Properties

Label 42.3.g.a
Level $42$
Weight $3$
Character orbit 42.g
Analytic conductor $1.144$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,3,Mod(19,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 42.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14441711031\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{3} + 2 \beta_{2} q^{4} + (4 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 2) q^{5} + (\beta_{3} + 2 \beta_1) q^{6} + ( - 4 \beta_{3} - 5 \beta_{2} + \cdots - 5) q^{7}+ \cdots + (3 \beta_{2} + 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{3} + 2 \beta_{2} q^{4} + (4 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 2) q^{5} + (\beta_{3} + 2 \beta_1) q^{6} + ( - 4 \beta_{3} - 5 \beta_{2} + \cdots - 5) q^{7}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9} - 24 q^{10} - 12 q^{11} - 12 q^{12} + 24 q^{14} + 24 q^{15} - 8 q^{16} - 48 q^{17} - 42 q^{19} + 24 q^{23} + 22 q^{25} + 96 q^{26} + 40 q^{28} - 24 q^{30} + 102 q^{31} - 36 q^{33} - 108 q^{35} - 24 q^{36} + 22 q^{37} + 24 q^{38} + 6 q^{39} + 48 q^{40} + 24 q^{42} + 28 q^{43} - 24 q^{44} + 36 q^{45} - 72 q^{46} - 132 q^{47} - 2 q^{49} - 192 q^{50} - 48 q^{51} + 12 q^{52} + 120 q^{53} - 48 q^{56} - 84 q^{57} - 96 q^{58} - 24 q^{59} - 24 q^{60} - 72 q^{61} + 30 q^{63} + 32 q^{64} + 180 q^{65} + 110 q^{67} + 96 q^{68} + 96 q^{70} + 312 q^{71} - 66 q^{73} - 48 q^{74} + 66 q^{75} + 120 q^{77} + 192 q^{78} - 10 q^{79} - 48 q^{80} - 18 q^{81} + 48 q^{82} + 60 q^{84} - 288 q^{85} - 24 q^{86} - 72 q^{89} - 222 q^{91} - 96 q^{92} + 102 q^{93} - 24 q^{94} - 132 q^{95} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(1\) \(1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i 1.50000 0.866025i −1.00000 1.73205i 7.24264 + 4.18154i 2.44949i −6.74264 + 1.88064i 2.82843 1.50000 2.59808i −10.2426 + 5.91359i
19.2 0.707107 1.22474i 1.50000 0.866025i −1.00000 1.73205i −1.24264 0.717439i 2.44949i 1.74264 + 6.77962i −2.82843 1.50000 2.59808i −1.75736 + 1.01461i
31.1 −0.707107 1.22474i 1.50000 + 0.866025i −1.00000 + 1.73205i 7.24264 4.18154i 2.44949i −6.74264 1.88064i 2.82843 1.50000 + 2.59808i −10.2426 5.91359i
31.2 0.707107 + 1.22474i 1.50000 + 0.866025i −1.00000 + 1.73205i −1.24264 + 0.717439i 2.44949i 1.74264 6.77962i −2.82843 1.50000 + 2.59808i −1.75736 1.01461i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.3.g.a 4
3.b odd 2 1 126.3.n.a 4
4.b odd 2 1 336.3.bh.e 4
5.b even 2 1 1050.3.p.a 4
5.c odd 4 2 1050.3.q.a 8
7.b odd 2 1 294.3.g.a 4
7.c even 3 1 294.3.c.a 4
7.c even 3 1 294.3.g.a 4
7.d odd 6 1 inner 42.3.g.a 4
7.d odd 6 1 294.3.c.a 4
12.b even 2 1 1008.3.cg.h 4
21.c even 2 1 882.3.n.e 4
21.g even 6 1 126.3.n.a 4
21.g even 6 1 882.3.c.b 4
21.h odd 6 1 882.3.c.b 4
21.h odd 6 1 882.3.n.e 4
28.f even 6 1 336.3.bh.e 4
28.f even 6 1 2352.3.f.e 4
28.g odd 6 1 2352.3.f.e 4
35.i odd 6 1 1050.3.p.a 4
35.k even 12 2 1050.3.q.a 8
84.j odd 6 1 1008.3.cg.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.3.g.a 4 1.a even 1 1 trivial
42.3.g.a 4 7.d odd 6 1 inner
126.3.n.a 4 3.b odd 2 1
126.3.n.a 4 21.g even 6 1
294.3.c.a 4 7.c even 3 1
294.3.c.a 4 7.d odd 6 1
294.3.g.a 4 7.b odd 2 1
294.3.g.a 4 7.c even 3 1
336.3.bh.e 4 4.b odd 2 1
336.3.bh.e 4 28.f even 6 1
882.3.c.b 4 21.g even 6 1
882.3.c.b 4 21.h odd 6 1
882.3.n.e 4 21.c even 2 1
882.3.n.e 4 21.h odd 6 1
1008.3.cg.h 4 12.b even 2 1
1008.3.cg.h 4 84.j odd 6 1
1050.3.p.a 4 5.b even 2 1
1050.3.p.a 4 35.i odd 6 1
1050.3.q.a 8 5.c odd 4 2
1050.3.q.a 8 35.k even 12 2
2352.3.f.e 4 28.f even 6 1
2352.3.f.e 4 28.g odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(42, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 12 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$7$ \( T^{4} + 10 T^{3} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 774 T^{2} + 145161 \) Copy content Toggle raw display
$17$ \( T^{4} + 48 T^{3} + \cdots + 28224 \) Copy content Toggle raw display
$19$ \( T^{4} + 42 T^{3} + \cdots + 15129 \) Copy content Toggle raw display
$23$ \( T^{4} - 24 T^{3} + \cdots + 254016 \) Copy content Toggle raw display
$29$ \( (T^{2} - 1152)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 102 T^{3} + \cdots + 423801 \) Copy content Toggle raw display
$37$ \( T^{4} - 22 T^{3} + \cdots + 27889 \) Copy content Toggle raw display
$41$ \( T^{4} + 4248 T^{2} + 3732624 \) Copy content Toggle raw display
$43$ \( (T^{2} - 14 T - 23)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 132 T^{3} + \cdots + 2039184 \) Copy content Toggle raw display
$53$ \( T^{4} - 120 T^{3} + \cdots + 8714304 \) Copy content Toggle raw display
$59$ \( T^{4} + 24 T^{3} + \cdots + 1272384 \) Copy content Toggle raw display
$61$ \( T^{4} + 72 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$67$ \( T^{4} - 110 T^{3} + \cdots + 253009 \) Copy content Toggle raw display
$71$ \( (T^{2} - 156 T + 2556)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 66 T^{3} + \cdots + 85322169 \) Copy content Toggle raw display
$79$ \( T^{4} + 10 T^{3} + \cdots + 75463969 \) Copy content Toggle raw display
$83$ \( T^{4} + 17928 T^{2} + 69956496 \) Copy content Toggle raw display
$89$ \( (T^{2} + 36 T + 432)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 1056 T^{2} + 112896 \) Copy content Toggle raw display
show more
show less