Properties

Label 2646.2.f.r.1765.1
Level $2646$
Weight $2$
Character 2646.1765
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(883,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.883");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1765.1
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1765
Dual form 2646.2.f.r.883.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.93185 + 3.34607i) q^{5} -1.00000 q^{8} -3.86370 q^{10} +(-1.86603 - 3.23205i) q^{11} +(3.34607 - 5.79555i) q^{13} +(-0.500000 - 0.866025i) q^{16} +5.41662 q^{17} +2.96713 q^{19} +(-1.93185 - 3.34607i) q^{20} +(1.86603 - 3.23205i) q^{22} +(-0.732051 + 1.26795i) q^{23} +(-4.96410 - 8.59808i) q^{25} +6.69213 q^{26} +(-2.00000 - 3.46410i) q^{29} +(0.896575 - 1.55291i) q^{31} +(0.500000 - 0.866025i) q^{32} +(2.70831 + 4.69093i) q^{34} +0.535898 q^{37} +(1.48356 + 2.56961i) q^{38} +(1.93185 - 3.34607i) q^{40} +(0.637756 - 1.10463i) q^{41} +(-1.86603 - 3.23205i) q^{43} +3.73205 q^{44} -1.46410 q^{46} +(-5.27792 - 9.14162i) q^{47} +(4.96410 - 8.59808i) q^{50} +(3.34607 + 5.79555i) q^{52} +2.92820 q^{53} +14.4195 q^{55} +(2.00000 - 3.46410i) q^{58} +(4.31199 - 7.46859i) q^{59} +(3.48477 + 6.03579i) q^{61} +1.79315 q^{62} +1.00000 q^{64} +(12.9282 + 22.3923i) q^{65} +(-2.76795 + 4.79423i) q^{67} +(-2.70831 + 4.69093i) q^{68} -2.53590 q^{71} +6.83083 q^{73} +(0.267949 + 0.464102i) q^{74} +(-1.48356 + 2.56961i) q^{76} +(2.46410 + 4.26795i) q^{79} +3.86370 q^{80} +1.27551 q^{82} +(8.95215 + 15.5056i) q^{83} +(-10.4641 + 18.1244i) q^{85} +(1.86603 - 3.23205i) q^{86} +(1.86603 + 3.23205i) q^{88} +7.07107 q^{89} +(-0.732051 - 1.26795i) q^{92} +(5.27792 - 9.14162i) q^{94} +(-5.73205 + 9.92820i) q^{95} +(-2.94855 - 5.10703i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} - 8 q^{8} - 8 q^{11} - 4 q^{16} + 8 q^{22} + 8 q^{23} - 12 q^{25} - 16 q^{29} + 4 q^{32} + 32 q^{37} - 8 q^{43} + 16 q^{44} + 16 q^{46} + 12 q^{50} - 32 q^{53} + 16 q^{58} + 8 q^{64}+ \cdots - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.93185 + 3.34607i −0.863950 + 1.49641i 0.00413535 + 0.999991i \(0.498684\pi\)
−0.868086 + 0.496414i \(0.834650\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.86370 −1.22181
\(11\) −1.86603 3.23205i −0.562628 0.974500i −0.997266 0.0738948i \(-0.976457\pi\)
0.434638 0.900605i \(-0.356876\pi\)
\(12\) 0 0
\(13\) 3.34607 5.79555i 0.928032 1.60740i 0.141420 0.989950i \(-0.454833\pi\)
0.786612 0.617448i \(-0.211833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 5.41662 1.31372 0.656861 0.754011i \(-0.271884\pi\)
0.656861 + 0.754011i \(0.271884\pi\)
\(18\) 0 0
\(19\) 2.96713 0.680706 0.340353 0.940298i \(-0.389453\pi\)
0.340353 + 0.940298i \(0.389453\pi\)
\(20\) −1.93185 3.34607i −0.431975 0.748203i
\(21\) 0 0
\(22\) 1.86603 3.23205i 0.397838 0.689076i
\(23\) −0.732051 + 1.26795i −0.152643 + 0.264386i −0.932198 0.361948i \(-0.882112\pi\)
0.779555 + 0.626334i \(0.215445\pi\)
\(24\) 0 0
\(25\) −4.96410 8.59808i −0.992820 1.71962i
\(26\) 6.69213 1.31243
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 3.46410i −0.371391 0.643268i 0.618389 0.785872i \(-0.287786\pi\)
−0.989780 + 0.142605i \(0.954452\pi\)
\(30\) 0 0
\(31\) 0.896575 1.55291i 0.161030 0.278912i −0.774209 0.632931i \(-0.781852\pi\)
0.935238 + 0.354019i \(0.115185\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 2.70831 + 4.69093i 0.464471 + 0.804488i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.535898 0.0881012 0.0440506 0.999029i \(-0.485974\pi\)
0.0440506 + 0.999029i \(0.485974\pi\)
\(38\) 1.48356 + 2.56961i 0.240666 + 0.416845i
\(39\) 0 0
\(40\) 1.93185 3.34607i 0.305453 0.529059i
\(41\) 0.637756 1.10463i 0.0996008 0.172514i −0.811919 0.583771i \(-0.801577\pi\)
0.911519 + 0.411257i \(0.134910\pi\)
\(42\) 0 0
\(43\) −1.86603 3.23205i −0.284566 0.492883i 0.687938 0.725770i \(-0.258516\pi\)
−0.972504 + 0.232887i \(0.925183\pi\)
\(44\) 3.73205 0.562628
\(45\) 0 0
\(46\) −1.46410 −0.215870
\(47\) −5.27792 9.14162i −0.769863 1.33344i −0.937637 0.347617i \(-0.886991\pi\)
0.167773 0.985826i \(-0.446342\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.96410 8.59808i 0.702030 1.21595i
\(51\) 0 0
\(52\) 3.34607 + 5.79555i 0.464016 + 0.803699i
\(53\) 2.92820 0.402220 0.201110 0.979569i \(-0.435545\pi\)
0.201110 + 0.979569i \(0.435545\pi\)
\(54\) 0 0
\(55\) 14.4195 1.94433
\(56\) 0 0
\(57\) 0 0
\(58\) 2.00000 3.46410i 0.262613 0.454859i
\(59\) 4.31199 7.46859i 0.561373 0.972327i −0.436004 0.899945i \(-0.643606\pi\)
0.997377 0.0723823i \(-0.0230602\pi\)
\(60\) 0 0
\(61\) 3.48477 + 6.03579i 0.446179 + 0.772804i 0.998133 0.0610700i \(-0.0194513\pi\)
−0.551955 + 0.833874i \(0.686118\pi\)
\(62\) 1.79315 0.227730
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 12.9282 + 22.3923i 1.60355 + 2.77742i
\(66\) 0 0
\(67\) −2.76795 + 4.79423i −0.338159 + 0.585708i −0.984086 0.177690i \(-0.943137\pi\)
0.645928 + 0.763399i \(0.276471\pi\)
\(68\) −2.70831 + 4.69093i −0.328431 + 0.568859i
\(69\) 0 0
\(70\) 0 0
\(71\) −2.53590 −0.300956 −0.150478 0.988613i \(-0.548081\pi\)
−0.150478 + 0.988613i \(0.548081\pi\)
\(72\) 0 0
\(73\) 6.83083 0.799488 0.399744 0.916627i \(-0.369099\pi\)
0.399744 + 0.916627i \(0.369099\pi\)
\(74\) 0.267949 + 0.464102i 0.0311485 + 0.0539507i
\(75\) 0 0
\(76\) −1.48356 + 2.56961i −0.170176 + 0.294754i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.46410 + 4.26795i 0.277233 + 0.480182i 0.970696 0.240310i \(-0.0772492\pi\)
−0.693463 + 0.720492i \(0.743916\pi\)
\(80\) 3.86370 0.431975
\(81\) 0 0
\(82\) 1.27551 0.140857
\(83\) 8.95215 + 15.5056i 0.982626 + 1.70196i 0.652043 + 0.758182i \(0.273912\pi\)
0.330583 + 0.943777i \(0.392755\pi\)
\(84\) 0 0
\(85\) −10.4641 + 18.1244i −1.13499 + 1.96586i
\(86\) 1.86603 3.23205i 0.201219 0.348521i
\(87\) 0 0
\(88\) 1.86603 + 3.23205i 0.198919 + 0.344538i
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.732051 1.26795i −0.0763216 0.132193i
\(93\) 0 0
\(94\) 5.27792 9.14162i 0.544376 0.942886i
\(95\) −5.73205 + 9.92820i −0.588096 + 1.01861i
\(96\) 0 0
\(97\) −2.94855 5.10703i −0.299379 0.518540i 0.676615 0.736337i \(-0.263446\pi\)
−0.975994 + 0.217797i \(0.930113\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 9.92820 0.992820
\(101\) −2.44949 4.24264i −0.243733 0.422159i 0.718041 0.696000i \(-0.245039\pi\)
−0.961775 + 0.273842i \(0.911706\pi\)
\(102\) 0 0
\(103\) 3.72500 6.45189i 0.367035 0.635724i −0.622065 0.782965i \(-0.713706\pi\)
0.989101 + 0.147241i \(0.0470394\pi\)
\(104\) −3.34607 + 5.79555i −0.328109 + 0.568301i
\(105\) 0 0
\(106\) 1.46410 + 2.53590i 0.142206 + 0.246308i
\(107\) −3.39230 −0.327946 −0.163973 0.986465i \(-0.552431\pi\)
−0.163973 + 0.986465i \(0.552431\pi\)
\(108\) 0 0
\(109\) −8.92820 −0.855167 −0.427583 0.903976i \(-0.640635\pi\)
−0.427583 + 0.903976i \(0.640635\pi\)
\(110\) 7.20977 + 12.4877i 0.687424 + 1.19065i
\(111\) 0 0
\(112\) 0 0
\(113\) 3.46410 6.00000i 0.325875 0.564433i −0.655814 0.754923i \(-0.727674\pi\)
0.981689 + 0.190490i \(0.0610077\pi\)
\(114\) 0 0
\(115\) −2.82843 4.89898i −0.263752 0.456832i
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 8.62398 0.793902
\(119\) 0 0
\(120\) 0 0
\(121\) −1.46410 + 2.53590i −0.133100 + 0.230536i
\(122\) −3.48477 + 6.03579i −0.315496 + 0.546455i
\(123\) 0 0
\(124\) 0.896575 + 1.55291i 0.0805149 + 0.139456i
\(125\) 19.0411 1.70309
\(126\) 0 0
\(127\) 6.53590 0.579967 0.289984 0.957032i \(-0.406350\pi\)
0.289984 + 0.957032i \(0.406350\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −12.9282 + 22.3923i −1.13388 + 1.96394i
\(131\) −3.01790 + 5.22715i −0.263675 + 0.456698i −0.967216 0.253957i \(-0.918268\pi\)
0.703541 + 0.710655i \(0.251601\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −5.53590 −0.478229
\(135\) 0 0
\(136\) −5.41662 −0.464471
\(137\) −4.33013 7.50000i −0.369948 0.640768i 0.619609 0.784910i \(-0.287291\pi\)
−0.989557 + 0.144142i \(0.953958\pi\)
\(138\) 0 0
\(139\) −8.17569 + 14.1607i −0.693453 + 1.20110i 0.277246 + 0.960799i \(0.410578\pi\)
−0.970699 + 0.240297i \(0.922755\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.26795 2.19615i −0.106404 0.184297i
\(143\) −24.9754 −2.08855
\(144\) 0 0
\(145\) 15.4548 1.28345
\(146\) 3.41542 + 5.91567i 0.282662 + 0.489585i
\(147\) 0 0
\(148\) −0.267949 + 0.464102i −0.0220253 + 0.0381489i
\(149\) 4.53590 7.85641i 0.371595 0.643622i −0.618216 0.786008i \(-0.712144\pi\)
0.989811 + 0.142386i \(0.0454776\pi\)
\(150\) 0 0
\(151\) 1.19615 + 2.07180i 0.0973415 + 0.168600i 0.910583 0.413325i \(-0.135633\pi\)
−0.813242 + 0.581926i \(0.802299\pi\)
\(152\) −2.96713 −0.240666
\(153\) 0 0
\(154\) 0 0
\(155\) 3.46410 + 6.00000i 0.278243 + 0.481932i
\(156\) 0 0
\(157\) 2.31079 4.00240i 0.184421 0.319427i −0.758960 0.651137i \(-0.774292\pi\)
0.943381 + 0.331710i \(0.107626\pi\)
\(158\) −2.46410 + 4.26795i −0.196033 + 0.339540i
\(159\) 0 0
\(160\) 1.93185 + 3.34607i 0.152726 + 0.264530i
\(161\) 0 0
\(162\) 0 0
\(163\) 21.3205 1.66995 0.834976 0.550287i \(-0.185482\pi\)
0.834976 + 0.550287i \(0.185482\pi\)
\(164\) 0.637756 + 1.10463i 0.0498004 + 0.0862568i
\(165\) 0 0
\(166\) −8.95215 + 15.5056i −0.694822 + 1.20347i
\(167\) −10.5558 + 18.2832i −0.816835 + 1.41480i 0.0911679 + 0.995836i \(0.470940\pi\)
−0.908003 + 0.418964i \(0.862393\pi\)
\(168\) 0 0
\(169\) −15.8923 27.5263i −1.22248 2.11741i
\(170\) −20.9282 −1.60512
\(171\) 0 0
\(172\) 3.73205 0.284566
\(173\) −0.896575 1.55291i −0.0681654 0.118066i 0.829928 0.557870i \(-0.188381\pi\)
−0.898094 + 0.439804i \(0.855048\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.86603 + 3.23205i −0.140657 + 0.243625i
\(177\) 0 0
\(178\) 3.53553 + 6.12372i 0.264999 + 0.458993i
\(179\) −18.9282 −1.41476 −0.707380 0.706833i \(-0.750123\pi\)
−0.707380 + 0.706833i \(0.750123\pi\)
\(180\) 0 0
\(181\) 16.9706 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.732051 1.26795i 0.0539675 0.0934745i
\(185\) −1.03528 + 1.79315i −0.0761150 + 0.131835i
\(186\) 0 0
\(187\) −10.1075 17.5068i −0.739137 1.28022i
\(188\) 10.5558 0.769863
\(189\) 0 0
\(190\) −11.4641 −0.831693
\(191\) 0.535898 + 0.928203i 0.0387762 + 0.0671624i 0.884762 0.466043i \(-0.154321\pi\)
−0.845986 + 0.533205i \(0.820987\pi\)
\(192\) 0 0
\(193\) 11.5263 19.9641i 0.829680 1.43705i −0.0686098 0.997644i \(-0.521856\pi\)
0.898290 0.439404i \(-0.144810\pi\)
\(194\) 2.94855 5.10703i 0.211693 0.366663i
\(195\) 0 0
\(196\) 0 0
\(197\) 3.07180 0.218856 0.109428 0.993995i \(-0.465098\pi\)
0.109428 + 0.993995i \(0.465098\pi\)
\(198\) 0 0
\(199\) 17.8028 1.26200 0.631002 0.775781i \(-0.282644\pi\)
0.631002 + 0.775781i \(0.282644\pi\)
\(200\) 4.96410 + 8.59808i 0.351015 + 0.607976i
\(201\) 0 0
\(202\) 2.44949 4.24264i 0.172345 0.298511i
\(203\) 0 0
\(204\) 0 0
\(205\) 2.46410 + 4.26795i 0.172100 + 0.298087i
\(206\) 7.45001 0.519066
\(207\) 0 0
\(208\) −6.69213 −0.464016
\(209\) −5.53674 9.58991i −0.382984 0.663348i
\(210\) 0 0
\(211\) −2.53590 + 4.39230i −0.174578 + 0.302379i −0.940015 0.341132i \(-0.889190\pi\)
0.765437 + 0.643511i \(0.222523\pi\)
\(212\) −1.46410 + 2.53590i −0.100555 + 0.174166i
\(213\) 0 0
\(214\) −1.69615 2.93782i −0.115947 0.200825i
\(215\) 14.4195 0.983404
\(216\) 0 0
\(217\) 0 0
\(218\) −4.46410 7.73205i −0.302347 0.523681i
\(219\) 0 0
\(220\) −7.20977 + 12.4877i −0.486082 + 0.841920i
\(221\) 18.1244 31.3923i 1.21918 2.11167i
\(222\) 0 0
\(223\) −13.3843 23.1822i −0.896276 1.55240i −0.832217 0.554450i \(-0.812929\pi\)
−0.0640595 0.997946i \(-0.520405\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6.92820 0.460857
\(227\) 5.25933 + 9.10943i 0.349074 + 0.604614i 0.986085 0.166240i \(-0.0531627\pi\)
−0.637011 + 0.770855i \(0.719829\pi\)
\(228\) 0 0
\(229\) 12.4877 21.6293i 0.825209 1.42930i −0.0765496 0.997066i \(-0.524390\pi\)
0.901759 0.432239i \(-0.142276\pi\)
\(230\) 2.82843 4.89898i 0.186501 0.323029i
\(231\) 0 0
\(232\) 2.00000 + 3.46410i 0.131306 + 0.227429i
\(233\) 24.1244 1.58044 0.790220 0.612824i \(-0.209966\pi\)
0.790220 + 0.612824i \(0.209966\pi\)
\(234\) 0 0
\(235\) 40.7846 2.66049
\(236\) 4.31199 + 7.46859i 0.280687 + 0.486164i
\(237\) 0 0
\(238\) 0 0
\(239\) −6.46410 + 11.1962i −0.418128 + 0.724219i −0.995751 0.0920846i \(-0.970647\pi\)
0.577623 + 0.816304i \(0.303980\pi\)
\(240\) 0 0
\(241\) 11.7112 + 20.2844i 0.754387 + 1.30664i 0.945679 + 0.325103i \(0.105399\pi\)
−0.191292 + 0.981533i \(0.561268\pi\)
\(242\) −2.92820 −0.188232
\(243\) 0 0
\(244\) −6.96953 −0.446179
\(245\) 0 0
\(246\) 0 0
\(247\) 9.92820 17.1962i 0.631716 1.09416i
\(248\) −0.896575 + 1.55291i −0.0569326 + 0.0986102i
\(249\) 0 0
\(250\) 9.52056 + 16.4901i 0.602133 + 1.04292i
\(251\) −16.3514 −1.03209 −0.516045 0.856561i \(-0.672596\pi\)
−0.516045 + 0.856561i \(0.672596\pi\)
\(252\) 0 0
\(253\) 5.46410 0.343525
\(254\) 3.26795 + 5.66025i 0.205049 + 0.355156i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.34486 + 2.32937i −0.0838903 + 0.145302i −0.904918 0.425586i \(-0.860068\pi\)
0.821028 + 0.570889i \(0.193401\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −25.8564 −1.60355
\(261\) 0 0
\(262\) −6.03579 −0.372892
\(263\) −7.73205 13.3923i −0.476779 0.825805i 0.522867 0.852414i \(-0.324862\pi\)
−0.999646 + 0.0266092i \(0.991529\pi\)
\(264\) 0 0
\(265\) −5.65685 + 9.79796i −0.347498 + 0.601884i
\(266\) 0 0
\(267\) 0 0
\(268\) −2.76795 4.79423i −0.169079 0.292854i
\(269\) −5.65685 −0.344904 −0.172452 0.985018i \(-0.555169\pi\)
−0.172452 + 0.985018i \(0.555169\pi\)
\(270\) 0 0
\(271\) −18.0058 −1.09378 −0.546888 0.837206i \(-0.684188\pi\)
−0.546888 + 0.837206i \(0.684188\pi\)
\(272\) −2.70831 4.69093i −0.164215 0.284429i
\(273\) 0 0
\(274\) 4.33013 7.50000i 0.261593 0.453092i
\(275\) −18.5263 + 32.0885i −1.11718 + 1.93501i
\(276\) 0 0
\(277\) −12.2679 21.2487i −0.737110 1.27671i −0.953792 0.300469i \(-0.902857\pi\)
0.216682 0.976242i \(-0.430477\pi\)
\(278\) −16.3514 −0.980691
\(279\) 0 0
\(280\) 0 0
\(281\) −4.92820 8.53590i −0.293992 0.509209i 0.680758 0.732508i \(-0.261651\pi\)
−0.974750 + 0.223299i \(0.928317\pi\)
\(282\) 0 0
\(283\) 4.70951 8.15711i 0.279951 0.484890i −0.691421 0.722452i \(-0.743015\pi\)
0.971372 + 0.237562i \(0.0763483\pi\)
\(284\) 1.26795 2.19615i 0.0752389 0.130318i
\(285\) 0 0
\(286\) −12.4877 21.6293i −0.738412 1.27897i
\(287\) 0 0
\(288\) 0 0
\(289\) 12.3397 0.725867
\(290\) 7.72741 + 13.3843i 0.453769 + 0.785951i
\(291\) 0 0
\(292\) −3.41542 + 5.91567i −0.199872 + 0.346189i
\(293\) 9.52056 16.4901i 0.556197 0.963361i −0.441612 0.897206i \(-0.645593\pi\)
0.997809 0.0661554i \(-0.0210733\pi\)
\(294\) 0 0
\(295\) 16.6603 + 28.8564i 0.969997 + 1.68008i
\(296\) −0.535898 −0.0311485
\(297\) 0 0
\(298\) 9.07180 0.525515
\(299\) 4.89898 + 8.48528i 0.283315 + 0.490716i
\(300\) 0 0
\(301\) 0 0
\(302\) −1.19615 + 2.07180i −0.0688308 + 0.119219i
\(303\) 0 0
\(304\) −1.48356 2.56961i −0.0850882 0.147377i
\(305\) −26.9282 −1.54190
\(306\) 0 0
\(307\) 11.0735 0.631996 0.315998 0.948760i \(-0.397661\pi\)
0.315998 + 0.948760i \(0.397661\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3.46410 + 6.00000i −0.196748 + 0.340777i
\(311\) 6.17449 10.6945i 0.350123 0.606431i −0.636147 0.771568i \(-0.719473\pi\)
0.986271 + 0.165136i \(0.0528063\pi\)
\(312\) 0 0
\(313\) 11.7112 + 20.2844i 0.661958 + 1.14654i 0.980101 + 0.198502i \(0.0636075\pi\)
−0.318143 + 0.948043i \(0.603059\pi\)
\(314\) 4.62158 0.260811
\(315\) 0 0
\(316\) −4.92820 −0.277233
\(317\) −13.0000 22.5167i −0.730153 1.26466i −0.956818 0.290689i \(-0.906116\pi\)
0.226665 0.973973i \(-0.427218\pi\)
\(318\) 0 0
\(319\) −7.46410 + 12.9282i −0.417909 + 0.723840i
\(320\) −1.93185 + 3.34607i −0.107994 + 0.187051i
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0718 0.894259
\(324\) 0 0
\(325\) −66.4408 −3.68547
\(326\) 10.6603 + 18.4641i 0.590417 + 1.02263i
\(327\) 0 0
\(328\) −0.637756 + 1.10463i −0.0352142 + 0.0609928i
\(329\) 0 0
\(330\) 0 0
\(331\) 2.26795 + 3.92820i 0.124658 + 0.215914i 0.921599 0.388143i \(-0.126883\pi\)
−0.796941 + 0.604057i \(0.793550\pi\)
\(332\) −17.9043 −0.982626
\(333\) 0 0
\(334\) −21.1117 −1.15518
\(335\) −10.6945 18.5235i −0.584305 1.01205i
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) 15.8923 27.5263i 0.864427 1.49723i
\(339\) 0 0
\(340\) −10.4641 18.1244i −0.567496 0.982931i
\(341\) −6.69213 −0.362399
\(342\) 0 0
\(343\) 0 0
\(344\) 1.86603 + 3.23205i 0.100609 + 0.174261i
\(345\) 0 0
\(346\) 0.896575 1.55291i 0.0482002 0.0834852i
\(347\) 10.7942 18.6962i 0.579465 1.00366i −0.416076 0.909330i \(-0.636595\pi\)
0.995541 0.0943323i \(-0.0300716\pi\)
\(348\) 0 0
\(349\) 8.24504 + 14.2808i 0.441347 + 0.764436i 0.997790 0.0664504i \(-0.0211674\pi\)
−0.556443 + 0.830886i \(0.687834\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.73205 −0.198919
\(353\) 13.2134 + 22.8862i 0.703277 + 1.21811i 0.967310 + 0.253598i \(0.0816139\pi\)
−0.264033 + 0.964514i \(0.585053\pi\)
\(354\) 0 0
\(355\) 4.89898 8.48528i 0.260011 0.450352i
\(356\) −3.53553 + 6.12372i −0.187383 + 0.324557i
\(357\) 0 0
\(358\) −9.46410 16.3923i −0.500193 0.866360i
\(359\) −0.535898 −0.0282836 −0.0141418 0.999900i \(-0.504502\pi\)
−0.0141418 + 0.999900i \(0.504502\pi\)
\(360\) 0 0
\(361\) −10.1962 −0.536640
\(362\) 8.48528 + 14.6969i 0.445976 + 0.772454i
\(363\) 0 0
\(364\) 0 0
\(365\) −13.1962 + 22.8564i −0.690718 + 1.19636i
\(366\) 0 0
\(367\) −7.86611 13.6245i −0.410607 0.711193i 0.584349 0.811503i \(-0.301350\pi\)
−0.994956 + 0.100310i \(0.968017\pi\)
\(368\) 1.46410 0.0763216
\(369\) 0 0
\(370\) −2.07055 −0.107643
\(371\) 0 0
\(372\) 0 0
\(373\) −15.3923 + 26.6603i −0.796983 + 1.38042i 0.124589 + 0.992208i \(0.460239\pi\)
−0.921572 + 0.388207i \(0.873095\pi\)
\(374\) 10.1075 17.5068i 0.522649 0.905254i
\(375\) 0 0
\(376\) 5.27792 + 9.14162i 0.272188 + 0.471443i
\(377\) −26.7685 −1.37865
\(378\) 0 0
\(379\) −17.5885 −0.903458 −0.451729 0.892155i \(-0.649193\pi\)
−0.451729 + 0.892155i \(0.649193\pi\)
\(380\) −5.73205 9.92820i −0.294048 0.509306i
\(381\) 0 0
\(382\) −0.535898 + 0.928203i −0.0274189 + 0.0474910i
\(383\) 10.8332 18.7637i 0.553552 0.958781i −0.444462 0.895798i \(-0.646605\pi\)
0.998015 0.0629833i \(-0.0200615\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 23.0526 1.17334
\(387\) 0 0
\(388\) 5.89709 0.299379
\(389\) 4.00000 + 6.92820i 0.202808 + 0.351274i 0.949432 0.313972i \(-0.101660\pi\)
−0.746624 + 0.665246i \(0.768327\pi\)
\(390\) 0 0
\(391\) −3.96524 + 6.86800i −0.200531 + 0.347329i
\(392\) 0 0
\(393\) 0 0
\(394\) 1.53590 + 2.66025i 0.0773774 + 0.134022i
\(395\) −19.0411 −0.958062
\(396\) 0 0
\(397\) −18.0058 −0.903687 −0.451844 0.892097i \(-0.649233\pi\)
−0.451844 + 0.892097i \(0.649233\pi\)
\(398\) 8.90138 + 15.4176i 0.446186 + 0.772817i
\(399\) 0 0
\(400\) −4.96410 + 8.59808i −0.248205 + 0.429904i
\(401\) 8.89230 15.4019i 0.444061 0.769135i −0.553926 0.832566i \(-0.686871\pi\)
0.997986 + 0.0634307i \(0.0202042\pi\)
\(402\) 0 0
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) 4.89898 0.243733
\(405\) 0 0
\(406\) 0 0
\(407\) −1.00000 1.73205i −0.0495682 0.0858546i
\(408\) 0 0
\(409\) 8.36516 14.4889i 0.413631 0.716429i −0.581653 0.813437i \(-0.697594\pi\)
0.995284 + 0.0970077i \(0.0309271\pi\)
\(410\) −2.46410 + 4.26795i −0.121693 + 0.210779i
\(411\) 0 0
\(412\) 3.72500 + 6.45189i 0.183518 + 0.317862i
\(413\) 0 0
\(414\) 0 0
\(415\) −69.1769 −3.39576
\(416\) −3.34607 5.79555i −0.164054 0.284150i
\(417\) 0 0
\(418\) 5.53674 9.58991i 0.270811 0.469058i
\(419\) 3.95164 6.84443i 0.193050 0.334373i −0.753209 0.657781i \(-0.771495\pi\)
0.946260 + 0.323408i \(0.104829\pi\)
\(420\) 0 0
\(421\) −14.1962 24.5885i −0.691878 1.19837i −0.971222 0.238177i \(-0.923450\pi\)
0.279344 0.960191i \(-0.409883\pi\)
\(422\) −5.07180 −0.246891
\(423\) 0 0
\(424\) −2.92820 −0.142206
\(425\) −26.8886 46.5725i −1.30429 2.25910i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.69615 2.93782i 0.0819866 0.142005i
\(429\) 0 0
\(430\) 7.20977 + 12.4877i 0.347686 + 0.602210i
\(431\) 37.8564 1.82348 0.911739 0.410769i \(-0.134740\pi\)
0.911739 + 0.410769i \(0.134740\pi\)
\(432\) 0 0
\(433\) −7.10823 −0.341600 −0.170800 0.985306i \(-0.554635\pi\)
−0.170800 + 0.985306i \(0.554635\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4.46410 7.73205i 0.213792 0.370298i
\(437\) −2.17209 + 3.76217i −0.103905 + 0.179969i
\(438\) 0 0
\(439\) −9.79796 16.9706i −0.467631 0.809961i 0.531685 0.846942i \(-0.321559\pi\)
−0.999316 + 0.0369815i \(0.988226\pi\)
\(440\) −14.4195 −0.687424
\(441\) 0 0
\(442\) 36.2487 1.72418
\(443\) −9.16025 15.8660i −0.435217 0.753818i 0.562097 0.827072i \(-0.309995\pi\)
−0.997313 + 0.0732540i \(0.976662\pi\)
\(444\) 0 0
\(445\) −13.6603 + 23.6603i −0.647558 + 1.12160i
\(446\) 13.3843 23.1822i 0.633763 1.09771i
\(447\) 0 0
\(448\) 0 0
\(449\) 17.7846 0.839308 0.419654 0.907684i \(-0.362151\pi\)
0.419654 + 0.907684i \(0.362151\pi\)
\(450\) 0 0
\(451\) −4.76028 −0.224153
\(452\) 3.46410 + 6.00000i 0.162938 + 0.282216i
\(453\) 0 0
\(454\) −5.25933 + 9.10943i −0.246833 + 0.427527i
\(455\) 0 0
\(456\) 0 0
\(457\) −3.52628 6.10770i −0.164952 0.285706i 0.771686 0.636004i \(-0.219414\pi\)
−0.936638 + 0.350298i \(0.886080\pi\)
\(458\) 24.9754 1.16702
\(459\) 0 0
\(460\) 5.65685 0.263752
\(461\) 12.8666 + 22.2856i 0.599258 + 1.03795i 0.992931 + 0.118695i \(0.0378711\pi\)
−0.393672 + 0.919251i \(0.628796\pi\)
\(462\) 0 0
\(463\) −19.3205 + 33.4641i −0.897900 + 1.55521i −0.0677264 + 0.997704i \(0.521575\pi\)
−0.830174 + 0.557505i \(0.811759\pi\)
\(464\) −2.00000 + 3.46410i −0.0928477 + 0.160817i
\(465\) 0 0
\(466\) 12.0622 + 20.8923i 0.558770 + 0.967817i
\(467\) −27.5636 −1.27549 −0.637745 0.770248i \(-0.720133\pi\)
−0.637745 + 0.770248i \(0.720133\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 20.3923 + 35.3205i 0.940627 + 1.62921i
\(471\) 0 0
\(472\) −4.31199 + 7.46859i −0.198475 + 0.343770i
\(473\) −6.96410 + 12.0622i −0.320210 + 0.554620i
\(474\) 0 0
\(475\) −14.7291 25.5116i −0.675819 1.17055i
\(476\) 0 0
\(477\) 0 0
\(478\) −12.9282 −0.591322
\(479\) −7.72741 13.3843i −0.353074 0.611542i 0.633712 0.773569i \(-0.281530\pi\)
−0.986786 + 0.162026i \(0.948197\pi\)
\(480\) 0 0
\(481\) 1.79315 3.10583i 0.0817606 0.141614i
\(482\) −11.7112 + 20.2844i −0.533432 + 0.923931i
\(483\) 0 0
\(484\) −1.46410 2.53590i −0.0665501 0.115268i
\(485\) 22.7846 1.03460
\(486\) 0 0
\(487\) 38.7846 1.75750 0.878749 0.477284i \(-0.158379\pi\)
0.878749 + 0.477284i \(0.158379\pi\)
\(488\) −3.48477 6.03579i −0.157748 0.273227i
\(489\) 0 0
\(490\) 0 0
\(491\) −0.696152 + 1.20577i −0.0314169 + 0.0544157i −0.881306 0.472545i \(-0.843335\pi\)
0.849889 + 0.526961i \(0.176669\pi\)
\(492\) 0 0
\(493\) −10.8332 18.7637i −0.487904 0.845075i
\(494\) 19.8564 0.893382
\(495\) 0 0
\(496\) −1.79315 −0.0805149
\(497\) 0 0
\(498\) 0 0
\(499\) −6.30385 + 10.9186i −0.282199 + 0.488783i −0.971926 0.235286i \(-0.924397\pi\)
0.689727 + 0.724069i \(0.257731\pi\)
\(500\) −9.52056 + 16.4901i −0.425772 + 0.737459i
\(501\) 0 0
\(502\) −8.17569 14.1607i −0.364899 0.632024i
\(503\) −7.45001 −0.332179 −0.166090 0.986111i \(-0.553114\pi\)
−0.166090 + 0.986111i \(0.553114\pi\)
\(504\) 0 0
\(505\) 18.9282 0.842294
\(506\) 2.73205 + 4.73205i 0.121454 + 0.210365i
\(507\) 0 0
\(508\) −3.26795 + 5.66025i −0.144992 + 0.251133i
\(509\) −13.2456 + 22.9420i −0.587099 + 1.01689i 0.407511 + 0.913200i \(0.366397\pi\)
−0.994610 + 0.103685i \(0.966937\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −2.68973 −0.118639
\(515\) 14.3923 + 24.9282i 0.634201 + 1.09847i
\(516\) 0 0
\(517\) −19.6975 + 34.1170i −0.866293 + 1.50046i
\(518\) 0 0
\(519\) 0 0
\(520\) −12.9282 22.3923i −0.566939 0.981968i
\(521\) 32.3610 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(522\) 0 0
\(523\) 3.76217 0.164508 0.0822540 0.996611i \(-0.473788\pi\)
0.0822540 + 0.996611i \(0.473788\pi\)
\(524\) −3.01790 5.22715i −0.131837 0.228349i
\(525\) 0 0
\(526\) 7.73205 13.3923i 0.337133 0.583932i
\(527\) 4.85641 8.41154i 0.211548 0.366413i
\(528\) 0 0
\(529\) 10.4282 + 18.0622i 0.453400 + 0.785312i
\(530\) −11.3137 −0.491436
\(531\) 0 0
\(532\) 0 0
\(533\) −4.26795 7.39230i −0.184865 0.320196i
\(534\) 0 0
\(535\) 6.55343 11.3509i 0.283329 0.490741i
\(536\) 2.76795 4.79423i 0.119557 0.207079i
\(537\) 0 0
\(538\) −2.82843 4.89898i −0.121942 0.211210i
\(539\) 0 0
\(540\) 0 0
\(541\) −19.3205 −0.830654 −0.415327 0.909672i \(-0.636333\pi\)
−0.415327 + 0.909672i \(0.636333\pi\)
\(542\) −9.00292 15.5935i −0.386709 0.669799i
\(543\) 0 0
\(544\) 2.70831 4.69093i 0.116118 0.201122i
\(545\) 17.2480 29.8744i 0.738822 1.27968i
\(546\) 0 0
\(547\) 19.1865 + 33.2321i 0.820357 + 1.42090i 0.905417 + 0.424524i \(0.139559\pi\)
−0.0850597 + 0.996376i \(0.527108\pi\)
\(548\) 8.66025 0.369948
\(549\) 0 0
\(550\) −37.0526 −1.57993
\(551\) −5.93426 10.2784i −0.252808 0.437876i
\(552\) 0 0
\(553\) 0 0
\(554\) 12.2679 21.2487i 0.521215 0.902771i
\(555\) 0 0
\(556\) −8.17569 14.1607i −0.346727 0.600548i
\(557\) −6.92820 −0.293557 −0.146779 0.989169i \(-0.546891\pi\)
−0.146779 + 0.989169i \(0.546891\pi\)
\(558\) 0 0
\(559\) −24.9754 −1.05635
\(560\) 0 0
\(561\) 0 0
\(562\) 4.92820 8.53590i 0.207884 0.360065i
\(563\) 12.7973 22.1655i 0.539341 0.934166i −0.459599 0.888127i \(-0.652007\pi\)
0.998940 0.0460390i \(-0.0146598\pi\)
\(564\) 0 0
\(565\) 13.3843 + 23.1822i 0.563080 + 0.975283i
\(566\) 9.41902 0.395911
\(567\) 0 0
\(568\) 2.53590 0.106404
\(569\) 7.89230 + 13.6699i 0.330863 + 0.573071i 0.982681 0.185304i \(-0.0593270\pi\)
−0.651819 + 0.758375i \(0.725994\pi\)
\(570\) 0 0
\(571\) −2.52628 + 4.37564i −0.105722 + 0.183115i −0.914033 0.405640i \(-0.867049\pi\)
0.808311 + 0.588755i \(0.200382\pi\)
\(572\) 12.4877 21.6293i 0.522136 0.904367i
\(573\) 0 0
\(574\) 0 0
\(575\) 14.5359 0.606189
\(576\) 0 0
\(577\) 44.6357 1.85821 0.929103 0.369820i \(-0.120581\pi\)
0.929103 + 0.369820i \(0.120581\pi\)
\(578\) 6.16987 + 10.6865i 0.256633 + 0.444501i
\(579\) 0 0
\(580\) −7.72741 + 13.3843i −0.320863 + 0.555751i
\(581\) 0 0
\(582\) 0 0
\(583\) −5.46410 9.46410i −0.226300 0.391963i
\(584\) −6.83083 −0.282662
\(585\) 0 0
\(586\) 19.0411 0.786581
\(587\) −14.5768 25.2478i −0.601650 1.04209i −0.992571 0.121664i \(-0.961177\pi\)
0.390922 0.920424i \(-0.372156\pi\)
\(588\) 0 0
\(589\) 2.66025 4.60770i 0.109614 0.189857i
\(590\) −16.6603 + 28.8564i −0.685892 + 1.18800i
\(591\) 0 0
\(592\) −0.267949 0.464102i −0.0110126 0.0190745i
\(593\) −2.72689 −0.111980 −0.0559900 0.998431i \(-0.517831\pi\)
−0.0559900 + 0.998431i \(0.517831\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.53590 + 7.85641i 0.185798 + 0.321811i
\(597\) 0 0
\(598\) −4.89898 + 8.48528i −0.200334 + 0.346989i
\(599\) −18.3923 + 31.8564i −0.751489 + 1.30162i 0.195612 + 0.980681i \(0.437331\pi\)
−0.947101 + 0.320936i \(0.896003\pi\)
\(600\) 0 0
\(601\) −0.448288 0.776457i −0.0182860 0.0316723i 0.856738 0.515753i \(-0.172488\pi\)
−0.875024 + 0.484080i \(0.839154\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.39230 −0.0973415
\(605\) −5.65685 9.79796i −0.229984 0.398344i
\(606\) 0 0
\(607\) −15.8338 + 27.4249i −0.642672 + 1.11314i 0.342162 + 0.939641i \(0.388841\pi\)
−0.984834 + 0.173500i \(0.944492\pi\)
\(608\) 1.48356 2.56961i 0.0601665 0.104211i
\(609\) 0 0
\(610\) −13.4641 23.3205i −0.545146 0.944220i
\(611\) −70.6410 −2.85783
\(612\) 0 0
\(613\) 11.0718 0.447186 0.223593 0.974683i \(-0.428221\pi\)
0.223593 + 0.974683i \(0.428221\pi\)
\(614\) 5.53674 + 9.58991i 0.223444 + 0.387017i
\(615\) 0 0
\(616\) 0 0
\(617\) −15.4282 + 26.7224i −0.621116 + 1.07580i 0.368162 + 0.929762i \(0.379987\pi\)
−0.989278 + 0.146043i \(0.953346\pi\)
\(618\) 0 0
\(619\) 12.3168 + 21.3333i 0.495054 + 0.857459i 0.999984 0.00570182i \(-0.00181496\pi\)
−0.504930 + 0.863160i \(0.668482\pi\)
\(620\) −6.92820 −0.278243
\(621\) 0 0
\(622\) 12.3490 0.495149
\(623\) 0 0
\(624\) 0 0
\(625\) −11.9641 + 20.7224i −0.478564 + 0.828897i
\(626\) −11.7112 + 20.2844i −0.468075 + 0.810729i
\(627\) 0 0
\(628\) 2.31079 + 4.00240i 0.0922105 + 0.159713i
\(629\) 2.90276 0.115740
\(630\) 0 0
\(631\) 35.7128 1.42170 0.710852 0.703341i \(-0.248309\pi\)
0.710852 + 0.703341i \(0.248309\pi\)
\(632\) −2.46410 4.26795i −0.0980167 0.169770i
\(633\) 0 0
\(634\) 13.0000 22.5167i 0.516296 0.894251i
\(635\) −12.6264 + 21.8695i −0.501063 + 0.867866i
\(636\) 0 0
\(637\) 0 0
\(638\) −14.9282 −0.591013
\(639\) 0 0
\(640\) −3.86370 −0.152726
\(641\) 8.96410 + 15.5263i 0.354061 + 0.613251i 0.986957 0.160986i \(-0.0514673\pi\)
−0.632896 + 0.774237i \(0.718134\pi\)
\(642\) 0 0
\(643\) −6.53485 + 11.3187i −0.257709 + 0.446365i −0.965628 0.259929i \(-0.916301\pi\)
0.707919 + 0.706294i \(0.249634\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.03590 + 13.9186i 0.316168 + 0.547619i
\(647\) 12.0716 0.474583 0.237291 0.971439i \(-0.423740\pi\)
0.237291 + 0.971439i \(0.423740\pi\)
\(648\) 0 0
\(649\) −32.1851 −1.26338
\(650\) −33.2204 57.5394i −1.30301 2.25688i
\(651\) 0 0
\(652\) −10.6603 + 18.4641i −0.417488 + 0.723110i
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) −11.6603 20.1962i −0.455604 0.789129i
\(656\) −1.27551 −0.0498004
\(657\) 0 0
\(658\) 0 0
\(659\) 0.124356 + 0.215390i 0.00484421 + 0.00839042i 0.868437 0.495799i \(-0.165125\pi\)
−0.863593 + 0.504189i \(0.831791\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) −2.26795 + 3.92820i −0.0881463 + 0.152674i
\(663\) 0 0
\(664\) −8.95215 15.5056i −0.347411 0.601733i
\(665\) 0 0
\(666\) 0 0
\(667\) 5.85641 0.226761
\(668\) −10.5558 18.2832i −0.408417 0.707400i
\(669\) 0 0
\(670\) 10.6945 18.5235i 0.413166 0.715624i
\(671\) 13.0053 22.5259i 0.502065 0.869602i
\(672\) 0 0
\(673\) 20.7846 + 36.0000i 0.801188 + 1.38770i 0.918835 + 0.394643i \(0.129132\pi\)
−0.117647 + 0.993055i \(0.537535\pi\)
\(674\) 7.00000 0.269630
\(675\) 0 0
\(676\) 31.7846 1.22248
\(677\) 10.0382 + 17.3867i 0.385799 + 0.668224i 0.991880 0.127179i \(-0.0405924\pi\)
−0.606081 + 0.795403i \(0.707259\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 10.4641 18.1244i 0.401280 0.695037i
\(681\) 0 0
\(682\) −3.34607 5.79555i −0.128127 0.221923i
\(683\) 3.67949 0.140792 0.0703959 0.997519i \(-0.477574\pi\)
0.0703959 + 0.997519i \(0.477574\pi\)
\(684\) 0 0
\(685\) 33.4607 1.27847
\(686\) 0 0
\(687\) 0 0
\(688\) −1.86603 + 3.23205i −0.0711416 + 0.123221i
\(689\) 9.79796 16.9706i 0.373273 0.646527i
\(690\) 0 0
\(691\) 4.81105 + 8.33298i 0.183021 + 0.317001i 0.942908 0.333054i \(-0.108079\pi\)
−0.759887 + 0.650055i \(0.774746\pi\)
\(692\) 1.79315 0.0681654
\(693\) 0 0
\(694\) 21.5885 0.819487
\(695\) −31.5885 54.7128i −1.19822 2.07538i
\(696\) 0 0
\(697\) 3.45448 5.98334i 0.130848 0.226635i
\(698\) −8.24504 + 14.2808i −0.312080 + 0.540538i
\(699\) 0 0
\(700\) 0 0
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) 0 0
\(703\) 1.59008 0.0599710
\(704\) −1.86603 3.23205i −0.0703285 0.121812i
\(705\) 0 0
\(706\) −13.2134 + 22.8862i −0.497292 + 0.861335i
\(707\) 0 0
\(708\) 0 0
\(709\) −4.19615 7.26795i −0.157590 0.272954i 0.776409 0.630229i \(-0.217039\pi\)
−0.933999 + 0.357276i \(0.883706\pi\)
\(710\) 9.79796 0.367711
\(711\) 0 0
\(712\) −7.07107 −0.264999
\(713\) 1.31268 + 2.27362i 0.0491602 + 0.0851479i
\(714\) 0 0
\(715\) 48.2487 83.5692i 1.80440 3.12531i
\(716\) 9.46410 16.3923i 0.353690 0.612609i
\(717\) 0 0
\(718\) −0.267949 0.464102i −0.00999978 0.0173201i
\(719\) −15.3805 −0.573595 −0.286798 0.957991i \(-0.592591\pi\)
−0.286798 + 0.957991i \(0.592591\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −5.09808 8.83013i −0.189731 0.328623i
\(723\) 0 0
\(724\) −8.48528 + 14.6969i −0.315353 + 0.546207i
\(725\) −19.8564 + 34.3923i −0.737448 + 1.27730i
\(726\) 0 0
\(727\) −0.795040 1.37705i −0.0294864 0.0510719i 0.850906 0.525319i \(-0.176054\pi\)
−0.880392 + 0.474247i \(0.842721\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −26.3923 −0.976823
\(731\) −10.1075 17.5068i −0.373841 0.647512i
\(732\) 0 0
\(733\) −8.24504 + 14.2808i −0.304538 + 0.527475i −0.977158 0.212513i \(-0.931835\pi\)
0.672621 + 0.739988i \(0.265169\pi\)
\(734\) 7.86611 13.6245i 0.290343 0.502889i
\(735\) 0 0
\(736\) 0.732051 + 1.26795i 0.0269838 + 0.0467372i
\(737\) 20.6603 0.761030
\(738\) 0 0
\(739\) −18.1244 −0.666715 −0.333358 0.942800i \(-0.608182\pi\)
−0.333358 + 0.942800i \(0.608182\pi\)
\(740\) −1.03528 1.79315i −0.0380575 0.0659175i
\(741\) 0 0
\(742\) 0 0
\(743\) 25.7846 44.6603i 0.945946 1.63843i 0.192099 0.981376i \(-0.438471\pi\)
0.753847 0.657050i \(-0.228196\pi\)
\(744\) 0 0
\(745\) 17.5254 + 30.3548i 0.642080 + 1.11211i
\(746\) −30.7846 −1.12710
\(747\) 0 0
\(748\) 20.2151 0.739137
\(749\) 0 0
\(750\) 0 0
\(751\) 3.39230 5.87564i 0.123787 0.214405i −0.797471 0.603357i \(-0.793829\pi\)
0.921258 + 0.388952i \(0.127163\pi\)
\(752\) −5.27792 + 9.14162i −0.192466 + 0.333361i
\(753\) 0 0
\(754\) −13.3843 23.1822i −0.487426 0.844247i
\(755\) −9.24316 −0.336393
\(756\) 0 0
\(757\) −15.3205 −0.556833 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(758\) −8.79423 15.2321i −0.319421 0.553253i
\(759\) 0 0
\(760\) 5.73205 9.92820i 0.207923 0.360134i
\(761\) 15.2282 26.3760i 0.552021 0.956129i −0.446108 0.894979i \(-0.647190\pi\)
0.998129 0.0611492i \(-0.0194765\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.07180 −0.0387762
\(765\) 0 0
\(766\) 21.6665 0.782841
\(767\) −28.8564 49.9808i −1.04194 1.80470i
\(768\) 0 0
\(769\) 19.0919 33.0681i 0.688471 1.19247i −0.283862 0.958865i \(-0.591616\pi\)
0.972332 0.233601i \(-0.0750511\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 11.5263 + 19.9641i 0.414840 + 0.718524i
\(773\) 0.203072 0.00730399 0.00365199 0.999993i \(-0.498838\pi\)
0.00365199 + 0.999993i \(0.498838\pi\)
\(774\) 0 0
\(775\) −17.8028 −0.639494
\(776\) 2.94855 + 5.10703i 0.105847 + 0.183332i
\(777\) 0 0
\(778\) −4.00000 + 6.92820i −0.143407 + 0.248388i
\(779\) 1.89230 3.27757i 0.0677989 0.117431i
\(780\) 0 0
\(781\) 4.73205 + 8.19615i 0.169326 + 0.293281i
\(782\) −7.93048 −0.283593
\(783\) 0 0
\(784\) 0 0
\(785\) 8.92820 + 15.4641i 0.318661 + 0.551937i
\(786\) 0 0
\(787\) −23.3717 + 40.4810i −0.833111 + 1.44299i 0.0624487 + 0.998048i \(0.480109\pi\)
−0.895559 + 0.444942i \(0.853224\pi\)
\(788\) −1.53590 + 2.66025i −0.0547141 + 0.0947676i
\(789\) 0 0
\(790\) −9.52056 16.4901i −0.338726 0.586691i
\(791\) 0 0
\(792\) 0 0
\(793\) 46.6410 1.65627
\(794\) −9.00292 15.5935i −0.319502 0.553393i
\(795\) 0 0
\(796\) −8.90138 + 15.4176i −0.315501 + 0.546464i
\(797\) −10.4543 + 18.1074i −0.370310 + 0.641396i −0.989613 0.143756i \(-0.954082\pi\)
0.619303 + 0.785152i \(0.287415\pi\)
\(798\) 0 0
\(799\) −28.5885 49.5167i −1.01139 1.75177i
\(800\) −9.92820 −0.351015
\(801\) 0 0
\(802\) 17.7846 0.627996
\(803\) −12.7465 22.0776i −0.449814 0.779101i
\(804\) 0 0
\(805\) 0 0
\(806\) 6.00000 10.3923i 0.211341 0.366053i
\(807\) 0 0
\(808\) 2.44949 + 4.24264i 0.0861727 + 0.149256i
\(809\) 26.2679 0.923532 0.461766 0.887002i \(-0.347216\pi\)
0.461766 + 0.887002i \(0.347216\pi\)
\(810\) 0 0
\(811\) −46.1242 −1.61964 −0.809820 0.586679i \(-0.800435\pi\)
−0.809820 + 0.586679i \(0.800435\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.00000 1.73205i 0.0350500 0.0607083i
\(815\) −41.1881 + 71.3398i −1.44275 + 2.49892i
\(816\) 0 0
\(817\) −5.53674 9.58991i −0.193706 0.335508i
\(818\) 16.7303 0.584962
\(819\) 0 0
\(820\) −4.92820 −0.172100
\(821\) −5.19615 9.00000i −0.181347 0.314102i 0.760993 0.648761i \(-0.224712\pi\)
−0.942339 + 0.334659i \(0.891379\pi\)
\(822\) 0 0
\(823\) −15.3923 + 26.6603i −0.536542 + 0.929318i 0.462545 + 0.886596i \(0.346936\pi\)
−0.999087 + 0.0427222i \(0.986397\pi\)
\(824\) −3.72500 + 6.45189i −0.129767 + 0.224762i
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −37.3244 −1.29633 −0.648164 0.761501i \(-0.724463\pi\)
−0.648164 + 0.761501i \(0.724463\pi\)
\(830\) −34.5885 59.9090i −1.20058 2.07947i
\(831\) 0 0
\(832\) 3.34607 5.79555i 0.116004 0.200925i
\(833\) 0 0
\(834\) 0 0
\(835\) −40.7846 70.6410i −1.41141 2.44463i
\(836\) 11.0735 0.382984
\(837\) 0 0
\(838\) 7.90327 0.273014
\(839\) −11.3137 19.5959i −0.390593 0.676526i 0.601935 0.798545i \(-0.294397\pi\)
−0.992528 + 0.122019i \(0.961063\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) 14.1962 24.5885i 0.489232 0.847374i
\(843\) 0 0
\(844\) −2.53590 4.39230i −0.0872892 0.151189i
\(845\) 122.806 4.22467
\(846\) 0 0
\(847\) 0 0
\(848\) −1.46410 2.53590i −0.0502775 0.0870831i
\(849\) 0 0
\(850\) 26.8886 46.5725i 0.922273 1.59742i
\(851\) −0.392305 + 0.679492i −0.0134480 + 0.0232927i
\(852\) 0 0
\(853\) −8.00481 13.8647i −0.274079 0.474719i 0.695823 0.718213i \(-0.255040\pi\)
−0.969902 + 0.243494i \(0.921706\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 3.39230 0.115947
\(857\) −4.19187 7.26054i −0.143192 0.248015i 0.785505 0.618855i \(-0.212403\pi\)
−0.928697 + 0.370840i \(0.879070\pi\)
\(858\) 0 0
\(859\) 7.36705 12.7601i 0.251361 0.435369i −0.712540 0.701631i \(-0.752455\pi\)
0.963901 + 0.266262i \(0.0857887\pi\)
\(860\) −7.20977 + 12.4877i −0.245851 + 0.425827i
\(861\) 0 0
\(862\) 18.9282 + 32.7846i 0.644697 + 1.11665i
\(863\) −22.1051 −0.752467 −0.376233 0.926525i \(-0.622781\pi\)
−0.376233 + 0.926525i \(0.622781\pi\)
\(864\) 0 0
\(865\) 6.92820 0.235566
\(866\) −3.55412 6.15591i −0.120774 0.209186i
\(867\) 0 0
\(868\) 0 0
\(869\) 9.19615 15.9282i 0.311958 0.540327i
\(870\) 0 0
\(871\) 18.5235 + 32.0836i 0.627644 + 1.08711i
\(872\) 8.92820 0.302347
\(873\) 0 0
\(874\) −4.34418 −0.146944
\(875\) 0 0
\(876\) 0 0
\(877\) −16.5885 + 28.7321i −0.560152 + 0.970212i 0.437330 + 0.899301i \(0.355924\pi\)
−0.997483 + 0.0709114i \(0.977409\pi\)
\(878\) 9.79796 16.9706i 0.330665 0.572729i
\(879\) 0 0
\(880\) −7.20977 12.4877i −0.243041 0.420960i
\(881\) −12.7279 −0.428815 −0.214407 0.976744i \(-0.568782\pi\)
−0.214407 + 0.976744i \(0.568782\pi\)
\(882\) 0 0
\(883\) 7.53590 0.253603 0.126802 0.991928i \(-0.459529\pi\)
0.126802 + 0.991928i \(0.459529\pi\)
\(884\) 18.1244 + 31.3923i 0.609588 + 1.05584i
\(885\) 0 0
\(886\) 9.16025 15.8660i 0.307745 0.533030i
\(887\) −14.3824 + 24.9110i −0.482913 + 0.836430i −0.999808 0.0196195i \(-0.993755\pi\)
0.516895 + 0.856049i \(0.327088\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −27.3205 −0.915786
\(891\) 0 0
\(892\) 26.7685 0.896276
\(893\) −15.6603 27.1244i −0.524050 0.907682i
\(894\) 0 0
\(895\) 36.5665 63.3350i 1.22228 2.11706i
\(896\) 0 0
\(897\) 0 0
\(898\) 8.89230 + 15.4019i 0.296740 + 0.513969i
\(899\) −7.17260 −0.239220
\(900\) 0 0
\(901\) 15.8610 0.528405
\(902\) −2.38014 4.12252i −0.0792500 0.137265i
\(903\) 0 0
\(904\) −3.46410 + 6.00000i −0.115214 + 0.199557i
\(905\) −32.7846 + 56.7846i −1.08980 + 1.88758i
\(906\) 0 0
\(907\) −21.6244 37.4545i −0.718025 1.24366i −0.961781 0.273819i \(-0.911713\pi\)
0.243756 0.969837i \(-0.421620\pi\)
\(908\) −10.5187 −0.349074
\(909\) 0 0
\(910\) 0 0
\(911\) −23.4641 40.6410i −0.777400 1.34650i −0.933435 0.358745i \(-0.883205\pi\)
0.156035 0.987752i \(-0.450129\pi\)
\(912\) 0 0
\(913\) 33.4099 57.8676i 1.10571 1.91514i
\(914\) 3.52628 6.10770i 0.116639 0.202025i
\(915\) 0 0
\(916\) 12.4877 + 21.6293i 0.412605 + 0.714652i
\(917\) 0 0
\(918\) 0 0
\(919\) 22.9282 0.756332 0.378166 0.925738i \(-0.376555\pi\)
0.378166 + 0.925738i \(0.376555\pi\)
\(920\) 2.82843 + 4.89898i 0.0932505 + 0.161515i
\(921\) 0 0
\(922\) −12.8666 + 22.2856i −0.423740 + 0.733939i
\(923\) −8.48528 + 14.6969i −0.279296 + 0.483756i
\(924\) 0 0
\(925\) −2.66025 4.60770i −0.0874686 0.151500i
\(926\) −38.6410 −1.26982
\(927\) 0 0
\(928\) −4.00000 −0.131306
\(929\) 13.9898 + 24.2311i 0.458991 + 0.794997i 0.998908 0.0467220i \(-0.0148775\pi\)
−0.539916 + 0.841719i \(0.681544\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −12.0622 + 20.8923i −0.395110 + 0.684350i
\(933\) 0 0
\(934\) −13.7818 23.8707i −0.450954 0.781075i
\(935\) 78.1051 2.55431
\(936\) 0 0
\(937\) 9.89949 0.323402 0.161701 0.986840i \(-0.448302\pi\)
0.161701 + 0.986840i \(0.448302\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −20.3923 + 35.3205i −0.665124 + 1.15203i
\(941\) 4.34418 7.52433i 0.141616 0.245286i −0.786489 0.617604i \(-0.788103\pi\)
0.928105 + 0.372318i \(0.121437\pi\)
\(942\) 0 0
\(943\) 0.933740 + 1.61729i 0.0304068 + 0.0526661i
\(944\) −8.62398 −0.280687
\(945\) 0 0
\(946\) −13.9282 −0.452845
\(947\) 3.06218 + 5.30385i 0.0995074 + 0.172352i 0.911481 0.411342i \(-0.134940\pi\)
−0.811973 + 0.583694i \(0.801607\pi\)
\(948\) 0 0
\(949\) 22.8564 39.5885i 0.741950 1.28510i
\(950\) 14.7291 25.5116i 0.477876 0.827705i
\(951\) 0 0
\(952\) 0 0
\(953\) −19.0000 −0.615470 −0.307735 0.951472i \(-0.599571\pi\)
−0.307735 + 0.951472i \(0.599571\pi\)
\(954\) 0 0
\(955\) −4.14110 −0.134003
\(956\) −6.46410 11.1962i −0.209064 0.362109i
\(957\) 0 0
\(958\) 7.72741 13.3843i 0.249661 0.432426i
\(959\) 0 0
\(960\) 0 0
\(961\) 13.8923 + 24.0622i 0.448139 + 0.776199i
\(962\) 3.58630 0.115627
\(963\) 0 0
\(964\) −23.4225 −0.754387
\(965\) 44.5341 + 77.1354i 1.43360 + 2.48308i
\(966\) 0 0
\(967\) −17.7846 + 30.8038i −0.571914 + 0.990585i 0.424455 + 0.905449i \(0.360466\pi\)
−0.996369 + 0.0851359i \(0.972868\pi\)
\(968\) 1.46410 2.53590i 0.0470580 0.0815069i
\(969\) 0 0
\(970\) 11.3923 + 19.7321i 0.365785 + 0.633558i
\(971\) −3.00429 −0.0964123 −0.0482062 0.998837i \(-0.515350\pi\)
−0.0482062 + 0.998837i \(0.515350\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 19.3923 + 33.5885i 0.621370 + 1.07624i
\(975\) 0 0
\(976\) 3.48477 6.03579i 0.111545 0.193201i
\(977\) −24.9904 + 43.2846i −0.799513 + 1.38480i 0.120420 + 0.992723i \(0.461576\pi\)
−0.919934 + 0.392074i \(0.871758\pi\)
\(978\) 0 0
\(979\) −13.1948 22.8541i −0.421707 0.730419i
\(980\) 0 0
\(981\) 0 0
\(982\) −1.39230 −0.0444302
\(983\) 3.48477 + 6.03579i 0.111147 + 0.192512i 0.916233 0.400646i \(-0.131214\pi\)
−0.805086 + 0.593158i \(0.797881\pi\)
\(984\) 0 0
\(985\) −5.93426 + 10.2784i −0.189081 + 0.327498i
\(986\) 10.8332 18.7637i 0.345000 0.597558i
\(987\) 0 0
\(988\) 9.92820 + 17.1962i 0.315858 + 0.547082i
\(989\) 5.46410 0.173748
\(990\) 0 0
\(991\) 1.75129 0.0556315 0.0278158 0.999613i \(-0.491145\pi\)
0.0278158 + 0.999613i \(0.491145\pi\)
\(992\) −0.896575 1.55291i −0.0284663 0.0493051i
\(993\) 0 0
\(994\) 0 0
\(995\) −34.3923 + 59.5692i −1.09031 + 1.88847i
\(996\) 0 0
\(997\) 3.24453 + 5.61969i 0.102755 + 0.177977i 0.912819 0.408365i \(-0.133901\pi\)
−0.810064 + 0.586342i \(0.800567\pi\)
\(998\) −12.6077 −0.399090
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.r.1765.1 8
3.2 odd 2 882.2.f.q.589.3 yes 8
7.2 even 3 2646.2.h.t.361.4 8
7.3 odd 6 2646.2.e.q.1549.4 8
7.4 even 3 2646.2.e.q.1549.1 8
7.5 odd 6 2646.2.h.t.361.1 8
7.6 odd 2 inner 2646.2.f.r.1765.4 8
9.2 odd 6 882.2.f.q.295.3 yes 8
9.4 even 3 7938.2.a.ci.1.4 4
9.5 odd 6 7938.2.a.cp.1.1 4
9.7 even 3 inner 2646.2.f.r.883.1 8
21.2 odd 6 882.2.h.q.67.4 8
21.5 even 6 882.2.h.q.67.1 8
21.11 odd 6 882.2.e.s.373.1 8
21.17 even 6 882.2.e.s.373.4 8
21.20 even 2 882.2.f.q.589.2 yes 8
63.2 odd 6 882.2.e.s.655.1 8
63.11 odd 6 882.2.h.q.79.3 8
63.13 odd 6 7938.2.a.ci.1.1 4
63.16 even 3 2646.2.e.q.2125.1 8
63.20 even 6 882.2.f.q.295.2 8
63.25 even 3 2646.2.h.t.667.4 8
63.34 odd 6 inner 2646.2.f.r.883.4 8
63.38 even 6 882.2.h.q.79.2 8
63.41 even 6 7938.2.a.cp.1.4 4
63.47 even 6 882.2.e.s.655.4 8
63.52 odd 6 2646.2.h.t.667.1 8
63.61 odd 6 2646.2.e.q.2125.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.1 8 21.11 odd 6
882.2.e.s.373.4 8 21.17 even 6
882.2.e.s.655.1 8 63.2 odd 6
882.2.e.s.655.4 8 63.47 even 6
882.2.f.q.295.2 8 63.20 even 6
882.2.f.q.295.3 yes 8 9.2 odd 6
882.2.f.q.589.2 yes 8 21.20 even 2
882.2.f.q.589.3 yes 8 3.2 odd 2
882.2.h.q.67.1 8 21.5 even 6
882.2.h.q.67.4 8 21.2 odd 6
882.2.h.q.79.2 8 63.38 even 6
882.2.h.q.79.3 8 63.11 odd 6
2646.2.e.q.1549.1 8 7.4 even 3
2646.2.e.q.1549.4 8 7.3 odd 6
2646.2.e.q.2125.1 8 63.16 even 3
2646.2.e.q.2125.4 8 63.61 odd 6
2646.2.f.r.883.1 8 9.7 even 3 inner
2646.2.f.r.883.4 8 63.34 odd 6 inner
2646.2.f.r.1765.1 8 1.1 even 1 trivial
2646.2.f.r.1765.4 8 7.6 odd 2 inner
2646.2.h.t.361.1 8 7.5 odd 6
2646.2.h.t.361.4 8 7.2 even 3
2646.2.h.t.667.1 8 63.52 odd 6
2646.2.h.t.667.4 8 63.25 even 3
7938.2.a.ci.1.1 4 63.13 odd 6
7938.2.a.ci.1.4 4 9.4 even 3
7938.2.a.cp.1.1 4 9.5 odd 6
7938.2.a.cp.1.4 4 63.41 even 6