Properties

Label 882.6.a.bm.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{505}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 126 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(11.7361\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} -87.1527 q^{5} +64.0000 q^{8} -348.611 q^{10} +478.069 q^{11} -436.153 q^{13} +256.000 q^{16} -2259.05 q^{17} +2664.12 q^{19} -1394.44 q^{20} +1912.28 q^{22} +2568.61 q^{23} +4470.60 q^{25} -1744.61 q^{26} +708.010 q^{29} +5509.14 q^{31} +1024.00 q^{32} -9036.22 q^{34} -915.630 q^{37} +10656.5 q^{38} -5577.77 q^{40} -8866.08 q^{41} -7915.62 q^{43} +7649.10 q^{44} +10274.4 q^{46} -19572.5 q^{47} +17882.4 q^{50} -6978.44 q^{52} -8247.87 q^{53} -41665.0 q^{55} +2832.04 q^{58} +32190.6 q^{59} +28420.1 q^{61} +22036.6 q^{62} +4096.00 q^{64} +38011.9 q^{65} -9682.41 q^{67} -36144.9 q^{68} -28568.4 q^{71} -3112.88 q^{73} -3662.52 q^{74} +42626.0 q^{76} -6790.07 q^{79} -22311.1 q^{80} -35464.3 q^{82} -14482.3 q^{83} +196883. q^{85} -31662.5 q^{86} +30596.4 q^{88} -27464.6 q^{89} +41097.8 q^{92} -78290.0 q^{94} -232186. q^{95} -91212.8 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} - 17 q^{5} + 128 q^{8} - 68 q^{10} - 145 q^{11} - 715 q^{13} + 512 q^{16} - 1372 q^{17} + 1081 q^{19} - 272 q^{20} - 580 q^{22} + 4508 q^{23} + 6267 q^{25} - 2860 q^{26} - 7865 q^{29}+ \cdots - 46671 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −87.1527 −1.55904 −0.779518 0.626380i \(-0.784536\pi\)
−0.779518 + 0.626380i \(0.784536\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −348.611 −1.10240
\(11\) 478.069 1.19127 0.595633 0.803257i \(-0.296901\pi\)
0.595633 + 0.803257i \(0.296901\pi\)
\(12\) 0 0
\(13\) −436.153 −0.715781 −0.357891 0.933764i \(-0.616504\pi\)
−0.357891 + 0.933764i \(0.616504\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −2259.05 −1.89585 −0.947926 0.318491i \(-0.896824\pi\)
−0.947926 + 0.318491i \(0.896824\pi\)
\(18\) 0 0
\(19\) 2664.12 1.69305 0.846526 0.532347i \(-0.178690\pi\)
0.846526 + 0.532347i \(0.178690\pi\)
\(20\) −1394.44 −0.779518
\(21\) 0 0
\(22\) 1912.28 0.842353
\(23\) 2568.61 1.01246 0.506231 0.862398i \(-0.331038\pi\)
0.506231 + 0.862398i \(0.331038\pi\)
\(24\) 0 0
\(25\) 4470.60 1.43059
\(26\) −1744.61 −0.506134
\(27\) 0 0
\(28\) 0 0
\(29\) 708.010 0.156331 0.0781654 0.996940i \(-0.475094\pi\)
0.0781654 + 0.996940i \(0.475094\pi\)
\(30\) 0 0
\(31\) 5509.14 1.02963 0.514813 0.857303i \(-0.327861\pi\)
0.514813 + 0.857303i \(0.327861\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −9036.22 −1.34057
\(35\) 0 0
\(36\) 0 0
\(37\) −915.630 −0.109955 −0.0549776 0.998488i \(-0.517509\pi\)
−0.0549776 + 0.998488i \(0.517509\pi\)
\(38\) 10656.5 1.19717
\(39\) 0 0
\(40\) −5577.77 −0.551202
\(41\) −8866.08 −0.823706 −0.411853 0.911250i \(-0.635118\pi\)
−0.411853 + 0.911250i \(0.635118\pi\)
\(42\) 0 0
\(43\) −7915.62 −0.652851 −0.326425 0.945223i \(-0.605844\pi\)
−0.326425 + 0.945223i \(0.605844\pi\)
\(44\) 7649.10 0.595633
\(45\) 0 0
\(46\) 10274.4 0.715919
\(47\) −19572.5 −1.29241 −0.646207 0.763162i \(-0.723646\pi\)
−0.646207 + 0.763162i \(0.723646\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 17882.4 1.01158
\(51\) 0 0
\(52\) −6978.44 −0.357891
\(53\) −8247.87 −0.403322 −0.201661 0.979455i \(-0.564634\pi\)
−0.201661 + 0.979455i \(0.564634\pi\)
\(54\) 0 0
\(55\) −41665.0 −1.85723
\(56\) 0 0
\(57\) 0 0
\(58\) 2832.04 0.110543
\(59\) 32190.6 1.20392 0.601961 0.798525i \(-0.294386\pi\)
0.601961 + 0.798525i \(0.294386\pi\)
\(60\) 0 0
\(61\) 28420.1 0.977913 0.488957 0.872308i \(-0.337378\pi\)
0.488957 + 0.872308i \(0.337378\pi\)
\(62\) 22036.6 0.728055
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 38011.9 1.11593
\(66\) 0 0
\(67\) −9682.41 −0.263510 −0.131755 0.991282i \(-0.542061\pi\)
−0.131755 + 0.991282i \(0.542061\pi\)
\(68\) −36144.9 −0.947926
\(69\) 0 0
\(70\) 0 0
\(71\) −28568.4 −0.672574 −0.336287 0.941760i \(-0.609171\pi\)
−0.336287 + 0.941760i \(0.609171\pi\)
\(72\) 0 0
\(73\) −3112.88 −0.0683683 −0.0341842 0.999416i \(-0.510883\pi\)
−0.0341842 + 0.999416i \(0.510883\pi\)
\(74\) −3662.52 −0.0777500
\(75\) 0 0
\(76\) 42626.0 0.846526
\(77\) 0 0
\(78\) 0 0
\(79\) −6790.07 −0.122407 −0.0612035 0.998125i \(-0.519494\pi\)
−0.0612035 + 0.998125i \(0.519494\pi\)
\(80\) −22311.1 −0.389759
\(81\) 0 0
\(82\) −35464.3 −0.582448
\(83\) −14482.3 −0.230750 −0.115375 0.993322i \(-0.536807\pi\)
−0.115375 + 0.993322i \(0.536807\pi\)
\(84\) 0 0
\(85\) 196883. 2.95570
\(86\) −31662.5 −0.461635
\(87\) 0 0
\(88\) 30596.4 0.421176
\(89\) −27464.6 −0.367534 −0.183767 0.982970i \(-0.558829\pi\)
−0.183767 + 0.982970i \(0.558829\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 41097.8 0.506231
\(93\) 0 0
\(94\) −78290.0 −0.913875
\(95\) −232186. −2.63953
\(96\) 0 0
\(97\) −91212.8 −0.984298 −0.492149 0.870511i \(-0.663788\pi\)
−0.492149 + 0.870511i \(0.663788\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 71529.5 0.715295
\(101\) −107712. −1.05066 −0.525329 0.850899i \(-0.676058\pi\)
−0.525329 + 0.850899i \(0.676058\pi\)
\(102\) 0 0
\(103\) −50001.3 −0.464396 −0.232198 0.972669i \(-0.574592\pi\)
−0.232198 + 0.972669i \(0.574592\pi\)
\(104\) −27913.8 −0.253067
\(105\) 0 0
\(106\) −32991.5 −0.285192
\(107\) −172686. −1.45813 −0.729066 0.684443i \(-0.760046\pi\)
−0.729066 + 0.684443i \(0.760046\pi\)
\(108\) 0 0
\(109\) 149700. 1.20686 0.603429 0.797417i \(-0.293801\pi\)
0.603429 + 0.797417i \(0.293801\pi\)
\(110\) −166660. −1.31326
\(111\) 0 0
\(112\) 0 0
\(113\) −143442. −1.05677 −0.528384 0.849005i \(-0.677202\pi\)
−0.528384 + 0.849005i \(0.677202\pi\)
\(114\) 0 0
\(115\) −223861. −1.57846
\(116\) 11328.2 0.0781654
\(117\) 0 0
\(118\) 128762. 0.851302
\(119\) 0 0
\(120\) 0 0
\(121\) 67499.0 0.419116
\(122\) 113680. 0.691489
\(123\) 0 0
\(124\) 88146.2 0.514813
\(125\) −117272. −0.671306
\(126\) 0 0
\(127\) −337908. −1.85904 −0.929520 0.368771i \(-0.879779\pi\)
−0.929520 + 0.368771i \(0.879779\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) 152048. 0.789080
\(131\) 18676.4 0.0950855 0.0475428 0.998869i \(-0.484861\pi\)
0.0475428 + 0.998869i \(0.484861\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −38729.6 −0.186329
\(135\) 0 0
\(136\) −144579. −0.670285
\(137\) −102639. −0.467208 −0.233604 0.972332i \(-0.575052\pi\)
−0.233604 + 0.972332i \(0.575052\pi\)
\(138\) 0 0
\(139\) −202436. −0.888692 −0.444346 0.895855i \(-0.646564\pi\)
−0.444346 + 0.895855i \(0.646564\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −114274. −0.475582
\(143\) −208511. −0.852686
\(144\) 0 0
\(145\) −61705.0 −0.243725
\(146\) −12451.5 −0.0483437
\(147\) 0 0
\(148\) −14650.1 −0.0549776
\(149\) 93617.7 0.345456 0.172728 0.984970i \(-0.444742\pi\)
0.172728 + 0.984970i \(0.444742\pi\)
\(150\) 0 0
\(151\) −189178. −0.675194 −0.337597 0.941291i \(-0.609614\pi\)
−0.337597 + 0.941291i \(0.609614\pi\)
\(152\) 170504. 0.598584
\(153\) 0 0
\(154\) 0 0
\(155\) −480136. −1.60522
\(156\) 0 0
\(157\) 526526. 1.70479 0.852395 0.522898i \(-0.175149\pi\)
0.852395 + 0.522898i \(0.175149\pi\)
\(158\) −27160.3 −0.0865549
\(159\) 0 0
\(160\) −89244.4 −0.275601
\(161\) 0 0
\(162\) 0 0
\(163\) 195092. 0.575137 0.287569 0.957760i \(-0.407153\pi\)
0.287569 + 0.957760i \(0.407153\pi\)
\(164\) −141857. −0.411853
\(165\) 0 0
\(166\) −57929.1 −0.163165
\(167\) −240814. −0.668175 −0.334087 0.942542i \(-0.608428\pi\)
−0.334087 + 0.942542i \(0.608428\pi\)
\(168\) 0 0
\(169\) −181064. −0.487657
\(170\) 787531. 2.09000
\(171\) 0 0
\(172\) −126650. −0.326425
\(173\) −537269. −1.36482 −0.682412 0.730967i \(-0.739069\pi\)
−0.682412 + 0.730967i \(0.739069\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 122386. 0.297817
\(177\) 0 0
\(178\) −109858. −0.259886
\(179\) 185893. 0.433642 0.216821 0.976211i \(-0.430431\pi\)
0.216821 + 0.976211i \(0.430431\pi\)
\(180\) 0 0
\(181\) 1575.22 0.00357392 0.00178696 0.999998i \(-0.499431\pi\)
0.00178696 + 0.999998i \(0.499431\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 164391. 0.357959
\(185\) 79799.6 0.171424
\(186\) 0 0
\(187\) −1.07998e6 −2.25846
\(188\) −313160. −0.646207
\(189\) 0 0
\(190\) −928742. −1.86643
\(191\) −197325. −0.391379 −0.195690 0.980666i \(-0.562695\pi\)
−0.195690 + 0.980666i \(0.562695\pi\)
\(192\) 0 0
\(193\) −457717. −0.884513 −0.442256 0.896889i \(-0.645822\pi\)
−0.442256 + 0.896889i \(0.645822\pi\)
\(194\) −364851. −0.696004
\(195\) 0 0
\(196\) 0 0
\(197\) 280464. 0.514887 0.257443 0.966293i \(-0.417120\pi\)
0.257443 + 0.966293i \(0.417120\pi\)
\(198\) 0 0
\(199\) 121027. 0.216646 0.108323 0.994116i \(-0.465452\pi\)
0.108323 + 0.994116i \(0.465452\pi\)
\(200\) 286118. 0.505790
\(201\) 0 0
\(202\) −430849. −0.742928
\(203\) 0 0
\(204\) 0 0
\(205\) 772703. 1.28419
\(206\) −200005. −0.328378
\(207\) 0 0
\(208\) −111655. −0.178945
\(209\) 1.27363e6 2.01688
\(210\) 0 0
\(211\) −270026. −0.417541 −0.208770 0.977965i \(-0.566946\pi\)
−0.208770 + 0.977965i \(0.566946\pi\)
\(212\) −131966. −0.201661
\(213\) 0 0
\(214\) −690743. −1.03106
\(215\) 689868. 1.01782
\(216\) 0 0
\(217\) 0 0
\(218\) 598801. 0.853377
\(219\) 0 0
\(220\) −666640. −0.928613
\(221\) 985293. 1.35701
\(222\) 0 0
\(223\) 83646.2 0.112638 0.0563189 0.998413i \(-0.482064\pi\)
0.0563189 + 0.998413i \(0.482064\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −573767. −0.747248
\(227\) −104452. −0.134540 −0.0672700 0.997735i \(-0.521429\pi\)
−0.0672700 + 0.997735i \(0.521429\pi\)
\(228\) 0 0
\(229\) −1.56292e6 −1.96946 −0.984732 0.174078i \(-0.944306\pi\)
−0.984732 + 0.174078i \(0.944306\pi\)
\(230\) −895446. −1.11614
\(231\) 0 0
\(232\) 45312.7 0.0552713
\(233\) 898082. 1.08374 0.541871 0.840462i \(-0.317716\pi\)
0.541871 + 0.840462i \(0.317716\pi\)
\(234\) 0 0
\(235\) 1.70580e6 2.01492
\(236\) 515049. 0.601961
\(237\) 0 0
\(238\) 0 0
\(239\) 884007. 1.00106 0.500531 0.865719i \(-0.333138\pi\)
0.500531 + 0.865719i \(0.333138\pi\)
\(240\) 0 0
\(241\) −460426. −0.510643 −0.255322 0.966856i \(-0.582181\pi\)
−0.255322 + 0.966856i \(0.582181\pi\)
\(242\) 269996. 0.296360
\(243\) 0 0
\(244\) 454721. 0.488957
\(245\) 0 0
\(246\) 0 0
\(247\) −1.16196e6 −1.21185
\(248\) 352585. 0.364028
\(249\) 0 0
\(250\) −469089. −0.474685
\(251\) −1.89967e6 −1.90324 −0.951621 0.307276i \(-0.900583\pi\)
−0.951621 + 0.307276i \(0.900583\pi\)
\(252\) 0 0
\(253\) 1.22797e6 1.20611
\(254\) −1.35163e6 −1.31454
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −750477. −0.708769 −0.354384 0.935100i \(-0.615310\pi\)
−0.354384 + 0.935100i \(0.615310\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 608190. 0.557964
\(261\) 0 0
\(262\) 74705.5 0.0672356
\(263\) 1.40293e6 1.25068 0.625340 0.780353i \(-0.284960\pi\)
0.625340 + 0.780353i \(0.284960\pi\)
\(264\) 0 0
\(265\) 718824. 0.628794
\(266\) 0 0
\(267\) 0 0
\(268\) −154919. −0.131755
\(269\) −813515. −0.685465 −0.342732 0.939433i \(-0.611352\pi\)
−0.342732 + 0.939433i \(0.611352\pi\)
\(270\) 0 0
\(271\) −153342. −0.126835 −0.0634174 0.997987i \(-0.520200\pi\)
−0.0634174 + 0.997987i \(0.520200\pi\)
\(272\) −578318. −0.473963
\(273\) 0 0
\(274\) −410555. −0.330366
\(275\) 2.13725e6 1.70421
\(276\) 0 0
\(277\) −483914. −0.378939 −0.189469 0.981887i \(-0.560677\pi\)
−0.189469 + 0.981887i \(0.560677\pi\)
\(278\) −809745. −0.628400
\(279\) 0 0
\(280\) 0 0
\(281\) −845997. −0.639151 −0.319575 0.947561i \(-0.603540\pi\)
−0.319575 + 0.947561i \(0.603540\pi\)
\(282\) 0 0
\(283\) −1.51529e6 −1.12468 −0.562340 0.826906i \(-0.690099\pi\)
−0.562340 + 0.826906i \(0.690099\pi\)
\(284\) −457094. −0.336287
\(285\) 0 0
\(286\) −834044. −0.602940
\(287\) 0 0
\(288\) 0 0
\(289\) 3.68347e6 2.59425
\(290\) −246820. −0.172340
\(291\) 0 0
\(292\) −49806.0 −0.0341842
\(293\) 2.17685e6 1.48135 0.740676 0.671862i \(-0.234505\pi\)
0.740676 + 0.671862i \(0.234505\pi\)
\(294\) 0 0
\(295\) −2.80550e6 −1.87696
\(296\) −58600.3 −0.0388750
\(297\) 0 0
\(298\) 374471. 0.244274
\(299\) −1.12031e6 −0.724701
\(300\) 0 0
\(301\) 0 0
\(302\) −756712. −0.477434
\(303\) 0 0
\(304\) 682016. 0.423263
\(305\) −2.47688e6 −1.52460
\(306\) 0 0
\(307\) 2.52205e6 1.52724 0.763621 0.645665i \(-0.223420\pi\)
0.763621 + 0.645665i \(0.223420\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.92055e6 −1.13506
\(311\) −303748. −0.178079 −0.0890394 0.996028i \(-0.528380\pi\)
−0.0890394 + 0.996028i \(0.528380\pi\)
\(312\) 0 0
\(313\) −1.72483e6 −0.995142 −0.497571 0.867423i \(-0.665775\pi\)
−0.497571 + 0.867423i \(0.665775\pi\)
\(314\) 2.10611e6 1.20547
\(315\) 0 0
\(316\) −108641. −0.0612035
\(317\) −3.44337e6 −1.92458 −0.962289 0.272030i \(-0.912305\pi\)
−0.962289 + 0.272030i \(0.912305\pi\)
\(318\) 0 0
\(319\) 338478. 0.186232
\(320\) −356978. −0.194879
\(321\) 0 0
\(322\) 0 0
\(323\) −6.01840e6 −3.20978
\(324\) 0 0
\(325\) −1.94986e6 −1.02399
\(326\) 780370. 0.406683
\(327\) 0 0
\(328\) −567429. −0.291224
\(329\) 0 0
\(330\) 0 0
\(331\) 1.36359e6 0.684090 0.342045 0.939684i \(-0.388881\pi\)
0.342045 + 0.939684i \(0.388881\pi\)
\(332\) −231716. −0.115375
\(333\) 0 0
\(334\) −963255. −0.472471
\(335\) 843848. 0.410821
\(336\) 0 0
\(337\) −3.63708e6 −1.74453 −0.872265 0.489034i \(-0.837349\pi\)
−0.872265 + 0.489034i \(0.837349\pi\)
\(338\) −724255. −0.344826
\(339\) 0 0
\(340\) 3.15012e6 1.47785
\(341\) 2.63375e6 1.22656
\(342\) 0 0
\(343\) 0 0
\(344\) −506600. −0.230818
\(345\) 0 0
\(346\) −2.14908e6 −0.965077
\(347\) 1.76415e6 0.786523 0.393262 0.919427i \(-0.371347\pi\)
0.393262 + 0.919427i \(0.371347\pi\)
\(348\) 0 0
\(349\) −3.15882e6 −1.38823 −0.694114 0.719865i \(-0.744204\pi\)
−0.694114 + 0.719865i \(0.744204\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 489543. 0.210588
\(353\) 1.77170e6 0.756754 0.378377 0.925652i \(-0.376482\pi\)
0.378377 + 0.925652i \(0.376482\pi\)
\(354\) 0 0
\(355\) 2.48981e6 1.04857
\(356\) −439433. −0.183767
\(357\) 0 0
\(358\) 743573. 0.306631
\(359\) 1.48525e6 0.608226 0.304113 0.952636i \(-0.401640\pi\)
0.304113 + 0.952636i \(0.401640\pi\)
\(360\) 0 0
\(361\) 4.62145e6 1.86643
\(362\) 6300.87 0.00252714
\(363\) 0 0
\(364\) 0 0
\(365\) 271296. 0.106589
\(366\) 0 0
\(367\) 530304. 0.205523 0.102761 0.994706i \(-0.467232\pi\)
0.102761 + 0.994706i \(0.467232\pi\)
\(368\) 657564. 0.253115
\(369\) 0 0
\(370\) 319199. 0.121215
\(371\) 0 0
\(372\) 0 0
\(373\) −3.44714e6 −1.28288 −0.641442 0.767172i \(-0.721663\pi\)
−0.641442 + 0.767172i \(0.721663\pi\)
\(374\) −4.31994e6 −1.59698
\(375\) 0 0
\(376\) −1.25264e6 −0.456937
\(377\) −308801. −0.111899
\(378\) 0 0
\(379\) −1.59447e6 −0.570189 −0.285094 0.958499i \(-0.592025\pi\)
−0.285094 + 0.958499i \(0.592025\pi\)
\(380\) −3.71497e6 −1.31976
\(381\) 0 0
\(382\) −789298. −0.276747
\(383\) 2.18196e6 0.760064 0.380032 0.924973i \(-0.375913\pi\)
0.380032 + 0.924973i \(0.375913\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.83087e6 −0.625445
\(387\) 0 0
\(388\) −1.45940e6 −0.492149
\(389\) −2.11491e6 −0.708628 −0.354314 0.935127i \(-0.615286\pi\)
−0.354314 + 0.935127i \(0.615286\pi\)
\(390\) 0 0
\(391\) −5.80263e6 −1.91948
\(392\) 0 0
\(393\) 0 0
\(394\) 1.12186e6 0.364080
\(395\) 591773. 0.190837
\(396\) 0 0
\(397\) −491562. −0.156532 −0.0782658 0.996933i \(-0.524938\pi\)
−0.0782658 + 0.996933i \(0.524938\pi\)
\(398\) 484109. 0.153192
\(399\) 0 0
\(400\) 1.14447e6 0.357648
\(401\) 2.72121e6 0.845085 0.422542 0.906343i \(-0.361138\pi\)
0.422542 + 0.906343i \(0.361138\pi\)
\(402\) 0 0
\(403\) −2.40283e6 −0.736987
\(404\) −1.72340e6 −0.525329
\(405\) 0 0
\(406\) 0 0
\(407\) −437734. −0.130986
\(408\) 0 0
\(409\) 3.19908e6 0.945620 0.472810 0.881164i \(-0.343240\pi\)
0.472810 + 0.881164i \(0.343240\pi\)
\(410\) 3.09081e6 0.908057
\(411\) 0 0
\(412\) −800021. −0.232198
\(413\) 0 0
\(414\) 0 0
\(415\) 1.26217e6 0.359747
\(416\) −446620. −0.126533
\(417\) 0 0
\(418\) 5.09454e6 1.42615
\(419\) 4.89012e6 1.36077 0.680385 0.732855i \(-0.261812\pi\)
0.680385 + 0.732855i \(0.261812\pi\)
\(420\) 0 0
\(421\) 4.98359e6 1.37037 0.685184 0.728370i \(-0.259722\pi\)
0.685184 + 0.728370i \(0.259722\pi\)
\(422\) −1.08010e6 −0.295246
\(423\) 0 0
\(424\) −527864. −0.142596
\(425\) −1.00993e7 −2.71219
\(426\) 0 0
\(427\) 0 0
\(428\) −2.76297e6 −0.729066
\(429\) 0 0
\(430\) 2.75947e6 0.719705
\(431\) −1.74879e6 −0.453466 −0.226733 0.973957i \(-0.572804\pi\)
−0.226733 + 0.973957i \(0.572804\pi\)
\(432\) 0 0
\(433\) 5.36175e6 1.37432 0.687159 0.726507i \(-0.258858\pi\)
0.687159 + 0.726507i \(0.258858\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.39520e6 0.603429
\(437\) 6.84310e6 1.71415
\(438\) 0 0
\(439\) 6.17448e6 1.52911 0.764555 0.644558i \(-0.222959\pi\)
0.764555 + 0.644558i \(0.222959\pi\)
\(440\) −2.66656e6 −0.656629
\(441\) 0 0
\(442\) 3.94117e6 0.959554
\(443\) 3.58277e6 0.867380 0.433690 0.901062i \(-0.357211\pi\)
0.433690 + 0.901062i \(0.357211\pi\)
\(444\) 0 0
\(445\) 2.39361e6 0.572999
\(446\) 334585. 0.0796469
\(447\) 0 0
\(448\) 0 0
\(449\) 4.93126e6 1.15436 0.577182 0.816616i \(-0.304152\pi\)
0.577182 + 0.816616i \(0.304152\pi\)
\(450\) 0 0
\(451\) −4.23860e6 −0.981253
\(452\) −2.29507e6 −0.528384
\(453\) 0 0
\(454\) −417807. −0.0951341
\(455\) 0 0
\(456\) 0 0
\(457\) −4.27229e6 −0.956908 −0.478454 0.878113i \(-0.658803\pi\)
−0.478454 + 0.878113i \(0.658803\pi\)
\(458\) −6.25168e6 −1.39262
\(459\) 0 0
\(460\) −3.58178e6 −0.789232
\(461\) 4.13355e6 0.905882 0.452941 0.891541i \(-0.350375\pi\)
0.452941 + 0.891541i \(0.350375\pi\)
\(462\) 0 0
\(463\) −7.66515e6 −1.66176 −0.830880 0.556452i \(-0.812162\pi\)
−0.830880 + 0.556452i \(0.812162\pi\)
\(464\) 181251. 0.0390827
\(465\) 0 0
\(466\) 3.59233e6 0.766321
\(467\) 624673. 0.132544 0.0662720 0.997802i \(-0.478889\pi\)
0.0662720 + 0.997802i \(0.478889\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.82319e6 1.42476
\(471\) 0 0
\(472\) 2.06020e6 0.425651
\(473\) −3.78421e6 −0.777719
\(474\) 0 0
\(475\) 1.19102e7 2.42206
\(476\) 0 0
\(477\) 0 0
\(478\) 3.53603e6 0.707858
\(479\) 7.30068e6 1.45387 0.726933 0.686708i \(-0.240945\pi\)
0.726933 + 0.686708i \(0.240945\pi\)
\(480\) 0 0
\(481\) 399354. 0.0787038
\(482\) −1.84171e6 −0.361079
\(483\) 0 0
\(484\) 1.07998e6 0.209558
\(485\) 7.94944e6 1.53455
\(486\) 0 0
\(487\) −8.45722e6 −1.61587 −0.807933 0.589274i \(-0.799414\pi\)
−0.807933 + 0.589274i \(0.799414\pi\)
\(488\) 1.81888e6 0.345744
\(489\) 0 0
\(490\) 0 0
\(491\) 2.09490e6 0.392156 0.196078 0.980588i \(-0.437179\pi\)
0.196078 + 0.980588i \(0.437179\pi\)
\(492\) 0 0
\(493\) −1.59943e6 −0.296380
\(494\) −4.64786e6 −0.856911
\(495\) 0 0
\(496\) 1.41034e6 0.257406
\(497\) 0 0
\(498\) 0 0
\(499\) −5.92467e6 −1.06515 −0.532577 0.846381i \(-0.678776\pi\)
−0.532577 + 0.846381i \(0.678776\pi\)
\(500\) −1.87636e6 −0.335653
\(501\) 0 0
\(502\) −7.59868e6 −1.34579
\(503\) −4.80370e6 −0.846557 −0.423278 0.906000i \(-0.639121\pi\)
−0.423278 + 0.906000i \(0.639121\pi\)
\(504\) 0 0
\(505\) 9.38741e6 1.63801
\(506\) 4.91189e6 0.852850
\(507\) 0 0
\(508\) −5.40652e6 −0.929520
\(509\) 5.20283e6 0.890112 0.445056 0.895503i \(-0.353184\pi\)
0.445056 + 0.895503i \(0.353184\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −3.00191e6 −0.501175
\(515\) 4.35775e6 0.724010
\(516\) 0 0
\(517\) −9.35701e6 −1.53961
\(518\) 0 0
\(519\) 0 0
\(520\) 2.43276e6 0.394540
\(521\) 6.81153e6 1.09939 0.549693 0.835367i \(-0.314745\pi\)
0.549693 + 0.835367i \(0.314745\pi\)
\(522\) 0 0
\(523\) −1.07231e7 −1.71421 −0.857106 0.515139i \(-0.827740\pi\)
−0.857106 + 0.515139i \(0.827740\pi\)
\(524\) 298822. 0.0475428
\(525\) 0 0
\(526\) 5.61171e6 0.884364
\(527\) −1.24454e7 −1.95202
\(528\) 0 0
\(529\) 161419. 0.0250793
\(530\) 2.87530e6 0.444624
\(531\) 0 0
\(532\) 0 0
\(533\) 3.86696e6 0.589593
\(534\) 0 0
\(535\) 1.50500e7 2.27328
\(536\) −619674. −0.0931647
\(537\) 0 0
\(538\) −3.25406e6 −0.484697
\(539\) 0 0
\(540\) 0 0
\(541\) 1.27890e7 1.87864 0.939320 0.343043i \(-0.111458\pi\)
0.939320 + 0.343043i \(0.111458\pi\)
\(542\) −613368. −0.0896857
\(543\) 0 0
\(544\) −2.31327e6 −0.335142
\(545\) −1.30468e7 −1.88153
\(546\) 0 0
\(547\) −1.14426e7 −1.63514 −0.817570 0.575829i \(-0.804679\pi\)
−0.817570 + 0.575829i \(0.804679\pi\)
\(548\) −1.64222e6 −0.233604
\(549\) 0 0
\(550\) 8.54901e6 1.20506
\(551\) 1.88623e6 0.264676
\(552\) 0 0
\(553\) 0 0
\(554\) −1.93566e6 −0.267950
\(555\) 0 0
\(556\) −3.23898e6 −0.444346
\(557\) 2.90688e6 0.396999 0.198499 0.980101i \(-0.436393\pi\)
0.198499 + 0.980101i \(0.436393\pi\)
\(558\) 0 0
\(559\) 3.45242e6 0.467298
\(560\) 0 0
\(561\) 0 0
\(562\) −3.38399e6 −0.451948
\(563\) −3.42695e6 −0.455656 −0.227828 0.973701i \(-0.573162\pi\)
−0.227828 + 0.973701i \(0.573162\pi\)
\(564\) 0 0
\(565\) 1.25013e7 1.64754
\(566\) −6.06115e6 −0.795268
\(567\) 0 0
\(568\) −1.82838e6 −0.237791
\(569\) 1.66523e6 0.215622 0.107811 0.994171i \(-0.465616\pi\)
0.107811 + 0.994171i \(0.465616\pi\)
\(570\) 0 0
\(571\) −1.49751e7 −1.92212 −0.961060 0.276341i \(-0.910878\pi\)
−0.961060 + 0.276341i \(0.910878\pi\)
\(572\) −3.33618e6 −0.426343
\(573\) 0 0
\(574\) 0 0
\(575\) 1.14832e7 1.44842
\(576\) 0 0
\(577\) 1.12185e7 1.40280 0.701398 0.712770i \(-0.252559\pi\)
0.701398 + 0.712770i \(0.252559\pi\)
\(578\) 1.47339e7 1.83441
\(579\) 0 0
\(580\) −987280. −0.121863
\(581\) 0 0
\(582\) 0 0
\(583\) −3.94305e6 −0.480464
\(584\) −199224. −0.0241719
\(585\) 0 0
\(586\) 8.70738e6 1.04747
\(587\) −1.13200e6 −0.135597 −0.0677984 0.997699i \(-0.521597\pi\)
−0.0677984 + 0.997699i \(0.521597\pi\)
\(588\) 0 0
\(589\) 1.46770e7 1.74321
\(590\) −1.12220e7 −1.32721
\(591\) 0 0
\(592\) −234401. −0.0274888
\(593\) −1.17278e7 −1.36956 −0.684779 0.728750i \(-0.740101\pi\)
−0.684779 + 0.728750i \(0.740101\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.49788e6 0.172728
\(597\) 0 0
\(598\) −4.48123e6 −0.512441
\(599\) −2.04830e6 −0.233253 −0.116626 0.993176i \(-0.537208\pi\)
−0.116626 + 0.993176i \(0.537208\pi\)
\(600\) 0 0
\(601\) −5.75746e6 −0.650196 −0.325098 0.945680i \(-0.605397\pi\)
−0.325098 + 0.945680i \(0.605397\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.02685e6 −0.337597
\(605\) −5.88272e6 −0.653416
\(606\) 0 0
\(607\) −4.97797e6 −0.548378 −0.274189 0.961676i \(-0.588409\pi\)
−0.274189 + 0.961676i \(0.588409\pi\)
\(608\) 2.72806e6 0.299292
\(609\) 0 0
\(610\) −9.90754e6 −1.07806
\(611\) 8.53660e6 0.925086
\(612\) 0 0
\(613\) −4.56305e6 −0.490461 −0.245230 0.969465i \(-0.578864\pi\)
−0.245230 + 0.969465i \(0.578864\pi\)
\(614\) 1.00882e7 1.07992
\(615\) 0 0
\(616\) 0 0
\(617\) −1.41767e7 −1.49921 −0.749603 0.661888i \(-0.769756\pi\)
−0.749603 + 0.661888i \(0.769756\pi\)
\(618\) 0 0
\(619\) −7.54794e6 −0.791775 −0.395888 0.918299i \(-0.629563\pi\)
−0.395888 + 0.918299i \(0.629563\pi\)
\(620\) −7.68218e6 −0.802611
\(621\) 0 0
\(622\) −1.21499e6 −0.125921
\(623\) 0 0
\(624\) 0 0
\(625\) −3.75001e6 −0.384001
\(626\) −6.89932e6 −0.703672
\(627\) 0 0
\(628\) 8.42442e6 0.852395
\(629\) 2.06846e6 0.208459
\(630\) 0 0
\(631\) −87076.0 −0.00870612 −0.00435306 0.999991i \(-0.501386\pi\)
−0.00435306 + 0.999991i \(0.501386\pi\)
\(632\) −434564. −0.0432774
\(633\) 0 0
\(634\) −1.37735e7 −1.36088
\(635\) 2.94496e7 2.89831
\(636\) 0 0
\(637\) 0 0
\(638\) 1.35391e6 0.131686
\(639\) 0 0
\(640\) −1.42791e6 −0.137801
\(641\) −1.35335e7 −1.30096 −0.650480 0.759524i \(-0.725432\pi\)
−0.650480 + 0.759524i \(0.725432\pi\)
\(642\) 0 0
\(643\) −595140. −0.0567664 −0.0283832 0.999597i \(-0.509036\pi\)
−0.0283832 + 0.999597i \(0.509036\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.40736e7 −2.26965
\(647\) −3.90809e6 −0.367032 −0.183516 0.983017i \(-0.558748\pi\)
−0.183516 + 0.983017i \(0.558748\pi\)
\(648\) 0 0
\(649\) 1.53893e7 1.43419
\(650\) −7.79945e6 −0.724070
\(651\) 0 0
\(652\) 3.12148e6 0.287569
\(653\) 5.18455e6 0.475804 0.237902 0.971289i \(-0.423540\pi\)
0.237902 + 0.971289i \(0.423540\pi\)
\(654\) 0 0
\(655\) −1.62770e6 −0.148242
\(656\) −2.26972e6 −0.205926
\(657\) 0 0
\(658\) 0 0
\(659\) −2.73626e6 −0.245439 −0.122719 0.992441i \(-0.539162\pi\)
−0.122719 + 0.992441i \(0.539162\pi\)
\(660\) 0 0
\(661\) 5.99119e6 0.533347 0.266673 0.963787i \(-0.414076\pi\)
0.266673 + 0.963787i \(0.414076\pi\)
\(662\) 5.45435e6 0.483724
\(663\) 0 0
\(664\) −926865. −0.0815824
\(665\) 0 0
\(666\) 0 0
\(667\) 1.81860e6 0.158279
\(668\) −3.85302e6 −0.334087
\(669\) 0 0
\(670\) 3.37539e6 0.290494
\(671\) 1.35867e7 1.16495
\(672\) 0 0
\(673\) −6.70138e6 −0.570330 −0.285165 0.958478i \(-0.592048\pi\)
−0.285165 + 0.958478i \(0.592048\pi\)
\(674\) −1.45483e7 −1.23357
\(675\) 0 0
\(676\) −2.89702e6 −0.243829
\(677\) 7.32665e6 0.614375 0.307188 0.951649i \(-0.400612\pi\)
0.307188 + 0.951649i \(0.400612\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.26005e7 1.04500
\(681\) 0 0
\(682\) 1.05350e7 0.867308
\(683\) −191311. −0.0156923 −0.00784617 0.999969i \(-0.502498\pi\)
−0.00784617 + 0.999969i \(0.502498\pi\)
\(684\) 0 0
\(685\) 8.94524e6 0.728393
\(686\) 0 0
\(687\) 0 0
\(688\) −2.02640e6 −0.163213
\(689\) 3.59733e6 0.288690
\(690\) 0 0
\(691\) −1.02923e7 −0.820010 −0.410005 0.912083i \(-0.634473\pi\)
−0.410005 + 0.912083i \(0.634473\pi\)
\(692\) −8.59631e6 −0.682412
\(693\) 0 0
\(694\) 7.05660e6 0.556156
\(695\) 1.76429e7 1.38550
\(696\) 0 0
\(697\) 2.00290e7 1.56162
\(698\) −1.26353e7 −0.981625
\(699\) 0 0
\(700\) 0 0
\(701\) −7.48444e6 −0.575260 −0.287630 0.957742i \(-0.592867\pi\)
−0.287630 + 0.957742i \(0.592867\pi\)
\(702\) 0 0
\(703\) −2.43935e6 −0.186160
\(704\) 1.95817e6 0.148908
\(705\) 0 0
\(706\) 7.08682e6 0.535106
\(707\) 0 0
\(708\) 0 0
\(709\) 1.66785e7 1.24607 0.623035 0.782194i \(-0.285899\pi\)
0.623035 + 0.782194i \(0.285899\pi\)
\(710\) 9.95926e6 0.741449
\(711\) 0 0
\(712\) −1.75773e6 −0.129943
\(713\) 1.41508e7 1.04246
\(714\) 0 0
\(715\) 1.81723e7 1.32937
\(716\) 2.97429e6 0.216821
\(717\) 0 0
\(718\) 5.94102e6 0.430081
\(719\) 1.39388e7 1.00555 0.502775 0.864417i \(-0.332312\pi\)
0.502775 + 0.864417i \(0.332312\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.84858e7 1.31976
\(723\) 0 0
\(724\) 25203.5 0.00178696
\(725\) 3.16523e6 0.223645
\(726\) 0 0
\(727\) 1.05038e7 0.737075 0.368537 0.929613i \(-0.379859\pi\)
0.368537 + 0.929613i \(0.379859\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.08518e6 0.0753695
\(731\) 1.78818e7 1.23771
\(732\) 0 0
\(733\) 1.93063e7 1.32721 0.663603 0.748085i \(-0.269027\pi\)
0.663603 + 0.748085i \(0.269027\pi\)
\(734\) 2.12122e6 0.145327
\(735\) 0 0
\(736\) 2.63026e6 0.178980
\(737\) −4.62886e6 −0.313910
\(738\) 0 0
\(739\) −1.09473e7 −0.737390 −0.368695 0.929550i \(-0.620195\pi\)
−0.368695 + 0.929550i \(0.620195\pi\)
\(740\) 1.27679e6 0.0857120
\(741\) 0 0
\(742\) 0 0
\(743\) 1.37335e7 0.912661 0.456331 0.889810i \(-0.349163\pi\)
0.456331 + 0.889810i \(0.349163\pi\)
\(744\) 0 0
\(745\) −8.15904e6 −0.538578
\(746\) −1.37886e7 −0.907136
\(747\) 0 0
\(748\) −1.72797e7 −1.12923
\(749\) 0 0
\(750\) 0 0
\(751\) −6.91285e6 −0.447257 −0.223629 0.974674i \(-0.571790\pi\)
−0.223629 + 0.974674i \(0.571790\pi\)
\(752\) −5.01056e6 −0.323104
\(753\) 0 0
\(754\) −1.23520e6 −0.0791243
\(755\) 1.64874e7 1.05265
\(756\) 0 0
\(757\) 6.68202e6 0.423807 0.211904 0.977291i \(-0.432034\pi\)
0.211904 + 0.977291i \(0.432034\pi\)
\(758\) −6.37789e6 −0.403184
\(759\) 0 0
\(760\) −1.48599e7 −0.933214
\(761\) −2.34859e7 −1.47010 −0.735049 0.678014i \(-0.762841\pi\)
−0.735049 + 0.678014i \(0.762841\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3.15719e6 −0.195690
\(765\) 0 0
\(766\) 8.72784e6 0.537446
\(767\) −1.40400e7 −0.861745
\(768\) 0 0
\(769\) 1.24562e7 0.759571 0.379785 0.925075i \(-0.375998\pi\)
0.379785 + 0.925075i \(0.375998\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.32348e6 −0.442256
\(773\) 373957. 0.0225099 0.0112549 0.999937i \(-0.496417\pi\)
0.0112549 + 0.999937i \(0.496417\pi\)
\(774\) 0 0
\(775\) 2.46291e7 1.47297
\(776\) −5.83762e6 −0.348002
\(777\) 0 0
\(778\) −8.45964e6 −0.501075
\(779\) −2.36203e7 −1.39458
\(780\) 0 0
\(781\) −1.36577e7 −0.801215
\(782\) −2.32105e7 −1.35728
\(783\) 0 0
\(784\) 0 0
\(785\) −4.58882e7 −2.65783
\(786\) 0 0
\(787\) 3.03820e7 1.74856 0.874278 0.485426i \(-0.161336\pi\)
0.874278 + 0.485426i \(0.161336\pi\)
\(788\) 4.48743e6 0.257443
\(789\) 0 0
\(790\) 2.36709e6 0.134942
\(791\) 0 0
\(792\) 0 0
\(793\) −1.23955e7 −0.699972
\(794\) −1.96625e6 −0.110685
\(795\) 0 0
\(796\) 1.93643e6 0.108323
\(797\) 1.17189e7 0.653492 0.326746 0.945112i \(-0.394048\pi\)
0.326746 + 0.945112i \(0.394048\pi\)
\(798\) 0 0
\(799\) 4.42153e7 2.45023
\(800\) 4.57789e6 0.252895
\(801\) 0 0
\(802\) 1.08848e7 0.597565
\(803\) −1.48817e6 −0.0814449
\(804\) 0 0
\(805\) 0 0
\(806\) −9.61130e6 −0.521128
\(807\) 0 0
\(808\) −6.89358e6 −0.371464
\(809\) 2.23437e6 0.120028 0.0600141 0.998198i \(-0.480885\pi\)
0.0600141 + 0.998198i \(0.480885\pi\)
\(810\) 0 0
\(811\) 3.29804e6 0.176077 0.0880387 0.996117i \(-0.471940\pi\)
0.0880387 + 0.996117i \(0.471940\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.75094e6 −0.0926210
\(815\) −1.70028e7 −0.896659
\(816\) 0 0
\(817\) −2.10882e7 −1.10531
\(818\) 1.27963e7 0.668654
\(819\) 0 0
\(820\) 1.23632e7 0.642093
\(821\) −1.71494e6 −0.0887957 −0.0443979 0.999014i \(-0.514137\pi\)
−0.0443979 + 0.999014i \(0.514137\pi\)
\(822\) 0 0
\(823\) 9.73937e6 0.501223 0.250612 0.968088i \(-0.419368\pi\)
0.250612 + 0.968088i \(0.419368\pi\)
\(824\) −3.20009e6 −0.164189
\(825\) 0 0
\(826\) 0 0
\(827\) 2.95256e7 1.50119 0.750593 0.660765i \(-0.229768\pi\)
0.750593 + 0.660765i \(0.229768\pi\)
\(828\) 0 0
\(829\) 1.73499e7 0.876822 0.438411 0.898775i \(-0.355541\pi\)
0.438411 + 0.898775i \(0.355541\pi\)
\(830\) 5.04868e6 0.254380
\(831\) 0 0
\(832\) −1.78648e6 −0.0894726
\(833\) 0 0
\(834\) 0 0
\(835\) 2.09876e7 1.04171
\(836\) 2.03782e7 1.00844
\(837\) 0 0
\(838\) 1.95605e7 0.962210
\(839\) −2.22091e7 −1.08924 −0.544622 0.838681i \(-0.683327\pi\)
−0.544622 + 0.838681i \(0.683327\pi\)
\(840\) 0 0
\(841\) −2.00099e7 −0.975561
\(842\) 1.99344e7 0.968996
\(843\) 0 0
\(844\) −4.32041e6 −0.208770
\(845\) 1.57802e7 0.760275
\(846\) 0 0
\(847\) 0 0
\(848\) −2.11146e6 −0.100831
\(849\) 0 0
\(850\) −4.03973e7 −1.91781
\(851\) −2.35190e6 −0.111325
\(852\) 0 0
\(853\) −1.55354e7 −0.731053 −0.365527 0.930801i \(-0.619111\pi\)
−0.365527 + 0.930801i \(0.619111\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.10519e7 −0.515528
\(857\) 2.87116e7 1.33538 0.667690 0.744439i \(-0.267283\pi\)
0.667690 + 0.744439i \(0.267283\pi\)
\(858\) 0 0
\(859\) 1.15908e7 0.535957 0.267979 0.963425i \(-0.413644\pi\)
0.267979 + 0.963425i \(0.413644\pi\)
\(860\) 1.10379e7 0.508909
\(861\) 0 0
\(862\) −6.99516e6 −0.320649
\(863\) −7.76503e6 −0.354908 −0.177454 0.984129i \(-0.556786\pi\)
−0.177454 + 0.984129i \(0.556786\pi\)
\(864\) 0 0
\(865\) 4.68245e7 2.12781
\(866\) 2.14470e7 0.971789
\(867\) 0 0
\(868\) 0 0
\(869\) −3.24612e6 −0.145819
\(870\) 0 0
\(871\) 4.22301e6 0.188615
\(872\) 9.58081e6 0.426689
\(873\) 0 0
\(874\) 2.73724e7 1.21209
\(875\) 0 0
\(876\) 0 0
\(877\) 2.50789e7 1.10106 0.550529 0.834816i \(-0.314426\pi\)
0.550529 + 0.834816i \(0.314426\pi\)
\(878\) 2.46979e7 1.08124
\(879\) 0 0
\(880\) −1.06662e7 −0.464307
\(881\) −6.69476e6 −0.290600 −0.145300 0.989388i \(-0.546415\pi\)
−0.145300 + 0.989388i \(0.546415\pi\)
\(882\) 0 0
\(883\) 6.82227e6 0.294460 0.147230 0.989102i \(-0.452964\pi\)
0.147230 + 0.989102i \(0.452964\pi\)
\(884\) 1.57647e7 0.678507
\(885\) 0 0
\(886\) 1.43311e7 0.613330
\(887\) −1.81125e7 −0.772982 −0.386491 0.922293i \(-0.626313\pi\)
−0.386491 + 0.922293i \(0.626313\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 9.57445e6 0.405171
\(891\) 0 0
\(892\) 1.33834e6 0.0563189
\(893\) −5.21436e7 −2.18812
\(894\) 0 0
\(895\) −1.62011e7 −0.676062
\(896\) 0 0
\(897\) 0 0
\(898\) 1.97251e7 0.816258
\(899\) 3.90053e6 0.160962
\(900\) 0 0
\(901\) 1.86324e7 0.764639
\(902\) −1.69544e7 −0.693850
\(903\) 0 0
\(904\) −9.18028e6 −0.373624
\(905\) −137285. −0.00557186
\(906\) 0 0
\(907\) 1.93366e7 0.780482 0.390241 0.920713i \(-0.372392\pi\)
0.390241 + 0.920713i \(0.372392\pi\)
\(908\) −1.67123e6 −0.0672700
\(909\) 0 0
\(910\) 0 0
\(911\) 4.70161e6 0.187694 0.0938471 0.995587i \(-0.470084\pi\)
0.0938471 + 0.995587i \(0.470084\pi\)
\(912\) 0 0
\(913\) −6.92352e6 −0.274884
\(914\) −1.70892e7 −0.676636
\(915\) 0 0
\(916\) −2.50067e7 −0.984732
\(917\) 0 0
\(918\) 0 0
\(919\) 1.37727e7 0.537935 0.268967 0.963149i \(-0.413318\pi\)
0.268967 + 0.963149i \(0.413318\pi\)
\(920\) −1.43271e7 −0.558071
\(921\) 0 0
\(922\) 1.65342e7 0.640555
\(923\) 1.24602e7 0.481416
\(924\) 0 0
\(925\) −4.09341e6 −0.157301
\(926\) −3.06606e7 −1.17504
\(927\) 0 0
\(928\) 725003. 0.0276356
\(929\) 2.14844e7 0.816740 0.408370 0.912817i \(-0.366097\pi\)
0.408370 + 0.912817i \(0.366097\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.43693e7 0.541871
\(933\) 0 0
\(934\) 2.49869e6 0.0937228
\(935\) 9.41235e7 3.52103
\(936\) 0 0
\(937\) −2.27448e7 −0.846318 −0.423159 0.906055i \(-0.639079\pi\)
−0.423159 + 0.906055i \(0.639079\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.72927e7 1.00746
\(941\) 1.91857e7 0.706324 0.353162 0.935562i \(-0.385106\pi\)
0.353162 + 0.935562i \(0.385106\pi\)
\(942\) 0 0
\(943\) −2.27735e7 −0.833971
\(944\) 8.24079e6 0.300981
\(945\) 0 0
\(946\) −1.51369e7 −0.549930
\(947\) 1.09546e6 0.0396936 0.0198468 0.999803i \(-0.493682\pi\)
0.0198468 + 0.999803i \(0.493682\pi\)
\(948\) 0 0
\(949\) 1.35769e6 0.0489367
\(950\) 4.76409e7 1.71266
\(951\) 0 0
\(952\) 0 0
\(953\) 276787. 0.00987218 0.00493609 0.999988i \(-0.498429\pi\)
0.00493609 + 0.999988i \(0.498429\pi\)
\(954\) 0 0
\(955\) 1.71974e7 0.610174
\(956\) 1.41441e7 0.500531
\(957\) 0 0
\(958\) 2.92027e7 1.02804
\(959\) 0 0
\(960\) 0 0
\(961\) 1.72145e6 0.0601293
\(962\) 1.59742e6 0.0556520
\(963\) 0 0
\(964\) −7.36682e6 −0.255322
\(965\) 3.98913e7 1.37899
\(966\) 0 0
\(967\) −1.39867e7 −0.481005 −0.240502 0.970649i \(-0.577312\pi\)
−0.240502 + 0.970649i \(0.577312\pi\)
\(968\) 4.31994e6 0.148180
\(969\) 0 0
\(970\) 3.17978e7 1.08509
\(971\) −2.71982e7 −0.925748 −0.462874 0.886424i \(-0.653182\pi\)
−0.462874 + 0.886424i \(0.653182\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −3.38289e7 −1.14259
\(975\) 0 0
\(976\) 7.27553e6 0.244478
\(977\) 4.63391e7 1.55314 0.776571 0.630029i \(-0.216957\pi\)
0.776571 + 0.630029i \(0.216957\pi\)
\(978\) 0 0
\(979\) −1.31300e7 −0.437831
\(980\) 0 0
\(981\) 0 0
\(982\) 8.37958e6 0.277296
\(983\) −4.50002e6 −0.148536 −0.0742679 0.997238i \(-0.523662\pi\)
−0.0742679 + 0.997238i \(0.523662\pi\)
\(984\) 0 0
\(985\) −2.44432e7 −0.802727
\(986\) −6.39774e6 −0.209572
\(987\) 0 0
\(988\) −1.85914e7 −0.605927
\(989\) −2.03322e7 −0.660987
\(990\) 0 0
\(991\) −4.16811e7 −1.34820 −0.674101 0.738639i \(-0.735469\pi\)
−0.674101 + 0.738639i \(0.735469\pi\)
\(992\) 5.64136e6 0.182014
\(993\) 0 0
\(994\) 0 0
\(995\) −1.05478e7 −0.337758
\(996\) 0 0
\(997\) −3.37807e7 −1.07629 −0.538147 0.842851i \(-0.680876\pi\)
−0.538147 + 0.842851i \(0.680876\pi\)
\(998\) −2.36987e7 −0.753178
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.bm.1.1 2
3.2 odd 2 294.6.a.p.1.2 2
7.2 even 3 126.6.g.g.109.2 4
7.4 even 3 126.6.g.g.37.2 4
7.6 odd 2 882.6.a.bs.1.2 2
21.2 odd 6 42.6.e.d.25.1 4
21.5 even 6 294.6.e.y.67.2 4
21.11 odd 6 42.6.e.d.37.1 yes 4
21.17 even 6 294.6.e.y.79.2 4
21.20 even 2 294.6.a.o.1.1 2
84.11 even 6 336.6.q.h.289.1 4
84.23 even 6 336.6.q.h.193.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.e.d.25.1 4 21.2 odd 6
42.6.e.d.37.1 yes 4 21.11 odd 6
126.6.g.g.37.2 4 7.4 even 3
126.6.g.g.109.2 4 7.2 even 3
294.6.a.o.1.1 2 21.20 even 2
294.6.a.p.1.2 2 3.2 odd 2
294.6.e.y.67.2 4 21.5 even 6
294.6.e.y.79.2 4 21.17 even 6
336.6.q.h.193.1 4 84.23 even 6
336.6.q.h.289.1 4 84.11 even 6
882.6.a.bm.1.1 2 1.1 even 1 trivial
882.6.a.bs.1.2 2 7.6 odd 2