Properties

Label 8820.2.f.a.4409.1
Level $8820$
Weight $2$
Character 8820.4409
Analytic conductor $70.428$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8820,2,Mod(4409,8820)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8820, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8820.4409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8820 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8820.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.4280545828\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4409.1
Character \(\chi\) \(=\) 8820.4409
Dual form 8820.2.f.a.4409.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.19078 - 0.447731i) q^{5} -0.694412i q^{11} +3.76549 q^{13} +0.0400982i q^{17} +0.124025i q^{19} -3.86851 q^{23} +(4.59907 + 1.96176i) q^{25} +4.39545i q^{29} -3.01152i q^{31} -11.1279i q^{37} -7.91118 q^{41} -3.73746i q^{43} +6.59624i q^{47} +8.96039 q^{53} +(-0.310909 + 1.52131i) q^{55} +5.80370 q^{59} -3.06093i q^{61} +(-8.24938 - 1.68592i) q^{65} +5.87597i q^{67} +7.19849i q^{71} -8.53178 q^{73} +7.96538 q^{79} -6.32489i q^{83} +(0.0179532 - 0.0878466i) q^{85} -10.0099 q^{89} +(0.0555296 - 0.271711i) q^{95} +11.5960 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 24 q^{25} - 64 q^{79} + 32 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8820\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(4411\) \(7057\) \(7841\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.19078 0.447731i −0.979749 0.200231i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.694412i 0.209373i −0.994505 0.104687i \(-0.966616\pi\)
0.994505 0.104687i \(-0.0333839\pi\)
\(12\) 0 0
\(13\) 3.76549 1.04436 0.522179 0.852836i \(-0.325119\pi\)
0.522179 + 0.852836i \(0.325119\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.0400982i 0.00972525i 0.999988 + 0.00486263i \(0.00154783\pi\)
−0.999988 + 0.00486263i \(0.998452\pi\)
\(18\) 0 0
\(19\) 0.124025i 0.0284532i 0.999899 + 0.0142266i \(0.00452862\pi\)
−0.999899 + 0.0142266i \(0.995471\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.86851 −0.806640 −0.403320 0.915059i \(-0.632144\pi\)
−0.403320 + 0.915059i \(0.632144\pi\)
\(24\) 0 0
\(25\) 4.59907 + 1.96176i 0.919815 + 0.392353i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.39545i 0.816214i 0.912934 + 0.408107i \(0.133811\pi\)
−0.912934 + 0.408107i \(0.866189\pi\)
\(30\) 0 0
\(31\) 3.01152i 0.540885i −0.962736 0.270442i \(-0.912830\pi\)
0.962736 0.270442i \(-0.0871699\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.1279i 1.82941i −0.404122 0.914705i \(-0.632423\pi\)
0.404122 0.914705i \(-0.367577\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.91118 −1.23552 −0.617759 0.786367i \(-0.711959\pi\)
−0.617759 + 0.786367i \(0.711959\pi\)
\(42\) 0 0
\(43\) 3.73746i 0.569957i −0.958534 0.284979i \(-0.908014\pi\)
0.958534 0.284979i \(-0.0919865\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.59624i 0.962160i 0.876677 + 0.481080i \(0.159755\pi\)
−0.876677 + 0.481080i \(0.840245\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.96039 1.23080 0.615402 0.788213i \(-0.288994\pi\)
0.615402 + 0.788213i \(0.288994\pi\)
\(54\) 0 0
\(55\) −0.310909 + 1.52131i −0.0419230 + 0.205133i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.80370 0.755577 0.377789 0.925892i \(-0.376685\pi\)
0.377789 + 0.925892i \(0.376685\pi\)
\(60\) 0 0
\(61\) 3.06093i 0.391912i −0.980613 0.195956i \(-0.937219\pi\)
0.980613 0.195956i \(-0.0627810\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.24938 1.68592i −1.02321 0.209113i
\(66\) 0 0
\(67\) 5.87597i 0.717864i 0.933364 + 0.358932i \(0.116859\pi\)
−0.933364 + 0.358932i \(0.883141\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.19849i 0.854303i 0.904180 + 0.427152i \(0.140483\pi\)
−0.904180 + 0.427152i \(0.859517\pi\)
\(72\) 0 0
\(73\) −8.53178 −0.998570 −0.499285 0.866438i \(-0.666404\pi\)
−0.499285 + 0.866438i \(0.666404\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.96538 0.896175 0.448088 0.893990i \(-0.352105\pi\)
0.448088 + 0.893990i \(0.352105\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.32489i 0.694246i −0.937820 0.347123i \(-0.887159\pi\)
0.937820 0.347123i \(-0.112841\pi\)
\(84\) 0 0
\(85\) 0.0179532 0.0878466i 0.00194730 0.00952830i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0099 −1.06104 −0.530522 0.847671i \(-0.678004\pi\)
−0.530522 + 0.847671i \(0.678004\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.0555296 0.271711i 0.00569722 0.0278770i
\(96\) 0 0
\(97\) 11.5960 1.17740 0.588698 0.808353i \(-0.299641\pi\)
0.588698 + 0.808353i \(0.299641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.35421 −0.333756 −0.166878 0.985978i \(-0.553369\pi\)
−0.166878 + 0.985978i \(0.553369\pi\)
\(102\) 0 0
\(103\) −11.0078 −1.08463 −0.542316 0.840174i \(-0.682453\pi\)
−0.542316 + 0.840174i \(0.682453\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.5905 1.31384 0.656920 0.753960i \(-0.271859\pi\)
0.656920 + 0.753960i \(0.271859\pi\)
\(108\) 0 0
\(109\) 6.94743 0.665443 0.332721 0.943025i \(-0.392033\pi\)
0.332721 + 0.943025i \(0.392033\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.5489 1.27457 0.637285 0.770628i \(-0.280057\pi\)
0.637285 + 0.770628i \(0.280057\pi\)
\(114\) 0 0
\(115\) 8.47507 + 1.73205i 0.790305 + 0.161515i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5178 0.956163
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.19724 6.35695i −0.822626 0.568583i
\(126\) 0 0
\(127\) 4.96761i 0.440804i 0.975409 + 0.220402i \(0.0707369\pi\)
−0.975409 + 0.220402i \(0.929263\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.4955 −1.17911 −0.589554 0.807729i \(-0.700696\pi\)
−0.589554 + 0.807729i \(0.700696\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.9797 −1.02350 −0.511749 0.859135i \(-0.671002\pi\)
−0.511749 + 0.859135i \(0.671002\pi\)
\(138\) 0 0
\(139\) 1.63912i 0.139029i −0.997581 0.0695143i \(-0.977855\pi\)
0.997581 0.0695143i \(-0.0221449\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.61480i 0.218661i
\(144\) 0 0
\(145\) 1.96798 9.62948i 0.163432 0.799685i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.5026i 0.942326i −0.882046 0.471163i \(-0.843834\pi\)
0.882046 0.471163i \(-0.156166\pi\)
\(150\) 0 0
\(151\) 14.4998 1.17998 0.589990 0.807410i \(-0.299132\pi\)
0.589990 + 0.807410i \(0.299132\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.34835 + 6.59759i −0.108302 + 0.529931i
\(156\) 0 0
\(157\) −10.6855 −0.852799 −0.426400 0.904535i \(-0.640218\pi\)
−0.426400 + 0.904535i \(0.640218\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0259i 0.941938i 0.882150 + 0.470969i \(0.156096\pi\)
−0.882150 + 0.470969i \(0.843904\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.1151i 1.94347i 0.236081 + 0.971733i \(0.424137\pi\)
−0.236081 + 0.971733i \(0.575863\pi\)
\(168\) 0 0
\(169\) 1.17891 0.0906854
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.97117i 0.682065i 0.940051 + 0.341033i \(0.110777\pi\)
−0.940051 + 0.341033i \(0.889223\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 25.0777i 1.87440i −0.348799 0.937198i \(-0.613410\pi\)
0.348799 0.937198i \(-0.386590\pi\)
\(180\) 0 0
\(181\) 4.30930i 0.320308i −0.987092 0.160154i \(-0.948801\pi\)
0.987092 0.160154i \(-0.0511991\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.98229 + 24.3788i −0.366305 + 1.79236i
\(186\) 0 0
\(187\) 0.0278447 0.00203621
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.6536i 0.915580i −0.889060 0.457790i \(-0.848641\pi\)
0.889060 0.457790i \(-0.151359\pi\)
\(192\) 0 0
\(193\) 16.9709i 1.22159i −0.791788 0.610796i \(-0.790849\pi\)
0.791788 0.610796i \(-0.209151\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.0304 −1.07087 −0.535436 0.844576i \(-0.679853\pi\)
−0.535436 + 0.844576i \(0.679853\pi\)
\(198\) 0 0
\(199\) 16.6817i 1.18253i −0.806476 0.591267i \(-0.798628\pi\)
0.806476 0.591267i \(-0.201372\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 17.3317 + 3.54208i 1.21050 + 0.247389i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.0861242 0.00595733
\(210\) 0 0
\(211\) −15.4819 −1.06582 −0.532908 0.846173i \(-0.678901\pi\)
−0.532908 + 0.846173i \(0.678901\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.67337 + 8.18797i −0.114123 + 0.558415i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.150989i 0.0101567i
\(222\) 0 0
\(223\) −25.1597 −1.68482 −0.842408 0.538841i \(-0.818862\pi\)
−0.842408 + 0.538841i \(0.818862\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 27.5770i 1.83035i −0.403057 0.915175i \(-0.632052\pi\)
0.403057 0.915175i \(-0.367948\pi\)
\(228\) 0 0
\(229\) 22.8804i 1.51198i −0.654583 0.755990i \(-0.727156\pi\)
0.654583 0.755990i \(-0.272844\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.67538 −0.633855 −0.316928 0.948450i \(-0.602651\pi\)
−0.316928 + 0.948450i \(0.602651\pi\)
\(234\) 0 0
\(235\) 2.95334 14.4509i 0.192655 0.942675i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.30863i 0.278702i −0.990243 0.139351i \(-0.955498\pi\)
0.990243 0.139351i \(-0.0445016\pi\)
\(240\) 0 0
\(241\) 6.42621i 0.413948i 0.978346 + 0.206974i \(0.0663616\pi\)
−0.978346 + 0.206974i \(0.933638\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.467013i 0.0297154i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.89601 0.624631 0.312315 0.949978i \(-0.398895\pi\)
0.312315 + 0.949978i \(0.398895\pi\)
\(252\) 0 0
\(253\) 2.68634i 0.168889i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 25.5233i 1.59210i −0.605230 0.796051i \(-0.706919\pi\)
0.605230 0.796051i \(-0.293081\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.58887 −0.159636 −0.0798182 0.996809i \(-0.525434\pi\)
−0.0798182 + 0.996809i \(0.525434\pi\)
\(264\) 0 0
\(265\) −19.6303 4.01184i −1.20588 0.246445i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.78108 −0.474421 −0.237210 0.971458i \(-0.576233\pi\)
−0.237210 + 0.971458i \(0.576233\pi\)
\(270\) 0 0
\(271\) 29.4490i 1.78890i −0.447171 0.894448i \(-0.647569\pi\)
0.447171 0.894448i \(-0.352431\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.36227 3.19365i 0.0821481 0.192584i
\(276\) 0 0
\(277\) 1.47816i 0.0888141i −0.999014 0.0444070i \(-0.985860\pi\)
0.999014 0.0444070i \(-0.0141399\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.00483i 0.238908i −0.992840 0.119454i \(-0.961886\pi\)
0.992840 0.119454i \(-0.0381145\pi\)
\(282\) 0 0
\(283\) 19.4214 1.15448 0.577242 0.816573i \(-0.304129\pi\)
0.577242 + 0.816573i \(0.304129\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.9984 0.999905
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.39101i 0.139684i 0.997558 + 0.0698421i \(0.0222495\pi\)
−0.997558 + 0.0698421i \(0.977750\pi\)
\(294\) 0 0
\(295\) −12.7147 2.59849i −0.740276 0.151290i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.5668 −0.842422
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.37047 + 6.70584i −0.0784730 + 0.383975i
\(306\) 0 0
\(307\) −1.67320 −0.0954947 −0.0477474 0.998859i \(-0.515204\pi\)
−0.0477474 + 0.998859i \(0.515204\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.00942 −0.113944 −0.0569719 0.998376i \(-0.518145\pi\)
−0.0569719 + 0.998376i \(0.518145\pi\)
\(312\) 0 0
\(313\) 21.7735 1.23071 0.615355 0.788250i \(-0.289013\pi\)
0.615355 + 0.788250i \(0.289013\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.9377 0.951315 0.475657 0.879631i \(-0.342210\pi\)
0.475657 + 0.879631i \(0.342210\pi\)
\(318\) 0 0
\(319\) 3.05225 0.170893
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.00497317 −0.000276715
\(324\) 0 0
\(325\) 17.3178 + 7.38700i 0.960617 + 0.409757i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 26.8949 1.47827 0.739137 0.673555i \(-0.235233\pi\)
0.739137 + 0.673555i \(0.235233\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.63085 12.8730i 0.143739 0.703327i
\(336\) 0 0
\(337\) 16.5625i 0.902216i 0.892469 + 0.451108i \(0.148971\pi\)
−0.892469 + 0.451108i \(0.851029\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.09123 −0.113247
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −31.7841 −1.70626 −0.853130 0.521699i \(-0.825298\pi\)
−0.853130 + 0.521699i \(0.825298\pi\)
\(348\) 0 0
\(349\) 27.5288i 1.47358i −0.676119 0.736792i \(-0.736340\pi\)
0.676119 0.736792i \(-0.263660\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.06380i 0.0566203i −0.999599 0.0283102i \(-0.990987\pi\)
0.999599 0.0283102i \(-0.00901261\pi\)
\(354\) 0 0
\(355\) 3.22298 15.7703i 0.171058 0.837002i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.4493i 1.29038i −0.764021 0.645192i \(-0.776778\pi\)
0.764021 0.645192i \(-0.223222\pi\)
\(360\) 0 0
\(361\) 18.9846 0.999190
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.6913 + 3.81994i 0.978347 + 0.199945i
\(366\) 0 0
\(367\) −6.86335 −0.358264 −0.179132 0.983825i \(-0.557329\pi\)
−0.179132 + 0.983825i \(0.557329\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 14.2775i 0.739262i −0.929179 0.369631i \(-0.879484\pi\)
0.929179 0.369631i \(-0.120516\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.5510i 0.852421i
\(378\) 0 0
\(379\) −35.6634 −1.83190 −0.915952 0.401288i \(-0.868563\pi\)
−0.915952 + 0.401288i \(0.868563\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 27.8008i 1.42055i −0.703922 0.710277i \(-0.748570\pi\)
0.703922 0.710277i \(-0.251430\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.3782i 0.779703i −0.920878 0.389852i \(-0.872526\pi\)
0.920878 0.389852i \(-0.127474\pi\)
\(390\) 0 0
\(391\) 0.155120i 0.00784478i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −17.4504 3.56634i −0.878026 0.179442i
\(396\) 0 0
\(397\) −19.8052 −0.993993 −0.496997 0.867752i \(-0.665564\pi\)
−0.496997 + 0.867752i \(0.665564\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.2275i 1.01011i −0.863087 0.505056i \(-0.831472\pi\)
0.863087 0.505056i \(-0.168528\pi\)
\(402\) 0 0
\(403\) 11.3398i 0.564878i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.72733 −0.383029
\(408\) 0 0
\(409\) 16.3718i 0.809535i −0.914420 0.404767i \(-0.867353\pi\)
0.914420 0.404767i \(-0.132647\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.83184 + 13.8565i −0.139010 + 0.680187i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.6180 1.59349 0.796746 0.604314i \(-0.206553\pi\)
0.796746 + 0.604314i \(0.206553\pi\)
\(420\) 0 0
\(421\) 1.78518 0.0870045 0.0435022 0.999053i \(-0.486148\pi\)
0.0435022 + 0.999053i \(0.486148\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0786632 + 0.184415i −0.00381573 + 0.00894543i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.1782i 1.50180i −0.660414 0.750901i \(-0.729619\pi\)
0.660414 0.750901i \(-0.270381\pi\)
\(432\) 0 0
\(433\) −1.35671 −0.0651994 −0.0325997 0.999468i \(-0.510379\pi\)
−0.0325997 + 0.999468i \(0.510379\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.479791i 0.0229515i
\(438\) 0 0
\(439\) 8.52568i 0.406908i −0.979084 0.203454i \(-0.934783\pi\)
0.979084 0.203454i \(-0.0652168\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.6249 −0.694849 −0.347424 0.937708i \(-0.612944\pi\)
−0.347424 + 0.937708i \(0.612944\pi\)
\(444\) 0 0
\(445\) 21.9295 + 4.48173i 1.03956 + 0.212454i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0320i 0.850984i −0.904962 0.425492i \(-0.860101\pi\)
0.904962 0.425492i \(-0.139899\pi\)
\(450\) 0 0
\(451\) 5.49362i 0.258684i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.1433i 1.31649i −0.752804 0.658244i \(-0.771299\pi\)
0.752804 0.658244i \(-0.228701\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −21.9940 −1.02436 −0.512181 0.858878i \(-0.671162\pi\)
−0.512181 + 0.858878i \(0.671162\pi\)
\(462\) 0 0
\(463\) 15.7014i 0.729705i −0.931065 0.364852i \(-0.881119\pi\)
0.931065 0.364852i \(-0.118881\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 33.7095i 1.55989i 0.625848 + 0.779945i \(0.284753\pi\)
−0.625848 + 0.779945i \(0.715247\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.59534 −0.119334
\(474\) 0 0
\(475\) −0.243307 + 0.570398i −0.0111637 + 0.0261717i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.4095 1.61790 0.808950 0.587877i \(-0.200036\pi\)
0.808950 + 0.587877i \(0.200036\pi\)
\(480\) 0 0
\(481\) 41.9019i 1.91056i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −25.4044 5.19189i −1.15355 0.235752i
\(486\) 0 0
\(487\) 5.04052i 0.228408i 0.993457 + 0.114204i \(0.0364317\pi\)
−0.993457 + 0.114204i \(0.963568\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.6130i 0.569215i 0.958644 + 0.284608i \(0.0918633\pi\)
−0.958644 + 0.284608i \(0.908137\pi\)
\(492\) 0 0
\(493\) −0.176250 −0.00793789
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.231485 −0.0103627 −0.00518134 0.999987i \(-0.501649\pi\)
−0.00518134 + 0.999987i \(0.501649\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.9750i 0.801465i −0.916195 0.400732i \(-0.868756\pi\)
0.916195 0.400732i \(-0.131244\pi\)
\(504\) 0 0
\(505\) 7.34835 + 1.50178i 0.326997 + 0.0668284i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.9818 −0.841352 −0.420676 0.907211i \(-0.638207\pi\)
−0.420676 + 0.907211i \(0.638207\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.1158 + 4.92854i 1.06267 + 0.217177i
\(516\) 0 0
\(517\) 4.58051 0.201450
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.2651 −1.28213 −0.641064 0.767488i \(-0.721507\pi\)
−0.641064 + 0.767488i \(0.721507\pi\)
\(522\) 0 0
\(523\) −15.6607 −0.684795 −0.342397 0.939555i \(-0.611239\pi\)
−0.342397 + 0.939555i \(0.611239\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.120757 0.00526024
\(528\) 0 0
\(529\) −8.03462 −0.349331
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −29.7895 −1.29032
\(534\) 0 0
\(535\) −29.7738 6.08487i −1.28723 0.263072i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 22.6813 0.975146 0.487573 0.873082i \(-0.337882\pi\)
0.487573 + 0.873082i \(0.337882\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15.2203 3.11058i −0.651967 0.133242i
\(546\) 0 0
\(547\) 6.67849i 0.285552i 0.989755 + 0.142776i \(0.0456028\pi\)
−0.989755 + 0.142776i \(0.954397\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.545144 −0.0232239
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.2681 1.24013 0.620066 0.784550i \(-0.287106\pi\)
0.620066 + 0.784550i \(0.287106\pi\)
\(558\) 0 0
\(559\) 14.0734i 0.595240i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 38.2841i 1.61348i 0.590906 + 0.806741i \(0.298770\pi\)
−0.590906 + 0.806741i \(0.701230\pi\)
\(564\) 0 0
\(565\) −29.6826 6.06624i −1.24876 0.255209i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.8115i 0.830539i −0.909698 0.415270i \(-0.863687\pi\)
0.909698 0.415270i \(-0.136313\pi\)
\(570\) 0 0
\(571\) 20.8756 0.873617 0.436809 0.899554i \(-0.356109\pi\)
0.436809 + 0.899554i \(0.356109\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −17.7916 7.58910i −0.741960 0.316487i
\(576\) 0 0
\(577\) −12.5061 −0.520637 −0.260319 0.965523i \(-0.583828\pi\)
−0.260319 + 0.965523i \(0.583828\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.22220i 0.257697i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.4930i 0.845838i −0.906168 0.422919i \(-0.861006\pi\)
0.906168 0.422919i \(-0.138994\pi\)
\(588\) 0 0
\(589\) 0.373502 0.0153899
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.2778i 1.36655i 0.730159 + 0.683277i \(0.239446\pi\)
−0.730159 + 0.683277i \(0.760554\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 39.0328i 1.59484i −0.603427 0.797419i \(-0.706198\pi\)
0.603427 0.797419i \(-0.293802\pi\)
\(600\) 0 0
\(601\) 14.7657i 0.602304i −0.953576 0.301152i \(-0.902629\pi\)
0.953576 0.301152i \(-0.0973712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −23.0422 4.70914i −0.936799 0.191454i
\(606\) 0 0
\(607\) 3.96958 0.161120 0.0805602 0.996750i \(-0.474329\pi\)
0.0805602 + 0.996750i \(0.474329\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.8381i 1.00484i
\(612\) 0 0
\(613\) 35.1466i 1.41956i 0.704424 + 0.709780i \(0.251206\pi\)
−0.704424 + 0.709780i \(0.748794\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.3102 0.978692 0.489346 0.872090i \(-0.337236\pi\)
0.489346 + 0.872090i \(0.337236\pi\)
\(618\) 0 0
\(619\) 7.99259i 0.321249i 0.987016 + 0.160625i \(0.0513508\pi\)
−0.987016 + 0.160625i \(0.948649\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 17.3030 + 18.0446i 0.692119 + 0.721783i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.446208 0.0177915
\(630\) 0 0
\(631\) −14.1828 −0.564607 −0.282304 0.959325i \(-0.591099\pi\)
−0.282304 + 0.959325i \(0.591099\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.22415 10.8830i 0.0882627 0.431877i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.2729i 0.919223i 0.888120 + 0.459612i \(0.152011\pi\)
−0.888120 + 0.459612i \(0.847989\pi\)
\(642\) 0 0
\(643\) 43.2624 1.70610 0.853052 0.521826i \(-0.174749\pi\)
0.853052 + 0.521826i \(0.174749\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.0085i 0.550730i 0.961340 + 0.275365i \(0.0887986\pi\)
−0.961340 + 0.275365i \(0.911201\pi\)
\(648\) 0 0
\(649\) 4.03016i 0.158198i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.86254 0.112020 0.0560099 0.998430i \(-0.482162\pi\)
0.0560099 + 0.998430i \(0.482162\pi\)
\(654\) 0 0
\(655\) 29.5657 + 6.04235i 1.15523 + 0.236094i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 41.1201i 1.60181i 0.598789 + 0.800907i \(0.295649\pi\)
−0.598789 + 0.800907i \(0.704351\pi\)
\(660\) 0 0
\(661\) 13.8089i 0.537102i −0.963265 0.268551i \(-0.913455\pi\)
0.963265 0.268551i \(-0.0865449\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 17.0038i 0.658391i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.12555 −0.0820559
\(672\) 0 0
\(673\) 36.5668i 1.40955i 0.709433 + 0.704773i \(0.248951\pi\)
−0.709433 + 0.704773i \(0.751049\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.4006i 0.553460i 0.960948 + 0.276730i \(0.0892507\pi\)
−0.960948 + 0.276730i \(0.910749\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.8321 −0.491008 −0.245504 0.969396i \(-0.578953\pi\)
−0.245504 + 0.969396i \(0.578953\pi\)
\(684\) 0 0
\(685\) 26.2450 + 5.36369i 1.00277 + 0.204936i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 33.7403 1.28540
\(690\) 0 0
\(691\) 33.4219i 1.27143i 0.771924 + 0.635715i \(0.219295\pi\)
−0.771924 + 0.635715i \(0.780705\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.733885 + 3.59096i −0.0278378 + 0.136213i
\(696\) 0 0
\(697\) 0.317224i 0.0120157i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.88834i 0.297938i −0.988842 0.148969i \(-0.952404\pi\)
0.988842 0.148969i \(-0.0475955\pi\)
\(702\) 0 0
\(703\) 1.38013 0.0520526
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 34.3463 1.28990 0.644951 0.764224i \(-0.276878\pi\)
0.644951 + 0.764224i \(0.276878\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11.6501i 0.436299i
\(714\) 0 0
\(715\) −1.17073 + 5.72847i −0.0437827 + 0.214232i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.1332 −0.788136 −0.394068 0.919081i \(-0.628933\pi\)
−0.394068 + 0.919081i \(0.628933\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8.62283 + 20.2150i −0.320244 + 0.750766i
\(726\) 0 0
\(727\) 33.6575 1.24829 0.624143 0.781310i \(-0.285448\pi\)
0.624143 + 0.781310i \(0.285448\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.149865 0.00554298
\(732\) 0 0
\(733\) −31.6620 −1.16946 −0.584731 0.811227i \(-0.698800\pi\)
−0.584731 + 0.811227i \(0.698800\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.08035 0.150301
\(738\) 0 0
\(739\) −14.5870 −0.536593 −0.268296 0.963336i \(-0.586461\pi\)
−0.268296 + 0.963336i \(0.586461\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.3676 1.33420 0.667099 0.744969i \(-0.267536\pi\)
0.667099 + 0.744969i \(0.267536\pi\)
\(744\) 0 0
\(745\) −5.15005 + 25.1996i −0.188683 + 0.923243i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −28.3450 −1.03432 −0.517162 0.855887i \(-0.673012\pi\)
−0.517162 + 0.855887i \(0.673012\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −31.7660 6.49202i −1.15608 0.236269i
\(756\) 0 0
\(757\) 45.7899i 1.66426i −0.554580 0.832130i \(-0.687121\pi\)
0.554580 0.832130i \(-0.312879\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.90030 −0.177636 −0.0888179 0.996048i \(-0.528309\pi\)
−0.0888179 + 0.996048i \(0.528309\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.8538 0.789094
\(768\) 0 0
\(769\) 24.7837i 0.893722i −0.894603 0.446861i \(-0.852542\pi\)
0.894603 0.446861i \(-0.147458\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.0720i 0.542103i −0.962565 0.271052i \(-0.912629\pi\)
0.962565 0.271052i \(-0.0873714\pi\)
\(774\) 0 0
\(775\) 5.90788 13.8502i 0.212217 0.497514i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.981181i 0.0351544i
\(780\) 0 0
\(781\) 4.99871 0.178868
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.4097 + 4.78425i 0.835529 + 0.170757i
\(786\) 0 0
\(787\) −4.58051 −0.163277 −0.0816387 0.996662i \(-0.526015\pi\)
−0.0816387 + 0.996662i \(0.526015\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 11.5259i 0.409297i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.9082i 0.846872i −0.905926 0.423436i \(-0.860824\pi\)
0.905926 0.423436i \(-0.139176\pi\)
\(798\) 0 0
\(799\) −0.264498 −0.00935725
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.92457i 0.209074i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 51.3808i 1.80645i −0.429166 0.903226i \(-0.641192\pi\)
0.429166 0.903226i \(-0.358808\pi\)
\(810\) 0 0
\(811\) 33.9917i 1.19361i 0.802387 + 0.596804i \(0.203563\pi\)
−0.802387 + 0.596804i \(0.796437\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.38434 26.3461i 0.188605 0.922862i
\(816\) 0 0
\(817\) 0.463537 0.0162171
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34.7652i 1.21332i −0.794963 0.606658i \(-0.792510\pi\)
0.794963 0.606658i \(-0.207490\pi\)
\(822\) 0 0
\(823\) 32.7568i 1.14183i 0.821009 + 0.570915i \(0.193411\pi\)
−0.821009 + 0.570915i \(0.806589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.43764 0.189085 0.0945427 0.995521i \(-0.469861\pi\)
0.0945427 + 0.995521i \(0.469861\pi\)
\(828\) 0 0
\(829\) 39.8207i 1.38303i −0.722362 0.691515i \(-0.756943\pi\)
0.722362 0.691515i \(-0.243057\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 11.2448 55.0218i 0.389143 1.90411i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.3647 0.530449 0.265225 0.964187i \(-0.414554\pi\)
0.265225 + 0.964187i \(0.414554\pi\)
\(840\) 0 0
\(841\) 9.68003 0.333794
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.58274 0.527834i −0.0888489 0.0181581i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 43.0483i 1.47568i
\(852\) 0 0
\(853\) −32.0274 −1.09660 −0.548299 0.836282i \(-0.684724\pi\)
−0.548299 + 0.836282i \(0.684724\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.39727i 0.184367i 0.995742 + 0.0921836i \(0.0293847\pi\)
−0.995742 + 0.0921836i \(0.970615\pi\)
\(858\) 0 0
\(859\) 6.83527i 0.233217i 0.993178 + 0.116608i \(0.0372022\pi\)
−0.993178 + 0.116608i \(0.962798\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.6416 0.396284 0.198142 0.980173i \(-0.436509\pi\)
0.198142 + 0.980173i \(0.436509\pi\)
\(864\) 0 0
\(865\) 4.01667 19.6539i 0.136571 0.668253i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.53125i 0.187635i
\(870\) 0 0
\(871\) 22.1259i 0.749708i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.1838i 1.12054i 0.828311 + 0.560269i \(0.189302\pi\)
−0.828311 + 0.560269i \(0.810698\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41.0831 −1.38412 −0.692062 0.721838i \(-0.743298\pi\)
−0.692062 + 0.721838i \(0.743298\pi\)
\(882\) 0 0
\(883\) 11.7151i 0.394244i 0.980379 + 0.197122i \(0.0631595\pi\)
−0.980379 + 0.197122i \(0.936841\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.9992i 0.537199i −0.963252 0.268600i \(-0.913439\pi\)
0.963252 0.268600i \(-0.0865608\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.818096 −0.0273765
\(894\) 0 0
\(895\) −11.2281 + 54.9398i −0.375312 + 1.83644i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.2370 0.441478
\(900\) 0 0
\(901\) 0.359296i 0.0119699i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.92941 + 9.44076i −0.0641357 + 0.313821i
\(906\) 0 0
\(907\) 6.46711i 0.214737i −0.994219 0.107368i \(-0.965758\pi\)
0.994219 0.107368i \(-0.0342424\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 30.3458i 1.00540i 0.864461 + 0.502700i \(0.167660\pi\)
−0.864461 + 0.502700i \(0.832340\pi\)
\(912\) 0 0
\(913\) −4.39208 −0.145357
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −47.8436 −1.57821 −0.789107 0.614256i \(-0.789456\pi\)
−0.789107 + 0.614256i \(0.789456\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 27.1058i 0.892199i
\(924\) 0 0
\(925\) 21.8302 51.1779i 0.717774 1.68272i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −31.4768 −1.03272 −0.516360 0.856372i \(-0.672713\pi\)
−0.516360 + 0.856372i \(0.672713\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.0610017 0.0124669i −0.00199497 0.000407712i
\(936\) 0 0
\(937\) −51.6376 −1.68693 −0.843464 0.537186i \(-0.819487\pi\)
−0.843464 + 0.537186i \(0.819487\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.20763 0.169764 0.0848819 0.996391i \(-0.472949\pi\)
0.0848819 + 0.996391i \(0.472949\pi\)
\(942\) 0 0
\(943\) 30.6045 0.996619
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −53.3747 −1.73445 −0.867223 0.497921i \(-0.834097\pi\)
−0.867223 + 0.497921i \(0.834097\pi\)
\(948\) 0 0
\(949\) −32.1263 −1.04287
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −58.6135 −1.89868 −0.949338 0.314257i \(-0.898245\pi\)
−0.949338 + 0.314257i \(0.898245\pi\)
\(954\) 0 0
\(955\) −5.66539 + 27.7212i −0.183328 + 0.897039i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 21.9308 0.707444
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.59839 + 37.1796i −0.244601 + 1.19685i
\(966\) 0 0
\(967\) 14.9345i 0.480262i 0.970740 + 0.240131i \(0.0771905\pi\)
−0.970740 + 0.240131i \(0.922810\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −23.8197 −0.764409 −0.382205 0.924078i \(-0.624835\pi\)
−0.382205 + 0.924078i \(0.624835\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.80443 −0.0577287 −0.0288643 0.999583i \(-0.509189\pi\)
−0.0288643 + 0.999583i \(0.509189\pi\)
\(978\) 0 0
\(979\) 6.95097i 0.222154i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.1677i 0.547563i 0.961792 + 0.273782i \(0.0882746\pi\)
−0.961792 + 0.273782i \(0.911725\pi\)
\(984\) 0 0
\(985\) 32.9284 + 6.72957i 1.04918 + 0.214422i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.4584i 0.459750i
\(990\) 0 0
\(991\) 15.2837 0.485504 0.242752 0.970088i \(-0.421950\pi\)
0.242752 + 0.970088i \(0.421950\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.46891 + 36.5460i −0.236780 + 1.15859i
\(996\) 0 0
\(997\) 50.6756 1.60491 0.802456 0.596712i \(-0.203526\pi\)
0.802456 + 0.596712i \(0.203526\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8820.2.f.a.4409.1 32
3.2 odd 2 inner 8820.2.f.a.4409.32 32
5.4 even 2 inner 8820.2.f.a.4409.4 32
7.4 even 3 1260.2.dc.a.89.12 yes 32
7.5 odd 6 1260.2.dc.a.269.6 yes 32
7.6 odd 2 inner 8820.2.f.a.4409.31 32
15.14 odd 2 inner 8820.2.f.a.4409.29 32
21.5 even 6 1260.2.dc.a.269.11 yes 32
21.11 odd 6 1260.2.dc.a.89.5 32
21.20 even 2 inner 8820.2.f.a.4409.2 32
35.4 even 6 1260.2.dc.a.89.11 yes 32
35.12 even 12 6300.2.ch.f.4301.13 32
35.18 odd 12 6300.2.ch.f.1601.4 32
35.19 odd 6 1260.2.dc.a.269.5 yes 32
35.32 odd 12 6300.2.ch.f.1601.14 32
35.33 even 12 6300.2.ch.f.4301.3 32
35.34 odd 2 inner 8820.2.f.a.4409.30 32
105.32 even 12 6300.2.ch.f.1601.13 32
105.47 odd 12 6300.2.ch.f.4301.14 32
105.53 even 12 6300.2.ch.f.1601.3 32
105.68 odd 12 6300.2.ch.f.4301.4 32
105.74 odd 6 1260.2.dc.a.89.6 yes 32
105.89 even 6 1260.2.dc.a.269.12 yes 32
105.104 even 2 inner 8820.2.f.a.4409.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.dc.a.89.5 32 21.11 odd 6
1260.2.dc.a.89.6 yes 32 105.74 odd 6
1260.2.dc.a.89.11 yes 32 35.4 even 6
1260.2.dc.a.89.12 yes 32 7.4 even 3
1260.2.dc.a.269.5 yes 32 35.19 odd 6
1260.2.dc.a.269.6 yes 32 7.5 odd 6
1260.2.dc.a.269.11 yes 32 21.5 even 6
1260.2.dc.a.269.12 yes 32 105.89 even 6
6300.2.ch.f.1601.3 32 105.53 even 12
6300.2.ch.f.1601.4 32 35.18 odd 12
6300.2.ch.f.1601.13 32 105.32 even 12
6300.2.ch.f.1601.14 32 35.32 odd 12
6300.2.ch.f.4301.3 32 35.33 even 12
6300.2.ch.f.4301.4 32 105.68 odd 12
6300.2.ch.f.4301.13 32 35.12 even 12
6300.2.ch.f.4301.14 32 105.47 odd 12
8820.2.f.a.4409.1 32 1.1 even 1 trivial
8820.2.f.a.4409.2 32 21.20 even 2 inner
8820.2.f.a.4409.3 32 105.104 even 2 inner
8820.2.f.a.4409.4 32 5.4 even 2 inner
8820.2.f.a.4409.29 32 15.14 odd 2 inner
8820.2.f.a.4409.30 32 35.34 odd 2 inner
8820.2.f.a.4409.31 32 7.6 odd 2 inner
8820.2.f.a.4409.32 32 3.2 odd 2 inner