pi\)
−0.830174 + 0.557505i \(0.811759\pi\)
\(464\) −4.00000 −0.185695
\(465\) 3.10583 11.5911i 0.144029 0.537525i
\(466\) −24.1244 −1.11754
\(467\) −13.7818 23.8707i −0.637745 1.10461i −0.985927 0.167179i \(-0.946534\pi\)
0.348182 0.937427i \(-0.386799\pi\)
\(468\) 20.0764i 0.928032i
\(469\) 0 0
\(470\) −20.3923 35.3205i −0.940627 1.62921i
\(471\) −2.07180 + 7.73205i −0.0954634 + 0.356274i
\(472\) −4.31199 7.46859i −0.198475 0.343770i
\(473\) 6.96410 + 12.0622i 0.320210 + 0.554620i
\(474\) −2.20925 + 8.24504i −0.101474 + 0.378707i
\(475\) −14.7291 25.5116i −0.675819 1.17055i
\(476\) 0 0
\(477\) 7.60770 + 4.39230i 0.348332 + 0.201110i
\(478\) 6.46410 + 11.1962i 0.295661 + 0.512100i
\(479\) −15.4548 −0.706148 −0.353074 0.935595i \(-0.614864\pi\)
−0.353074 + 0.935595i \(0.614864\pi\)
\(480\) −1.73205 + 6.46410i −0.0790569 + 0.295045i
\(481\) −3.58630 −0.163521
\(482\) 11.7112 20.2844i 0.533432 0.923931i
\(483\) 0 0
\(484\) −1.46410 2.53590i −0.0665501 0.115268i
\(485\) 11.3923 + 19.7321i 0.517298 + 0.895986i
\(486\) 15.0573 4.03459i 0.683013 0.183013i
\(487\) −19.3923 + 33.5885i −0.878749 + 1.52204i −0.0260347 + 0.999661i \(0.508288\pi\)
−0.852714 + 0.522377i \(0.825045\pi\)
\(488\) 3.48477 6.03579i 0.157748 0.273227i
\(489\) 9.55772 35.6699i 0.432215 1.61305i
\(490\) 0 0
\(491\) 0.696152 1.20577i 0.0314169 0.0544157i −0.849889 0.526961i \(-0.823331\pi\)
0.881306 + 0.472545i \(0.156665\pi\)
\(492\) 1.56218 + 1.56218i 0.0704284 + 0.0704284i
\(493\) 21.6665 0.975809
\(494\) 9.92820 17.1962i 0.446691 0.773691i
\(495\) 43.2586i 1.94433i
\(496\) −1.79315 −0.0805149
\(497\) 0 0
\(498\) 21.9282 + 21.9282i 0.982626 + 0.982626i
\(499\) 12.6077 0.564398 0.282199 0.959356i \(-0.408936\pi\)
0.282199 + 0.959356i \(0.408936\pi\)
\(500\) 9.52056 + 16.4901i 0.425772 + 0.737459i
\(501\) 35.3205 9.46410i 1.57800 0.422825i
\(502\) −8.17569 + 14.1607i −0.364899 + 0.632024i
\(503\) 7.45001 0.332179 0.166090 0.986111i \(-0.446886\pi\)
0.166090 + 0.986111i \(0.446886\pi\)
\(504\) 0 0
\(505\) 18.9282 0.842294
\(506\) −2.73205 + 4.73205i −0.121454 + 0.210365i
\(507\) 14.2487 53.1767i 0.632805 2.36166i
\(508\) −3.26795 5.66025i −0.144992 0.251133i
\(509\) −26.4911 −1.17420 −0.587099 0.809515i \(-0.699730\pi\)
−0.587099 + 0.809515i \(0.699730\pi\)
\(510\) 9.38186 35.0136i 0.415436 1.55043i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 14.8923 + 3.99038i 0.657511 + 0.176180i
\(514\) 1.34486 2.32937i 0.0593194 0.102744i
\(515\) 28.7846 1.26840
\(516\) −6.24384 + 1.67303i −0.274870 + 0.0736512i
\(517\) −19.6975 + 34.1170i −0.866293 + 1.50046i
\(518\) 0 0
\(519\) 3.00000 0.803848i 0.131685 0.0352850i
\(520\) −12.9282 + 22.3923i −0.566939 + 0.981968i
\(521\) 16.1805 28.0255i 0.708881 1.22782i −0.256392 0.966573i \(-0.582534\pi\)
0.965273 0.261244i \(-0.0841329\pi\)
\(522\) 12.0000i 0.525226i
\(523\) −1.88108 3.25813i −0.0822540 0.142468i 0.821964 0.569540i \(-0.192879\pi\)
−0.904218 + 0.427072i \(0.859545\pi\)
\(524\) 3.01790 + 5.22715i 0.131837 + 0.228349i
\(525\) 0 0
\(526\) 7.73205 13.3923i 0.337133 0.583932i
\(527\) 9.71281 0.423097
\(528\) 6.24384 1.67303i 0.271728 0.0728094i
\(529\) −20.8564 −0.906800
\(530\) −5.65685 9.79796i −0.245718 0.425596i
\(531\) 22.4058 12.9360i 0.972327 0.561373i
\(532\) 0 0
\(533\) 4.26795 + 7.39230i 0.184865 + 0.320196i
\(534\) −8.66025 8.66025i −0.374766 0.374766i
\(535\) 6.55343 + 11.3509i 0.283329 + 0.490741i
\(536\) −2.76795 4.79423i −0.119557 0.207079i
\(537\) −31.6675 + 8.48528i −1.36655 + 0.366167i
\(538\) −2.82843 4.89898i −0.121942 0.211210i
\(539\) 0 0
\(540\) −19.3923 5.19615i −0.834512 0.223607i
\(541\) 9.66025 + 16.7321i 0.415327 + 0.719367i 0.995463 0.0951526i \(-0.0303339\pi\)
−0.580136 + 0.814520i \(0.697001\pi\)
\(542\) −18.0058 −0.773417
\(543\) 20.7846 + 20.7846i 0.891953 + 0.891953i
\(544\) −5.41662 −0.232236
\(545\) −17.2480 + 29.8744i −0.738822 + 1.27968i
\(546\) 0 0
\(547\) 19.1865 + 33.2321i 0.820357 + 1.42090i 0.905417 + 0.424524i \(0.139559\pi\)
−0.0850597 + 0.996376i \(0.527108\pi\)
\(548\) 4.33013 + 7.50000i 0.184974 + 0.320384i
\(549\) 18.1074 + 10.4543i 0.772804 + 0.446179i
\(550\) 18.5263 32.0885i 0.789963 1.36826i
\(551\) 5.93426 10.2784i 0.252808 0.437876i
\(552\) −1.79315 1.79315i −0.0763216 0.0763216i
\(553\) 0 0
\(554\) −12.2679 + 21.2487i −0.521215 + 0.902771i
\(555\) −0.928203 + 3.46410i −0.0394000 + 0.147043i
\(556\) 16.3514 0.693453
\(557\) −3.46410 + 6.00000i −0.146779 + 0.254228i −0.930035 0.367471i \(-0.880224\pi\)
0.783256 + 0.621699i \(0.213557\pi\)
\(558\) 5.37945i 0.227730i
\(559\) −24.9754 −1.05635
\(560\) 0 0
\(561\) −33.8205 + 9.06218i −1.42790 + 0.382605i
\(562\) −9.85641 −0.415767
\(563\) −12.7973 22.1655i −0.539341 0.934166i −0.998940 0.0460390i \(-0.985340\pi\)
0.459599 0.888127i \(-0.347993\pi\)
\(564\) −12.9282 12.9282i −0.544376 0.544376i
\(565\) 13.3843 23.1822i 0.563080 0.975283i
\(566\) −9.41902 −0.395911
\(567\) 0 0
\(568\) 2.53590 0.106404
\(569\) −7.89230 + 13.6699i −0.330863 + 0.573071i −0.982681 0.185304i \(-0.940673\pi\)
0.651819 + 0.758375i \(0.274006\pi\)
\(570\) −14.0406 14.0406i −0.588096 0.588096i
\(571\) −2.52628 4.37564i −0.105722 0.183115i 0.808311 0.588755i \(-0.200382\pi\)
−0.914033 + 0.405640i \(0.867049\pi\)
\(572\) 24.9754 1.04427
\(573\) −1.79315 + 0.480473i −0.0749100 + 0.0200721i
\(574\) 0 0
\(575\) −14.5359 −0.606189
\(576\) 3.00000i 0.125000i
\(577\) −22.3178 + 38.6556i −0.929103 + 1.60925i −0.144278 + 0.989537i \(0.546086\pi\)
−0.784825 + 0.619717i \(0.787247\pi\)
\(578\) 12.3397 0.513266
\(579\) −10.3342 + 38.5677i −0.429474 + 1.60282i
\(580\) −7.72741 + 13.3843i −0.320863 + 0.555751i
\(581\) 0 0
\(582\) 7.22243 + 7.22243i 0.299379 + 0.299379i
\(583\) −5.46410 + 9.46410i −0.226300 + 0.391963i
\(584\) −3.41542 + 5.91567i −0.141331 + 0.244792i
\(585\) −67.1769 38.7846i −2.77742 1.60355i
\(586\) −9.52056 16.4901i −0.393291 0.681199i
\(587\) 14.5768 + 25.2478i 0.601650 + 1.04209i 0.992571 + 0.121664i \(0.0388230\pi\)
−0.390922 + 0.920424i \(0.627844\pi\)
\(588\) 0 0
\(589\) 2.66025 4.60770i 0.109614 0.189857i
\(590\) −33.3205 −1.37178
\(591\) −3.76217 3.76217i −0.154755 0.154755i
\(592\) 0.535898 0.0220253
\(593\) −1.36345 2.36156i −0.0559900 0.0969775i 0.836672 0.547704i \(-0.184498\pi\)
−0.892662 + 0.450727i \(0.851165\pi\)
\(594\) 5.01910 + 18.7315i 0.205936 + 0.768564i
\(595\) 0 0
\(596\) −4.53590 7.85641i −0.185798 0.321811i
\(597\) −29.7846 + 7.98076i −1.21900 + 0.326631i
\(598\) −4.89898 8.48528i −0.200334 0.346989i
\(599\) 18.3923 + 31.8564i 0.751489 + 1.30162i 0.947101 + 0.320936i \(0.103997\pi\)
−0.195612 + 0.980681i \(0.562669\pi\)
\(600\) 12.1595 + 12.1595i 0.496410 + 0.496410i
\(601\) −0.448288 0.776457i −0.0182860 0.0316723i 0.856738 0.515753i \(-0.172488\pi\)
−0.875024 + 0.484080i \(0.839154\pi\)
\(602\) 0 0
\(603\) 14.3827 8.30385i 0.585708 0.338159i
\(604\) 1.19615 + 2.07180i 0.0486708 + 0.0843002i
\(605\) −11.3137 −0.459968
\(606\) 8.19615 2.19615i 0.332946 0.0892126i
\(607\) 31.6675 1.28534 0.642672 0.766141i \(-0.277826\pi\)
0.642672 + 0.766141i \(0.277826\pi\)
\(608\) −1.48356 + 2.56961i −0.0601665 + 0.104211i
\(609\) 0 0
\(610\) −13.4641 23.3205i −0.545146 0.944220i
\(611\) −35.3205 61.1769i −1.42891 2.47495i
\(612\) 16.2499i 0.656861i
\(613\) −5.53590 + 9.58846i −0.223593 + 0.387274i −0.955896 0.293704i \(-0.905112\pi\)
0.732304 + 0.680978i \(0.238445\pi\)
\(614\) −5.53674 + 9.58991i −0.223444 + 0.387017i
\(615\) 8.24504 2.20925i 0.332472 0.0890857i
\(616\) 0 0
\(617\) 15.4282 26.7224i 0.621116 1.07580i −0.368162 0.929762i \(-0.620013\pi\)
0.989278 0.146043i \(-0.0466538\pi\)
\(618\) 12.4641 3.33975i 0.501380 0.134344i
\(619\) −24.6336 −0.990108 −0.495054 0.868862i \(-0.664852\pi\)
−0.495054 + 0.868862i \(0.664852\pi\)
\(620\) −3.46410 + 6.00000i −0.139122 + 0.240966i
\(621\) 5.37945 5.37945i 0.215870 0.215870i
\(622\) 12.3490 0.495149
\(623\) 0 0
\(624\) −3.00000 + 11.1962i −0.120096 + 0.448205i
\(625\) 23.9282 0.957128
\(626\) 11.7112 + 20.2844i 0.468075 + 0.810729i
\(627\) −4.96410 + 18.5263i −0.198247 + 0.739868i
\(628\) 2.31079 4.00240i 0.0922105 0.159713i
\(629\) −2.90276 −0.115740
\(630\) 0 0
\(631\) 35.7128 1.42170 0.710852 0.703341i \(-0.248309\pi\)
0.710852 + 0.703341i \(0.248309\pi\)
\(632\) 2.46410 4.26795i 0.0980167 0.169770i
\(633\) −8.48528 + 2.27362i −0.337260 + 0.0903685i
\(634\) 13.0000 + 22.5167i 0.516296 + 0.894251i
\(635\) −25.2528 −1.00213
\(636\) −3.58630 3.58630i −0.142206 0.142206i
\(637\) 0 0
\(638\) 14.9282 0.591013
\(639\) 7.60770i 0.300956i
\(640\) 1.93185 3.34607i 0.0763631 0.132265i
\(641\) 17.9282 0.708121 0.354061 0.935222i \(-0.384801\pi\)
0.354061 + 0.935222i \(0.384801\pi\)
\(642\) 4.15471 + 4.15471i 0.163973 + 0.163973i
\(643\) −6.53485 + 11.3187i −0.257709 + 0.446365i −0.965628 0.259929i \(-0.916301\pi\)
0.707919 + 0.706294i \(0.249634\pi\)
\(644\) 0 0
\(645\) −6.46410 + 24.1244i −0.254524 + 0.949896i
\(646\) 8.03590 13.9186i 0.316168 0.547619i
\(647\) 6.03579 10.4543i 0.237291 0.411001i −0.722645 0.691220i \(-0.757074\pi\)
0.959936 + 0.280219i \(0.0904070\pi\)
\(648\) −9.00000 −0.353553
\(649\) 16.0926 + 27.8731i 0.631689 + 1.09412i
\(650\) 33.2204 + 57.5394i 1.30301 + 2.25688i
\(651\) 0 0
\(652\) −10.6603 + 18.4641i −0.417488 + 0.723110i
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) −4.00240 + 14.9372i −0.156506 + 0.584090i
\(655\) 23.3205 0.911208
\(656\) −0.637756 1.10463i −0.0249002 0.0431284i
\(657\) −17.7470 10.2462i −0.692377 0.399744i
\(658\) 0 0
\(659\) −0.124356 0.215390i −0.00484421 0.00839042i 0.863593 0.504189i \(-0.168209\pi\)
−0.868437 + 0.495799i \(0.834875\pi\)
\(660\) 6.46410 24.1244i 0.251615 0.939039i
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 2.26795 + 3.92820i 0.0881463 + 0.152674i
\(663\) 16.2499 60.6453i 0.631092 2.35527i
\(664\) −8.95215 15.5056i −0.347411 0.601733i
\(665\) 0 0
\(666\) 1.60770i 0.0622969i
\(667\) −2.92820 5.07180i −0.113380 0.196381i
\(668\) −21.1117 −0.816835
\(669\) 12.0000 44.7846i 0.463947 1.73147i
\(670\) −21.3891 −0.826332
\(671\) −13.0053 + 22.5259i −0.502065 + 0.869602i
\(672\) 0 0
\(673\) 20.7846 + 36.0000i 0.801188 + 1.38770i 0.918835 + 0.394643i \(0.129132\pi\)
−0.117647 + 0.993055i \(0.537535\pi\)
\(674\) 3.50000 + 6.06218i 0.134815 + 0.233506i
\(675\) −36.4785 + 36.4785i −1.40406 + 1.40406i
\(676\) −15.8923 + 27.5263i −0.611242 + 1.05870i
\(677\) −10.0382 + 17.3867i −0.385799 + 0.668224i −0.991880 0.127179i \(-0.959408\pi\)
0.606081 + 0.795403i \(0.292741\pi\)
\(678\) 3.10583 11.5911i 0.119279 0.445154i
\(679\) 0 0
\(680\) −10.4641 + 18.1244i −0.401280 + 0.695037i
\(681\) 12.8827 + 12.8827i 0.493666 + 0.493666i
\(682\) 6.69213 0.256255
\(683\) 1.83975 3.18653i 0.0703959 0.121929i −0.828679 0.559724i \(-0.810907\pi\)
0.899075 + 0.437795i \(0.144240\pi\)
\(684\) −7.70882 4.45069i −0.294754 0.170176i
\(685\) 33.4607 1.27847
\(686\) 0 0
\(687\) −30.5885 30.5885i −1.16702 1.16702i
\(688\) 3.73205 0.142283
\(689\) −9.79796 16.9706i −0.373273 0.646527i
\(690\) −9.46410 + 2.53590i −0.360292 + 0.0965400i
\(691\) 4.81105 8.33298i 0.183021 0.317001i −0.759887 0.650055i \(-0.774746\pi\)
0.942908 + 0.333054i \(0.108079\pi\)
\(692\) −1.79315 −0.0681654
\(693\) 0 0
\(694\) 21.5885 0.819487
\(695\) 31.5885 54.7128i 1.19822 2.07538i
\(696\) −1.79315 + 6.69213i −0.0679692 + 0.253665i
\(697\) 3.45448 + 5.98334i 0.130848 + 0.226635i
\(698\) −16.4901 −0.624159
\(699\) −10.8147 + 40.3608i −0.409048 + 1.52659i
\(700\) 0 0
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) −33.5885 9.00000i −1.26771 0.339683i
\(703\) −0.795040 + 1.37705i −0.0299855 + 0.0519364i
\(704\) −3.73205 −0.140657
\(705\) −68.2340 + 18.2832i −2.56984 + 0.688587i
\(706\) −13.2134 + 22.8862i −0.497292 + 0.861335i
\(707\) 0 0
\(708\) −14.4282 + 3.86603i −0.542245 + 0.145294i
\(709\) −4.19615 + 7.26795i −0.157590 + 0.272954i −0.933999 0.357276i \(-0.883706\pi\)
0.776409 + 0.630229i \(0.217039\pi\)
\(710\) 4.89898 8.48528i 0.183855 0.318447i
\(711\) 12.8038 + 7.39230i 0.480182 + 0.277233i
\(712\) 3.53553 + 6.12372i 0.132500 + 0.229496i
\(713\) −1.31268 2.27362i −0.0491602 0.0851479i
\(714\) 0 0
\(715\) 48.2487 83.5692i 1.80440 3.12531i
\(716\) 18.9282 0.707380
\(717\) 21.6293 5.79555i 0.807761 0.216439i
\(718\) 0.535898 0.0199996
\(719\) −7.69024 13.3199i −0.286798 0.496748i 0.686246 0.727370i \(-0.259257\pi\)
−0.973044 + 0.230622i \(0.925924\pi\)
\(720\) 10.0382 + 5.79555i 0.374101 + 0.215988i
\(721\) 0 0
\(722\) 5.09808 + 8.83013i 0.189731 + 0.328623i
\(723\) −28.6865 28.6865i −1.06686 1.06686i
\(724\) −8.48528 14.6969i −0.315353 0.546207i
\(725\) 19.8564 + 34.3923i 0.737448 + 1.27730i
\(726\) −4.89898 + 1.31268i −0.181818 + 0.0487180i
\(727\) −0.795040 1.37705i −0.0294864 0.0510719i 0.850906 0.525319i \(-0.176054\pi\)
−0.880392 + 0.474247i \(0.842721\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 13.1962 + 22.8564i 0.488412 + 0.845954i
\(731\) −20.2151 −0.747682
\(732\) −8.53590 8.53590i −0.315496 0.315496i
\(733\) 16.4901 0.609075 0.304538 0.952500i \(-0.401498\pi\)
0.304538 + 0.952500i \(0.401498\pi\)
\(734\) −7.86611 + 13.6245i −0.290343 + 0.502889i
\(735\) 0 0
\(736\) 0.732051 + 1.26795i 0.0269838 + 0.0467372i
\(737\) 10.3301 + 17.8923i 0.380515 + 0.659072i
\(738\) 3.31388 1.91327i 0.121986 0.0704284i
\(739\) 9.06218 15.6962i 0.333358 0.577392i −0.649810 0.760096i \(-0.725152\pi\)
0.983168 + 0.182704i \(0.0584850\pi\)
\(740\) 1.03528 1.79315i 0.0380575 0.0659175i
\(741\) −24.3190 24.3190i −0.893382 0.893382i
\(742\) 0 0
\(743\) −25.7846 + 44.6603i −0.945946 + 1.63843i −0.192099 + 0.981376i \(0.561529\pi\)
−0.753847 + 0.657050i \(0.771804\pi\)
\(744\) −0.803848 + 3.00000i −0.0294705 + 0.109985i
\(745\) −35.0507 −1.28416
\(746\) −15.3923 + 26.6603i −0.563552 + 0.976101i
\(747\) 46.5167 26.8565i 1.70196 0.982626i
\(748\) 20.2151 0.739137
\(749\) 0 0
\(750\) 31.8564 8.53590i 1.16323 0.311687i
\(751\) −6.78461 −0.247574 −0.123787 0.992309i \(-0.539504\pi\)
−0.123787 + 0.992309i \(0.539504\pi\)
\(752\) 5.27792 + 9.14162i 0.192466 + 0.333361i
\(753\) 20.0263 + 20.0263i 0.729798 + 0.729798i
\(754\) −13.3843 + 23.1822i −0.487426 + 0.844247i
\(755\) 9.24316 0.336393
\(756\) 0 0
\(757\) −15.3205 −0.556833 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(758\) 8.79423 15.2321i 0.319421 0.553253i
\(759\) 6.69213 + 6.69213i 0.242909 + 0.242909i
\(760\) 5.73205 + 9.92820i 0.207923 + 0.360134i
\(761\) 30.4564 1.10404 0.552021 0.833830i \(-0.313857\pi\)
0.552021 + 0.833830i \(0.313857\pi\)
\(762\) −10.9348 + 2.92996i −0.396125 + 0.106141i
\(763\) 0 0
\(764\) 1.07180 0.0387762
\(765\) −54.3731 31.3923i −1.96586 1.13499i
\(766\) −10.8332 + 18.7637i −0.391421 + 0.677961i
\(767\) −57.7128 −2.08389
\(768\) 0.448288 1.67303i 0.0161762 0.0603704i
\(769\) 19.0919 33.0681i 0.688471 1.19247i −0.283862 0.958865i \(-0.591616\pi\)
0.972332 0.233601i \(-0.0750511\pi\)
\(770\) 0 0
\(771\) −3.29423 3.29423i −0.118639 0.118639i
\(772\) 11.5263 19.9641i 0.414840 0.718524i
\(773\) 0.101536 0.175865i 0.00365199 0.00632544i −0.864194 0.503159i \(-0.832171\pi\)
0.867846 + 0.496834i \(0.165504\pi\)
\(774\) 11.1962i 0.402437i
\(775\) 8.90138 + 15.4176i 0.319747 + 0.553818i
\(776\) −2.94855 5.10703i −0.105847 0.183332i
\(777\) 0 0
\(778\) −4.00000 + 6.92820i −0.143407 + 0.248388i
\(779\) 3.78461 0.135598
\(780\) 31.6675 + 31.6675i 1.13388 + 1.13388i
\(781\) −9.46410 −0.338652
\(782\) −3.96524 6.86800i −0.141797 0.245599i
\(783\) −20.0764 5.37945i −0.717472 0.192246i
\(784\) 0 0
\(785\) −8.92820 15.4641i −0.318661 0.551937i
\(786\) 10.0981 2.70577i 0.360186 0.0965117i
\(787\) −23.3717 40.4810i −0.833111 1.44299i −0.895559 0.444942i \(-0.853224\pi\)
0.0624487 0.998048i \(-0.480109\pi\)
\(788\) 1.53590 + 2.66025i 0.0547141 + 0.0947676i
\(789\) −18.9396 18.9396i −0.674267 0.674267i
\(790\) −9.52056 16.4901i −0.338726 0.586691i
\(791\) 0 0
\(792\) 11.1962i 0.397838i
\(793\) −23.3205 40.3923i −0.828136 1.43437i
\(794\) −18.0058 −0.639003
\(795\) −18.9282 + 5.07180i −0.671314 + 0.179878i
\(796\) 17.8028 0.631002
\(797\) 10.4543 18.1074i 0.370310 0.641396i −0.619303 0.785152i \(-0.712585\pi\)
0.989613 + 0.143756i \(0.0459181\pi\)
\(798\) 0 0
\(799\) −28.5885 49.5167i −1.01139 1.75177i
\(800\) −4.96410 8.59808i −0.175507 0.303988i
\(801\) −18.3712 + 10.6066i −0.649113 + 0.374766i
\(802\) −8.89230 + 15.4019i −0.313998 + 0.543861i
\(803\) 12.7465 22.0776i 0.449814 0.779101i
\(804\) −9.26174 + 2.48168i −0.326636 + 0.0875219i
\(805\) 0 0
\(806\) −6.00000 + 10.3923i −0.211341 + 0.366053i
\(807\) −9.46410 + 2.53590i −0.333152 + 0.0892679i
\(808\) −4.89898 −0.172345
\(809\) 13.1340 22.7487i 0.461766 0.799802i −0.537283 0.843402i \(-0.680549\pi\)
0.999049 + 0.0435999i \(0.0138827\pi\)
\(810\) −17.3867 + 30.1146i −0.610905 + 1.05812i
\(811\) −46.1242 −1.61964 −0.809820 0.586679i \(-0.800435\pi\)
−0.809820 + 0.586679i \(0.800435\pi\)
\(812\) 0 0
\(813\) −8.07180 + 30.1244i −0.283090 + 1.05651i
\(814\) −2.00000 −0.0701000
\(815\) 41.1881 + 71.3398i 1.44275 + 2.49892i
\(816\) −2.42820 + 9.06218i −0.0850041 + 0.317240i
\(817\) −5.53674 + 9.58991i −0.193706 + 0.335508i
\(818\) −16.7303 −0.584962
\(819\) 0 0
\(820\) −4.92820 −0.172100
\(821\) 5.19615 9.00000i 0.181347 0.314102i −0.760993 0.648761i \(-0.775288\pi\)
0.942339 + 0.334659i \(0.108621\pi\)
\(822\) 14.4889 3.88229i 0.505358 0.135410i
\(823\) −15.3923 26.6603i −0.536542 0.929318i −0.999087 0.0427222i \(-0.986397\pi\)
0.462545 0.886596i \(-0.346936\pi\)
\(824\) −7.45001 −0.259533
\(825\) −45.3799 45.3799i −1.57993 1.57993i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) −3.80385 + 2.19615i −0.132193 + 0.0763216i
\(829\) 18.6622 32.3238i 0.648164 1.12265i −0.335397 0.942077i \(-0.608870\pi\)
0.983561 0.180576i \(-0.0577963\pi\)
\(830\) −69.1769 −2.40117
\(831\) 30.0502 + 30.0502i 1.04243 + 1.04243i
\(832\) 3.34607 5.79555i 0.116004 0.200925i
\(833\) 0 0
\(834\) 7.33013 27.3564i 0.253822 0.947275i
\(835\) −40.7846 + 70.6410i −1.41141 + 2.44463i
\(836\) 5.53674 9.58991i 0.191492 0.331674i
\(837\) −9.00000 2.41154i −0.311086 0.0833551i
\(838\) −3.95164 6.84443i −0.136507 0.236437i
\(839\) 11.3137 + 19.5959i 0.390593 + 0.676526i 0.992528 0.122019i \(-0.0389368\pi\)
−0.601935 + 0.798545i \(0.705603\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) 28.3923 0.978463
\(843\) −4.41851 + 16.4901i −0.152181 + 0.567949i
\(844\) 5.07180 0.174578
\(845\) 61.4032 + 106.353i 2.11233 + 3.65867i
\(846\) −27.4249 + 15.8338i −0.942886 + 0.544376i
\(847\) 0 0
\(848\) 1.46410 + 2.53590i 0.0502775 + 0.0870831i
\(849\) −4.22243 + 15.7583i −0.144913 + 0.540824i
\(850\) 26.8886 + 46.5725i 0.922273 + 1.59742i
\(851\) 0.392305 + 0.679492i 0.0134480 + 0.0232927i
\(852\) 1.13681 4.24264i 0.0389465 0.145350i
\(853\) −8.00481 13.8647i −0.274079 0.474719i 0.695823 0.718213i \(-0.255040\pi\)
−0.969902 + 0.243494i \(0.921706\pi\)
\(854\) 0 0
\(855\) −29.7846 + 17.1962i −1.01861 + 0.588096i
\(856\) −1.69615 2.93782i −0.0579733 0.100413i
\(857\) −8.38375 −0.286383 −0.143192 0.989695i \(-0.545737\pi\)
−0.143192 + 0.989695i \(0.545737\pi\)
\(858\) 11.1962 41.7846i 0.382230 1.42650i
\(859\) −14.7341 −0.502721 −0.251361 0.967894i \(-0.580878\pi\)
−0.251361 + 0.967894i \(0.580878\pi\)
\(860\) 7.20977 12.4877i 0.245851 0.425827i
\(861\) 0 0
\(862\) 18.9282 + 32.7846i 0.644697 + 1.11665i
\(863\) −11.0526 19.1436i −0.376233 0.651656i 0.614277 0.789090i \(-0.289448\pi\)
−0.990511 + 0.137435i \(0.956114\pi\)
\(864\) 5.01910 + 1.34486i 0.170753 + 0.0457532i
\(865\) −3.46410 + 6.00000i −0.117783 + 0.204006i
\(866\) 3.55412 6.15591i 0.120774 0.209186i
\(867\) 5.53176 20.6448i 0.187868 0.701134i
\(868\) 0 0
\(869\) −9.19615 + 15.9282i −0.311958 + 0.540327i
\(870\) 18.9282 + 18.9282i 0.641726 + 0.641726i
\(871\) −37.0470 −1.25529
\(872\) 4.46410 7.73205i 0.151174 0.261840i
\(873\) 15.3211 8.84564i 0.518540 0.299379i
\(874\) −4.34418 −0.146944
\(875\) 0 0
\(876\) 8.36603 + 8.36603i 0.282662 + 0.282662i
\(877\) 33.1769 1.12030 0.560152 0.828390i \(-0.310743\pi\)
0.560152 + 0.828390i \(0.310743\pi\)
\(878\) −9.79796 16.9706i −0.330665 0.572729i
\(879\) −31.8564 + 8.53590i −1.07449 + 0.287909i
\(880\) −7.20977 + 12.4877i −0.243041 + 0.420960i
\(881\) 12.7279 0.428815 0.214407 0.976744i \(-0.431218\pi\)
0.214407 + 0.976744i \(0.431218\pi\)
\(882\) 0 0
\(883\) 7.53590 0.253603 0.126802 0.991928i \(-0.459529\pi\)
0.126802 + 0.991928i \(0.459529\pi\)
\(884\) −18.1244 + 31.3923i −0.609588 + 1.05584i
\(885\) −14.9372 + 55.7463i −0.502108 + 1.87389i
\(886\) 9.16025 + 15.8660i 0.307745 + 0.533030i
\(887\) −28.7647 −0.965826 −0.482913 0.875668i \(-0.660421\pi\)
−0.482913 + 0.875668i \(0.660421\pi\)
\(888\) 0.240237 0.896575i 0.00806181 0.0300871i
\(889\) 0 0
\(890\) 27.3205 0.915786
\(891\) 33.5885 1.12526
\(892\) −13.3843 + 23.1822i −0.448138 + 0.776198i
\(893\) −31.3205 −1.04810
\(894\) −15.1774 + 4.06678i −0.507609 + 0.136013i
\(895\) 36.5665 63.3350i 1.22228 2.11706i
\(896\) 0 0
\(897\) −16.3923 + 4.39230i −0.547323 + 0.146655i
\(898\) 8.89230 15.4019i 0.296740 0.513969i
\(899\) −3.58630 + 6.21166i −0.119610 + 0.207170i
\(900\) 25.7942 14.8923i 0.859808 0.496410i
\(901\) −7.93048 13.7360i −0.264203 0.457612i
\(902\) 2.38014 + 4.12252i 0.0792500 + 0.137265i
\(903\) 0 0
\(904\) −3.46410 + 6.00000i −0.115214 + 0.199557i
\(905\) −65.5692 −2.17959
\(906\) 4.00240 1.07244i 0.132971 0.0356295i
\(907\) 43.2487 1.43605 0.718025 0.696017i \(-0.245046\pi\)
0.718025 + 0.696017i \(0.245046\pi\)
\(908\) −5.25933 9.10943i −0.174537 0.302307i
\(909\) 14.6969i 0.487467i
\(910\) 0 0
\(911\) 23.4641 + 40.6410i 0.777400 + 1.34650i 0.933435 + 0.358745i \(0.116795\pi\)
−0.156035 + 0.987752i \(0.549871\pi\)
\(912\) 3.63397 + 3.63397i 0.120333 + 0.120333i
\(913\) 33.4099 + 57.8676i 1.10571 + 1.91514i
\(914\) −3.52628 6.10770i −0.116639 0.202025i
\(915\) −45.0518 + 12.0716i −1.48937 + 0.399074i
\(916\) 12.4877 + 21.6293i 0.412605 + 0.714652i
\(917\) 0 0
\(918\) −27.1865 7.28461i −0.897289 0.240428i
\(919\) −11.4641 19.8564i −0.378166 0.655002i 0.612630 0.790370i \(-0.290112\pi\)
−0.990795 + 0.135368i \(0.956778\pi\)
\(920\) 5.65685 0.186501
\(921\) 13.5622 + 13.5622i 0.446889 + 0.446889i
\(922\) 25.7332 0.847479
\(923\) 8.48528 14.6969i 0.279296 0.483756i
\(924\) 0 0
\(925\) −2.66025 4.60770i −0.0874686 0.151500i
\(926\) −19.3205 33.4641i −0.634911 1.09970i
\(927\) 22.3500i 0.734071i
\(928\) 2.00000 3.46410i 0.0656532 0.113715i
\(929\) −13.9898 + 24.2311i −0.458991 + 0.794997i −0.998908 0.0467220i \(-0.985122\pi\)
0.539916 + 0.841719i \(0.318456\pi\)
\(930\) 8.48528 + 8.48528i 0.278243 + 0.278243i
\(931\) 0 0
\(932\) 12.0622 20.8923i 0.395110 0.684350i
\(933\) 5.53590 20.6603i 0.181237 0.676386i
\(934\) 27.5636 0.901907
\(935\) 39.0526 67.6410i 1.27716 2.21210i
\(936\) 17.3867 + 10.0382i 0.568301 + 0.328109i
\(937\) 9.89949 0.323402 0.161701 0.986840i \(-0.448302\pi\)
0.161701 + 0.986840i \(0.448302\pi\)
\(938\) 0 0
\(939\) 39.1865 10.5000i 1.27880 0.342655i
\(940\) 40.7846 1.33025
\(941\) −4.34418 7.52433i −0.141616 0.245286i 0.786489 0.617604i \(-0.211897\pi\)
−0.928105 + 0.372318i \(0.878563\pi\)
\(942\) −5.66025 5.66025i −0.184421 0.184421i
\(943\) 0.933740 1.61729i 0.0304068 0.0526661i
\(944\) 8.62398 0.280687
\(945\) 0 0
\(946\) −13.9282 −0.452845
\(947\) −3.06218 + 5.30385i −0.0995074 + 0.172352i −0.911481 0.411342i \(-0.865060\pi\)
0.811973 + 0.583694i \(0.198393\pi\)
\(948\) −6.03579 6.03579i −0.196033 0.196033i
\(949\) 22.8564 + 39.5885i 0.741950 + 1.28510i
\(950\) 29.4582 0.955752
\(951\) 43.4988 11.6555i 1.41055 0.377955i
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) −7.60770 + 4.39230i −0.246308 + 0.142206i
\(955\) 2.07055 3.58630i 0.0670015 0.116050i
\(956\) −12.9282 −0.418128
\(957\) 6.69213 24.9754i 0.216326 0.807339i
\(958\) 7.72741 13.3843i 0.249661 0.432426i
\(959\) 0 0
\(960\) −4.73205 4.73205i −0.152726 0.152726i
\(961\) 13.8923 24.0622i 0.448139 0.776199i
\(962\) 1.79315 3.10583i 0.0578135 0.100136i
\(963\) 8.81347 5.08846i 0.284010 0.163973i
\(964\) 11.7112 + 20.2844i 0.377193 + 0.653318i
\(965\) −44.5341 77.1354i −1.43360 2.48308i
\(966\) 0 0
\(967\) −17.7846 + 30.8038i −0.571914 + 0.990585i 0.424455 + 0.905449i \(0.360466\pi\)
−0.996369 + 0.0851359i \(0.972868\pi\)
\(968\) 2.92820 0.0941160
\(969\) −19.6839 19.6839i −0.632336 0.632336i
\(970\) −22.7846 −0.731570
\(971\) −1.50215 2.60179i −0.0482062 0.0834955i 0.840915 0.541166i \(-0.182017\pi\)
−0.889122 + 0.457671i \(0.848684\pi\)
\(972\) −4.03459 + 15.0573i −0.129410 + 0.482963i
\(973\) 0 0
\(974\) −19.3923 33.5885i −0.621370 1.07624i
\(975\) 111.158 29.7846i 3.55989 0.953871i
\(976\) 3.48477 + 6.03579i 0.111545 + 0.193201i
\(977\) 24.9904 + 43.2846i 0.799513 + 1.38480i 0.919934 + 0.392074i \(0.128242\pi\)
−0.120420 + 0.992723i \(0.538424\pi\)
\(978\) 26.1122 + 26.1122i 0.834976 + 0.834976i
\(979\) −13.1948 22.8541i −0.421707 0.730419i
\(980\) 0 0
\(981\) 23.1962 + 13.3923i 0.740596 + 0.427583i
\(982\) 0.696152 + 1.20577i 0.0222151 + 0.0384777i
\(983\) 6.96953 0.222294 0.111147 0.993804i \(-0.464548\pi\)
0.111147 + 0.993804i \(0.464548\pi\)
\(984\) −2.13397 + 0.571797i −0.0680286 + 0.0182282i
\(985\) 11.8685 0.378162
\(986\) −10.8332 + 18.7637i −0.345000 + 0.597558i
\(987\) 0 0
\(988\) 9.92820 + 17.1962i 0.315858 + 0.547082i
\(989\) 2.73205 + 4.73205i 0.0868742 + 0.150470i
\(990\) −37.4631 21.6293i −1.19065 0.687424i
\(991\) −0.875644 + 1.51666i −0.0278158 + 0.0481783i −0.879598 0.475717i \(-0.842189\pi\)
0.851782 + 0.523896i \(0.175522\pi\)
\(992\) 0.896575 1.55291i 0.0284663 0.0493051i
\(993\) 7.58871 2.03339i 0.240820 0.0645276i
\(994\) 0 0
\(995\) 34.3923 59.5692i 1.09031 1.88847i
\(996\) −29.9545 + 8.02628i −0.949144 + 0.254322i
\(997\) −6.48906 −0.205511 −0.102755 0.994707i \(-0.532766\pi\)
−0.102755 + 0.994707i \(0.532766\pi\)
\(998\) −6.30385 + 10.9186i −0.199545 + 0.345622i
\(999\) 2.68973 + 0.720710i 0.0850992 + 0.0228023i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.h.q.67.4 8
3.2 odd 2 2646.2.h.t.361.4 8
7.2 even 3 882.2.e.s.373.1 8
7.3 odd 6 882.2.f.q.589.2 yes 8
7.4 even 3 882.2.f.q.589.3 yes 8
7.5 odd 6 882.2.e.s.373.4 8
7.6 odd 2 inner 882.2.h.q.67.1 8
9.2 odd 6 2646.2.e.q.2125.1 8
9.7 even 3 882.2.e.s.655.1 8
21.2 odd 6 2646.2.e.q.1549.1 8
21.5 even 6 2646.2.e.q.1549.4 8
21.11 odd 6 2646.2.f.r.1765.1 8
21.17 even 6 2646.2.f.r.1765.4 8
21.20 even 2 2646.2.h.t.361.1 8
63.2 odd 6 2646.2.h.t.667.4 8
63.4 even 3 7938.2.a.cp.1.1 4
63.11 odd 6 2646.2.f.r.883.1 8
63.16 even 3 inner 882.2.h.q.79.3 8
63.20 even 6 2646.2.e.q.2125.4 8
63.25 even 3 882.2.f.q.295.3 yes 8
63.31 odd 6 7938.2.a.cp.1.4 4
63.32 odd 6 7938.2.a.ci.1.4 4
63.34 odd 6 882.2.e.s.655.4 8
63.38 even 6 2646.2.f.r.883.4 8
63.47 even 6 2646.2.h.t.667.1 8
63.52 odd 6 882.2.f.q.295.2 8
63.59 even 6 7938.2.a.ci.1.1 4
63.61 odd 6 inner 882.2.h.q.79.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.1 8 7.2 even 3
882.2.e.s.373.4 8 7.5 odd 6
882.2.e.s.655.1 8 9.7 even 3
882.2.e.s.655.4 8 63.34 odd 6
882.2.f.q.295.2 8 63.52 odd 6
882.2.f.q.295.3 yes 8 63.25 even 3
882.2.f.q.589.2 yes 8 7.3 odd 6
882.2.f.q.589.3 yes 8 7.4 even 3
882.2.h.q.67.1 8 7.6 odd 2 inner
882.2.h.q.67.4 8 1.1 even 1 trivial
882.2.h.q.79.2 8 63.61 odd 6 inner
882.2.h.q.79.3 8 63.16 even 3 inner
2646.2.e.q.1549.1 8 21.2 odd 6
2646.2.e.q.1549.4 8 21.5 even 6
2646.2.e.q.2125.1 8 9.2 odd 6
2646.2.e.q.2125.4 8 63.20 even 6
2646.2.f.r.883.1 8 63.11 odd 6
2646.2.f.r.883.4 8 63.38 even 6
2646.2.f.r.1765.1 8 21.11 odd 6
2646.2.f.r.1765.4 8 21.17 even 6
2646.2.h.t.361.1 8 21.20 even 2
2646.2.h.t.361.4 8 3.2 odd 2
2646.2.h.t.667.1 8 63.47 even 6
2646.2.h.t.667.4 8 63.2 odd 6
7938.2.a.ci.1.1 4 63.59 even 6
7938.2.a.ci.1.4 4 63.32 odd 6
7938.2.a.cp.1.1 4 63.4 even 3
7938.2.a.cp.1.4 4 63.31 odd 6