Properties

Label 882.3.c.b
Level 882882
Weight 33
Character orbit 882.c
Analytic conductor 24.03324.033
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,3,Mod(685,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.685");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 882.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.032759316624.0327593166
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+2q4+(2β3+2β2)q52β1q8+(2β34β2)q106q11+(8β3+β2)q13+4q16+(2β3+8β2)q17++(4β3+12β2)q97+O(q100) q - \beta_1 q^{2} + 2 q^{4} + ( - 2 \beta_{3} + 2 \beta_{2}) q^{5} - 2 \beta_1 q^{8} + (2 \beta_{3} - 4 \beta_{2}) q^{10} - 6 q^{11} + (8 \beta_{3} + \beta_{2}) q^{13} + 4 q^{16} + ( - 2 \beta_{3} + 8 \beta_{2}) q^{17}+ \cdots + ( - 4 \beta_{3} + 12 \beta_{2}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q424q11+16q16+48q2344q2544q37+28q4348q44+144q46+192q50+240q53+192q58+32q64+360q65220q67312q7196q74+264q95+O(q100) 4 q + 8 q^{4} - 24 q^{11} + 16 q^{16} + 48 q^{23} - 44 q^{25} - 44 q^{37} + 28 q^{43} - 48 q^{44} + 144 q^{46} + 192 q^{50} + 240 q^{53} + 192 q^{58} + 32 q^{64} + 360 q^{65} - 220 q^{67} - 312 q^{71} - 96 q^{74}+ \cdots - 264 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
β2\beta_{2}== ν2+1 \nu^{2} + 1 Copy content Toggle raw display
β3\beta_{3}== (ν3+4ν)/2 ( \nu^{3} + 4\nu ) / 2 Copy content Toggle raw display
ν\nu== (β3β1)/2 ( \beta_{3} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β21 \beta_{2} - 1 Copy content Toggle raw display
ν3\nu^{3}== 2β1 2\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/882Z)×\left(\mathbb{Z}/882\mathbb{Z}\right)^\times.

nn 199199 785785
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
685.1
−0.707107 + 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
0.707107 1.22474i
−1.41421 0 2.00000 8.36308i 0 0 −2.82843 0 11.8272i
685.2 −1.41421 0 2.00000 8.36308i 0 0 −2.82843 0 11.8272i
685.3 1.41421 0 2.00000 1.43488i 0 0 2.82843 0 2.02922i
685.4 1.41421 0 2.00000 1.43488i 0 0 2.82843 0 2.02922i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.3.c.b 4
3.b odd 2 1 294.3.c.a 4
7.b odd 2 1 inner 882.3.c.b 4
7.c even 3 1 126.3.n.a 4
7.c even 3 1 882.3.n.e 4
7.d odd 6 1 126.3.n.a 4
7.d odd 6 1 882.3.n.e 4
12.b even 2 1 2352.3.f.e 4
21.c even 2 1 294.3.c.a 4
21.g even 6 1 42.3.g.a 4
21.g even 6 1 294.3.g.a 4
21.h odd 6 1 42.3.g.a 4
21.h odd 6 1 294.3.g.a 4
28.f even 6 1 1008.3.cg.h 4
28.g odd 6 1 1008.3.cg.h 4
84.h odd 2 1 2352.3.f.e 4
84.j odd 6 1 336.3.bh.e 4
84.n even 6 1 336.3.bh.e 4
105.o odd 6 1 1050.3.p.a 4
105.p even 6 1 1050.3.p.a 4
105.w odd 12 2 1050.3.q.a 8
105.x even 12 2 1050.3.q.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.3.g.a 4 21.g even 6 1
42.3.g.a 4 21.h odd 6 1
126.3.n.a 4 7.c even 3 1
126.3.n.a 4 7.d odd 6 1
294.3.c.a 4 3.b odd 2 1
294.3.c.a 4 21.c even 2 1
294.3.g.a 4 21.g even 6 1
294.3.g.a 4 21.h odd 6 1
336.3.bh.e 4 84.j odd 6 1
336.3.bh.e 4 84.n even 6 1
882.3.c.b 4 1.a even 1 1 trivial
882.3.c.b 4 7.b odd 2 1 inner
882.3.n.e 4 7.c even 3 1
882.3.n.e 4 7.d odd 6 1
1008.3.cg.h 4 28.f even 6 1
1008.3.cg.h 4 28.g odd 6 1
1050.3.p.a 4 105.o odd 6 1
1050.3.p.a 4 105.p even 6 1
1050.3.q.a 8 105.w odd 12 2
1050.3.q.a 8 105.x even 12 2
2352.3.f.e 4 12.b even 2 1
2352.3.f.e 4 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(882,[χ])S_{3}^{\mathrm{new}}(882, [\chi]):

T54+72T52+144 T_{5}^{4} + 72T_{5}^{2} + 144 Copy content Toggle raw display
T23224T23504 T_{23}^{2} - 24T_{23} - 504 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+72T2+144 T^{4} + 72T^{2} + 144 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
1313 T4+774T2+145161 T^{4} + 774 T^{2} + 145161 Copy content Toggle raw display
1717 T4+432T2+28224 T^{4} + 432 T^{2} + 28224 Copy content Toggle raw display
1919 T4+342T2+15129 T^{4} + 342 T^{2} + 15129 Copy content Toggle raw display
2323 (T224T504)2 (T^{2} - 24 T - 504)^{2} Copy content Toggle raw display
2929 (T21152)2 (T^{2} - 1152)^{2} Copy content Toggle raw display
3131 T4+2166T2+423801 T^{4} + 2166 T^{2} + 423801 Copy content Toggle raw display
3737 (T2+22T167)2 (T^{2} + 22 T - 167)^{2} Copy content Toggle raw display
4141 T4+4248T2+3732624 T^{4} + 4248 T^{2} + 3732624 Copy content Toggle raw display
4343 (T214T23)2 (T^{2} - 14 T - 23)^{2} Copy content Toggle raw display
4747 T4+2952T2+2039184 T^{4} + 2952 T^{2} + 2039184 Copy content Toggle raw display
5353 (T2120T+2952)2 (T^{2} - 120 T + 2952)^{2} Copy content Toggle raw display
5959 T4+2448T2+1272384 T^{4} + 2448 T^{2} + 1272384 Copy content Toggle raw display
6161 T4+1632T2+2304 T^{4} + 1632 T^{2} + 2304 Copy content Toggle raw display
6767 (T2+110T503)2 (T^{2} + 110 T - 503)^{2} Copy content Toggle raw display
7171 (T2+156T+2556)2 (T^{2} + 156 T + 2556)^{2} Copy content Toggle raw display
7373 T4+19926T2+85322169 T^{4} + 19926 T^{2} + 85322169 Copy content Toggle raw display
7979 (T210T8687)2 (T^{2} - 10 T - 8687)^{2} Copy content Toggle raw display
8383 T4+17928T2+69956496 T^{4} + 17928 T^{2} + 69956496 Copy content Toggle raw display
8989 (T2+432)2 (T^{2} + 432)^{2} Copy content Toggle raw display
9797 T4+1056T2+112896 T^{4} + 1056 T^{2} + 112896 Copy content Toggle raw display
show more
show less