Properties

Label 882.6.a.bt
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{130}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + 16 q^{4} + 21 q^{5} + 64 q^{8} + 84 q^{10} + ( - 7 \beta + 147) q^{11} + (2 \beta - 70) q^{13} + 256 q^{16} + (6 \beta - 651) q^{17} + (17 \beta - 721) q^{19} + 336 q^{20} + ( - 28 \beta + 588) q^{22}+ \cdots + (1370 \beta - 21826) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} + 42 q^{5} + 128 q^{8} + 168 q^{10} + 294 q^{11} - 140 q^{13} + 512 q^{16} - 1302 q^{17} - 1442 q^{19} + 672 q^{20} + 1176 q^{22} - 2646 q^{23} - 5368 q^{25} - 560 q^{26} - 1668 q^{29}+ \cdots - 43652 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
11.4018
−11.4018
4.00000 0 16.0000 21.0000 0 0 64.0000 0 84.0000
1.2 4.00000 0 16.0000 21.0000 0 0 64.0000 0 84.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bt 2
3.b odd 2 1 98.6.a.c 2
7.b odd 2 1 882.6.a.bl 2
7.c even 3 2 126.6.g.e 4
12.b even 2 1 784.6.a.bc 2
21.c even 2 1 98.6.a.f 2
21.g even 6 2 98.6.c.f 4
21.h odd 6 2 14.6.c.b 4
84.h odd 2 1 784.6.a.r 2
84.n even 6 2 112.6.i.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.6.c.b 4 21.h odd 6 2
98.6.a.c 2 3.b odd 2 1
98.6.a.f 2 21.c even 2 1
98.6.c.f 4 21.g even 6 2
112.6.i.b 4 84.n even 6 2
126.6.g.e 4 7.c even 3 2
784.6.a.r 2 84.h odd 2 1
784.6.a.bc 2 12.b even 2 1
882.6.a.bl 2 7.b odd 2 1
882.6.a.bt 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5} - 21 \) Copy content Toggle raw display
\( T_{11}^{2} - 294T_{11} - 207711 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 21)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 294T - 207711 \) Copy content Toggle raw display
$13$ \( T^{2} + 140T - 13820 \) Copy content Toggle raw display
$17$ \( T^{2} + 1302 T + 255321 \) Copy content Toggle raw display
$19$ \( T^{2} + 1442 T - 832679 \) Copy content Toggle raw display
$23$ \( T^{2} + 2646 T - 3982671 \) Copy content Toggle raw display
$29$ \( T^{2} + 1668 T - 221724 \) Copy content Toggle raw display
$31$ \( T^{2} + 14798 T + 51820201 \) Copy content Toggle raw display
$37$ \( T^{2} - 5182 T - 67586399 \) Copy content Toggle raw display
$41$ \( T^{2} - 5124 T - 207761436 \) Copy content Toggle raw display
$43$ \( T^{2} + 4520 T - 53598320 \) Copy content Toggle raw display
$47$ \( T^{2} - 14994 T - 31633911 \) Copy content Toggle raw display
$53$ \( T^{2} + 24006 T + 99125289 \) Copy content Toggle raw display
$59$ \( T^{2} + 38850 T - 104901255 \) Copy content Toggle raw display
$61$ \( T^{2} + 23618 T + 45084961 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1560411719 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1817230464 \) Copy content Toggle raw display
$73$ \( T^{2} + 47138 T + 285929761 \) Copy content Toggle raw display
$79$ \( T^{2} + 40970 T - 130962095 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 1030366224 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 2383102881 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 8307517724 \) Copy content Toggle raw display
show more
show less