Properties

Label 891.2.a.n.1.3
Level $891$
Weight $2$
Character 891.1
Self dual yes
Analytic conductor $7.115$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(1,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.52892\) of defining polynomial
Character \(\chi\) \(=\) 891.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52892 q^{2} +4.39543 q^{4} -0.528918 q^{5} +0.133492 q^{7} +6.05784 q^{8} -1.33759 q^{10} +1.00000 q^{11} +2.52892 q^{13} +0.337590 q^{14} +6.52892 q^{16} +7.92434 q^{17} -3.66241 q^{19} -2.32482 q^{20} +2.52892 q^{22} -4.92434 q^{23} -4.72025 q^{25} +6.39543 q^{26} +0.586754 q^{28} +3.60457 q^{29} -7.39543 q^{31} +4.39543 q^{32} +20.0400 q^{34} -0.0706063 q^{35} +7.79085 q^{37} -9.26193 q^{38} -3.20410 q^{40} +3.39543 q^{41} +2.13349 q^{43} +4.39543 q^{44} -12.4533 q^{46} +5.66241 q^{47} -6.98218 q^{49} -11.9371 q^{50} +11.1157 q^{52} -13.2441 q^{53} -0.528918 q^{55} +0.808672 q^{56} +9.11567 q^{58} -12.7730 q^{59} +0.866508 q^{61} -18.7024 q^{62} -1.94216 q^{64} -1.33759 q^{65} -9.79590 q^{67} +34.8309 q^{68} -0.178557 q^{70} +1.12844 q^{71} -5.52387 q^{73} +19.7024 q^{74} -16.0979 q^{76} +0.133492 q^{77} -13.3776 q^{79} -3.45326 q^{80} +8.58675 q^{82} +6.00000 q^{83} -4.19133 q^{85} +5.39543 q^{86} +6.05784 q^{88} +14.3954 q^{89} +0.337590 q^{91} -21.6446 q^{92} +14.3198 q^{94} +1.93711 q^{95} -11.8487 q^{97} -17.6574 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} + 6 q^{5} + 3 q^{8} - 12 q^{10} + 3 q^{11} + 9 q^{14} + 12 q^{16} + 9 q^{17} - 3 q^{19} + 9 q^{20} + 9 q^{25} + 12 q^{26} - 21 q^{28} + 18 q^{29} - 15 q^{31} + 6 q^{32} + 15 q^{34} - 9 q^{35}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.52892 1.78822 0.894108 0.447852i \(-0.147811\pi\)
0.894108 + 0.447852i \(0.147811\pi\)
\(3\) 0 0
\(4\) 4.39543 2.19771
\(5\) −0.528918 −0.236539 −0.118270 0.992982i \(-0.537735\pi\)
−0.118270 + 0.992982i \(0.537735\pi\)
\(6\) 0 0
\(7\) 0.133492 0.0504552 0.0252276 0.999682i \(-0.491969\pi\)
0.0252276 + 0.999682i \(0.491969\pi\)
\(8\) 6.05784 2.14177
\(9\) 0 0
\(10\) −1.33759 −0.422983
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.52892 0.701396 0.350698 0.936489i \(-0.385944\pi\)
0.350698 + 0.936489i \(0.385944\pi\)
\(14\) 0.337590 0.0902248
\(15\) 0 0
\(16\) 6.52892 1.63223
\(17\) 7.92434 1.92194 0.960968 0.276660i \(-0.0892276\pi\)
0.960968 + 0.276660i \(0.0892276\pi\)
\(18\) 0 0
\(19\) −3.66241 −0.840214 −0.420107 0.907474i \(-0.638008\pi\)
−0.420107 + 0.907474i \(0.638008\pi\)
\(20\) −2.32482 −0.519846
\(21\) 0 0
\(22\) 2.52892 0.539167
\(23\) −4.92434 −1.02680 −0.513398 0.858150i \(-0.671614\pi\)
−0.513398 + 0.858150i \(0.671614\pi\)
\(24\) 0 0
\(25\) −4.72025 −0.944049
\(26\) 6.39543 1.25425
\(27\) 0 0
\(28\) 0.586754 0.110886
\(29\) 3.60457 0.669353 0.334676 0.942333i \(-0.391373\pi\)
0.334676 + 0.942333i \(0.391373\pi\)
\(30\) 0 0
\(31\) −7.39543 −1.32826 −0.664129 0.747618i \(-0.731197\pi\)
−0.664129 + 0.747618i \(0.731197\pi\)
\(32\) 4.39543 0.777009
\(33\) 0 0
\(34\) 20.0400 3.43683
\(35\) −0.0706063 −0.0119346
\(36\) 0 0
\(37\) 7.79085 1.28081 0.640404 0.768038i \(-0.278767\pi\)
0.640404 + 0.768038i \(0.278767\pi\)
\(38\) −9.26193 −1.50248
\(39\) 0 0
\(40\) −3.20410 −0.506612
\(41\) 3.39543 0.530276 0.265138 0.964210i \(-0.414582\pi\)
0.265138 + 0.964210i \(0.414582\pi\)
\(42\) 0 0
\(43\) 2.13349 0.325354 0.162677 0.986679i \(-0.447987\pi\)
0.162677 + 0.986679i \(0.447987\pi\)
\(44\) 4.39543 0.662635
\(45\) 0 0
\(46\) −12.4533 −1.83613
\(47\) 5.66241 0.825947 0.412974 0.910743i \(-0.364490\pi\)
0.412974 + 0.910743i \(0.364490\pi\)
\(48\) 0 0
\(49\) −6.98218 −0.997454
\(50\) −11.9371 −1.68816
\(51\) 0 0
\(52\) 11.1157 1.54147
\(53\) −13.2441 −1.81922 −0.909609 0.415464i \(-0.863619\pi\)
−0.909609 + 0.415464i \(0.863619\pi\)
\(54\) 0 0
\(55\) −0.528918 −0.0713193
\(56\) 0.808672 0.108063
\(57\) 0 0
\(58\) 9.11567 1.19695
\(59\) −12.7730 −1.66291 −0.831454 0.555594i \(-0.812491\pi\)
−0.831454 + 0.555594i \(0.812491\pi\)
\(60\) 0 0
\(61\) 0.866508 0.110945 0.0554725 0.998460i \(-0.482333\pi\)
0.0554725 + 0.998460i \(0.482333\pi\)
\(62\) −18.7024 −2.37521
\(63\) 0 0
\(64\) −1.94216 −0.242771
\(65\) −1.33759 −0.165908
\(66\) 0 0
\(67\) −9.79590 −1.19676 −0.598380 0.801212i \(-0.704189\pi\)
−0.598380 + 0.801212i \(0.704189\pi\)
\(68\) 34.8309 4.22386
\(69\) 0 0
\(70\) −0.178557 −0.0213417
\(71\) 1.12844 0.133921 0.0669607 0.997756i \(-0.478670\pi\)
0.0669607 + 0.997756i \(0.478670\pi\)
\(72\) 0 0
\(73\) −5.52387 −0.646520 −0.323260 0.946310i \(-0.604779\pi\)
−0.323260 + 0.946310i \(0.604779\pi\)
\(74\) 19.7024 2.29036
\(75\) 0 0
\(76\) −16.0979 −1.84655
\(77\) 0.133492 0.0152128
\(78\) 0 0
\(79\) −13.3776 −1.50510 −0.752549 0.658536i \(-0.771176\pi\)
−0.752549 + 0.658536i \(0.771176\pi\)
\(80\) −3.45326 −0.386086
\(81\) 0 0
\(82\) 8.58675 0.948248
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −4.19133 −0.454613
\(86\) 5.39543 0.581804
\(87\) 0 0
\(88\) 6.05784 0.645767
\(89\) 14.3954 1.52591 0.762956 0.646450i \(-0.223747\pi\)
0.762956 + 0.646450i \(0.223747\pi\)
\(90\) 0 0
\(91\) 0.337590 0.0353891
\(92\) −21.6446 −2.25660
\(93\) 0 0
\(94\) 14.3198 1.47697
\(95\) 1.93711 0.198744
\(96\) 0 0
\(97\) −11.8487 −1.20305 −0.601526 0.798853i \(-0.705440\pi\)
−0.601526 + 0.798853i \(0.705440\pi\)
\(98\) −17.6574 −1.78366
\(99\) 0 0
\(100\) −20.7475 −2.07475
\(101\) 9.44821 0.940132 0.470066 0.882631i \(-0.344230\pi\)
0.470066 + 0.882631i \(0.344230\pi\)
\(102\) 0 0
\(103\) 10.6574 1.05010 0.525050 0.851071i \(-0.324046\pi\)
0.525050 + 0.851071i \(0.324046\pi\)
\(104\) 15.3198 1.50223
\(105\) 0 0
\(106\) −33.4933 −3.25315
\(107\) 3.05784 0.295612 0.147806 0.989016i \(-0.452779\pi\)
0.147806 + 0.989016i \(0.452779\pi\)
\(108\) 0 0
\(109\) −11.1157 −1.06469 −0.532344 0.846528i \(-0.678689\pi\)
−0.532344 + 0.846528i \(0.678689\pi\)
\(110\) −1.33759 −0.127534
\(111\) 0 0
\(112\) 0.871558 0.0823545
\(113\) 2.19133 0.206143 0.103071 0.994674i \(-0.467133\pi\)
0.103071 + 0.994674i \(0.467133\pi\)
\(114\) 0 0
\(115\) 2.60457 0.242878
\(116\) 15.8436 1.47104
\(117\) 0 0
\(118\) −32.3019 −2.97364
\(119\) 1.05784 0.0969717
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 2.19133 0.198394
\(123\) 0 0
\(124\) −32.5060 −2.91913
\(125\) 5.14121 0.459844
\(126\) 0 0
\(127\) 15.2441 1.35270 0.676348 0.736582i \(-0.263561\pi\)
0.676348 + 0.736582i \(0.263561\pi\)
\(128\) −13.7024 −1.21113
\(129\) 0 0
\(130\) −3.38266 −0.296679
\(131\) 6.31977 0.552161 0.276080 0.961135i \(-0.410964\pi\)
0.276080 + 0.961135i \(0.410964\pi\)
\(132\) 0 0
\(133\) −0.488902 −0.0423932
\(134\) −24.7730 −2.14006
\(135\) 0 0
\(136\) 48.0044 4.11634
\(137\) 15.0979 1.28990 0.644948 0.764226i \(-0.276879\pi\)
0.644948 + 0.764226i \(0.276879\pi\)
\(138\) 0 0
\(139\) −10.3376 −0.876823 −0.438411 0.898774i \(-0.644459\pi\)
−0.438411 + 0.898774i \(0.644459\pi\)
\(140\) −0.310345 −0.0262289
\(141\) 0 0
\(142\) 2.85374 0.239480
\(143\) 2.52892 0.211479
\(144\) 0 0
\(145\) −1.90652 −0.158328
\(146\) −13.9694 −1.15612
\(147\) 0 0
\(148\) 34.2441 2.81485
\(149\) −9.85374 −0.807250 −0.403625 0.914925i \(-0.632250\pi\)
−0.403625 + 0.914925i \(0.632250\pi\)
\(150\) 0 0
\(151\) 15.3598 1.24996 0.624981 0.780640i \(-0.285107\pi\)
0.624981 + 0.780640i \(0.285107\pi\)
\(152\) −22.1863 −1.79954
\(153\) 0 0
\(154\) 0.337590 0.0272038
\(155\) 3.91157 0.314185
\(156\) 0 0
\(157\) −9.13349 −0.728932 −0.364466 0.931217i \(-0.618748\pi\)
−0.364466 + 0.931217i \(0.618748\pi\)
\(158\) −33.8309 −2.69144
\(159\) 0 0
\(160\) −2.32482 −0.183793
\(161\) −0.657360 −0.0518072
\(162\) 0 0
\(163\) 14.9872 1.17389 0.586945 0.809627i \(-0.300330\pi\)
0.586945 + 0.809627i \(0.300330\pi\)
\(164\) 14.9243 1.16540
\(165\) 0 0
\(166\) 15.1735 1.17769
\(167\) 9.86651 0.763493 0.381747 0.924267i \(-0.375323\pi\)
0.381747 + 0.924267i \(0.375323\pi\)
\(168\) 0 0
\(169\) −6.60457 −0.508044
\(170\) −10.5995 −0.812946
\(171\) 0 0
\(172\) 9.37761 0.715036
\(173\) 8.07566 0.613981 0.306990 0.951713i \(-0.400678\pi\)
0.306990 + 0.951713i \(0.400678\pi\)
\(174\) 0 0
\(175\) −0.630115 −0.0476322
\(176\) 6.52892 0.492136
\(177\) 0 0
\(178\) 36.4049 2.72866
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) 9.79590 0.728124 0.364062 0.931375i \(-0.381390\pi\)
0.364062 + 0.931375i \(0.381390\pi\)
\(182\) 0.853738 0.0632832
\(183\) 0 0
\(184\) −29.8309 −2.19916
\(185\) −4.12072 −0.302961
\(186\) 0 0
\(187\) 7.92434 0.579485
\(188\) 24.8887 1.81520
\(189\) 0 0
\(190\) 4.89880 0.355397
\(191\) −17.7603 −1.28509 −0.642544 0.766249i \(-0.722121\pi\)
−0.642544 + 0.766249i \(0.722121\pi\)
\(192\) 0 0
\(193\) −4.91157 −0.353543 −0.176771 0.984252i \(-0.556565\pi\)
−0.176771 + 0.984252i \(0.556565\pi\)
\(194\) −29.9644 −2.15132
\(195\) 0 0
\(196\) −30.6897 −2.19212
\(197\) −5.11567 −0.364477 −0.182238 0.983254i \(-0.558334\pi\)
−0.182238 + 0.983254i \(0.558334\pi\)
\(198\) 0 0
\(199\) −0.924344 −0.0655250 −0.0327625 0.999463i \(-0.510430\pi\)
−0.0327625 + 0.999463i \(0.510430\pi\)
\(200\) −28.5945 −2.02193
\(201\) 0 0
\(202\) 23.8938 1.68116
\(203\) 0.481182 0.0337723
\(204\) 0 0
\(205\) −1.79590 −0.125431
\(206\) 26.9516 1.87781
\(207\) 0 0
\(208\) 16.5111 1.14484
\(209\) −3.66241 −0.253334
\(210\) 0 0
\(211\) −25.9644 −1.78746 −0.893730 0.448605i \(-0.851921\pi\)
−0.893730 + 0.448605i \(0.851921\pi\)
\(212\) −58.2135 −3.99812
\(213\) 0 0
\(214\) 7.73302 0.528618
\(215\) −1.12844 −0.0769591
\(216\) 0 0
\(217\) −0.987230 −0.0670175
\(218\) −28.1106 −1.90389
\(219\) 0 0
\(220\) −2.32482 −0.156739
\(221\) 20.0400 1.34804
\(222\) 0 0
\(223\) 6.25688 0.418992 0.209496 0.977810i \(-0.432818\pi\)
0.209496 + 0.977810i \(0.432818\pi\)
\(224\) 0.586754 0.0392041
\(225\) 0 0
\(226\) 5.54169 0.368628
\(227\) 2.45326 0.162829 0.0814144 0.996680i \(-0.474056\pi\)
0.0814144 + 0.996680i \(0.474056\pi\)
\(228\) 0 0
\(229\) 22.2364 1.46942 0.734711 0.678380i \(-0.237318\pi\)
0.734711 + 0.678380i \(0.237318\pi\)
\(230\) 6.58675 0.434318
\(231\) 0 0
\(232\) 21.8359 1.43360
\(233\) −5.94216 −0.389284 −0.194642 0.980874i \(-0.562355\pi\)
−0.194642 + 0.980874i \(0.562355\pi\)
\(234\) 0 0
\(235\) −2.99495 −0.195369
\(236\) −56.1429 −3.65459
\(237\) 0 0
\(238\) 2.67518 0.173406
\(239\) −6.48890 −0.419732 −0.209866 0.977730i \(-0.567303\pi\)
−0.209866 + 0.977730i \(0.567303\pi\)
\(240\) 0 0
\(241\) −15.9872 −1.02983 −0.514914 0.857242i \(-0.672176\pi\)
−0.514914 + 0.857242i \(0.672176\pi\)
\(242\) 2.52892 0.162565
\(243\) 0 0
\(244\) 3.80867 0.243825
\(245\) 3.69300 0.235937
\(246\) 0 0
\(247\) −9.26193 −0.589323
\(248\) −44.8003 −2.84482
\(249\) 0 0
\(250\) 13.0017 0.822300
\(251\) 21.0222 1.32691 0.663455 0.748217i \(-0.269090\pi\)
0.663455 + 0.748217i \(0.269090\pi\)
\(252\) 0 0
\(253\) −4.92434 −0.309591
\(254\) 38.5511 2.41891
\(255\) 0 0
\(256\) −30.7680 −1.92300
\(257\) 1.28480 0.0801439 0.0400719 0.999197i \(-0.487241\pi\)
0.0400719 + 0.999197i \(0.487241\pi\)
\(258\) 0 0
\(259\) 1.04002 0.0646234
\(260\) −5.87928 −0.364617
\(261\) 0 0
\(262\) 15.9822 0.987382
\(263\) −17.9294 −1.10557 −0.552787 0.833323i \(-0.686436\pi\)
−0.552787 + 0.833323i \(0.686436\pi\)
\(264\) 0 0
\(265\) 7.00505 0.430317
\(266\) −1.23639 −0.0758081
\(267\) 0 0
\(268\) −43.0572 −2.63013
\(269\) 31.2313 1.90421 0.952104 0.305773i \(-0.0989150\pi\)
0.952104 + 0.305773i \(0.0989150\pi\)
\(270\) 0 0
\(271\) 20.2391 1.22944 0.614718 0.788747i \(-0.289270\pi\)
0.614718 + 0.788747i \(0.289270\pi\)
\(272\) 51.7374 3.13704
\(273\) 0 0
\(274\) 38.1812 2.30661
\(275\) −4.72025 −0.284642
\(276\) 0 0
\(277\) 22.5161 1.35286 0.676432 0.736505i \(-0.263525\pi\)
0.676432 + 0.736505i \(0.263525\pi\)
\(278\) −26.1429 −1.56795
\(279\) 0 0
\(280\) −0.427721 −0.0255612
\(281\) −10.8487 −0.647178 −0.323589 0.946198i \(-0.604890\pi\)
−0.323589 + 0.946198i \(0.604890\pi\)
\(282\) 0 0
\(283\) 18.4882 1.09901 0.549506 0.835490i \(-0.314816\pi\)
0.549506 + 0.835490i \(0.314816\pi\)
\(284\) 4.95998 0.294321
\(285\) 0 0
\(286\) 6.39543 0.378169
\(287\) 0.453262 0.0267552
\(288\) 0 0
\(289\) 45.7952 2.69384
\(290\) −4.82144 −0.283125
\(291\) 0 0
\(292\) −24.2798 −1.42087
\(293\) 12.4933 0.729865 0.364933 0.931034i \(-0.381092\pi\)
0.364933 + 0.931034i \(0.381092\pi\)
\(294\) 0 0
\(295\) 6.75589 0.393343
\(296\) 47.1957 2.74319
\(297\) 0 0
\(298\) −24.9193 −1.44354
\(299\) −12.4533 −0.720191
\(300\) 0 0
\(301\) 0.284804 0.0164158
\(302\) 38.8436 2.23520
\(303\) 0 0
\(304\) −23.9116 −1.37142
\(305\) −0.458312 −0.0262429
\(306\) 0 0
\(307\) −23.5639 −1.34486 −0.672431 0.740160i \(-0.734750\pi\)
−0.672431 + 0.740160i \(0.734750\pi\)
\(308\) 0.586754 0.0334334
\(309\) 0 0
\(310\) 9.89205 0.561831
\(311\) −8.73807 −0.495490 −0.247745 0.968825i \(-0.579690\pi\)
−0.247745 + 0.968825i \(0.579690\pi\)
\(312\) 0 0
\(313\) −10.8665 −0.614211 −0.307106 0.951675i \(-0.599361\pi\)
−0.307106 + 0.951675i \(0.599361\pi\)
\(314\) −23.0979 −1.30349
\(315\) 0 0
\(316\) −58.8003 −3.30777
\(317\) 13.4005 0.752646 0.376323 0.926489i \(-0.377188\pi\)
0.376323 + 0.926489i \(0.377188\pi\)
\(318\) 0 0
\(319\) 3.60457 0.201817
\(320\) 1.02725 0.0574248
\(321\) 0 0
\(322\) −1.66241 −0.0926425
\(323\) −29.0222 −1.61484
\(324\) 0 0
\(325\) −11.9371 −0.662152
\(326\) 37.9015 2.09917
\(327\) 0 0
\(328\) 20.5689 1.13573
\(329\) 0.755886 0.0416733
\(330\) 0 0
\(331\) 4.40048 0.241872 0.120936 0.992660i \(-0.461410\pi\)
0.120936 + 0.992660i \(0.461410\pi\)
\(332\) 26.3726 1.44738
\(333\) 0 0
\(334\) 24.9516 1.36529
\(335\) 5.18123 0.283081
\(336\) 0 0
\(337\) 32.9593 1.79541 0.897704 0.440599i \(-0.145234\pi\)
0.897704 + 0.440599i \(0.145234\pi\)
\(338\) −16.7024 −0.908492
\(339\) 0 0
\(340\) −18.4227 −0.999110
\(341\) −7.39543 −0.400485
\(342\) 0 0
\(343\) −1.86651 −0.100782
\(344\) 12.9243 0.696834
\(345\) 0 0
\(346\) 20.4227 1.09793
\(347\) 29.0750 1.56083 0.780413 0.625264i \(-0.215009\pi\)
0.780413 + 0.625264i \(0.215009\pi\)
\(348\) 0 0
\(349\) 4.79085 0.256448 0.128224 0.991745i \(-0.459072\pi\)
0.128224 + 0.991745i \(0.459072\pi\)
\(350\) −1.59351 −0.0851766
\(351\) 0 0
\(352\) 4.39543 0.234277
\(353\) 4.66746 0.248424 0.124212 0.992256i \(-0.460360\pi\)
0.124212 + 0.992256i \(0.460360\pi\)
\(354\) 0 0
\(355\) −0.596853 −0.0316777
\(356\) 63.2740 3.35352
\(357\) 0 0
\(358\) −15.1735 −0.801945
\(359\) −15.6446 −0.825690 −0.412845 0.910801i \(-0.635465\pi\)
−0.412845 + 0.910801i \(0.635465\pi\)
\(360\) 0 0
\(361\) −5.58675 −0.294040
\(362\) 24.7730 1.30204
\(363\) 0 0
\(364\) 1.48385 0.0777750
\(365\) 2.92167 0.152927
\(366\) 0 0
\(367\) 6.01782 0.314128 0.157064 0.987588i \(-0.449797\pi\)
0.157064 + 0.987588i \(0.449797\pi\)
\(368\) −32.1506 −1.67597
\(369\) 0 0
\(370\) −10.4210 −0.541760
\(371\) −1.76798 −0.0917891
\(372\) 0 0
\(373\) 22.3547 1.15748 0.578742 0.815511i \(-0.303544\pi\)
0.578742 + 0.815511i \(0.303544\pi\)
\(374\) 20.0400 1.03624
\(375\) 0 0
\(376\) 34.3019 1.76899
\(377\) 9.11567 0.469481
\(378\) 0 0
\(379\) 18.9694 0.974393 0.487197 0.873292i \(-0.338020\pi\)
0.487197 + 0.873292i \(0.338020\pi\)
\(380\) 8.51444 0.436782
\(381\) 0 0
\(382\) −44.9142 −2.29801
\(383\) 3.44049 0.175801 0.0879005 0.996129i \(-0.471984\pi\)
0.0879005 + 0.996129i \(0.471984\pi\)
\(384\) 0 0
\(385\) −0.0706063 −0.00359843
\(386\) −12.4210 −0.632211
\(387\) 0 0
\(388\) −52.0800 −2.64396
\(389\) −6.51615 −0.330382 −0.165191 0.986262i \(-0.552824\pi\)
−0.165191 + 0.986262i \(0.552824\pi\)
\(390\) 0 0
\(391\) −39.0222 −1.97344
\(392\) −42.2969 −2.13632
\(393\) 0 0
\(394\) −12.9371 −0.651762
\(395\) 7.07566 0.356015
\(396\) 0 0
\(397\) 12.9465 0.649768 0.324884 0.945754i \(-0.394675\pi\)
0.324884 + 0.945754i \(0.394675\pi\)
\(398\) −2.33759 −0.117173
\(399\) 0 0
\(400\) −30.8181 −1.54090
\(401\) 26.4583 1.32127 0.660633 0.750709i \(-0.270288\pi\)
0.660633 + 0.750709i \(0.270288\pi\)
\(402\) 0 0
\(403\) −18.7024 −0.931634
\(404\) 41.5289 2.06614
\(405\) 0 0
\(406\) 1.21687 0.0603922
\(407\) 7.79085 0.386178
\(408\) 0 0
\(409\) 8.59180 0.424837 0.212419 0.977179i \(-0.431866\pi\)
0.212419 + 0.977179i \(0.431866\pi\)
\(410\) −4.54169 −0.224298
\(411\) 0 0
\(412\) 46.8436 2.30782
\(413\) −1.70510 −0.0839023
\(414\) 0 0
\(415\) −3.17351 −0.155781
\(416\) 11.1157 0.544991
\(417\) 0 0
\(418\) −9.26193 −0.453016
\(419\) 22.8887 1.11819 0.559093 0.829105i \(-0.311149\pi\)
0.559093 + 0.829105i \(0.311149\pi\)
\(420\) 0 0
\(421\) −19.5767 −0.954108 −0.477054 0.878874i \(-0.658295\pi\)
−0.477054 + 0.878874i \(0.658295\pi\)
\(422\) −65.6617 −3.19636
\(423\) 0 0
\(424\) −80.2307 −3.89635
\(425\) −37.4049 −1.81440
\(426\) 0 0
\(427\) 0.115672 0.00559775
\(428\) 13.4405 0.649671
\(429\) 0 0
\(430\) −2.85374 −0.137619
\(431\) 20.5767 0.991143 0.495571 0.868567i \(-0.334959\pi\)
0.495571 + 0.868567i \(0.334959\pi\)
\(432\) 0 0
\(433\) −36.2714 −1.74309 −0.871545 0.490315i \(-0.836882\pi\)
−0.871545 + 0.490315i \(0.836882\pi\)
\(434\) −2.49662 −0.119842
\(435\) 0 0
\(436\) −48.8581 −2.33988
\(437\) 18.0350 0.862729
\(438\) 0 0
\(439\) 32.6140 1.55658 0.778291 0.627904i \(-0.216087\pi\)
0.778291 + 0.627904i \(0.216087\pi\)
\(440\) −3.20410 −0.152749
\(441\) 0 0
\(442\) 50.6796 2.41058
\(443\) −23.1812 −1.10137 −0.550687 0.834712i \(-0.685634\pi\)
−0.550687 + 0.834712i \(0.685634\pi\)
\(444\) 0 0
\(445\) −7.61400 −0.360938
\(446\) 15.8231 0.749248
\(447\) 0 0
\(448\) −0.259263 −0.0122490
\(449\) −11.2091 −0.528992 −0.264496 0.964387i \(-0.585206\pi\)
−0.264496 + 0.964387i \(0.585206\pi\)
\(450\) 0 0
\(451\) 3.39543 0.159884
\(452\) 9.63182 0.453043
\(453\) 0 0
\(454\) 6.20410 0.291173
\(455\) −0.178557 −0.00837090
\(456\) 0 0
\(457\) −17.2569 −0.807243 −0.403622 0.914926i \(-0.632249\pi\)
−0.403622 + 0.914926i \(0.632249\pi\)
\(458\) 56.2340 2.62764
\(459\) 0 0
\(460\) 11.4482 0.533776
\(461\) −18.3547 −0.854865 −0.427433 0.904047i \(-0.640582\pi\)
−0.427433 + 0.904047i \(0.640582\pi\)
\(462\) 0 0
\(463\) −38.8709 −1.80648 −0.903242 0.429132i \(-0.858819\pi\)
−0.903242 + 0.429132i \(0.858819\pi\)
\(464\) 23.5340 1.09254
\(465\) 0 0
\(466\) −15.0272 −0.696124
\(467\) −36.9516 −1.70992 −0.854958 0.518698i \(-0.826417\pi\)
−0.854958 + 0.518698i \(0.826417\pi\)
\(468\) 0 0
\(469\) −1.30767 −0.0603828
\(470\) −7.57398 −0.349362
\(471\) 0 0
\(472\) −77.3769 −3.56156
\(473\) 2.13349 0.0980981
\(474\) 0 0
\(475\) 17.2875 0.793204
\(476\) 4.64964 0.213116
\(477\) 0 0
\(478\) −16.4099 −0.750571
\(479\) 1.88433 0.0860972 0.0430486 0.999073i \(-0.486293\pi\)
0.0430486 + 0.999073i \(0.486293\pi\)
\(480\) 0 0
\(481\) 19.7024 0.898353
\(482\) −40.4304 −1.84155
\(483\) 0 0
\(484\) 4.39543 0.199792
\(485\) 6.26698 0.284569
\(486\) 0 0
\(487\) −18.8537 −0.854344 −0.427172 0.904170i \(-0.640490\pi\)
−0.427172 + 0.904170i \(0.640490\pi\)
\(488\) 5.24916 0.237618
\(489\) 0 0
\(490\) 9.33929 0.421906
\(491\) −28.6574 −1.29329 −0.646644 0.762792i \(-0.723828\pi\)
−0.646644 + 0.762792i \(0.723828\pi\)
\(492\) 0 0
\(493\) 28.5639 1.28645
\(494\) −23.4227 −1.05384
\(495\) 0 0
\(496\) −48.2841 −2.16802
\(497\) 0.150638 0.00675703
\(498\) 0 0
\(499\) −4.93206 −0.220790 −0.110395 0.993888i \(-0.535212\pi\)
−0.110395 + 0.993888i \(0.535212\pi\)
\(500\) 22.5978 1.01061
\(501\) 0 0
\(502\) 53.1634 2.37280
\(503\) −42.9065 −1.91311 −0.956554 0.291556i \(-0.905827\pi\)
−0.956554 + 0.291556i \(0.905827\pi\)
\(504\) 0 0
\(505\) −4.99733 −0.222378
\(506\) −12.4533 −0.553615
\(507\) 0 0
\(508\) 67.0044 2.97284
\(509\) 34.9065 1.54720 0.773602 0.633672i \(-0.218453\pi\)
0.773602 + 0.633672i \(0.218453\pi\)
\(510\) 0 0
\(511\) −0.737392 −0.0326203
\(512\) −50.4049 −2.22760
\(513\) 0 0
\(514\) 3.24916 0.143314
\(515\) −5.63687 −0.248390
\(516\) 0 0
\(517\) 5.66241 0.249033
\(518\) 2.63011 0.115561
\(519\) 0 0
\(520\) −8.10290 −0.355336
\(521\) −18.5588 −0.813077 −0.406539 0.913634i \(-0.633264\pi\)
−0.406539 + 0.913634i \(0.633264\pi\)
\(522\) 0 0
\(523\) 35.0851 1.53416 0.767082 0.641549i \(-0.221708\pi\)
0.767082 + 0.641549i \(0.221708\pi\)
\(524\) 27.7781 1.21349
\(525\) 0 0
\(526\) −45.3420 −1.97700
\(527\) −58.6039 −2.55283
\(528\) 0 0
\(529\) 1.24916 0.0543115
\(530\) 17.7152 0.769499
\(531\) 0 0
\(532\) −2.14893 −0.0931681
\(533\) 8.58675 0.371934
\(534\) 0 0
\(535\) −1.61734 −0.0699239
\(536\) −59.3420 −2.56318
\(537\) 0 0
\(538\) 78.9815 3.40513
\(539\) −6.98218 −0.300744
\(540\) 0 0
\(541\) 2.32482 0.0999518 0.0499759 0.998750i \(-0.484086\pi\)
0.0499759 + 0.998750i \(0.484086\pi\)
\(542\) 51.1829 2.19850
\(543\) 0 0
\(544\) 34.8309 1.49336
\(545\) 5.87928 0.251841
\(546\) 0 0
\(547\) 8.40048 0.359178 0.179589 0.983742i \(-0.442523\pi\)
0.179589 + 0.983742i \(0.442523\pi\)
\(548\) 66.3615 2.83482
\(549\) 0 0
\(550\) −11.9371 −0.509000
\(551\) −13.2014 −0.562400
\(552\) 0 0
\(553\) −1.78580 −0.0759400
\(554\) 56.9415 2.41921
\(555\) 0 0
\(556\) −45.4381 −1.92701
\(557\) 21.1685 0.896936 0.448468 0.893799i \(-0.351970\pi\)
0.448468 + 0.893799i \(0.351970\pi\)
\(558\) 0 0
\(559\) 5.39543 0.228202
\(560\) −0.460983 −0.0194801
\(561\) 0 0
\(562\) −27.4354 −1.15729
\(563\) −17.9015 −0.754457 −0.377229 0.926120i \(-0.623123\pi\)
−0.377229 + 0.926120i \(0.623123\pi\)
\(564\) 0 0
\(565\) −1.15903 −0.0487609
\(566\) 46.7552 1.96527
\(567\) 0 0
\(568\) 6.83592 0.286829
\(569\) 24.2542 1.01679 0.508395 0.861124i \(-0.330239\pi\)
0.508395 + 0.861124i \(0.330239\pi\)
\(570\) 0 0
\(571\) 34.4882 1.44329 0.721644 0.692265i \(-0.243387\pi\)
0.721644 + 0.692265i \(0.243387\pi\)
\(572\) 11.1157 0.464770
\(573\) 0 0
\(574\) 1.14626 0.0478441
\(575\) 23.2441 0.969347
\(576\) 0 0
\(577\) 34.3248 1.42896 0.714480 0.699655i \(-0.246663\pi\)
0.714480 + 0.699655i \(0.246663\pi\)
\(578\) 115.812 4.81716
\(579\) 0 0
\(580\) −8.37998 −0.347960
\(581\) 0.800952 0.0332291
\(582\) 0 0
\(583\) −13.2441 −0.548515
\(584\) −33.4627 −1.38470
\(585\) 0 0
\(586\) 31.5945 1.30516
\(587\) −2.88938 −0.119257 −0.0596287 0.998221i \(-0.518992\pi\)
−0.0596287 + 0.998221i \(0.518992\pi\)
\(588\) 0 0
\(589\) 27.0851 1.11602
\(590\) 17.0851 0.703382
\(591\) 0 0
\(592\) 50.8658 2.09057
\(593\) −7.19638 −0.295520 −0.147760 0.989023i \(-0.547206\pi\)
−0.147760 + 0.989023i \(0.547206\pi\)
\(594\) 0 0
\(595\) −0.559508 −0.0229376
\(596\) −43.3114 −1.77410
\(597\) 0 0
\(598\) −31.4933 −1.28786
\(599\) 4.19638 0.171459 0.0857297 0.996318i \(-0.472678\pi\)
0.0857297 + 0.996318i \(0.472678\pi\)
\(600\) 0 0
\(601\) 0.733016 0.0299004 0.0149502 0.999888i \(-0.495241\pi\)
0.0149502 + 0.999888i \(0.495241\pi\)
\(602\) 0.720246 0.0293550
\(603\) 0 0
\(604\) 67.5128 2.74706
\(605\) −0.528918 −0.0215036
\(606\) 0 0
\(607\) 46.2307 1.87644 0.938222 0.346033i \(-0.112471\pi\)
0.938222 + 0.346033i \(0.112471\pi\)
\(608\) −16.0979 −0.652854
\(609\) 0 0
\(610\) −1.15903 −0.0469279
\(611\) 14.3198 0.579316
\(612\) 0 0
\(613\) −12.6224 −0.509814 −0.254907 0.966966i \(-0.582045\pi\)
−0.254907 + 0.966966i \(0.582045\pi\)
\(614\) −59.5911 −2.40490
\(615\) 0 0
\(616\) 0.808672 0.0325823
\(617\) −17.2414 −0.694114 −0.347057 0.937844i \(-0.612819\pi\)
−0.347057 + 0.937844i \(0.612819\pi\)
\(618\) 0 0
\(619\) 19.0299 0.764877 0.382438 0.923981i \(-0.375084\pi\)
0.382438 + 0.923981i \(0.375084\pi\)
\(620\) 17.1930 0.690489
\(621\) 0 0
\(622\) −22.0979 −0.886043
\(623\) 1.92167 0.0769902
\(624\) 0 0
\(625\) 20.8819 0.835278
\(626\) −27.4805 −1.09834
\(627\) 0 0
\(628\) −40.1456 −1.60198
\(629\) 61.7374 2.46163
\(630\) 0 0
\(631\) −41.4856 −1.65151 −0.825757 0.564026i \(-0.809252\pi\)
−0.825757 + 0.564026i \(0.809252\pi\)
\(632\) −81.0393 −3.22357
\(633\) 0 0
\(634\) 33.8887 1.34589
\(635\) −8.06289 −0.319966
\(636\) 0 0
\(637\) −17.6574 −0.699610
\(638\) 9.11567 0.360893
\(639\) 0 0
\(640\) 7.24746 0.286481
\(641\) 27.7552 1.09626 0.548132 0.836392i \(-0.315339\pi\)
0.548132 + 0.836392i \(0.315339\pi\)
\(642\) 0 0
\(643\) −10.4354 −0.411534 −0.205767 0.978601i \(-0.565969\pi\)
−0.205767 + 0.978601i \(0.565969\pi\)
\(644\) −2.88938 −0.113857
\(645\) 0 0
\(646\) −73.3948 −2.88768
\(647\) −39.1379 −1.53867 −0.769334 0.638847i \(-0.779412\pi\)
−0.769334 + 0.638847i \(0.779412\pi\)
\(648\) 0 0
\(649\) −12.7730 −0.501385
\(650\) −30.1880 −1.18407
\(651\) 0 0
\(652\) 65.8753 2.57987
\(653\) 7.86651 0.307840 0.153920 0.988083i \(-0.450810\pi\)
0.153920 + 0.988083i \(0.450810\pi\)
\(654\) 0 0
\(655\) −3.34264 −0.130608
\(656\) 22.1685 0.865533
\(657\) 0 0
\(658\) 1.91157 0.0745209
\(659\) −44.6318 −1.73861 −0.869304 0.494277i \(-0.835433\pi\)
−0.869304 + 0.494277i \(0.835433\pi\)
\(660\) 0 0
\(661\) −17.7125 −0.688937 −0.344469 0.938798i \(-0.611941\pi\)
−0.344469 + 0.938798i \(0.611941\pi\)
\(662\) 11.1284 0.432519
\(663\) 0 0
\(664\) 36.3470 1.41054
\(665\) 0.258589 0.0100277
\(666\) 0 0
\(667\) −17.7502 −0.687289
\(668\) 43.3675 1.67794
\(669\) 0 0
\(670\) 13.1029 0.506209
\(671\) 0.866508 0.0334512
\(672\) 0 0
\(673\) −42.9193 −1.65442 −0.827209 0.561895i \(-0.810073\pi\)
−0.827209 + 0.561895i \(0.810073\pi\)
\(674\) 83.3514 3.21058
\(675\) 0 0
\(676\) −29.0299 −1.11654
\(677\) −8.97713 −0.345019 −0.172510 0.985008i \(-0.555188\pi\)
−0.172510 + 0.985008i \(0.555188\pi\)
\(678\) 0 0
\(679\) −1.58170 −0.0607002
\(680\) −25.3904 −0.973676
\(681\) 0 0
\(682\) −18.7024 −0.716153
\(683\) 20.9243 0.800648 0.400324 0.916374i \(-0.368898\pi\)
0.400324 + 0.916374i \(0.368898\pi\)
\(684\) 0 0
\(685\) −7.98552 −0.305111
\(686\) −4.72025 −0.180220
\(687\) 0 0
\(688\) 13.9294 0.531053
\(689\) −33.4933 −1.27599
\(690\) 0 0
\(691\) 10.3376 0.393260 0.196630 0.980478i \(-0.437000\pi\)
0.196630 + 0.980478i \(0.437000\pi\)
\(692\) 35.4959 1.34935
\(693\) 0 0
\(694\) 73.5282 2.79109
\(695\) 5.46774 0.207403
\(696\) 0 0
\(697\) 26.9065 1.01916
\(698\) 12.1157 0.458585
\(699\) 0 0
\(700\) −2.76962 −0.104682
\(701\) −4.58170 −0.173049 −0.0865243 0.996250i \(-0.527576\pi\)
−0.0865243 + 0.996250i \(0.527576\pi\)
\(702\) 0 0
\(703\) −28.5333 −1.07615
\(704\) −1.94216 −0.0731981
\(705\) 0 0
\(706\) 11.8036 0.444235
\(707\) 1.26126 0.0474346
\(708\) 0 0
\(709\) 1.24916 0.0469133 0.0234567 0.999725i \(-0.492533\pi\)
0.0234567 + 0.999725i \(0.492533\pi\)
\(710\) −1.50939 −0.0566465
\(711\) 0 0
\(712\) 87.2051 3.26815
\(713\) 36.4176 1.36385
\(714\) 0 0
\(715\) −1.33759 −0.0500230
\(716\) −26.3726 −0.985589
\(717\) 0 0
\(718\) −39.5639 −1.47651
\(719\) 3.05012 0.113750 0.0568751 0.998381i \(-0.481886\pi\)
0.0568751 + 0.998381i \(0.481886\pi\)
\(720\) 0 0
\(721\) 1.42267 0.0529831
\(722\) −14.1284 −0.525806
\(723\) 0 0
\(724\) 43.0572 1.60021
\(725\) −17.0145 −0.631902
\(726\) 0 0
\(727\) 6.84364 0.253816 0.126908 0.991914i \(-0.459495\pi\)
0.126908 + 0.991914i \(0.459495\pi\)
\(728\) 2.04507 0.0757952
\(729\) 0 0
\(730\) 7.38867 0.273467
\(731\) 16.9065 0.625310
\(732\) 0 0
\(733\) −24.4432 −0.902829 −0.451414 0.892314i \(-0.649080\pi\)
−0.451414 + 0.892314i \(0.649080\pi\)
\(734\) 15.2186 0.561728
\(735\) 0 0
\(736\) −21.6446 −0.797830
\(737\) −9.79590 −0.360837
\(738\) 0 0
\(739\) −3.76094 −0.138348 −0.0691741 0.997605i \(-0.522036\pi\)
−0.0691741 + 0.997605i \(0.522036\pi\)
\(740\) −18.1123 −0.665822
\(741\) 0 0
\(742\) −4.47108 −0.164139
\(743\) 22.4704 0.824359 0.412180 0.911103i \(-0.364768\pi\)
0.412180 + 0.911103i \(0.364768\pi\)
\(744\) 0 0
\(745\) 5.21182 0.190946
\(746\) 56.5333 2.06983
\(747\) 0 0
\(748\) 34.8309 1.27354
\(749\) 0.408196 0.0149152
\(750\) 0 0
\(751\) 8.07061 0.294501 0.147250 0.989099i \(-0.452958\pi\)
0.147250 + 0.989099i \(0.452958\pi\)
\(752\) 36.9694 1.34814
\(753\) 0 0
\(754\) 23.0528 0.839533
\(755\) −8.12407 −0.295665
\(756\) 0 0
\(757\) −13.9822 −0.508191 −0.254095 0.967179i \(-0.581778\pi\)
−0.254095 + 0.967179i \(0.581778\pi\)
\(758\) 47.9721 1.74242
\(759\) 0 0
\(760\) 11.7347 0.425663
\(761\) −8.43039 −0.305601 −0.152801 0.988257i \(-0.548829\pi\)
−0.152801 + 0.988257i \(0.548829\pi\)
\(762\) 0 0
\(763\) −1.48385 −0.0537191
\(764\) −78.0639 −2.82425
\(765\) 0 0
\(766\) 8.70072 0.314370
\(767\) −32.3019 −1.16636
\(768\) 0 0
\(769\) −5.71015 −0.205913 −0.102957 0.994686i \(-0.532830\pi\)
−0.102957 + 0.994686i \(0.532830\pi\)
\(770\) −0.178557 −0.00643476
\(771\) 0 0
\(772\) −21.5885 −0.776986
\(773\) −9.10795 −0.327590 −0.163795 0.986494i \(-0.552374\pi\)
−0.163795 + 0.986494i \(0.552374\pi\)
\(774\) 0 0
\(775\) 34.9082 1.25394
\(776\) −71.7774 −2.57666
\(777\) 0 0
\(778\) −16.4788 −0.590794
\(779\) −12.4354 −0.445546
\(780\) 0 0
\(781\) 1.12844 0.0403788
\(782\) −98.6839 −3.52893
\(783\) 0 0
\(784\) −45.5861 −1.62807
\(785\) 4.83087 0.172421
\(786\) 0 0
\(787\) −42.6140 −1.51903 −0.759513 0.650493i \(-0.774562\pi\)
−0.759513 + 0.650493i \(0.774562\pi\)
\(788\) −22.4856 −0.801015
\(789\) 0 0
\(790\) 17.8938 0.636631
\(791\) 0.292525 0.0104010
\(792\) 0 0
\(793\) 2.19133 0.0778163
\(794\) 32.7407 1.16193
\(795\) 0 0
\(796\) −4.06289 −0.144005
\(797\) −20.8137 −0.737260 −0.368630 0.929576i \(-0.620173\pi\)
−0.368630 + 0.929576i \(0.620173\pi\)
\(798\) 0 0
\(799\) 44.8709 1.58742
\(800\) −20.7475 −0.733535
\(801\) 0 0
\(802\) 66.9109 2.36271
\(803\) −5.52387 −0.194933
\(804\) 0 0
\(805\) 0.347690 0.0122544
\(806\) −47.2969 −1.66596
\(807\) 0 0
\(808\) 57.2357 2.01355
\(809\) 1.27470 0.0448162 0.0224081 0.999749i \(-0.492867\pi\)
0.0224081 + 0.999749i \(0.492867\pi\)
\(810\) 0 0
\(811\) −31.4227 −1.10340 −0.551700 0.834043i \(-0.686021\pi\)
−0.551700 + 0.834043i \(0.686021\pi\)
\(812\) 2.11500 0.0742219
\(813\) 0 0
\(814\) 19.7024 0.690570
\(815\) −7.92701 −0.277671
\(816\) 0 0
\(817\) −7.81372 −0.273368
\(818\) 21.7280 0.759701
\(819\) 0 0
\(820\) −7.89375 −0.275662
\(821\) 35.8988 1.25288 0.626438 0.779471i \(-0.284512\pi\)
0.626438 + 0.779471i \(0.284512\pi\)
\(822\) 0 0
\(823\) −27.5282 −0.959574 −0.479787 0.877385i \(-0.659286\pi\)
−0.479787 + 0.877385i \(0.659286\pi\)
\(824\) 64.5605 2.24907
\(825\) 0 0
\(826\) −4.31205 −0.150035
\(827\) −26.6217 −0.925728 −0.462864 0.886429i \(-0.653178\pi\)
−0.462864 + 0.886429i \(0.653178\pi\)
\(828\) 0 0
\(829\) −30.7451 −1.06782 −0.533911 0.845541i \(-0.679278\pi\)
−0.533911 + 0.845541i \(0.679278\pi\)
\(830\) −8.02554 −0.278571
\(831\) 0 0
\(832\) −4.91157 −0.170278
\(833\) −55.3292 −1.91704
\(834\) 0 0
\(835\) −5.21857 −0.180596
\(836\) −16.0979 −0.556756
\(837\) 0 0
\(838\) 57.8837 1.99956
\(839\) 27.0145 0.932643 0.466322 0.884615i \(-0.345579\pi\)
0.466322 + 0.884615i \(0.345579\pi\)
\(840\) 0 0
\(841\) −16.0070 −0.551967
\(842\) −49.5078 −1.70615
\(843\) 0 0
\(844\) −114.124 −3.92832
\(845\) 3.49328 0.120172
\(846\) 0 0
\(847\) 0.133492 0.00458684
\(848\) −86.4697 −2.96938
\(849\) 0 0
\(850\) −94.5938 −3.24454
\(851\) −38.3648 −1.31513
\(852\) 0 0
\(853\) −13.6547 −0.467528 −0.233764 0.972293i \(-0.575104\pi\)
−0.233764 + 0.972293i \(0.575104\pi\)
\(854\) 0.292525 0.0100100
\(855\) 0 0
\(856\) 18.5239 0.633133
\(857\) −25.8010 −0.881344 −0.440672 0.897668i \(-0.645260\pi\)
−0.440672 + 0.897668i \(0.645260\pi\)
\(858\) 0 0
\(859\) 14.5340 0.495893 0.247946 0.968774i \(-0.420244\pi\)
0.247946 + 0.968774i \(0.420244\pi\)
\(860\) −4.95998 −0.169134
\(861\) 0 0
\(862\) 52.0367 1.77238
\(863\) −8.54169 −0.290762 −0.145381 0.989376i \(-0.546441\pi\)
−0.145381 + 0.989376i \(0.546441\pi\)
\(864\) 0 0
\(865\) −4.27136 −0.145231
\(866\) −91.7273 −3.11702
\(867\) 0 0
\(868\) −4.33929 −0.147285
\(869\) −13.3776 −0.453804
\(870\) 0 0
\(871\) −24.7730 −0.839402
\(872\) −67.3369 −2.28032
\(873\) 0 0
\(874\) 45.6089 1.54275
\(875\) 0.686310 0.0232015
\(876\) 0 0
\(877\) 38.0222 1.28392 0.641959 0.766739i \(-0.278122\pi\)
0.641959 + 0.766739i \(0.278122\pi\)
\(878\) 82.4781 2.78350
\(879\) 0 0
\(880\) −3.45326 −0.116409
\(881\) −23.2518 −0.783374 −0.391687 0.920098i \(-0.628108\pi\)
−0.391687 + 0.920098i \(0.628108\pi\)
\(882\) 0 0
\(883\) 21.2798 0.716121 0.358060 0.933698i \(-0.383438\pi\)
0.358060 + 0.933698i \(0.383438\pi\)
\(884\) 88.0844 2.96260
\(885\) 0 0
\(886\) −58.6234 −1.96949
\(887\) 39.8759 1.33890 0.669451 0.742856i \(-0.266529\pi\)
0.669451 + 0.742856i \(0.266529\pi\)
\(888\) 0 0
\(889\) 2.03497 0.0682506
\(890\) −19.2552 −0.645435
\(891\) 0 0
\(892\) 27.5017 0.920824
\(893\) −20.7381 −0.693973
\(894\) 0 0
\(895\) 3.17351 0.106079
\(896\) −1.82916 −0.0611081
\(897\) 0 0
\(898\) −28.3470 −0.945952
\(899\) −26.6574 −0.889073
\(900\) 0 0
\(901\) −104.951 −3.49642
\(902\) 8.58675 0.285908
\(903\) 0 0
\(904\) 13.2747 0.441510
\(905\) −5.18123 −0.172230
\(906\) 0 0
\(907\) 5.88433 0.195386 0.0976930 0.995217i \(-0.468854\pi\)
0.0976930 + 0.995217i \(0.468854\pi\)
\(908\) 10.7831 0.357851
\(909\) 0 0
\(910\) −0.451557 −0.0149690
\(911\) 33.3776 1.10585 0.552925 0.833231i \(-0.313512\pi\)
0.552925 + 0.833231i \(0.313512\pi\)
\(912\) 0 0
\(913\) 6.00000 0.198571
\(914\) −43.6412 −1.44352
\(915\) 0 0
\(916\) 97.7384 3.22937
\(917\) 0.843638 0.0278594
\(918\) 0 0
\(919\) −30.4906 −1.00579 −0.502896 0.864347i \(-0.667732\pi\)
−0.502896 + 0.864347i \(0.667732\pi\)
\(920\) 15.7781 0.520188
\(921\) 0 0
\(922\) −46.4176 −1.52868
\(923\) 2.85374 0.0939319
\(924\) 0 0
\(925\) −36.7747 −1.20915
\(926\) −98.3013 −3.23038
\(927\) 0 0
\(928\) 15.8436 0.520093
\(929\) 4.73302 0.155285 0.0776426 0.996981i \(-0.475261\pi\)
0.0776426 + 0.996981i \(0.475261\pi\)
\(930\) 0 0
\(931\) 25.5716 0.838075
\(932\) −26.1183 −0.855535
\(933\) 0 0
\(934\) −93.4475 −3.05770
\(935\) −4.19133 −0.137071
\(936\) 0 0
\(937\) −5.39810 −0.176348 −0.0881741 0.996105i \(-0.528103\pi\)
−0.0881741 + 0.996105i \(0.528103\pi\)
\(938\) −3.30700 −0.107977
\(939\) 0 0
\(940\) −13.1641 −0.429365
\(941\) 30.5663 0.996432 0.498216 0.867053i \(-0.333989\pi\)
0.498216 + 0.867053i \(0.333989\pi\)
\(942\) 0 0
\(943\) −16.7202 −0.544486
\(944\) −83.3941 −2.71425
\(945\) 0 0
\(946\) 5.39543 0.175420
\(947\) 18.7280 0.608577 0.304289 0.952580i \(-0.401581\pi\)
0.304289 + 0.952580i \(0.401581\pi\)
\(948\) 0 0
\(949\) −13.9694 −0.453466
\(950\) 43.7186 1.41842
\(951\) 0 0
\(952\) 6.40820 0.207691
\(953\) 18.4839 0.598751 0.299375 0.954135i \(-0.403222\pi\)
0.299375 + 0.954135i \(0.403222\pi\)
\(954\) 0 0
\(955\) 9.39372 0.303974
\(956\) −28.5215 −0.922451
\(957\) 0 0
\(958\) 4.76531 0.153960
\(959\) 2.01544 0.0650820
\(960\) 0 0
\(961\) 23.6923 0.764269
\(962\) 49.8258 1.60645
\(963\) 0 0
\(964\) −70.2707 −2.26327
\(965\) 2.59782 0.0836268
\(966\) 0 0
\(967\) 5.84869 0.188081 0.0940406 0.995568i \(-0.470022\pi\)
0.0940406 + 0.995568i \(0.470022\pi\)
\(968\) 6.05784 0.194706
\(969\) 0 0
\(970\) 15.8487 0.508871
\(971\) −10.1234 −0.324875 −0.162438 0.986719i \(-0.551936\pi\)
−0.162438 + 0.986719i \(0.551936\pi\)
\(972\) 0 0
\(973\) −1.37998 −0.0442403
\(974\) −47.6796 −1.52775
\(975\) 0 0
\(976\) 5.65736 0.181088
\(977\) −19.5212 −0.624538 −0.312269 0.949994i \(-0.601089\pi\)
−0.312269 + 0.949994i \(0.601089\pi\)
\(978\) 0 0
\(979\) 14.3954 0.460080
\(980\) 16.2323 0.518522
\(981\) 0 0
\(982\) −72.4721 −2.31268
\(983\) −39.0044 −1.24405 −0.622023 0.782999i \(-0.713689\pi\)
−0.622023 + 0.782999i \(0.713689\pi\)
\(984\) 0 0
\(985\) 2.70577 0.0862130
\(986\) 72.2357 2.30045
\(987\) 0 0
\(988\) −40.7101 −1.29516
\(989\) −10.5060 −0.334073
\(990\) 0 0
\(991\) 33.1913 1.05436 0.527179 0.849754i \(-0.323250\pi\)
0.527179 + 0.849754i \(0.323250\pi\)
\(992\) −32.5060 −1.03207
\(993\) 0 0
\(994\) 0.380951 0.0120830
\(995\) 0.488902 0.0154992
\(996\) 0 0
\(997\) −1.23134 −0.0389970 −0.0194985 0.999810i \(-0.506207\pi\)
−0.0194985 + 0.999810i \(0.506207\pi\)
\(998\) −12.4728 −0.394819
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.a.n.1.3 yes 3
3.2 odd 2 891.2.a.m.1.1 3
9.2 odd 6 891.2.e.s.595.3 6
9.4 even 3 891.2.e.r.298.1 6
9.5 odd 6 891.2.e.s.298.3 6
9.7 even 3 891.2.e.r.595.1 6
11.10 odd 2 9801.2.a.bg.1.1 3
33.32 even 2 9801.2.a.bf.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.a.m.1.1 3 3.2 odd 2
891.2.a.n.1.3 yes 3 1.1 even 1 trivial
891.2.e.r.298.1 6 9.4 even 3
891.2.e.r.595.1 6 9.7 even 3
891.2.e.s.298.3 6 9.5 odd 6
891.2.e.s.595.3 6 9.2 odd 6
9801.2.a.bf.1.3 3 33.32 even 2
9801.2.a.bg.1.1 3 11.10 odd 2