Properties

Label 882.6.a.bh
Level 882882
Weight 66
Character orbit 882.a
Self dual yes
Analytic conductor 141.459141.459
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 141.458529075141.458529075
Analytic rank: 00
Dimension: 22
Coefficient field: Q(9601)\Q(\sqrt{9601})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x2400 x^{2} - x - 2400 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+9601)\beta = \frac{1}{2}(1 + \sqrt{9601}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q4q2+16q4+(β+27)q564q8+(4β108)q10+(5β93)q11+(11β184)q13+256q16+(20β+180)q17+(39β904)q19++(1981β63721)q97+O(q100) q - 4 q^{2} + 16 q^{4} + ( - \beta + 27) q^{5} - 64 q^{8} + (4 \beta - 108) q^{10} + ( - 5 \beta - 93) q^{11} + ( - 11 \beta - 184) q^{13} + 256 q^{16} + ( - 20 \beta + 180) q^{17} + (39 \beta - 904) q^{19}+ \cdots + ( - 1981 \beta - 63721) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q2+32q4+53q5128q8212q10191q11379q13+512q16+340q171769q19+848q20+764q223236q2345q25+1516q264459q29+129423q97+O(q100) 2 q - 8 q^{2} + 32 q^{4} + 53 q^{5} - 128 q^{8} - 212 q^{10} - 191 q^{11} - 379 q^{13} + 512 q^{16} + 340 q^{17} - 1769 q^{19} + 848 q^{20} + 764 q^{22} - 3236 q^{23} - 45 q^{25} + 1516 q^{26} - 4459 q^{29}+ \cdots - 129423 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
49.4923
−48.4923
−4.00000 0 16.0000 −22.4923 0 0 −64.0000 0 89.9694
1.2 −4.00000 0 16.0000 75.4923 0 0 −64.0000 0 −301.969
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bh 2
3.b odd 2 1 294.6.a.r 2
7.b odd 2 1 882.6.a.bb 2
7.c even 3 2 126.6.g.h 4
21.c even 2 1 294.6.a.w 2
21.g even 6 2 294.6.e.s 4
21.h odd 6 2 42.6.e.c 4
84.n even 6 2 336.6.q.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.e.c 4 21.h odd 6 2
126.6.g.h 4 7.c even 3 2
294.6.a.r 2 3.b odd 2 1
294.6.a.w 2 21.c even 2 1
294.6.e.s 4 21.g even 6 2
336.6.q.f 4 84.n even 6 2
882.6.a.bb 2 7.b odd 2 1
882.6.a.bh 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(882))S_{6}^{\mathrm{new}}(\Gamma_0(882)):

T5253T51698 T_{5}^{2} - 53T_{5} - 1698 Copy content Toggle raw display
T112+191T1150886 T_{11}^{2} + 191T_{11} - 50886 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T253T1698 T^{2} - 53T - 1698 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+191T50886 T^{2} + 191T - 50886 Copy content Toggle raw display
1313 T2+379T254520 T^{2} + 379T - 254520 Copy content Toggle raw display
1717 T2340T931200 T^{2} - 340T - 931200 Copy content Toggle raw display
1919 T2+1769T2868440 T^{2} + 1769 T - 2868440 Copy content Toggle raw display
2323 T2+3236T+2579520 T^{2} + 3236 T + 2579520 Copy content Toggle raw display
2929 T2+4459T3960660 T^{2} + 4459 T - 3960660 Copy content Toggle raw display
3131 T21994T63563115 T^{2} - 1994 T - 63563115 Copy content Toggle raw display
3737 T220587T+99713092 T^{2} - 20587 T + 99713092 Copy content Toggle raw display
4141 T2+8814T+8966160 T^{2} + 8814 T + 8966160 Copy content Toggle raw display
4343 T215853T+44661910 T^{2} - 15853 T + 44661910 Copy content Toggle raw display
4747 T2+33912T+229093452 T^{2} + 33912 T + 229093452 Copy content Toggle raw display
5353 T2+49239T+484607124 T^{2} + 49239 T + 484607124 Copy content Toggle raw display
5959 T256735T+800680236 T^{2} - 56735 T + 800680236 Copy content Toggle raw display
6161 T2++1136874660 T^{2} + \cdots + 1136874660 Copy content Toggle raw display
6767 T2++1160899190 T^{2} + \cdots + 1160899190 Copy content Toggle raw display
7171 T2+4289674884 T^{2} + \cdots - 4289674884 Copy content Toggle raw display
7373 T2+1835129806 T^{2} + \cdots - 1835129806 Copy content Toggle raw display
7979 T2+2156463813 T^{2} + \cdots - 2156463813 Copy content Toggle raw display
8383 T2+7511023590 T^{2} + \cdots - 7511023590 Copy content Toggle raw display
8989 T2++7687683936 T^{2} + \cdots + 7687683936 Copy content Toggle raw display
9797 T2+5231869258 T^{2} + \cdots - 5231869258 Copy content Toggle raw display
show more
show less