Properties

Label 6300.2.ch.f.1601.13
Level $6300$
Weight $2$
Character 6300.1601
Analytic conductor $50.306$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6300,2,Mod(1601,6300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6300, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6300.1601");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.ch (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.13
Character \(\chi\) \(=\) 6300.1601
Dual form 6300.2.ch.f.4301.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.43620 + 2.22201i) q^{7} +O(q^{10})\) \(q+(1.43620 + 2.22201i) q^{7} +(0.601378 - 0.347206i) q^{11} -3.76549i q^{13} +(-0.0200491 - 0.0347261i) q^{17} +(0.107408 + 0.0620123i) q^{19} +(3.35023 + 1.93426i) q^{23} +4.39545i q^{29} +(-2.60805 + 1.50576i) q^{31} +(-5.56393 + 9.63702i) q^{37} +7.91118 q^{41} -3.73746 q^{43} +(-3.29812 + 5.71251i) q^{47} +(-2.87464 + 6.38251i) q^{49} +(7.75992 - 4.48019i) q^{53} +(-2.90185 - 5.02615i) q^{59} +(2.65084 + 1.53047i) q^{61} +(2.93799 + 5.08874i) q^{67} -7.19849i q^{71} +(7.38874 - 4.26589i) q^{73} +(1.63520 + 0.837609i) q^{77} +(3.98269 - 6.89822i) q^{79} +6.32489 q^{83} +(5.00494 - 8.66880i) q^{89} +(8.36695 - 5.40801i) q^{91} +11.5960i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 24 q^{19} + 24 q^{31} - 40 q^{49} - 24 q^{61} - 32 q^{79} - 56 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.43620 + 2.22201i 0.542834 + 0.839840i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.601378 0.347206i 0.181322 0.104687i −0.406591 0.913610i \(-0.633283\pi\)
0.587914 + 0.808924i \(0.299949\pi\)
\(12\) 0 0
\(13\) 3.76549i 1.04436i −0.852836 0.522179i \(-0.825119\pi\)
0.852836 0.522179i \(-0.174881\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.0200491 0.0347261i −0.00486263 0.00842231i 0.863584 0.504205i \(-0.168214\pi\)
−0.868446 + 0.495783i \(0.834881\pi\)
\(18\) 0 0
\(19\) 0.107408 + 0.0620123i 0.0246412 + 0.0142266i 0.512270 0.858824i \(-0.328805\pi\)
−0.487629 + 0.873051i \(0.662138\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.35023 + 1.93426i 0.698571 + 0.403320i 0.806815 0.590804i \(-0.201189\pi\)
−0.108244 + 0.994124i \(0.534523\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.39545i 0.816214i 0.912934 + 0.408107i \(0.133811\pi\)
−0.912934 + 0.408107i \(0.866189\pi\)
\(30\) 0 0
\(31\) −2.60805 + 1.50576i −0.468420 + 0.270442i −0.715578 0.698533i \(-0.753837\pi\)
0.247158 + 0.968975i \(0.420503\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.56393 + 9.63702i −0.914705 + 1.58432i −0.107373 + 0.994219i \(0.534244\pi\)
−0.807332 + 0.590097i \(0.799089\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.91118 1.23552 0.617759 0.786367i \(-0.288041\pi\)
0.617759 + 0.786367i \(0.288041\pi\)
\(42\) 0 0
\(43\) −3.73746 −0.569957 −0.284979 0.958534i \(-0.591986\pi\)
−0.284979 + 0.958534i \(0.591986\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.29812 + 5.71251i −0.481080 + 0.833255i −0.999764 0.0217106i \(-0.993089\pi\)
0.518684 + 0.854966i \(0.326422\pi\)
\(48\) 0 0
\(49\) −2.87464 + 6.38251i −0.410663 + 0.911787i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.75992 4.48019i 1.06591 0.615402i 0.138847 0.990314i \(-0.455660\pi\)
0.927061 + 0.374912i \(0.122327\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.90185 5.02615i −0.377789 0.654349i 0.612952 0.790121i \(-0.289982\pi\)
−0.990740 + 0.135771i \(0.956649\pi\)
\(60\) 0 0
\(61\) 2.65084 + 1.53047i 0.339406 + 0.195956i 0.660009 0.751257i \(-0.270552\pi\)
−0.320603 + 0.947214i \(0.603886\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.93799 + 5.08874i 0.358932 + 0.621689i 0.987783 0.155838i \(-0.0498076\pi\)
−0.628851 + 0.777526i \(0.716474\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.19849i 0.854303i −0.904180 0.427152i \(-0.859517\pi\)
0.904180 0.427152i \(-0.140483\pi\)
\(72\) 0 0
\(73\) 7.38874 4.26589i 0.864787 0.499285i −0.000825643 1.00000i \(-0.500263\pi\)
0.865612 + 0.500715i \(0.166929\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.63520 + 0.837609i 0.186348 + 0.0954544i
\(78\) 0 0
\(79\) 3.98269 6.89822i 0.448088 0.776110i −0.550174 0.835050i \(-0.685439\pi\)
0.998262 + 0.0589396i \(0.0187719\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.32489 0.694246 0.347123 0.937820i \(-0.387159\pi\)
0.347123 + 0.937820i \(0.387159\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.00494 8.66880i 0.530522 0.918891i −0.468844 0.883281i \(-0.655329\pi\)
0.999366 0.0356101i \(-0.0113374\pi\)
\(90\) 0 0
\(91\) 8.36695 5.40801i 0.877094 0.566913i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.5960i 1.17740i 0.808353 + 0.588698i \(0.200359\pi\)
−0.808353 + 0.588698i \(0.799641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.67710 2.90483i −0.166878 0.289041i 0.770442 0.637509i \(-0.220035\pi\)
−0.937321 + 0.348468i \(0.886702\pi\)
\(102\) 0 0
\(103\) −9.53305 5.50391i −0.939320 0.542316i −0.0495727 0.998771i \(-0.515786\pi\)
−0.889747 + 0.456454i \(0.849119\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.7697 + 6.79524i 1.13782 + 0.656920i 0.945890 0.324489i \(-0.105192\pi\)
0.191929 + 0.981409i \(0.438526\pi\)
\(108\) 0 0
\(109\) 3.47371 + 6.01665i 0.332721 + 0.576290i 0.983044 0.183367i \(-0.0586998\pi\)
−0.650323 + 0.759658i \(0.725366\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.5489i 1.27457i 0.770628 + 0.637285i \(0.219943\pi\)
−0.770628 + 0.637285i \(0.780057\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.0483670 0.0944230i 0.00443380 0.00865575i
\(120\) 0 0
\(121\) −5.25890 + 9.10868i −0.478081 + 0.828061i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.96761 −0.440804 −0.220402 0.975409i \(-0.570737\pi\)
−0.220402 + 0.975409i \(0.570737\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.74775 + 11.6874i −0.589554 + 1.02114i 0.404737 + 0.914433i \(0.367363\pi\)
−0.994291 + 0.106704i \(0.965970\pi\)
\(132\) 0 0
\(133\) 0.0164686 + 0.327725i 0.00142801 + 0.0284173i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3748 5.98987i 0.886375 0.511749i 0.0136198 0.999907i \(-0.495665\pi\)
0.872755 + 0.488158i \(0.162331\pi\)
\(138\) 0 0
\(139\) 1.63912i 0.139029i 0.997581 + 0.0695143i \(0.0221449\pi\)
−0.997581 + 0.0695143i \(0.977855\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.30740 2.26448i −0.109330 0.189366i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.96150 + 5.75128i 0.816078 + 0.471163i 0.849062 0.528293i \(-0.177168\pi\)
−0.0329840 + 0.999456i \(0.510501\pi\)
\(150\) 0 0
\(151\) −7.24992 12.5572i −0.589990 1.02189i −0.994233 0.107241i \(-0.965798\pi\)
0.404243 0.914652i \(-0.367535\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −9.25395 + 5.34277i −0.738546 + 0.426400i −0.821540 0.570150i \(-0.806885\pi\)
0.0829945 + 0.996550i \(0.473552\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.513680 + 10.2222i 0.0404836 + 0.805624i
\(162\) 0 0
\(163\) −6.01293 + 10.4147i −0.470969 + 0.815742i −0.999449 0.0332039i \(-0.989429\pi\)
0.528480 + 0.848946i \(0.322762\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.1151 1.94347 0.971733 0.236081i \(-0.0758629\pi\)
0.971733 + 0.236081i \(0.0758629\pi\)
\(168\) 0 0
\(169\) −1.17891 −0.0906854
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.48559 7.76926i 0.341033 0.590686i −0.643592 0.765369i \(-0.722557\pi\)
0.984625 + 0.174683i \(0.0558900\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.7179 + 12.5388i −1.62327 + 0.937198i −0.637237 + 0.770668i \(0.719923\pi\)
−0.986036 + 0.166530i \(0.946744\pi\)
\(180\) 0 0
\(181\) 4.30930i 0.320308i −0.987092 0.160154i \(-0.948801\pi\)
0.987092 0.160154i \(-0.0511991\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.0241142 0.0139223i −0.00176341 0.00101810i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.9583 6.32679i −0.792916 0.457790i 0.0480723 0.998844i \(-0.484692\pi\)
−0.840988 + 0.541054i \(0.818026\pi\)
\(192\) 0 0
\(193\) 8.48545 + 14.6972i 0.610796 + 1.05793i 0.991106 + 0.133071i \(0.0424839\pi\)
−0.380310 + 0.924859i \(0.624183\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.0304i 1.07087i 0.844576 + 0.535436i \(0.179853\pi\)
−0.844576 + 0.535436i \(0.820147\pi\)
\(198\) 0 0
\(199\) 14.4468 8.34085i 1.02411 0.591267i 0.108815 0.994062i \(-0.465294\pi\)
0.915290 + 0.402795i \(0.131961\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.76672 + 6.31276i −0.685489 + 0.443069i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.0861242 0.00595733
\(210\) 0 0
\(211\) −15.4819 −1.06582 −0.532908 0.846173i \(-0.678901\pi\)
−0.532908 + 0.846173i \(0.678901\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −7.09150 3.63253i −0.481402 0.246592i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.130761 + 0.0754947i −0.00879592 + 0.00507833i
\(222\) 0 0
\(223\) 25.1597i 1.68482i 0.538841 + 0.842408i \(0.318862\pi\)
−0.538841 + 0.842408i \(0.681138\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.7885 + 23.8824i 0.915175 + 1.58513i 0.806645 + 0.591036i \(0.201281\pi\)
0.108530 + 0.994093i \(0.465386\pi\)
\(228\) 0 0
\(229\) −19.8150 11.4402i −1.30941 0.755990i −0.327415 0.944881i \(-0.606178\pi\)
−0.981998 + 0.188891i \(0.939511\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.37912 + 4.83769i 0.548935 + 0.316928i 0.748692 0.662918i \(-0.230682\pi\)
−0.199758 + 0.979845i \(0.564015\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.30863i 0.278702i −0.990243 0.139351i \(-0.955498\pi\)
0.990243 0.139351i \(-0.0445016\pi\)
\(240\) 0 0
\(241\) 5.56526 3.21310i 0.358490 0.206974i −0.309928 0.950760i \(-0.600305\pi\)
0.668418 + 0.743786i \(0.266972\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.233507 0.404445i 0.0148577 0.0257342i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.89601 −0.624631 −0.312315 0.949978i \(-0.601105\pi\)
−0.312315 + 0.949978i \(0.601105\pi\)
\(252\) 0 0
\(253\) 2.68634 0.168889
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.7617 22.1039i 0.796051 1.37880i −0.126119 0.992015i \(-0.540252\pi\)
0.922170 0.386786i \(-0.126415\pi\)
\(258\) 0 0
\(259\) −29.4045 + 1.47761i −1.82710 + 0.0918144i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.24202 + 1.29443i −0.138249 + 0.0798182i −0.567529 0.823353i \(-0.692101\pi\)
0.429280 + 0.903171i \(0.358767\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.89054 + 6.73861i 0.237210 + 0.410860i 0.959913 0.280299i \(-0.0904336\pi\)
−0.722702 + 0.691159i \(0.757100\pi\)
\(270\) 0 0
\(271\) 25.5035 + 14.7245i 1.54923 + 0.894448i 0.998201 + 0.0599626i \(0.0190981\pi\)
0.551029 + 0.834486i \(0.314235\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.739081 1.28012i −0.0444070 0.0769153i 0.842968 0.537964i \(-0.180807\pi\)
−0.887375 + 0.461049i \(0.847473\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.00483i 0.238908i 0.992840 + 0.119454i \(0.0381145\pi\)
−0.992840 + 0.119454i \(0.961886\pi\)
\(282\) 0 0
\(283\) −16.8194 + 9.71071i −0.999812 + 0.577242i −0.908193 0.418552i \(-0.862538\pi\)
−0.0916195 + 0.995794i \(0.529204\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.3621 + 17.5787i 0.670681 + 1.03764i
\(288\) 0 0
\(289\) 8.49920 14.7210i 0.499953 0.865943i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.39101 −0.139684 −0.0698421 0.997558i \(-0.522250\pi\)
−0.0698421 + 0.997558i \(0.522250\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.28342 12.6153i 0.421211 0.729559i
\(300\) 0 0
\(301\) −5.36775 8.30466i −0.309392 0.478673i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.67320i 0.0954947i −0.998859 0.0477474i \(-0.984796\pi\)
0.998859 0.0477474i \(-0.0152042\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00471 1.74021i −0.0569719 0.0986783i 0.836133 0.548527i \(-0.184811\pi\)
−0.893105 + 0.449849i \(0.851478\pi\)
\(312\) 0 0
\(313\) 18.8564 + 10.8867i 1.06583 + 0.615355i 0.927038 0.374967i \(-0.122346\pi\)
0.138788 + 0.990322i \(0.455679\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.6685 + 8.46884i 0.823863 + 0.475657i 0.851747 0.523954i \(-0.175544\pi\)
−0.0278839 + 0.999611i \(0.508877\pi\)
\(318\) 0 0
\(319\) 1.52613 + 2.64333i 0.0854466 + 0.147998i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.00497317i 0.000276715i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −17.4300 + 0.875881i −0.960948 + 0.0482889i
\(330\) 0 0
\(331\) −13.4474 + 23.2916i −0.739137 + 1.28022i 0.213747 + 0.976889i \(0.431433\pi\)
−0.952884 + 0.303334i \(0.901900\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −16.5625 −0.902216 −0.451108 0.892469i \(-0.648971\pi\)
−0.451108 + 0.892469i \(0.648971\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.04562 + 1.81106i −0.0566233 + 0.0980745i
\(342\) 0 0
\(343\) −18.3106 + 2.77912i −0.988677 + 0.150058i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.5258 15.8920i 1.47766 0.853130i 0.477982 0.878369i \(-0.341368\pi\)
0.999681 + 0.0252399i \(0.00803498\pi\)
\(348\) 0 0
\(349\) 27.5288i 1.47358i 0.676119 + 0.736792i \(0.263660\pi\)
−0.676119 + 0.736792i \(0.736340\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.531900 0.921277i −0.0283102 0.0490347i 0.851523 0.524317i \(-0.175679\pi\)
−0.879833 + 0.475282i \(0.842346\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.1737 + 12.2246i 1.11750 + 0.645192i 0.940763 0.339066i \(-0.110111\pi\)
0.176742 + 0.984257i \(0.443444\pi\)
\(360\) 0 0
\(361\) −9.49231 16.4412i −0.499595 0.865324i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.94383 + 3.43167i −0.310266 + 0.179132i −0.647045 0.762452i \(-0.723996\pi\)
0.336780 + 0.941583i \(0.390662\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.0999 + 10.8081i 1.09545 + 0.561131i
\(372\) 0 0
\(373\) 7.13877 12.3647i 0.369631 0.640220i −0.619877 0.784699i \(-0.712817\pi\)
0.989508 + 0.144479i \(0.0461507\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.5510 0.852421
\(378\) 0 0
\(379\) 35.6634 1.83190 0.915952 0.401288i \(-0.131437\pi\)
0.915952 + 0.401288i \(0.131437\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.9004 + 24.0762i −0.710277 + 1.23024i 0.254476 + 0.967079i \(0.418097\pi\)
−0.964753 + 0.263157i \(0.915236\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.3179 + 7.68908i −0.675243 + 0.389852i −0.798060 0.602578i \(-0.794140\pi\)
0.122817 + 0.992429i \(0.460807\pi\)
\(390\) 0 0
\(391\) 0.155120i 0.00784478i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17.1518 + 9.90259i 0.860823 + 0.496997i 0.864288 0.502997i \(-0.167769\pi\)
−0.00346457 + 0.999994i \(0.501103\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.5175 10.1137i −0.874782 0.505056i −0.00584759 0.999983i \(-0.501861\pi\)
−0.868934 + 0.494927i \(0.835195\pi\)
\(402\) 0 0
\(403\) 5.66992 + 9.82059i 0.282439 + 0.489198i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.72733i 0.383029i
\(408\) 0 0
\(409\) 14.1784 8.18591i 0.701078 0.404767i −0.106671 0.994294i \(-0.534019\pi\)
0.807749 + 0.589527i \(0.200686\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.00050 13.6665i 0.344472 0.672485i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.6180 1.59349 0.796746 0.604314i \(-0.206553\pi\)
0.796746 + 0.604314i \(0.206553\pi\)
\(420\) 0 0
\(421\) 1.78518 0.0870045 0.0435022 0.999053i \(-0.486148\pi\)
0.0435022 + 0.999053i \(0.486148\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.406445 + 8.08826i 0.0196693 + 0.391418i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 27.0011 15.5891i 1.30060 0.750901i 0.320092 0.947386i \(-0.396286\pi\)
0.980507 + 0.196485i \(0.0629527\pi\)
\(432\) 0 0
\(433\) 1.35671i 0.0651994i 0.999468 + 0.0325997i \(0.0103786\pi\)
−0.999468 + 0.0325997i \(0.989621\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.239895 + 0.415511i 0.0114757 + 0.0198766i
\(438\) 0 0
\(439\) −7.38345 4.26284i −0.352393 0.203454i 0.313346 0.949639i \(-0.398550\pi\)
−0.665739 + 0.746185i \(0.731883\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.6655 + 7.31244i 0.601757 + 0.347424i 0.769732 0.638367i \(-0.220390\pi\)
−0.167976 + 0.985791i \(0.553723\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0320i 0.850984i −0.904962 0.425492i \(-0.860101\pi\)
0.904962 0.425492i \(-0.139899\pi\)
\(450\) 0 0
\(451\) 4.75761 2.74681i 0.224027 0.129342i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14.0717 + 24.3728i −0.658244 + 1.14011i 0.322826 + 0.946458i \(0.395367\pi\)
−0.981070 + 0.193654i \(0.937966\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.9940 1.02436 0.512181 0.858878i \(-0.328838\pi\)
0.512181 + 0.858878i \(0.328838\pi\)
\(462\) 0 0
\(463\) −15.7014 −0.729705 −0.364852 0.931065i \(-0.618881\pi\)
−0.364852 + 0.931065i \(0.618881\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.8548 + 29.1933i −0.779945 + 1.35091i 0.152027 + 0.988376i \(0.451420\pi\)
−0.931973 + 0.362529i \(0.881913\pi\)
\(468\) 0 0
\(469\) −7.08768 + 13.8367i −0.327278 + 0.638919i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.24763 + 1.29767i −0.103346 + 0.0596668i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.7047 30.6655i −0.808950 1.40114i −0.913592 0.406633i \(-0.866703\pi\)
0.104641 0.994510i \(-0.466631\pi\)
\(480\) 0 0
\(481\) 36.2881 + 20.9509i 1.65459 + 0.955280i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.52026 + 4.36522i 0.114204 + 0.197807i 0.917461 0.397825i \(-0.130235\pi\)
−0.803257 + 0.595632i \(0.796902\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.6130i 0.569215i −0.958644 0.284608i \(-0.908137\pi\)
0.958644 0.284608i \(-0.0918633\pi\)
\(492\) 0 0
\(493\) 0.152637 0.0881249i 0.00687441 0.00396894i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.9951 10.3385i 0.717478 0.463745i
\(498\) 0 0
\(499\) −0.115742 + 0.200472i −0.00518134 + 0.00897434i −0.868604 0.495506i \(-0.834983\pi\)
0.863423 + 0.504480i \(0.168316\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.9750 0.801465 0.400732 0.916195i \(-0.368756\pi\)
0.400732 + 0.916195i \(0.368756\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.49089 16.4387i 0.420676 0.728632i −0.575330 0.817922i \(-0.695126\pi\)
0.996006 + 0.0892892i \(0.0284595\pi\)
\(510\) 0 0
\(511\) 20.0906 + 10.2912i 0.888755 + 0.455254i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.58051i 0.201450i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.6325 25.3443i −0.641064 1.11035i −0.985196 0.171433i \(-0.945160\pi\)
0.344132 0.938921i \(-0.388173\pi\)
\(522\) 0 0
\(523\) −13.5626 7.83035i −0.593050 0.342397i 0.173253 0.984877i \(-0.444572\pi\)
−0.766302 + 0.642480i \(0.777906\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.104578 + 0.0603783i 0.00455550 + 0.00263012i
\(528\) 0 0
\(529\) −4.01731 6.95819i −0.174666 0.302530i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 29.7895i 1.29032i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.487301 + 4.83640i 0.0209895 + 0.208318i
\(540\) 0 0
\(541\) −11.3407 + 19.6426i −0.487573 + 0.844501i −0.999898 0.0142904i \(-0.995451\pi\)
0.512325 + 0.858792i \(0.328784\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6.67849 −0.285552 −0.142776 0.989755i \(-0.545603\pi\)
−0.142776 + 0.989755i \(0.545603\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.272572 + 0.472108i −0.0116120 + 0.0201125i
\(552\) 0 0
\(553\) 21.0479 1.05768i 0.895046 0.0449772i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25.3470 + 14.6341i −1.07399 + 0.620066i −0.929268 0.369407i \(-0.879561\pi\)
−0.144718 + 0.989473i \(0.546227\pi\)
\(558\) 0 0
\(559\) 14.0734i 0.595240i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.1420 + 33.1550i 0.806741 + 1.39732i 0.915110 + 0.403205i \(0.132104\pi\)
−0.108369 + 0.994111i \(0.534563\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.1572 + 9.90573i 0.719268 + 0.415270i 0.814483 0.580187i \(-0.197021\pi\)
−0.0952150 + 0.995457i \(0.530354\pi\)
\(570\) 0 0
\(571\) −10.4378 18.0788i −0.436809 0.756575i 0.560633 0.828065i \(-0.310558\pi\)
−0.997441 + 0.0714899i \(0.977225\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10.8306 + 6.25307i −0.450885 + 0.260319i −0.708204 0.706008i \(-0.750494\pi\)
0.257319 + 0.966327i \(0.417161\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.08382 + 14.0539i 0.376861 + 0.583056i
\(582\) 0 0
\(583\) 3.11110 5.38858i 0.128849 0.223172i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.4930 −0.845838 −0.422919 0.906168i \(-0.638994\pi\)
−0.422919 + 0.906168i \(0.638994\pi\)
\(588\) 0 0
\(589\) −0.373502 −0.0153899
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16.6389 28.8194i 0.683277 1.18347i −0.290698 0.956815i \(-0.593887\pi\)
0.973975 0.226656i \(-0.0727793\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −33.8034 + 19.5164i −1.38117 + 0.797419i −0.992298 0.123873i \(-0.960468\pi\)
−0.388871 + 0.921292i \(0.627135\pi\)
\(600\) 0 0
\(601\) 14.7657i 0.602304i −0.953576 0.301152i \(-0.902629\pi\)
0.953576 0.301152i \(-0.0973712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −3.43776 1.98479i −0.139534 0.0805602i 0.428608 0.903491i \(-0.359004\pi\)
−0.568142 + 0.822930i \(0.692338\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.5104 + 12.4190i 0.870218 + 0.502420i
\(612\) 0 0
\(613\) −17.5733 30.4379i −0.709780 1.22937i −0.964939 0.262476i \(-0.915461\pi\)
0.255159 0.966899i \(-0.417872\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.3102i 0.978692i −0.872090 0.489346i \(-0.837236\pi\)
0.872090 0.489346i \(-0.162764\pi\)
\(618\) 0 0
\(619\) −6.92178 + 3.99629i −0.278210 + 0.160625i −0.632613 0.774468i \(-0.718017\pi\)
0.354403 + 0.935093i \(0.384684\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 26.4503 1.32916i 1.05971 0.0532516i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.446208 0.0177915
\(630\) 0 0
\(631\) −14.1828 −0.564607 −0.282304 0.959325i \(-0.591099\pi\)
−0.282304 + 0.959325i \(0.591099\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 24.0333 + 10.8244i 0.952233 + 0.428879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20.1549 + 11.6364i −0.796070 + 0.459612i −0.842095 0.539329i \(-0.818678\pi\)
0.0460248 + 0.998940i \(0.485345\pi\)
\(642\) 0 0
\(643\) 43.2624i 1.70610i −0.521826 0.853052i \(-0.674749\pi\)
0.521826 0.853052i \(-0.325251\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.00423 12.1317i −0.275365 0.476946i 0.694862 0.719143i \(-0.255465\pi\)
−0.970227 + 0.242197i \(0.922132\pi\)
\(648\) 0 0
\(649\) −3.49022 2.01508i −0.137003 0.0790988i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.47903 1.43127i −0.0970120 0.0560099i 0.450709 0.892671i \(-0.351171\pi\)
−0.547721 + 0.836661i \(0.684505\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 41.1201i 1.60181i 0.598789 + 0.800907i \(0.295649\pi\)
−0.598789 + 0.800907i \(0.704351\pi\)
\(660\) 0 0
\(661\) −11.9588 + 6.90443i −0.465144 + 0.268551i −0.714205 0.699937i \(-0.753212\pi\)
0.249061 + 0.968488i \(0.419878\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.50192 + 14.7258i −0.329196 + 0.570184i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.12555 0.0820559
\(672\) 0 0
\(673\) 36.5668 1.40955 0.704773 0.709433i \(-0.251049\pi\)
0.704773 + 0.709433i \(0.251049\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.20030 + 12.4713i −0.276730 + 0.479310i −0.970570 0.240819i \(-0.922584\pi\)
0.693840 + 0.720129i \(0.255917\pi\)
\(678\) 0 0
\(679\) −25.7664 + 16.6542i −0.988825 + 0.639131i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.1129 + 6.41606i −0.425225 + 0.245504i −0.697310 0.716769i \(-0.745620\pi\)
0.272085 + 0.962273i \(0.412287\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −16.8701 29.2199i −0.642701 1.11319i
\(690\) 0 0
\(691\) −28.9442 16.7110i −1.10109 0.635715i −0.164584 0.986363i \(-0.552628\pi\)
−0.936507 + 0.350648i \(0.885961\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.158612 0.274724i −0.00600786 0.0104059i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.88834i 0.297938i 0.988842 + 0.148969i \(0.0475955\pi\)
−0.988842 + 0.148969i \(0.952404\pi\)
\(702\) 0 0
\(703\) −1.19523 + 0.690065i −0.0450789 + 0.0260263i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.04589 7.89847i 0.152161 0.297052i
\(708\) 0 0
\(709\) 17.1731 29.7448i 0.644951 1.11709i −0.339362 0.940656i \(-0.610211\pi\)
0.984313 0.176432i \(-0.0564556\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −11.6501 −0.436299
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.5666 18.3019i 0.394068 0.682546i −0.598914 0.800814i \(-0.704401\pi\)
0.992982 + 0.118268i \(0.0377340\pi\)
\(720\) 0 0
\(721\) −1.46167 29.0873i −0.0544355 1.08327i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 33.6575i 1.24829i 0.781310 + 0.624143i \(0.214552\pi\)
−0.781310 + 0.624143i \(0.785448\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.0749327 + 0.129787i 0.00277149 + 0.00480036i
\(732\) 0 0
\(733\) −27.4201 15.8310i −1.01278 0.584731i −0.100778 0.994909i \(-0.532133\pi\)
−0.912006 + 0.410178i \(0.865467\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.53368 + 2.04017i 0.130165 + 0.0751507i
\(738\) 0 0
\(739\) −7.29352 12.6327i −0.268296 0.464703i 0.700126 0.714020i \(-0.253127\pi\)
−0.968422 + 0.249317i \(0.919794\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.3676i 1.33420i 0.744969 + 0.667099i \(0.232464\pi\)
−0.744969 + 0.667099i \(0.767536\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.80461 + 35.9117i 0.0659390 + 1.31218i
\(750\) 0 0
\(751\) 14.1725 24.5475i 0.517162 0.895751i −0.482639 0.875819i \(-0.660322\pi\)
0.999801 0.0199317i \(-0.00634489\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 45.7899 1.66426 0.832130 0.554580i \(-0.187121\pi\)
0.832130 + 0.554580i \(0.187121\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.45015 + 4.24378i −0.0888179 + 0.153837i −0.907012 0.421105i \(-0.861642\pi\)
0.818194 + 0.574942i \(0.194976\pi\)
\(762\) 0 0
\(763\) −8.38008 + 16.3597i −0.303379 + 0.592263i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18.9259 + 10.9269i −0.683375 + 0.394547i
\(768\) 0 0
\(769\) 24.7837i 0.893722i 0.894603 + 0.446861i \(0.147458\pi\)
−0.894603 + 0.446861i \(0.852542\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.53601 13.0528i −0.271052 0.469475i 0.698080 0.716020i \(-0.254038\pi\)
−0.969131 + 0.246545i \(0.920705\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.849727 + 0.490590i 0.0304446 + 0.0175772i
\(780\) 0 0
\(781\) −2.49936 4.32901i −0.0894340 0.154904i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −3.96684 + 2.29025i −0.141402 + 0.0816387i −0.569032 0.822315i \(-0.692682\pi\)
0.427630 + 0.903954i \(0.359349\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −30.1057 + 19.4589i −1.07043 + 0.691880i
\(792\) 0 0
\(793\) 5.76295 9.98173i 0.204648 0.354462i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23.9082 −0.846872 −0.423436 0.905926i \(-0.639176\pi\)
−0.423436 + 0.905926i \(0.639176\pi\)
\(798\) 0 0
\(799\) 0.264498 0.00935725
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.96229 5.13083i 0.104537 0.181063i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −44.4970 + 25.6904i −1.56443 + 0.903226i −0.567633 + 0.823281i \(0.692141\pi\)
−0.996799 + 0.0799442i \(0.974526\pi\)
\(810\) 0 0
\(811\) 33.9917i 1.19361i 0.802387 + 0.596804i \(0.203563\pi\)
−0.802387 + 0.596804i \(0.796437\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.401435 0.231768i −0.0140444 0.00810855i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.1076 17.3826i −1.05076 0.606658i −0.127899 0.991787i \(-0.540823\pi\)
−0.922863 + 0.385129i \(0.874157\pi\)
\(822\) 0 0
\(823\) −16.3784 28.3682i −0.570915 0.988853i −0.996472 0.0839221i \(-0.973255\pi\)
0.425557 0.904931i \(-0.360078\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.43764i 0.189085i −0.995521 0.0945427i \(-0.969861\pi\)
0.995521 0.0945427i \(-0.0301389\pi\)
\(828\) 0 0
\(829\) 34.4858 19.9104i 1.19774 0.691515i 0.237689 0.971341i \(-0.423610\pi\)
0.960051 + 0.279826i \(0.0902768\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.279274 0.0281388i 0.00967626 0.000974951i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.3647 0.530449 0.265225 0.964187i \(-0.414554\pi\)
0.265225 + 0.964187i \(0.414554\pi\)
\(840\) 0 0
\(841\) 9.68003 0.333794
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −27.7924 + 1.39660i −0.954958 + 0.0479879i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −37.2809 + 21.5241i −1.27797 + 0.737838i
\(852\) 0 0
\(853\) 32.0274i 1.09660i 0.836282 + 0.548299i \(0.184724\pi\)
−0.836282 + 0.548299i \(0.815276\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.69864 4.67417i −0.0921836 0.159667i 0.816246 0.577704i \(-0.196051\pi\)
−0.908430 + 0.418038i \(0.862718\pi\)
\(858\) 0 0
\(859\) 5.91952 + 3.41764i 0.201971 + 0.116608i 0.597575 0.801813i \(-0.296131\pi\)
−0.395603 + 0.918422i \(0.629464\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.0819 5.82079i −0.343192 0.198142i 0.318491 0.947926i \(-0.396824\pi\)
−0.661683 + 0.749784i \(0.730157\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.53125i 0.187635i
\(870\) 0 0
\(871\) 19.1616 11.0630i 0.649266 0.374854i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.5919 28.7380i 0.560269 0.970415i −0.437204 0.899363i \(-0.644031\pi\)
0.997473 0.0710519i \(-0.0226356\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.0831 1.38412 0.692062 0.721838i \(-0.256702\pi\)
0.692062 + 0.721838i \(0.256702\pi\)
\(882\) 0 0
\(883\) 11.7151 0.394244 0.197122 0.980379i \(-0.436841\pi\)
0.197122 + 0.980379i \(0.436841\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.99958 13.8557i 0.268600 0.465228i −0.699901 0.714240i \(-0.746772\pi\)
0.968500 + 0.249012i \(0.0801058\pi\)
\(888\) 0 0
\(889\) −7.13450 11.0381i −0.239283 0.370205i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.708492 + 0.409048i −0.0237088 + 0.0136883i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.61849 11.4636i −0.220739 0.382331i
\(900\) 0 0
\(901\) −0.311159 0.179648i −0.0103662 0.00598494i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −3.23355 5.60068i −0.107368 0.185968i 0.807335 0.590093i \(-0.200909\pi\)
−0.914703 + 0.404126i \(0.867576\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 30.3458i 1.00540i −0.864461 0.502700i \(-0.832340\pi\)
0.864461 0.502700i \(-0.167660\pi\)
\(912\) 0 0
\(913\) 3.80365 2.19604i 0.125882 0.0726783i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −35.6607 + 1.79200i −1.17762 + 0.0591770i
\(918\) 0 0
\(919\) −23.9218 + 41.4337i −0.789107 + 1.36677i 0.137408 + 0.990515i \(0.456123\pi\)
−0.926515 + 0.376258i \(0.877210\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −27.1058 −0.892199
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.7384 27.2597i 0.516360 0.894361i −0.483460 0.875366i \(-0.660620\pi\)
0.999820 0.0189947i \(-0.00604655\pi\)
\(930\) 0 0
\(931\) −0.704555 + 0.507273i −0.0230909 + 0.0166252i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 51.6376i 1.68693i −0.537186 0.843464i \(-0.680513\pi\)
0.537186 0.843464i \(-0.319487\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.60381 + 4.50994i 0.0848819 + 0.147020i 0.905341 0.424686i \(-0.139615\pi\)
−0.820459 + 0.571705i \(0.806282\pi\)
\(942\) 0 0
\(943\) 26.5043 + 15.3022i 0.863097 + 0.498309i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −46.2239 26.6874i −1.50207 0.867223i −0.999997 0.00239939i \(-0.999236\pi\)
−0.502076 0.864823i \(-0.667430\pi\)
\(948\) 0 0
\(949\) −16.0632 27.8222i −0.521433 0.903148i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 58.6135i 1.89868i −0.314257 0.949338i \(-0.601755\pi\)
0.314257 0.949338i \(-0.398245\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 28.2098 + 14.4501i 0.910941 + 0.466618i
\(960\) 0 0
\(961\) −10.9654 + 18.9926i −0.353722 + 0.612664i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −14.9345 −0.480262 −0.240131 0.970740i \(-0.577190\pi\)
−0.240131 + 0.970740i \(0.577190\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.9098 + 20.6284i −0.382205 + 0.661998i −0.991377 0.131040i \(-0.958168\pi\)
0.609173 + 0.793038i \(0.291502\pi\)
\(972\) 0 0
\(973\) −3.64214 + 2.35411i −0.116762 + 0.0754694i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.56268 0.902213i 0.0499945 0.0288643i −0.474794 0.880097i \(-0.657478\pi\)
0.524789 + 0.851232i \(0.324144\pi\)
\(978\) 0 0
\(979\) 6.95097i 0.222154i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.58383 + 14.8676i 0.273782 + 0.474204i 0.969827 0.243794i \(-0.0783921\pi\)
−0.696045 + 0.717998i \(0.745059\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.5213 7.22920i −0.398155 0.229875i
\(990\) 0 0
\(991\) −7.64187 13.2361i −0.242752 0.420459i 0.718745 0.695274i \(-0.244717\pi\)
−0.961497 + 0.274815i \(0.911383\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 43.8863 25.3378i 1.38989 0.802456i 0.396591 0.917995i \(-0.370193\pi\)
0.993303 + 0.115540i \(0.0368598\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.ch.f.1601.13 32
3.2 odd 2 inner 6300.2.ch.f.1601.14 32
5.2 odd 4 1260.2.dc.a.89.6 yes 32
5.3 odd 4 1260.2.dc.a.89.5 32
5.4 even 2 inner 6300.2.ch.f.1601.3 32
7.3 odd 6 inner 6300.2.ch.f.4301.14 32
15.2 even 4 1260.2.dc.a.89.11 yes 32
15.8 even 4 1260.2.dc.a.89.12 yes 32
15.14 odd 2 inner 6300.2.ch.f.1601.4 32
21.17 even 6 inner 6300.2.ch.f.4301.13 32
35.2 odd 12 8820.2.f.a.4409.29 32
35.3 even 12 1260.2.dc.a.269.11 yes 32
35.12 even 12 8820.2.f.a.4409.3 32
35.17 even 12 1260.2.dc.a.269.12 yes 32
35.23 odd 12 8820.2.f.a.4409.32 32
35.24 odd 6 inner 6300.2.ch.f.4301.4 32
35.33 even 12 8820.2.f.a.4409.2 32
105.2 even 12 8820.2.f.a.4409.4 32
105.17 odd 12 1260.2.dc.a.269.5 yes 32
105.23 even 12 8820.2.f.a.4409.1 32
105.38 odd 12 1260.2.dc.a.269.6 yes 32
105.47 odd 12 8820.2.f.a.4409.30 32
105.59 even 6 inner 6300.2.ch.f.4301.3 32
105.68 odd 12 8820.2.f.a.4409.31 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.dc.a.89.5 32 5.3 odd 4
1260.2.dc.a.89.6 yes 32 5.2 odd 4
1260.2.dc.a.89.11 yes 32 15.2 even 4
1260.2.dc.a.89.12 yes 32 15.8 even 4
1260.2.dc.a.269.5 yes 32 105.17 odd 12
1260.2.dc.a.269.6 yes 32 105.38 odd 12
1260.2.dc.a.269.11 yes 32 35.3 even 12
1260.2.dc.a.269.12 yes 32 35.17 even 12
6300.2.ch.f.1601.3 32 5.4 even 2 inner
6300.2.ch.f.1601.4 32 15.14 odd 2 inner
6300.2.ch.f.1601.13 32 1.1 even 1 trivial
6300.2.ch.f.1601.14 32 3.2 odd 2 inner
6300.2.ch.f.4301.3 32 105.59 even 6 inner
6300.2.ch.f.4301.4 32 35.24 odd 6 inner
6300.2.ch.f.4301.13 32 21.17 even 6 inner
6300.2.ch.f.4301.14 32 7.3 odd 6 inner
8820.2.f.a.4409.1 32 105.23 even 12
8820.2.f.a.4409.2 32 35.33 even 12
8820.2.f.a.4409.3 32 35.12 even 12
8820.2.f.a.4409.4 32 105.2 even 12
8820.2.f.a.4409.29 32 35.2 odd 12
8820.2.f.a.4409.30 32 105.47 odd 12
8820.2.f.a.4409.31 32 105.68 odd 12
8820.2.f.a.4409.32 32 35.23 odd 12