Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6300,2,Mod(1601,6300)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6300, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6300.1601");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6300.ch (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(50.3057532734\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 1260) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1601.1 | 0 | 0 | 0 | 0 | 0 | −2.48577 | + | 0.906070i | 0 | 0 | 0 | ||||||||||||||||
1601.2 | 0 | 0 | 0 | 0 | 0 | −2.48577 | + | 0.906070i | 0 | 0 | 0 | ||||||||||||||||
1601.3 | 0 | 0 | 0 | 0 | 0 | −1.43620 | − | 2.22201i | 0 | 0 | 0 | ||||||||||||||||
1601.4 | 0 | 0 | 0 | 0 | 0 | −1.43620 | − | 2.22201i | 0 | 0 | 0 | ||||||||||||||||
1601.5 | 0 | 0 | 0 | 0 | 0 | −1.29877 | + | 2.30504i | 0 | 0 | 0 | ||||||||||||||||
1601.6 | 0 | 0 | 0 | 0 | 0 | −1.29877 | + | 2.30504i | 0 | 0 | 0 | ||||||||||||||||
1601.7 | 0 | 0 | 0 | 0 | 0 | −1.25359 | − | 2.32992i | 0 | 0 | 0 | ||||||||||||||||
1601.8 | 0 | 0 | 0 | 0 | 0 | −1.25359 | − | 2.32992i | 0 | 0 | 0 | ||||||||||||||||
1601.9 | 0 | 0 | 0 | 0 | 0 | 1.25359 | + | 2.32992i | 0 | 0 | 0 | ||||||||||||||||
1601.10 | 0 | 0 | 0 | 0 | 0 | 1.25359 | + | 2.32992i | 0 | 0 | 0 | ||||||||||||||||
1601.11 | 0 | 0 | 0 | 0 | 0 | 1.29877 | − | 2.30504i | 0 | 0 | 0 | ||||||||||||||||
1601.12 | 0 | 0 | 0 | 0 | 0 | 1.29877 | − | 2.30504i | 0 | 0 | 0 | ||||||||||||||||
1601.13 | 0 | 0 | 0 | 0 | 0 | 1.43620 | + | 2.22201i | 0 | 0 | 0 | ||||||||||||||||
1601.14 | 0 | 0 | 0 | 0 | 0 | 1.43620 | + | 2.22201i | 0 | 0 | 0 | ||||||||||||||||
1601.15 | 0 | 0 | 0 | 0 | 0 | 2.48577 | − | 0.906070i | 0 | 0 | 0 | ||||||||||||||||
1601.16 | 0 | 0 | 0 | 0 | 0 | 2.48577 | − | 0.906070i | 0 | 0 | 0 | ||||||||||||||||
4301.1 | 0 | 0 | 0 | 0 | 0 | −2.48577 | − | 0.906070i | 0 | 0 | 0 | ||||||||||||||||
4301.2 | 0 | 0 | 0 | 0 | 0 | −2.48577 | − | 0.906070i | 0 | 0 | 0 | ||||||||||||||||
4301.3 | 0 | 0 | 0 | 0 | 0 | −1.43620 | + | 2.22201i | 0 | 0 | 0 | ||||||||||||||||
4301.4 | 0 | 0 | 0 | 0 | 0 | −1.43620 | + | 2.22201i | 0 | 0 | 0 | ||||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
105.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 6300.2.ch.f | 32 | |
3.b | odd | 2 | 1 | inner | 6300.2.ch.f | 32 | |
5.b | even | 2 | 1 | inner | 6300.2.ch.f | 32 | |
5.c | odd | 4 | 2 | 1260.2.dc.a | ✓ | 32 | |
7.d | odd | 6 | 1 | inner | 6300.2.ch.f | 32 | |
15.d | odd | 2 | 1 | inner | 6300.2.ch.f | 32 | |
15.e | even | 4 | 2 | 1260.2.dc.a | ✓ | 32 | |
21.g | even | 6 | 1 | inner | 6300.2.ch.f | 32 | |
35.i | odd | 6 | 1 | inner | 6300.2.ch.f | 32 | |
35.k | even | 12 | 2 | 1260.2.dc.a | ✓ | 32 | |
35.k | even | 12 | 2 | 8820.2.f.a | 32 | ||
35.l | odd | 12 | 2 | 8820.2.f.a | 32 | ||
105.p | even | 6 | 1 | inner | 6300.2.ch.f | 32 | |
105.w | odd | 12 | 2 | 1260.2.dc.a | ✓ | 32 | |
105.w | odd | 12 | 2 | 8820.2.f.a | 32 | ||
105.x | even | 12 | 2 | 8820.2.f.a | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1260.2.dc.a | ✓ | 32 | 5.c | odd | 4 | 2 | |
1260.2.dc.a | ✓ | 32 | 15.e | even | 4 | 2 | |
1260.2.dc.a | ✓ | 32 | 35.k | even | 12 | 2 | |
1260.2.dc.a | ✓ | 32 | 105.w | odd | 12 | 2 | |
6300.2.ch.f | 32 | 1.a | even | 1 | 1 | trivial | |
6300.2.ch.f | 32 | 3.b | odd | 2 | 1 | inner | |
6300.2.ch.f | 32 | 5.b | even | 2 | 1 | inner | |
6300.2.ch.f | 32 | 7.d | odd | 6 | 1 | inner | |
6300.2.ch.f | 32 | 15.d | odd | 2 | 1 | inner | |
6300.2.ch.f | 32 | 21.g | even | 6 | 1 | inner | |
6300.2.ch.f | 32 | 35.i | odd | 6 | 1 | inner | |
6300.2.ch.f | 32 | 105.p | even | 6 | 1 | inner | |
8820.2.f.a | 32 | 35.k | even | 12 | 2 | ||
8820.2.f.a | 32 | 35.l | odd | 12 | 2 | ||
8820.2.f.a | 32 | 105.w | odd | 12 | 2 | ||
8820.2.f.a | 32 | 105.x | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6300, [\chi])\):
\( T_{11}^{16} - 56 T_{11}^{14} + 2296 T_{11}^{12} - 43004 T_{11}^{10} + 591808 T_{11}^{8} - 1607312 T_{11}^{6} + \cdots + 614656 \) |
\( T_{37}^{16} + 232 T_{37}^{14} + 37812 T_{37}^{12} + 3065044 T_{37}^{10} + 180918823 T_{37}^{8} + \cdots + 9116621361 \) |