Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [882,3,Mod(685,882)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(882, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("882.685");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 882.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 42) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
685.1 |
|
−1.41421 | 0 | 2.00000 | − | 8.36308i | 0 | 0 | −2.82843 | 0 | 11.8272i | |||||||||||||||||||||||||||||
685.2 | −1.41421 | 0 | 2.00000 | 8.36308i | 0 | 0 | −2.82843 | 0 | − | 11.8272i | ||||||||||||||||||||||||||||||
685.3 | 1.41421 | 0 | 2.00000 | − | 1.43488i | 0 | 0 | 2.82843 | 0 | − | 2.02922i | |||||||||||||||||||||||||||||
685.4 | 1.41421 | 0 | 2.00000 | 1.43488i | 0 | 0 | 2.82843 | 0 | 2.02922i | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 882.3.c.b | 4 | |
3.b | odd | 2 | 1 | 294.3.c.a | 4 | ||
7.b | odd | 2 | 1 | inner | 882.3.c.b | 4 | |
7.c | even | 3 | 1 | 126.3.n.a | 4 | ||
7.c | even | 3 | 1 | 882.3.n.e | 4 | ||
7.d | odd | 6 | 1 | 126.3.n.a | 4 | ||
7.d | odd | 6 | 1 | 882.3.n.e | 4 | ||
12.b | even | 2 | 1 | 2352.3.f.e | 4 | ||
21.c | even | 2 | 1 | 294.3.c.a | 4 | ||
21.g | even | 6 | 1 | 42.3.g.a | ✓ | 4 | |
21.g | even | 6 | 1 | 294.3.g.a | 4 | ||
21.h | odd | 6 | 1 | 42.3.g.a | ✓ | 4 | |
21.h | odd | 6 | 1 | 294.3.g.a | 4 | ||
28.f | even | 6 | 1 | 1008.3.cg.h | 4 | ||
28.g | odd | 6 | 1 | 1008.3.cg.h | 4 | ||
84.h | odd | 2 | 1 | 2352.3.f.e | 4 | ||
84.j | odd | 6 | 1 | 336.3.bh.e | 4 | ||
84.n | even | 6 | 1 | 336.3.bh.e | 4 | ||
105.o | odd | 6 | 1 | 1050.3.p.a | 4 | ||
105.p | even | 6 | 1 | 1050.3.p.a | 4 | ||
105.w | odd | 12 | 2 | 1050.3.q.a | 8 | ||
105.x | even | 12 | 2 | 1050.3.q.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.3.g.a | ✓ | 4 | 21.g | even | 6 | 1 | |
42.3.g.a | ✓ | 4 | 21.h | odd | 6 | 1 | |
126.3.n.a | 4 | 7.c | even | 3 | 1 | ||
126.3.n.a | 4 | 7.d | odd | 6 | 1 | ||
294.3.c.a | 4 | 3.b | odd | 2 | 1 | ||
294.3.c.a | 4 | 21.c | even | 2 | 1 | ||
294.3.g.a | 4 | 21.g | even | 6 | 1 | ||
294.3.g.a | 4 | 21.h | odd | 6 | 1 | ||
336.3.bh.e | 4 | 84.j | odd | 6 | 1 | ||
336.3.bh.e | 4 | 84.n | even | 6 | 1 | ||
882.3.c.b | 4 | 1.a | even | 1 | 1 | trivial | |
882.3.c.b | 4 | 7.b | odd | 2 | 1 | inner | |
882.3.n.e | 4 | 7.c | even | 3 | 1 | ||
882.3.n.e | 4 | 7.d | odd | 6 | 1 | ||
1008.3.cg.h | 4 | 28.f | even | 6 | 1 | ||
1008.3.cg.h | 4 | 28.g | odd | 6 | 1 | ||
1050.3.p.a | 4 | 105.o | odd | 6 | 1 | ||
1050.3.p.a | 4 | 105.p | even | 6 | 1 | ||
1050.3.q.a | 8 | 105.w | odd | 12 | 2 | ||
1050.3.q.a | 8 | 105.x | even | 12 | 2 | ||
2352.3.f.e | 4 | 12.b | even | 2 | 1 | ||
2352.3.f.e | 4 | 84.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|