Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [42,3,Mod(19,42)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("42.19");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 42.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−0.707107 | + | 1.22474i | 1.50000 | − | 0.866025i | −1.00000 | − | 1.73205i | 7.24264 | + | 4.18154i | 2.44949i | −6.74264 | + | 1.88064i | 2.82843 | 1.50000 | − | 2.59808i | −10.2426 | + | 5.91359i | ||||||||||||||||
19.2 | 0.707107 | − | 1.22474i | 1.50000 | − | 0.866025i | −1.00000 | − | 1.73205i | −1.24264 | − | 0.717439i | − | 2.44949i | 1.74264 | + | 6.77962i | −2.82843 | 1.50000 | − | 2.59808i | −1.75736 | + | 1.01461i | ||||||||||||||||
31.1 | −0.707107 | − | 1.22474i | 1.50000 | + | 0.866025i | −1.00000 | + | 1.73205i | 7.24264 | − | 4.18154i | − | 2.44949i | −6.74264 | − | 1.88064i | 2.82843 | 1.50000 | + | 2.59808i | −10.2426 | − | 5.91359i | ||||||||||||||||
31.2 | 0.707107 | + | 1.22474i | 1.50000 | + | 0.866025i | −1.00000 | + | 1.73205i | −1.24264 | + | 0.717439i | 2.44949i | 1.74264 | − | 6.77962i | −2.82843 | 1.50000 | + | 2.59808i | −1.75736 | − | 1.01461i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 42.3.g.a | ✓ | 4 |
3.b | odd | 2 | 1 | 126.3.n.a | 4 | ||
4.b | odd | 2 | 1 | 336.3.bh.e | 4 | ||
5.b | even | 2 | 1 | 1050.3.p.a | 4 | ||
5.c | odd | 4 | 2 | 1050.3.q.a | 8 | ||
7.b | odd | 2 | 1 | 294.3.g.a | 4 | ||
7.c | even | 3 | 1 | 294.3.c.a | 4 | ||
7.c | even | 3 | 1 | 294.3.g.a | 4 | ||
7.d | odd | 6 | 1 | inner | 42.3.g.a | ✓ | 4 |
7.d | odd | 6 | 1 | 294.3.c.a | 4 | ||
12.b | even | 2 | 1 | 1008.3.cg.h | 4 | ||
21.c | even | 2 | 1 | 882.3.n.e | 4 | ||
21.g | even | 6 | 1 | 126.3.n.a | 4 | ||
21.g | even | 6 | 1 | 882.3.c.b | 4 | ||
21.h | odd | 6 | 1 | 882.3.c.b | 4 | ||
21.h | odd | 6 | 1 | 882.3.n.e | 4 | ||
28.f | even | 6 | 1 | 336.3.bh.e | 4 | ||
28.f | even | 6 | 1 | 2352.3.f.e | 4 | ||
28.g | odd | 6 | 1 | 2352.3.f.e | 4 | ||
35.i | odd | 6 | 1 | 1050.3.p.a | 4 | ||
35.k | even | 12 | 2 | 1050.3.q.a | 8 | ||
84.j | odd | 6 | 1 | 1008.3.cg.h | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.3.g.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
42.3.g.a | ✓ | 4 | 7.d | odd | 6 | 1 | inner |
126.3.n.a | 4 | 3.b | odd | 2 | 1 | ||
126.3.n.a | 4 | 21.g | even | 6 | 1 | ||
294.3.c.a | 4 | 7.c | even | 3 | 1 | ||
294.3.c.a | 4 | 7.d | odd | 6 | 1 | ||
294.3.g.a | 4 | 7.b | odd | 2 | 1 | ||
294.3.g.a | 4 | 7.c | even | 3 | 1 | ||
336.3.bh.e | 4 | 4.b | odd | 2 | 1 | ||
336.3.bh.e | 4 | 28.f | even | 6 | 1 | ||
882.3.c.b | 4 | 21.g | even | 6 | 1 | ||
882.3.c.b | 4 | 21.h | odd | 6 | 1 | ||
882.3.n.e | 4 | 21.c | even | 2 | 1 | ||
882.3.n.e | 4 | 21.h | odd | 6 | 1 | ||
1008.3.cg.h | 4 | 12.b | even | 2 | 1 | ||
1008.3.cg.h | 4 | 84.j | odd | 6 | 1 | ||
1050.3.p.a | 4 | 5.b | even | 2 | 1 | ||
1050.3.p.a | 4 | 35.i | odd | 6 | 1 | ||
1050.3.q.a | 8 | 5.c | odd | 4 | 2 | ||
1050.3.q.a | 8 | 35.k | even | 12 | 2 | ||
2352.3.f.e | 4 | 28.f | even | 6 | 1 | ||
2352.3.f.e | 4 | 28.g | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace .