Properties

Label 882.6.a.bn
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{697}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 174 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{697})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + 16 q^{4} + ( - 5 \beta - 1) q^{5} + 64 q^{8} + ( - 20 \beta - 4) q^{10} + (7 \beta - 13) q^{11} + ( - 23 \beta + 456) q^{13} + 256 q^{16} + (86 \beta - 890) q^{17} + (111 \beta - 1004) q^{19}+ \cdots + ( - 2815 \beta - 51481) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} - 7 q^{5} + 128 q^{8} - 28 q^{10} - 19 q^{11} + 889 q^{13} + 512 q^{16} - 1694 q^{17} - 1897 q^{19} - 112 q^{20} - 76 q^{22} - 5326 q^{23} + 2487 q^{25} + 3556 q^{26} + 2125 q^{29}+ \cdots - 105777 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
13.7004
−12.7004
4.00000 0 16.0000 −69.5019 0 0 64.0000 0 −278.008
1.2 4.00000 0 16.0000 62.5019 0 0 64.0000 0 250.008
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bn 2
3.b odd 2 1 882.6.a.bf 2
7.b odd 2 1 882.6.a.br 2
7.d odd 6 2 126.6.g.f 4
21.c even 2 1 882.6.a.bd 2
21.g even 6 2 126.6.g.i yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.6.g.f 4 7.d odd 6 2
126.6.g.i yes 4 21.g even 6 2
882.6.a.bd 2 21.c even 2 1
882.6.a.bf 2 3.b odd 2 1
882.6.a.bn 2 1.a even 1 1 trivial
882.6.a.br 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{2} + 7T_{5} - 4344 \) Copy content Toggle raw display
\( T_{11}^{2} + 19T_{11} - 8448 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 7T - 4344 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 19T - 8448 \) Copy content Toggle raw display
$13$ \( T^{2} - 889T + 105402 \) Copy content Toggle raw display
$17$ \( T^{2} + 1694 T - 571344 \) Copy content Toggle raw display
$19$ \( T^{2} + 1897 T - 1247282 \) Copy content Toggle raw display
$23$ \( T^{2} + 5326 T + 6237744 \) Copy content Toggle raw display
$29$ \( T^{2} - 2125 T - 34945200 \) Copy content Toggle raw display
$31$ \( T^{2} + 5264 T - 14418201 \) Copy content Toggle raw display
$37$ \( T^{2} + 7031 T - 21529574 \) Copy content Toggle raw display
$41$ \( T^{2} + 19992 T + 95001984 \) Copy content Toggle raw display
$43$ \( T^{2} - 5767 T - 379057292 \) Copy content Toggle raw display
$47$ \( T^{2} - 17892 T + 76994784 \) Copy content Toggle raw display
$53$ \( T^{2} - 4545 T - 603519048 \) Copy content Toggle raw display
$59$ \( T^{2} + 46333 T + 535808328 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 1073337192 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2886427322 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1135197504 \) Copy content Toggle raw display
$73$ \( T^{2} + 52899 T - 622985806 \) Copy content Toggle raw display
$79$ \( T^{2} + 45838 T - 532642767 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 3410160408 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 13742053344 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 1416397226 \) Copy content Toggle raw display
show more
show less