Properties

Label 42.3.g.a
Level 4242
Weight 33
Character orbit 42.g
Analytic conductor 1.1441.144
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,3,Mod(19,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 42=237 42 = 2 \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 42.g (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.144417110311.14441711031
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+2)q3+2β2q4+(4β32β2+2β1+2)q5+(β3+2β1)q6+(4β35β2+5)q7+2β3q8+18q99+O(q100) q + \beta_1 q^{2} + (\beta_{2} + 2) q^{3} + 2 \beta_{2} q^{4} + (4 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 2) q^{5} + (\beta_{3} + 2 \beta_1) q^{6} + ( - 4 \beta_{3} - 5 \beta_{2} + \cdots - 5) q^{7} + 2 \beta_{3} q^{8}+ \cdots - 18 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q34q4+12q510q7+6q924q1012q1112q12+24q14+24q158q1648q1742q19+24q23+22q25+96q26+40q2824q30+72q99+O(q100) 4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9} - 24 q^{10} - 12 q^{11} - 12 q^{12} + 24 q^{14} + 24 q^{15} - 8 q^{16} - 48 q^{17} - 42 q^{19} + 24 q^{23} + 22 q^{25} + 96 q^{26} + 40 q^{28} - 24 q^{30}+ \cdots - 72 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/42Z)×\left(\mathbb{Z}/42\mathbb{Z}\right)^\times.

nn 2929 3131
χ(n)\chi(n) 11 1+β21 + \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i 1.50000 0.866025i −1.00000 1.73205i 7.24264 + 4.18154i 2.44949i −6.74264 + 1.88064i 2.82843 1.50000 2.59808i −10.2426 + 5.91359i
19.2 0.707107 1.22474i 1.50000 0.866025i −1.00000 1.73205i −1.24264 0.717439i 2.44949i 1.74264 + 6.77962i −2.82843 1.50000 2.59808i −1.75736 + 1.01461i
31.1 −0.707107 1.22474i 1.50000 + 0.866025i −1.00000 + 1.73205i 7.24264 4.18154i 2.44949i −6.74264 1.88064i 2.82843 1.50000 + 2.59808i −10.2426 5.91359i
31.2 0.707107 + 1.22474i 1.50000 + 0.866025i −1.00000 + 1.73205i −1.24264 + 0.717439i 2.44949i 1.74264 6.77962i −2.82843 1.50000 + 2.59808i −1.75736 1.01461i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.3.g.a 4
3.b odd 2 1 126.3.n.a 4
4.b odd 2 1 336.3.bh.e 4
5.b even 2 1 1050.3.p.a 4
5.c odd 4 2 1050.3.q.a 8
7.b odd 2 1 294.3.g.a 4
7.c even 3 1 294.3.c.a 4
7.c even 3 1 294.3.g.a 4
7.d odd 6 1 inner 42.3.g.a 4
7.d odd 6 1 294.3.c.a 4
12.b even 2 1 1008.3.cg.h 4
21.c even 2 1 882.3.n.e 4
21.g even 6 1 126.3.n.a 4
21.g even 6 1 882.3.c.b 4
21.h odd 6 1 882.3.c.b 4
21.h odd 6 1 882.3.n.e 4
28.f even 6 1 336.3.bh.e 4
28.f even 6 1 2352.3.f.e 4
28.g odd 6 1 2352.3.f.e 4
35.i odd 6 1 1050.3.p.a 4
35.k even 12 2 1050.3.q.a 8
84.j odd 6 1 1008.3.cg.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.3.g.a 4 1.a even 1 1 trivial
42.3.g.a 4 7.d odd 6 1 inner
126.3.n.a 4 3.b odd 2 1
126.3.n.a 4 21.g even 6 1
294.3.c.a 4 7.c even 3 1
294.3.c.a 4 7.d odd 6 1
294.3.g.a 4 7.b odd 2 1
294.3.g.a 4 7.c even 3 1
336.3.bh.e 4 4.b odd 2 1
336.3.bh.e 4 28.f even 6 1
882.3.c.b 4 21.g even 6 1
882.3.c.b 4 21.h odd 6 1
882.3.n.e 4 21.c even 2 1
882.3.n.e 4 21.h odd 6 1
1008.3.cg.h 4 12.b even 2 1
1008.3.cg.h 4 84.j odd 6 1
1050.3.p.a 4 5.b even 2 1
1050.3.p.a 4 35.i odd 6 1
1050.3.q.a 8 5.c odd 4 2
1050.3.q.a 8 35.k even 12 2
2352.3.f.e 4 28.f even 6 1
2352.3.f.e 4 28.g odd 6 1

Hecke kernels

This newform subspace is the entire newspace S3new(42,[χ])S_{3}^{\mathrm{new}}(42, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+2T2+4 T^{4} + 2T^{2} + 4 Copy content Toggle raw display
33 (T23T+3)2 (T^{2} - 3 T + 3)^{2} Copy content Toggle raw display
55 T412T3++144 T^{4} - 12 T^{3} + \cdots + 144 Copy content Toggle raw display
77 T4+10T3++2401 T^{4} + 10 T^{3} + \cdots + 2401 Copy content Toggle raw display
1111 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
1313 T4+774T2+145161 T^{4} + 774 T^{2} + 145161 Copy content Toggle raw display
1717 T4+48T3++28224 T^{4} + 48 T^{3} + \cdots + 28224 Copy content Toggle raw display
1919 T4+42T3++15129 T^{4} + 42 T^{3} + \cdots + 15129 Copy content Toggle raw display
2323 T424T3++254016 T^{4} - 24 T^{3} + \cdots + 254016 Copy content Toggle raw display
2929 (T21152)2 (T^{2} - 1152)^{2} Copy content Toggle raw display
3131 T4102T3++423801 T^{4} - 102 T^{3} + \cdots + 423801 Copy content Toggle raw display
3737 T422T3++27889 T^{4} - 22 T^{3} + \cdots + 27889 Copy content Toggle raw display
4141 T4+4248T2+3732624 T^{4} + 4248 T^{2} + 3732624 Copy content Toggle raw display
4343 (T214T23)2 (T^{2} - 14 T - 23)^{2} Copy content Toggle raw display
4747 T4+132T3++2039184 T^{4} + 132 T^{3} + \cdots + 2039184 Copy content Toggle raw display
5353 T4120T3++8714304 T^{4} - 120 T^{3} + \cdots + 8714304 Copy content Toggle raw display
5959 T4+24T3++1272384 T^{4} + 24 T^{3} + \cdots + 1272384 Copy content Toggle raw display
6161 T4+72T3++2304 T^{4} + 72 T^{3} + \cdots + 2304 Copy content Toggle raw display
6767 T4110T3++253009 T^{4} - 110 T^{3} + \cdots + 253009 Copy content Toggle raw display
7171 (T2156T+2556)2 (T^{2} - 156 T + 2556)^{2} Copy content Toggle raw display
7373 T4+66T3++85322169 T^{4} + 66 T^{3} + \cdots + 85322169 Copy content Toggle raw display
7979 T4+10T3++75463969 T^{4} + 10 T^{3} + \cdots + 75463969 Copy content Toggle raw display
8383 T4+17928T2+69956496 T^{4} + 17928 T^{2} + 69956496 Copy content Toggle raw display
8989 (T2+36T+432)2 (T^{2} + 36 T + 432)^{2} Copy content Toggle raw display
9797 T4+1056T2+112896 T^{4} + 1056 T^{2} + 112896 Copy content Toggle raw display
show more
show less