Properties

Label 882.6.a.bh
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{9601}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{9601})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + ( - \beta + 27) q^{5} - 64 q^{8} + (4 \beta - 108) q^{10} + ( - 5 \beta - 93) q^{11} + ( - 11 \beta - 184) q^{13} + 256 q^{16} + ( - 20 \beta + 180) q^{17} + (39 \beta - 904) q^{19}+ \cdots + ( - 1981 \beta - 63721) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} + 53 q^{5} - 128 q^{8} - 212 q^{10} - 191 q^{11} - 379 q^{13} + 512 q^{16} + 340 q^{17} - 1769 q^{19} + 848 q^{20} + 764 q^{22} - 3236 q^{23} - 45 q^{25} + 1516 q^{26} - 4459 q^{29}+ \cdots - 129423 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
49.4923
−48.4923
−4.00000 0 16.0000 −22.4923 0 0 −64.0000 0 89.9694
1.2 −4.00000 0 16.0000 75.4923 0 0 −64.0000 0 −301.969
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bh 2
3.b odd 2 1 294.6.a.r 2
7.b odd 2 1 882.6.a.bb 2
7.c even 3 2 126.6.g.h 4
21.c even 2 1 294.6.a.w 2
21.g even 6 2 294.6.e.s 4
21.h odd 6 2 42.6.e.c 4
84.n even 6 2 336.6.q.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.e.c 4 21.h odd 6 2
126.6.g.h 4 7.c even 3 2
294.6.a.r 2 3.b odd 2 1
294.6.a.w 2 21.c even 2 1
294.6.e.s 4 21.g even 6 2
336.6.q.f 4 84.n even 6 2
882.6.a.bb 2 7.b odd 2 1
882.6.a.bh 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{2} - 53T_{5} - 1698 \) Copy content Toggle raw display
\( T_{11}^{2} + 191T_{11} - 50886 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 53T - 1698 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 191T - 50886 \) Copy content Toggle raw display
$13$ \( T^{2} + 379T - 254520 \) Copy content Toggle raw display
$17$ \( T^{2} - 340T - 931200 \) Copy content Toggle raw display
$19$ \( T^{2} + 1769 T - 2868440 \) Copy content Toggle raw display
$23$ \( T^{2} + 3236 T + 2579520 \) Copy content Toggle raw display
$29$ \( T^{2} + 4459 T - 3960660 \) Copy content Toggle raw display
$31$ \( T^{2} - 1994 T - 63563115 \) Copy content Toggle raw display
$37$ \( T^{2} - 20587 T + 99713092 \) Copy content Toggle raw display
$41$ \( T^{2} + 8814 T + 8966160 \) Copy content Toggle raw display
$43$ \( T^{2} - 15853 T + 44661910 \) Copy content Toggle raw display
$47$ \( T^{2} + 33912 T + 229093452 \) Copy content Toggle raw display
$53$ \( T^{2} + 49239 T + 484607124 \) Copy content Toggle raw display
$59$ \( T^{2} - 56735 T + 800680236 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1136874660 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1160899190 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 4289674884 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1835129806 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 2156463813 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 7511023590 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 7687683936 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 5231869258 \) Copy content Toggle raw display
show more
show less