Properties

Label 891.2.u.c.701.4
Level $891$
Weight $2$
Character 891.701
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(107,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.u (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 701.4
Character \(\chi\) \(=\) 891.701
Dual form 891.2.u.c.755.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.22569 + 0.990940i) q^{2} +(2.63346 + 2.92476i) q^{4} +(1.54387 + 3.46760i) q^{5} +(0.0764681 + 0.359754i) q^{7} +(1.45728 + 4.48505i) q^{8} +9.24768i q^{10} +(-0.223636 - 3.30908i) q^{11} +(0.943068 - 0.0991205i) q^{13} +(-0.186301 + 0.876476i) q^{14} +(-0.378188 + 3.59821i) q^{16} +(-2.77873 - 2.01886i) q^{17} +(4.05368 - 1.31712i) q^{19} +(-6.07615 + 13.6472i) q^{20} +(2.78135 - 7.58658i) q^{22} +(-4.30242 - 2.48400i) q^{23} +(-6.29504 + 6.99135i) q^{25} +(2.19720 + 0.713913i) q^{26} +(-0.850818 + 1.17105i) q^{28} +(-2.42915 + 0.516332i) q^{29} +(-0.367304 - 3.49466i) q^{31} +(0.308515 - 0.534364i) q^{32} +(-4.18401 - 7.24691i) q^{34} +(-1.12943 + 0.820576i) q^{35} +(-2.21947 + 6.83082i) q^{37} +(10.3274 + 1.08546i) q^{38} +(-13.3025 + 11.9776i) q^{40} +(-2.65968 - 0.565333i) q^{41} +(1.63461 - 0.943743i) q^{43} +(9.08931 - 9.36841i) q^{44} +(-7.11434 - 9.79205i) q^{46} +(0.0153145 + 0.0137893i) q^{47} +(6.27124 - 2.79214i) q^{49} +(-20.9388 + 9.32255i) q^{50} +(2.77344 + 2.49722i) q^{52} +(3.25941 + 4.48619i) q^{53} +(11.1293 - 5.88428i) q^{55} +(-1.50208 + 0.867226i) q^{56} +(-5.91818 - 1.25795i) q^{58} +(4.92273 - 4.43245i) q^{59} +(9.69908 + 1.01941i) q^{61} +(2.64550 - 8.14200i) q^{62} +(7.07028 - 5.13686i) q^{64} +(1.79969 + 3.11715i) q^{65} +(-2.23176 + 3.86552i) q^{67} +(-1.41299 - 13.4437i) q^{68} +(-3.32689 + 0.707153i) q^{70} +(-6.06985 + 8.35443i) q^{71} +(-4.18072 - 1.35840i) q^{73} +(-11.7088 + 13.0039i) q^{74} +(14.5275 + 8.38745i) q^{76} +(1.17335 - 0.333493i) q^{77} +(4.44852 - 9.99155i) q^{79} +(-13.0610 + 4.24379i) q^{80} +(-5.35942 - 3.89384i) q^{82} +(-0.959910 + 9.13294i) q^{83} +(2.71060 - 12.7524i) q^{85} +(4.57333 - 0.480676i) q^{86} +(14.5155 - 5.82527i) q^{88} -3.04837i q^{89} +(0.107774 + 0.331693i) q^{91} +(-4.06516 - 19.1251i) q^{92} +(0.0204210 + 0.0458663i) q^{94} +(10.8256 + 12.0231i) q^{95} +(-13.7825 - 6.13637i) q^{97} +16.7247 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} + 20 q^{16} + 48 q^{22} + 32 q^{25} + 80 q^{28} - 16 q^{31} - 40 q^{34} - 24 q^{37} - 60 q^{40} - 80 q^{46} + 24 q^{49} + 40 q^{52} + 32 q^{55} - 12 q^{58} + 72 q^{64} - 96 q^{67} - 76 q^{70}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.22569 + 0.990940i 1.57380 + 0.700700i 0.993514 0.113713i \(-0.0362744\pi\)
0.580285 + 0.814413i \(0.302941\pi\)
\(3\) 0 0
\(4\) 2.63346 + 2.92476i 1.31673 + 1.46238i
\(5\) 1.54387 + 3.46760i 0.690442 + 1.55076i 0.828287 + 0.560303i \(0.189315\pi\)
−0.137846 + 0.990454i \(0.544018\pi\)
\(6\) 0 0
\(7\) 0.0764681 + 0.359754i 0.0289022 + 0.135974i 0.990233 0.139422i \(-0.0445244\pi\)
−0.961331 + 0.275396i \(0.911191\pi\)
\(8\) 1.45728 + 4.48505i 0.515226 + 1.58570i
\(9\) 0 0
\(10\) 9.24768i 2.92437i
\(11\) −0.223636 3.30908i −0.0674289 0.997724i
\(12\) 0 0
\(13\) 0.943068 0.0991205i 0.261560 0.0274911i 0.0271593 0.999631i \(-0.491354\pi\)
0.234401 + 0.972140i \(0.424687\pi\)
\(14\) −0.186301 + 0.876476i −0.0497910 + 0.234248i
\(15\) 0 0
\(16\) −0.378188 + 3.59821i −0.0945469 + 0.899554i
\(17\) −2.77873 2.01886i −0.673940 0.489646i 0.197402 0.980323i \(-0.436750\pi\)
−0.871342 + 0.490676i \(0.836750\pi\)
\(18\) 0 0
\(19\) 4.05368 1.31712i 0.929979 0.302168i 0.195425 0.980719i \(-0.437391\pi\)
0.734554 + 0.678550i \(0.237391\pi\)
\(20\) −6.07615 + 13.6472i −1.35867 + 3.05162i
\(21\) 0 0
\(22\) 2.78135 7.58658i 0.592986 1.61746i
\(23\) −4.30242 2.48400i −0.897116 0.517950i −0.0208527 0.999783i \(-0.506638\pi\)
−0.876263 + 0.481832i \(0.839971\pi\)
\(24\) 0 0
\(25\) −6.29504 + 6.99135i −1.25901 + 1.39827i
\(26\) 2.19720 + 0.713913i 0.430906 + 0.140010i
\(27\) 0 0
\(28\) −0.850818 + 1.17105i −0.160789 + 0.221308i
\(29\) −2.42915 + 0.516332i −0.451082 + 0.0958804i −0.427850 0.903850i \(-0.640729\pi\)
−0.0232317 + 0.999730i \(0.507396\pi\)
\(30\) 0 0
\(31\) −0.367304 3.49466i −0.0659697 0.627660i −0.976693 0.214642i \(-0.931141\pi\)
0.910723 0.413018i \(-0.135525\pi\)
\(32\) 0.308515 0.534364i 0.0545383 0.0944632i
\(33\) 0 0
\(34\) −4.18401 7.24691i −0.717551 1.24284i
\(35\) −1.12943 + 0.820576i −0.190908 + 0.138703i
\(36\) 0 0
\(37\) −2.21947 + 6.83082i −0.364878 + 1.12298i 0.585179 + 0.810904i \(0.301024\pi\)
−0.950057 + 0.312075i \(0.898976\pi\)
\(38\) 10.3274 + 1.08546i 1.67533 + 0.176084i
\(39\) 0 0
\(40\) −13.3025 + 11.9776i −2.10331 + 1.89383i
\(41\) −2.65968 0.565333i −0.415373 0.0882902i −0.00451539 0.999990i \(-0.501437\pi\)
−0.410858 + 0.911700i \(0.634771\pi\)
\(42\) 0 0
\(43\) 1.63461 0.943743i 0.249276 0.143919i −0.370157 0.928969i \(-0.620696\pi\)
0.619433 + 0.785050i \(0.287363\pi\)
\(44\) 9.08931 9.36841i 1.37026 1.41234i
\(45\) 0 0
\(46\) −7.11434 9.79205i −1.04895 1.44376i
\(47\) 0.0153145 + 0.0137893i 0.00223385 + 0.00201137i 0.670247 0.742138i \(-0.266188\pi\)
−0.668013 + 0.744150i \(0.732855\pi\)
\(48\) 0 0
\(49\) 6.27124 2.79214i 0.895892 0.398877i
\(50\) −20.9388 + 9.32255i −2.96119 + 1.31841i
\(51\) 0 0
\(52\) 2.77344 + 2.49722i 0.384607 + 0.346301i
\(53\) 3.25941 + 4.48619i 0.447714 + 0.616226i 0.971905 0.235375i \(-0.0756319\pi\)
−0.524190 + 0.851601i \(0.675632\pi\)
\(54\) 0 0
\(55\) 11.1293 5.88428i 1.50067 0.793436i
\(56\) −1.50208 + 0.867226i −0.200724 + 0.115888i
\(57\) 0 0
\(58\) −5.91818 1.25795i −0.777095 0.165177i
\(59\) 4.92273 4.43245i 0.640885 0.577055i −0.283286 0.959036i \(-0.591424\pi\)
0.924170 + 0.381980i \(0.124758\pi\)
\(60\) 0 0
\(61\) 9.69908 + 1.01941i 1.24184 + 0.130523i 0.702572 0.711612i \(-0.252035\pi\)
0.539267 + 0.842135i \(0.318701\pi\)
\(62\) 2.64550 8.14200i 0.335978 1.03404i
\(63\) 0 0
\(64\) 7.07028 5.13686i 0.883786 0.642108i
\(65\) 1.79969 + 3.11715i 0.223224 + 0.386635i
\(66\) 0 0
\(67\) −2.23176 + 3.86552i −0.272652 + 0.472248i −0.969540 0.244932i \(-0.921234\pi\)
0.696888 + 0.717180i \(0.254568\pi\)
\(68\) −1.41299 13.4437i −0.171350 1.63029i
\(69\) 0 0
\(70\) −3.32689 + 0.707153i −0.397640 + 0.0845209i
\(71\) −6.06985 + 8.35443i −0.720359 + 0.991489i 0.279153 + 0.960247i \(0.409946\pi\)
−0.999512 + 0.0312420i \(0.990054\pi\)
\(72\) 0 0
\(73\) −4.18072 1.35840i −0.489317 0.158989i 0.0539588 0.998543i \(-0.482816\pi\)
−0.543275 + 0.839555i \(0.682816\pi\)
\(74\) −11.7088 + 13.0039i −1.36112 + 1.51167i
\(75\) 0 0
\(76\) 14.5275 + 8.38745i 1.66642 + 0.962106i
\(77\) 1.17335 0.333493i 0.133716 0.0380051i
\(78\) 0 0
\(79\) 4.44852 9.99155i 0.500498 1.12414i −0.469921 0.882709i \(-0.655717\pi\)
0.970419 0.241428i \(-0.0776159\pi\)
\(80\) −13.0610 + 4.24379i −1.46027 + 0.474470i
\(81\) 0 0
\(82\) −5.35942 3.89384i −0.591848 0.430003i
\(83\) −0.959910 + 9.13294i −0.105364 + 1.00247i 0.806293 + 0.591517i \(0.201471\pi\)
−0.911656 + 0.410953i \(0.865196\pi\)
\(84\) 0 0
\(85\) 2.71060 12.7524i 0.294006 1.38319i
\(86\) 4.57333 0.480676i 0.493154 0.0518326i
\(87\) 0 0
\(88\) 14.5155 5.82527i 1.54735 0.620976i
\(89\) 3.04837i 0.323127i −0.986862 0.161563i \(-0.948346\pi\)
0.986862 0.161563i \(-0.0516536\pi\)
\(90\) 0 0
\(91\) 0.107774 + 0.331693i 0.0112978 + 0.0347709i
\(92\) −4.06516 19.1251i −0.423822 1.99392i
\(93\) 0 0
\(94\) 0.0204210 + 0.0458663i 0.00210627 + 0.00473075i
\(95\) 10.8256 + 12.0231i 1.11069 + 1.23354i
\(96\) 0 0
\(97\) −13.7825 6.13637i −1.39940 0.623054i −0.438195 0.898880i \(-0.644382\pi\)
−0.961208 + 0.275826i \(0.911049\pi\)
\(98\) 16.7247 1.68945
\(99\) 0 0
\(100\) −37.0257 −3.70257
\(101\) −15.9503 7.10154i −1.58712 0.706630i −0.592056 0.805897i \(-0.701683\pi\)
−0.995061 + 0.0992672i \(0.968350\pi\)
\(102\) 0 0
\(103\) −6.23336 6.92285i −0.614191 0.682128i 0.353161 0.935562i \(-0.385107\pi\)
−0.967353 + 0.253434i \(0.918440\pi\)
\(104\) 1.81887 + 4.08526i 0.178355 + 0.400593i
\(105\) 0 0
\(106\) 2.80888 + 13.2147i 0.272823 + 1.28353i
\(107\) 4.76675 + 14.6705i 0.460819 + 1.41825i 0.864166 + 0.503207i \(0.167847\pi\)
−0.403347 + 0.915047i \(0.632153\pi\)
\(108\) 0 0
\(109\) 10.6286i 1.01803i 0.860757 + 0.509016i \(0.169991\pi\)
−0.860757 + 0.509016i \(0.830009\pi\)
\(110\) 30.6013 2.06812i 2.91772 0.197187i
\(111\) 0 0
\(112\) −1.32339 + 0.139094i −0.125049 + 0.0131432i
\(113\) −0.217688 + 1.02414i −0.0204783 + 0.0963429i −0.987200 0.159488i \(-0.949016\pi\)
0.966722 + 0.255831i \(0.0823490\pi\)
\(114\) 0 0
\(115\) 1.97113 18.7540i 0.183809 1.74882i
\(116\) −7.90722 5.74493i −0.734167 0.533404i
\(117\) 0 0
\(118\) 15.3487 4.98711i 1.41297 0.459101i
\(119\) 0.513811 1.15404i 0.0471010 0.105790i
\(120\) 0 0
\(121\) −10.9000 + 1.48006i −0.990907 + 0.134551i
\(122\) 20.5769 + 11.8801i 1.86295 + 1.07557i
\(123\) 0 0
\(124\) 9.25376 10.2773i 0.831012 0.922932i
\(125\) −15.9120 5.17013i −1.42321 0.462430i
\(126\) 0 0
\(127\) 10.3127 14.1942i 0.915101 1.25953i −0.0502930 0.998735i \(-0.516016\pi\)
0.965394 0.260794i \(-0.0839845\pi\)
\(128\) 19.6195 4.17025i 1.73413 0.368601i
\(129\) 0 0
\(130\) 0.916634 + 8.72119i 0.0803941 + 0.764899i
\(131\) −6.94451 + 12.0282i −0.606744 + 1.05091i 0.385029 + 0.922905i \(0.374192\pi\)
−0.991773 + 0.128008i \(0.959142\pi\)
\(132\) 0 0
\(133\) 0.783818 + 1.35761i 0.0679656 + 0.117720i
\(134\) −8.79769 + 6.39189i −0.760004 + 0.552176i
\(135\) 0 0
\(136\) 5.00531 15.4048i 0.429202 1.32095i
\(137\) −1.03205 0.108472i −0.0881736 0.00926742i 0.0603389 0.998178i \(-0.480782\pi\)
−0.148513 + 0.988911i \(0.547449\pi\)
\(138\) 0 0
\(139\) 14.7403 13.2723i 1.25026 1.12574i 0.263309 0.964712i \(-0.415186\pi\)
0.986950 0.161027i \(-0.0514805\pi\)
\(140\) −5.37429 1.14234i −0.454210 0.0965454i
\(141\) 0 0
\(142\) −21.7883 + 12.5795i −1.82844 + 1.05565i
\(143\) −0.538902 3.09852i −0.0450652 0.259111i
\(144\) 0 0
\(145\) −5.54073 7.62616i −0.460133 0.633318i
\(146\) −7.95889 7.16622i −0.658683 0.593080i
\(147\) 0 0
\(148\) −25.8234 + 11.4973i −2.12267 + 0.945072i
\(149\) 7.34124 3.26853i 0.601418 0.267769i −0.0833609 0.996519i \(-0.526565\pi\)
0.684779 + 0.728751i \(0.259899\pi\)
\(150\) 0 0
\(151\) 7.48610 + 6.74051i 0.609210 + 0.548535i 0.914943 0.403582i \(-0.132235\pi\)
−0.305734 + 0.952117i \(0.598902\pi\)
\(152\) 11.8147 + 16.2615i 0.958299 + 1.31899i
\(153\) 0 0
\(154\) 2.94199 + 0.420471i 0.237072 + 0.0338826i
\(155\) 11.5510 6.66898i 0.927800 0.535665i
\(156\) 0 0
\(157\) 15.8287 + 3.36450i 1.26327 + 0.268516i 0.790386 0.612609i \(-0.209880\pi\)
0.472883 + 0.881125i \(0.343213\pi\)
\(158\) 19.8021 17.8298i 1.57537 1.41847i
\(159\) 0 0
\(160\) 2.32927 + 0.244816i 0.184145 + 0.0193544i
\(161\) 0.564633 1.73776i 0.0444993 0.136955i
\(162\) 0 0
\(163\) −3.45923 + 2.51328i −0.270948 + 0.196855i −0.714959 0.699166i \(-0.753555\pi\)
0.444012 + 0.896021i \(0.353555\pi\)
\(164\) −5.35072 9.26772i −0.417821 0.723687i
\(165\) 0 0
\(166\) −11.1867 + 19.3759i −0.868253 + 1.50386i
\(167\) −1.91840 18.2523i −0.148450 1.41241i −0.774475 0.632604i \(-0.781986\pi\)
0.626025 0.779803i \(-0.284681\pi\)
\(168\) 0 0
\(169\) −11.8364 + 2.51590i −0.910490 + 0.193531i
\(170\) 18.6698 25.6968i 1.43191 1.97085i
\(171\) 0 0
\(172\) 7.06490 + 2.29553i 0.538694 + 0.175032i
\(173\) −4.13682 + 4.59441i −0.314517 + 0.349306i −0.879588 0.475736i \(-0.842182\pi\)
0.565071 + 0.825042i \(0.308849\pi\)
\(174\) 0 0
\(175\) −2.99654 1.73005i −0.226517 0.130780i
\(176\) 11.9913 + 0.446760i 0.903881 + 0.0336758i
\(177\) 0 0
\(178\) 3.02075 6.78472i 0.226415 0.508536i
\(179\) −8.77414 + 2.85089i −0.655810 + 0.213086i −0.617974 0.786198i \(-0.712046\pi\)
−0.0378357 + 0.999284i \(0.512046\pi\)
\(180\) 0 0
\(181\) 3.38790 + 2.46145i 0.251821 + 0.182958i 0.706533 0.707680i \(-0.250258\pi\)
−0.454713 + 0.890638i \(0.650258\pi\)
\(182\) −0.0888176 + 0.845043i −0.00658360 + 0.0626388i
\(183\) 0 0
\(184\) 4.87104 22.9164i 0.359098 1.68942i
\(185\) −27.1131 + 2.84970i −1.99339 + 0.209514i
\(186\) 0 0
\(187\) −6.05915 + 9.64651i −0.443089 + 0.705423i
\(188\) 0.0811047i 0.00591517i
\(189\) 0 0
\(190\) 12.1803 + 37.4872i 0.883653 + 2.71960i
\(191\) −4.19627 19.7419i −0.303632 1.42848i −0.820125 0.572184i \(-0.806096\pi\)
0.516493 0.856291i \(-0.327237\pi\)
\(192\) 0 0
\(193\) 3.25957 + 7.32111i 0.234629 + 0.526985i 0.992036 0.125958i \(-0.0402005\pi\)
−0.757407 + 0.652944i \(0.773534\pi\)
\(194\) −24.5948 27.3153i −1.76580 1.96112i
\(195\) 0 0
\(196\) 24.6814 + 10.9889i 1.76296 + 0.784919i
\(197\) −21.1710 −1.50837 −0.754187 0.656659i \(-0.771969\pi\)
−0.754187 + 0.656659i \(0.771969\pi\)
\(198\) 0 0
\(199\) −10.5160 −0.745457 −0.372729 0.927940i \(-0.621578\pi\)
−0.372729 + 0.927940i \(0.621578\pi\)
\(200\) −40.5301 18.0452i −2.86591 1.27599i
\(201\) 0 0
\(202\) −28.4632 31.6116i −2.00267 2.22419i
\(203\) −0.371505 0.834414i −0.0260745 0.0585644i
\(204\) 0 0
\(205\) −2.14587 10.0955i −0.149874 0.705102i
\(206\) −7.01339 21.5850i −0.488646 1.50390i
\(207\) 0 0
\(208\) 3.43085i 0.237886i
\(209\) −5.26501 13.1194i −0.364188 0.907487i
\(210\) 0 0
\(211\) 3.67797 0.386570i 0.253202 0.0266126i 0.0229227 0.999737i \(-0.492703\pi\)
0.230279 + 0.973125i \(0.426036\pi\)
\(212\) −4.53749 + 21.3472i −0.311636 + 1.46613i
\(213\) 0 0
\(214\) −3.92833 + 37.3756i −0.268535 + 2.55494i
\(215\) 5.79615 + 4.21115i 0.395294 + 0.287198i
\(216\) 0 0
\(217\) 1.22913 0.399369i 0.0834390 0.0271110i
\(218\) −10.5323 + 23.6559i −0.713336 + 1.60218i
\(219\) 0 0
\(220\) 46.5186 + 17.0544i 3.13629 + 1.14981i
\(221\) −2.82064 1.62850i −0.189737 0.109545i
\(222\) 0 0
\(223\) −11.9755 + 13.3001i −0.801939 + 0.890644i −0.995909 0.0903637i \(-0.971197\pi\)
0.193969 + 0.981008i \(0.437864\pi\)
\(224\) 0.215832 + 0.0701279i 0.0144209 + 0.00468562i
\(225\) 0 0
\(226\) −1.49936 + 2.06370i −0.0997363 + 0.137275i
\(227\) −16.9986 + 3.61317i −1.12824 + 0.239815i −0.733971 0.679181i \(-0.762335\pi\)
−0.394268 + 0.918996i \(0.629002\pi\)
\(228\) 0 0
\(229\) −0.447032 4.25323i −0.0295407 0.281061i −0.999313 0.0370509i \(-0.988204\pi\)
0.969773 0.244010i \(-0.0784630\pi\)
\(230\) 22.9713 39.7874i 1.51468 2.62350i
\(231\) 0 0
\(232\) −5.85572 10.1424i −0.384447 0.665882i
\(233\) 18.9171 13.7441i 1.23930 0.900404i 0.241748 0.970339i \(-0.422279\pi\)
0.997552 + 0.0699355i \(0.0222793\pi\)
\(234\) 0 0
\(235\) −0.0241719 + 0.0743935i −0.00157680 + 0.00485289i
\(236\) 25.9277 + 2.72511i 1.68775 + 0.177389i
\(237\) 0 0
\(238\) 2.28716 2.05937i 0.148255 0.133489i
\(239\) 19.5588 + 4.15734i 1.26515 + 0.268916i 0.791158 0.611612i \(-0.209479\pi\)
0.473993 + 0.880528i \(0.342812\pi\)
\(240\) 0 0
\(241\) 2.01411 1.16285i 0.129740 0.0749057i −0.433725 0.901045i \(-0.642801\pi\)
0.563466 + 0.826140i \(0.309468\pi\)
\(242\) −25.7266 7.50707i −1.65377 0.482573i
\(243\) 0 0
\(244\) 22.5606 + 31.0520i 1.44430 + 1.98790i
\(245\) 19.3640 + 17.4354i 1.23712 + 1.11391i
\(246\) 0 0
\(247\) 3.69235 1.64394i 0.234938 0.104601i
\(248\) 15.1385 6.74008i 0.961293 0.427995i
\(249\) 0 0
\(250\) −30.2919 27.2750i −1.91583 1.72502i
\(251\) −1.88681 2.59698i −0.119095 0.163920i 0.745307 0.666721i \(-0.232303\pi\)
−0.864402 + 0.502801i \(0.832303\pi\)
\(252\) 0 0
\(253\) −7.25758 + 14.7925i −0.456280 + 0.929999i
\(254\) 37.0184 21.3726i 2.32274 1.34103i
\(255\) 0 0
\(256\) 30.7025 + 6.52603i 1.91891 + 0.407877i
\(257\) −13.4084 + 12.0730i −0.836393 + 0.753091i −0.971323 0.237764i \(-0.923586\pi\)
0.134930 + 0.990855i \(0.456919\pi\)
\(258\) 0 0
\(259\) −2.62713 0.276123i −0.163242 0.0171574i
\(260\) −4.37750 + 13.4726i −0.271481 + 0.835533i
\(261\) 0 0
\(262\) −27.3756 + 19.8895i −1.69127 + 1.22878i
\(263\) 1.02983 + 1.78372i 0.0635019 + 0.109989i 0.896028 0.443997i \(-0.146440\pi\)
−0.832527 + 0.553985i \(0.813106\pi\)
\(264\) 0 0
\(265\) −10.5242 + 18.2284i −0.646496 + 1.11976i
\(266\) 0.399221 + 3.79834i 0.0244778 + 0.232891i
\(267\) 0 0
\(268\) −17.1829 + 3.65235i −1.04962 + 0.223103i
\(269\) −1.69280 + 2.32994i −0.103212 + 0.142059i −0.857499 0.514486i \(-0.827983\pi\)
0.754287 + 0.656545i \(0.227983\pi\)
\(270\) 0 0
\(271\) 9.67272 + 3.14286i 0.587576 + 0.190915i 0.587692 0.809085i \(-0.300037\pi\)
−0.000115761 1.00000i \(0.500037\pi\)
\(272\) 8.31518 9.23495i 0.504182 0.559951i
\(273\) 0 0
\(274\) −2.18952 1.26412i −0.132274 0.0763683i
\(275\) 24.5427 + 19.2672i 1.47998 + 1.16186i
\(276\) 0 0
\(277\) 2.97354 6.67868i 0.178663 0.401283i −0.801908 0.597447i \(-0.796182\pi\)
0.980571 + 0.196164i \(0.0628485\pi\)
\(278\) 45.9594 14.9331i 2.75646 0.895629i
\(279\) 0 0
\(280\) −5.32621 3.86972i −0.318302 0.231260i
\(281\) 0.240983 2.29280i 0.0143758 0.136777i −0.984980 0.172670i \(-0.944761\pi\)
0.999356 + 0.0358925i \(0.0114274\pi\)
\(282\) 0 0
\(283\) −5.07987 + 23.8989i −0.301967 + 1.42064i 0.521487 + 0.853259i \(0.325377\pi\)
−0.823454 + 0.567383i \(0.807956\pi\)
\(284\) −40.4194 + 4.24825i −2.39845 + 0.252087i
\(285\) 0 0
\(286\) 1.87102 7.43035i 0.110636 0.439366i
\(287\) 1.00006i 0.0590318i
\(288\) 0 0
\(289\) −1.60777 4.94822i −0.0945749 0.291072i
\(290\) −4.77487 22.4640i −0.280390 1.31913i
\(291\) 0 0
\(292\) −7.03679 15.8049i −0.411797 0.924911i
\(293\) −7.13388 7.92298i −0.416766 0.462865i 0.497806 0.867288i \(-0.334139\pi\)
−0.914572 + 0.404423i \(0.867472\pi\)
\(294\) 0 0
\(295\) 22.9700 + 10.2269i 1.33737 + 0.595434i
\(296\) −33.8709 −1.96871
\(297\) 0 0
\(298\) 19.5782 1.13414
\(299\) −4.30369 1.91613i −0.248889 0.110812i
\(300\) 0 0
\(301\) 0.464511 + 0.515892i 0.0267740 + 0.0297355i
\(302\) 9.98227 + 22.4206i 0.574415 + 1.29016i
\(303\) 0 0
\(304\) 3.20623 + 15.0841i 0.183890 + 0.865135i
\(305\) 11.4392 + 35.2063i 0.655009 + 2.01591i
\(306\) 0 0
\(307\) 4.56848i 0.260737i 0.991466 + 0.130369i \(0.0416160\pi\)
−0.991466 + 0.130369i \(0.958384\pi\)
\(308\) 4.06537 + 2.55353i 0.231646 + 0.145501i
\(309\) 0 0
\(310\) 32.3175 3.39671i 1.83551 0.192920i
\(311\) −1.95067 + 9.17719i −0.110612 + 0.520391i 0.887599 + 0.460616i \(0.152372\pi\)
−0.998212 + 0.0597746i \(0.980962\pi\)
\(312\) 0 0
\(313\) 0.524316 4.98853i 0.0296361 0.281968i −0.969660 0.244457i \(-0.921390\pi\)
0.999296 0.0375113i \(-0.0119430\pi\)
\(314\) 31.8958 + 23.1736i 1.79998 + 1.30776i
\(315\) 0 0
\(316\) 40.9379 13.3015i 2.30294 0.748269i
\(317\) −4.74914 + 10.6667i −0.266738 + 0.599104i −0.996407 0.0846972i \(-0.973008\pi\)
0.729669 + 0.683801i \(0.239674\pi\)
\(318\) 0 0
\(319\) 2.25183 + 7.92277i 0.126078 + 0.443590i
\(320\) 28.7282 + 16.5862i 1.60596 + 0.927199i
\(321\) 0 0
\(322\) 2.97871 3.30819i 0.165997 0.184358i
\(323\) −13.9232 4.52391i −0.774706 0.251717i
\(324\) 0 0
\(325\) −5.24366 + 7.21728i −0.290866 + 0.400343i
\(326\) −10.1897 + 2.16588i −0.564353 + 0.119957i
\(327\) 0 0
\(328\) −1.34036 12.7527i −0.0740089 0.704148i
\(329\) −0.00378967 + 0.00656390i −0.000208931 + 0.000361880i
\(330\) 0 0
\(331\) 14.5258 + 25.1595i 0.798411 + 1.38289i 0.920650 + 0.390388i \(0.127659\pi\)
−0.122239 + 0.992501i \(0.539007\pi\)
\(332\) −29.2395 + 21.2438i −1.60473 + 1.16590i
\(333\) 0 0
\(334\) 13.8172 42.5250i 0.756044 2.32686i
\(335\) −16.8496 1.77096i −0.920592 0.0967582i
\(336\) 0 0
\(337\) −21.4623 + 19.3247i −1.16912 + 1.05268i −0.171403 + 0.985201i \(0.554830\pi\)
−0.997720 + 0.0674824i \(0.978503\pi\)
\(338\) −28.8372 6.12953i −1.56853 0.333402i
\(339\) 0 0
\(340\) 44.4359 25.6551i 2.40987 1.39134i
\(341\) −11.4820 + 1.99697i −0.621783 + 0.108142i
\(342\) 0 0
\(343\) 2.99731 + 4.12544i 0.161840 + 0.222753i
\(344\) 6.61482 + 5.95601i 0.356647 + 0.321126i
\(345\) 0 0
\(346\) −13.7601 + 6.12638i −0.739746 + 0.329356i
\(347\) 20.2286 9.00637i 1.08593 0.483488i 0.215865 0.976423i \(-0.430743\pi\)
0.870066 + 0.492936i \(0.164076\pi\)
\(348\) 0 0
\(349\) 11.6395 + 10.4802i 0.623048 + 0.560995i 0.919024 0.394201i \(-0.128978\pi\)
−0.295977 + 0.955195i \(0.595645\pi\)
\(350\) −4.95498 6.81994i −0.264855 0.364541i
\(351\) 0 0
\(352\) −1.83725 0.901398i −0.0979257 0.0480447i
\(353\) −9.66798 + 5.58181i −0.514575 + 0.297090i −0.734712 0.678379i \(-0.762683\pi\)
0.220137 + 0.975469i \(0.429349\pi\)
\(354\) 0 0
\(355\) −38.3409 8.14961i −2.03492 0.432536i
\(356\) 8.91574 8.02777i 0.472533 0.425471i
\(357\) 0 0
\(358\) −22.3536 2.34945i −1.18142 0.124172i
\(359\) −5.11867 + 15.7536i −0.270153 + 0.831445i 0.720308 + 0.693654i \(0.244000\pi\)
−0.990461 + 0.137791i \(0.956000\pi\)
\(360\) 0 0
\(361\) −0.673787 + 0.489535i −0.0354625 + 0.0257650i
\(362\) 5.10125 + 8.83563i 0.268116 + 0.464390i
\(363\) 0 0
\(364\) −0.686304 + 1.18871i −0.0359721 + 0.0623055i
\(365\) −1.74413 16.5943i −0.0912918 0.868583i
\(366\) 0 0
\(367\) −9.59589 + 2.03967i −0.500902 + 0.106470i −0.451432 0.892306i \(-0.649087\pi\)
−0.0494699 + 0.998776i \(0.515753\pi\)
\(368\) 10.5651 14.5416i 0.550743 0.758033i
\(369\) 0 0
\(370\) −63.1692 20.5249i −3.28401 1.06704i
\(371\) −1.36469 + 1.51564i −0.0708510 + 0.0786880i
\(372\) 0 0
\(373\) 10.9422 + 6.31750i 0.566567 + 0.327108i 0.755777 0.654829i \(-0.227259\pi\)
−0.189210 + 0.981937i \(0.560593\pi\)
\(374\) −23.0449 + 15.4659i −1.19162 + 0.799721i
\(375\) 0 0
\(376\) −0.0395279 + 0.0887811i −0.00203850 + 0.00457854i
\(377\) −2.23967 + 0.727714i −0.115349 + 0.0374792i
\(378\) 0 0
\(379\) −28.3981 20.6325i −1.45871 1.05982i −0.983695 0.179843i \(-0.942441\pi\)
−0.475019 0.879975i \(-0.657559\pi\)
\(380\) −6.65569 + 63.3246i −0.341430 + 3.24849i
\(381\) 0 0
\(382\) 10.2235 48.0976i 0.523078 2.46089i
\(383\) 22.4628 2.36094i 1.14780 0.120638i 0.488529 0.872548i \(-0.337534\pi\)
0.659267 + 0.751909i \(0.270867\pi\)
\(384\) 0 0
\(385\) 2.96793 + 3.55385i 0.151260 + 0.181121i
\(386\) 19.5246i 0.993774i
\(387\) 0 0
\(388\) −18.3484 56.4704i −0.931497 2.86685i
\(389\) 1.52999 + 7.19803i 0.0775735 + 0.364955i 0.999763 0.0217844i \(-0.00693475\pi\)
−0.922189 + 0.386739i \(0.873601\pi\)
\(390\) 0 0
\(391\) 6.94038 + 15.5884i 0.350990 + 0.788337i
\(392\) 21.6618 + 24.0579i 1.09409 + 1.21511i
\(393\) 0 0
\(394\) −47.1201 20.9792i −2.37388 1.05692i
\(395\) 41.5146 2.08883
\(396\) 0 0
\(397\) 16.7327 0.839790 0.419895 0.907573i \(-0.362067\pi\)
0.419895 + 0.907573i \(0.362067\pi\)
\(398\) −23.4053 10.4207i −1.17320 0.522342i
\(399\) 0 0
\(400\) −22.7757 25.2949i −1.13878 1.26475i
\(401\) 2.06355 + 4.63481i 0.103049 + 0.231451i 0.957710 0.287734i \(-0.0929020\pi\)
−0.854662 + 0.519186i \(0.826235\pi\)
\(402\) 0 0
\(403\) −0.692785 3.25930i −0.0345101 0.162357i
\(404\) −21.2343 65.3525i −1.05645 3.25141i
\(405\) 0 0
\(406\) 2.22528i 0.110439i
\(407\) 23.1000 + 5.81676i 1.14503 + 0.288326i
\(408\) 0 0
\(409\) −32.1705 + 3.38125i −1.59073 + 0.167192i −0.858116 0.513455i \(-0.828365\pi\)
−0.732611 + 0.680647i \(0.761699\pi\)
\(410\) 5.22802 24.5959i 0.258194 1.21471i
\(411\) 0 0
\(412\) 3.83232 36.4621i 0.188805 1.79636i
\(413\) 1.97102 + 1.43203i 0.0969877 + 0.0704657i
\(414\) 0 0
\(415\) −33.1513 + 10.7715i −1.62734 + 0.528753i
\(416\) 0.237985 0.534522i 0.0116682 0.0262071i
\(417\) 0 0
\(418\) 1.28227 34.4170i 0.0627178 1.68339i
\(419\) −24.1686 13.9538i −1.18071 0.681686i −0.224534 0.974466i \(-0.572086\pi\)
−0.956180 + 0.292781i \(0.905419\pi\)
\(420\) 0 0
\(421\) 17.8850 19.8633i 0.871659 0.968076i −0.128060 0.991766i \(-0.540875\pi\)
0.999719 + 0.0236907i \(0.00754169\pi\)
\(422\) 8.56907 + 2.78426i 0.417136 + 0.135536i
\(423\) 0 0
\(424\) −15.3709 + 21.1562i −0.746478 + 1.02744i
\(425\) 31.6068 6.71823i 1.53315 0.325882i
\(426\) 0 0
\(427\) 0.374932 + 3.56724i 0.0181442 + 0.172631i
\(428\) −30.3547 + 52.5759i −1.46725 + 2.54135i
\(429\) 0 0
\(430\) 8.72743 + 15.1164i 0.420874 + 0.728975i
\(431\) 0.579760 0.421220i 0.0279260 0.0202895i −0.573735 0.819041i \(-0.694506\pi\)
0.601661 + 0.798752i \(0.294506\pi\)
\(432\) 0 0
\(433\) 3.53281 10.8729i 0.169776 0.522517i −0.829580 0.558387i \(-0.811420\pi\)
0.999356 + 0.0358703i \(0.0114203\pi\)
\(434\) 3.13142 + 0.329125i 0.150313 + 0.0157985i
\(435\) 0 0
\(436\) −31.0860 + 27.9899i −1.48875 + 1.34047i
\(437\) −20.7124 4.40255i −0.990807 0.210603i
\(438\) 0 0
\(439\) 7.42639 4.28763i 0.354442 0.204637i −0.312198 0.950017i \(-0.601065\pi\)
0.666640 + 0.745380i \(0.267732\pi\)
\(440\) 42.6097 + 41.3403i 2.03134 + 1.97082i
\(441\) 0 0
\(442\) −4.66412 6.41961i −0.221850 0.305350i
\(443\) 10.3869 + 9.35237i 0.493495 + 0.444345i 0.877917 0.478813i \(-0.158933\pi\)
−0.384422 + 0.923157i \(0.625599\pi\)
\(444\) 0 0
\(445\) 10.5705 4.70630i 0.501091 0.223100i
\(446\) −39.8334 + 17.7350i −1.88617 + 0.839775i
\(447\) 0 0
\(448\) 2.38866 + 2.15076i 0.112854 + 0.101614i
\(449\) −12.7008 17.4811i −0.599388 0.824986i 0.396264 0.918136i \(-0.370306\pi\)
−0.995652 + 0.0931501i \(0.970306\pi\)
\(450\) 0 0
\(451\) −1.27593 + 8.92753i −0.0600811 + 0.420381i
\(452\) −3.56863 + 2.06035i −0.167854 + 0.0969107i
\(453\) 0 0
\(454\) −41.4141 8.80283i −1.94366 0.413137i
\(455\) −0.983790 + 0.885809i −0.0461208 + 0.0415273i
\(456\) 0 0
\(457\) −9.75135 1.02491i −0.456149 0.0479432i −0.126332 0.991988i \(-0.540320\pi\)
−0.329817 + 0.944045i \(0.606987\pi\)
\(458\) 3.21974 9.90934i 0.150449 0.463033i
\(459\) 0 0
\(460\) 60.0419 43.6230i 2.79947 2.03393i
\(461\) −6.17927 10.7028i −0.287797 0.498479i 0.685486 0.728085i \(-0.259590\pi\)
−0.973284 + 0.229606i \(0.926256\pi\)
\(462\) 0 0
\(463\) 16.9359 29.3338i 0.787076 1.36326i −0.140675 0.990056i \(-0.544927\pi\)
0.927751 0.373200i \(-0.121739\pi\)
\(464\) −0.939198 8.93587i −0.0436012 0.414837i
\(465\) 0 0
\(466\) 55.7231 11.8443i 2.58132 0.548677i
\(467\) −9.24994 + 12.7315i −0.428036 + 0.589142i −0.967501 0.252867i \(-0.918627\pi\)
0.539465 + 0.842008i \(0.318627\pi\)
\(468\) 0 0
\(469\) −1.56129 0.507295i −0.0720939 0.0234247i
\(470\) −0.127519 + 0.141624i −0.00588199 + 0.00653261i
\(471\) 0 0
\(472\) 27.0535 + 15.6194i 1.24524 + 0.718939i
\(473\) −3.48848 5.19800i −0.160400 0.239004i
\(474\) 0 0
\(475\) −16.3096 + 36.6320i −0.748337 + 1.68079i
\(476\) 4.72838 1.53634i 0.216725 0.0704182i
\(477\) 0 0
\(478\) 39.4120 + 28.6345i 1.80266 + 1.30971i
\(479\) −1.30337 + 12.4008i −0.0595526 + 0.566605i 0.923541 + 0.383500i \(0.125281\pi\)
−0.983093 + 0.183105i \(0.941385\pi\)
\(480\) 0 0
\(481\) −1.41603 + 6.66192i −0.0645656 + 0.303757i
\(482\) 5.63510 0.592273i 0.256672 0.0269773i
\(483\) 0 0
\(484\) −33.0335 27.9821i −1.50152 1.27191i
\(485\) 57.2660i 2.60032i
\(486\) 0 0
\(487\) −2.14955 6.61563i −0.0974054 0.299783i 0.890468 0.455046i \(-0.150377\pi\)
−0.987873 + 0.155263i \(0.950377\pi\)
\(488\) 9.56215 + 44.9864i 0.432858 + 2.03644i
\(489\) 0 0
\(490\) 25.8208 + 57.9944i 1.16646 + 2.61992i
\(491\) −0.202024 0.224370i −0.00911721 0.0101257i 0.738569 0.674178i \(-0.235502\pi\)
−0.747686 + 0.664052i \(0.768835\pi\)
\(492\) 0 0
\(493\) 7.79235 + 3.46938i 0.350950 + 0.156253i
\(494\) 9.84705 0.443040
\(495\) 0 0
\(496\) 12.7135 0.570851
\(497\) −3.46969 1.54481i −0.155637 0.0692940i
\(498\) 0 0
\(499\) 4.42745 + 4.91718i 0.198200 + 0.220123i 0.834049 0.551690i \(-0.186017\pi\)
−0.635850 + 0.771813i \(0.719350\pi\)
\(500\) −26.7823 60.1541i −1.19774 2.69017i
\(501\) 0 0
\(502\) −1.62601 7.64978i −0.0725724 0.341426i
\(503\) 3.19188 + 9.82361i 0.142319 + 0.438013i 0.996657 0.0817056i \(-0.0260367\pi\)
−0.854337 + 0.519719i \(0.826037\pi\)
\(504\) 0 0
\(505\) 66.2732i 2.94912i
\(506\) −30.8116 + 25.7318i −1.36974 + 1.14392i
\(507\) 0 0
\(508\) 68.6725 7.21777i 3.04685 0.320237i
\(509\) 4.22581 19.8809i 0.187306 0.881204i −0.779641 0.626226i \(-0.784599\pi\)
0.966947 0.254978i \(-0.0820681\pi\)
\(510\) 0 0
\(511\) 0.168998 1.60791i 0.00747602 0.0711296i
\(512\) 29.4132 + 21.3699i 1.29989 + 0.944427i
\(513\) 0 0
\(514\) −41.8065 + 13.5838i −1.84401 + 0.599154i
\(515\) 14.3821 32.3028i 0.633752 1.42343i
\(516\) 0 0
\(517\) 0.0422048 0.0537607i 0.00185617 0.00236439i
\(518\) −5.57356 3.21790i −0.244888 0.141386i
\(519\) 0 0
\(520\) −11.3579 + 12.6143i −0.498078 + 0.553172i
\(521\) −11.4110 3.70764i −0.499923 0.162435i 0.0481915 0.998838i \(-0.484654\pi\)
−0.548115 + 0.836403i \(0.684654\pi\)
\(522\) 0 0
\(523\) −22.2395 + 30.6101i −0.972466 + 1.33848i −0.0316743 + 0.999498i \(0.510084\pi\)
−0.940791 + 0.338986i \(0.889916\pi\)
\(524\) −53.4678 + 11.3649i −2.33575 + 0.496479i
\(525\) 0 0
\(526\) 0.524522 + 4.99049i 0.0228702 + 0.217596i
\(527\) −6.03461 + 10.4522i −0.262872 + 0.455307i
\(528\) 0 0
\(529\) 0.840532 + 1.45584i 0.0365449 + 0.0632976i
\(530\) −41.4869 + 30.1420i −1.80207 + 1.30928i
\(531\) 0 0
\(532\) −1.90653 + 5.86770i −0.0826586 + 0.254397i
\(533\) −2.56430 0.269519i −0.111072 0.0116742i
\(534\) 0 0
\(535\) −43.5123 + 39.1786i −1.88120 + 1.69384i
\(536\) −20.5893 4.37639i −0.889323 0.189031i
\(537\) 0 0
\(538\) −6.07649 + 3.50826i −0.261976 + 0.151252i
\(539\) −10.6419 20.1276i −0.458378 0.866957i
\(540\) 0 0
\(541\) 21.6491 + 29.7975i 0.930769 + 1.28109i 0.959559 + 0.281508i \(0.0908345\pi\)
−0.0287904 + 0.999585i \(0.509166\pi\)
\(542\) 18.4141 + 16.5801i 0.790952 + 0.712176i
\(543\) 0 0
\(544\) −1.93609 + 0.862003i −0.0830091 + 0.0369581i
\(545\) −36.8556 + 16.4092i −1.57872 + 0.702892i
\(546\) 0 0
\(547\) −27.2544 24.5400i −1.16532 1.04925i −0.997991 0.0633524i \(-0.979821\pi\)
−0.167324 0.985902i \(-0.553513\pi\)
\(548\) −2.40060 3.30414i −0.102548 0.141146i
\(549\) 0 0
\(550\) 35.5317 + 67.2032i 1.51508 + 2.86555i
\(551\) −9.16693 + 5.29253i −0.390524 + 0.225469i
\(552\) 0 0
\(553\) 3.93467 + 0.836340i 0.167319 + 0.0355648i
\(554\) 13.2363 11.9181i 0.562358 0.506350i
\(555\) 0 0
\(556\) 77.6363 + 8.15990i 3.29251 + 0.346057i
\(557\) 2.30765 7.10223i 0.0977784 0.300931i −0.890189 0.455591i \(-0.849428\pi\)
0.987968 + 0.154660i \(0.0494281\pi\)
\(558\) 0 0
\(559\) 1.44800 1.05204i 0.0612441 0.0444964i
\(560\) −2.52547 4.37425i −0.106721 0.184846i
\(561\) 0 0
\(562\) 2.80838 4.86426i 0.118464 0.205186i
\(563\) −0.409209 3.89336i −0.0172461 0.164086i 0.982509 0.186215i \(-0.0596221\pi\)
−0.999755 + 0.0221293i \(0.992955\pi\)
\(564\) 0 0
\(565\) −3.88739 + 0.826289i −0.163544 + 0.0347622i
\(566\) −34.9886 + 48.1576i −1.47068 + 2.02422i
\(567\) 0 0
\(568\) −46.3155 15.0488i −1.94335 0.631434i
\(569\) −25.2069 + 27.9951i −1.05673 + 1.17362i −0.0723817 + 0.997377i \(0.523060\pi\)
−0.984347 + 0.176240i \(0.943607\pi\)
\(570\) 0 0
\(571\) 26.2762 + 15.1706i 1.09962 + 0.634868i 0.936122 0.351675i \(-0.114388\pi\)
0.163502 + 0.986543i \(0.447721\pi\)
\(572\) 7.64323 9.73599i 0.319580 0.407082i
\(573\) 0 0
\(574\) 0.991002 2.22583i 0.0413636 0.0929043i
\(575\) 44.4504 14.4428i 1.85371 0.602307i
\(576\) 0 0
\(577\) 2.68563 + 1.95122i 0.111804 + 0.0812305i 0.642282 0.766468i \(-0.277988\pi\)
−0.530478 + 0.847699i \(0.677988\pi\)
\(578\) 1.32499 12.6064i 0.0551121 0.524357i
\(579\) 0 0
\(580\) 7.71336 36.2885i 0.320280 1.50680i
\(581\) −3.35902 + 0.353047i −0.139355 + 0.0146469i
\(582\) 0 0
\(583\) 14.1162 11.7889i 0.584635 0.488247i
\(584\) 20.7303i 0.857826i
\(585\) 0 0
\(586\) −8.02659 24.7033i −0.331576 1.02048i
\(587\) −8.50514 40.0135i −0.351045 1.65154i −0.699813 0.714326i \(-0.746733\pi\)
0.348768 0.937209i \(-0.386600\pi\)
\(588\) 0 0
\(589\) −6.09183 13.6825i −0.251009 0.563776i
\(590\) 40.9898 + 45.5238i 1.68752 + 1.87419i
\(591\) 0 0
\(592\) −23.7394 10.5694i −0.975682 0.434401i
\(593\) −4.62924 −0.190100 −0.0950500 0.995472i \(-0.530301\pi\)
−0.0950500 + 0.995472i \(0.530301\pi\)
\(594\) 0 0
\(595\) 4.79500 0.196576
\(596\) 28.8925 + 12.8638i 1.18348 + 0.526921i
\(597\) 0 0
\(598\) −7.67990 8.52940i −0.314055 0.348793i
\(599\) 12.4375 + 27.9352i 0.508184 + 1.14140i 0.967441 + 0.253097i \(0.0814491\pi\)
−0.459257 + 0.888304i \(0.651884\pi\)
\(600\) 0 0
\(601\) 6.49309 + 30.5476i 0.264859 + 1.24606i 0.886488 + 0.462751i \(0.153138\pi\)
−0.621630 + 0.783311i \(0.713529\pi\)
\(602\) 0.522639 + 1.60852i 0.0213012 + 0.0655583i
\(603\) 0 0
\(604\) 39.6459i 1.61317i
\(605\) −21.9604 35.5117i −0.892819 1.44376i
\(606\) 0 0
\(607\) 30.5982 3.21600i 1.24194 0.130533i 0.539322 0.842100i \(-0.318681\pi\)
0.702619 + 0.711566i \(0.252014\pi\)
\(608\) 0.546801 2.57250i 0.0221757 0.104329i
\(609\) 0 0
\(610\) −9.42721 + 89.6939i −0.381697 + 3.63160i
\(611\) 0.0158094 + 0.0114862i 0.000639581 + 0.000464683i
\(612\) 0 0
\(613\) 24.2244 7.87097i 0.978413 0.317906i 0.224205 0.974542i \(-0.428021\pi\)
0.754207 + 0.656636i \(0.228021\pi\)
\(614\) −4.52709 + 10.1680i −0.182699 + 0.410348i
\(615\) 0 0
\(616\) 3.20564 + 4.77655i 0.129159 + 0.192453i
\(617\) −3.64536 2.10465i −0.146757 0.0847300i 0.424824 0.905276i \(-0.360336\pi\)
−0.571580 + 0.820546i \(0.693669\pi\)
\(618\) 0 0
\(619\) 25.7637 28.6135i 1.03553 1.15007i 0.0470228 0.998894i \(-0.485027\pi\)
0.988507 0.151178i \(-0.0483067\pi\)
\(620\) 49.9243 + 16.2214i 2.00501 + 0.651467i
\(621\) 0 0
\(622\) −13.4356 + 18.4926i −0.538720 + 0.741484i
\(623\) 1.09666 0.233103i 0.0439369 0.00933908i
\(624\) 0 0
\(625\) −1.72132 16.3773i −0.0688529 0.655091i
\(626\) 6.11030 10.5833i 0.244217 0.422995i
\(627\) 0 0
\(628\) 31.8440 + 55.1554i 1.27071 + 2.20094i
\(629\) 19.9578 14.5002i 0.795769 0.578160i
\(630\) 0 0
\(631\) −3.65655 + 11.2537i −0.145565 + 0.448003i −0.997083 0.0763220i \(-0.975682\pi\)
0.851518 + 0.524325i \(0.175682\pi\)
\(632\) 51.2953 + 5.39135i 2.04042 + 0.214457i
\(633\) 0 0
\(634\) −21.1402 + 19.0347i −0.839585 + 0.755965i
\(635\) 65.1411 + 13.8462i 2.58505 + 0.549469i
\(636\) 0 0
\(637\) 5.63745 3.25478i 0.223364 0.128959i
\(638\) −2.83913 + 19.8650i −0.112402 + 0.786465i
\(639\) 0 0
\(640\) 44.7507 + 61.5941i 1.76893 + 2.43472i
\(641\) 26.7087 + 24.0486i 1.05493 + 0.949863i 0.998820 0.0485621i \(-0.0154639\pi\)
0.0561091 + 0.998425i \(0.482131\pi\)
\(642\) 0 0
\(643\) 2.97384 1.32404i 0.117277 0.0522149i −0.347260 0.937769i \(-0.612888\pi\)
0.464536 + 0.885554i \(0.346221\pi\)
\(644\) 6.56947 2.92491i 0.258873 0.115258i
\(645\) 0 0
\(646\) −26.5057 23.8658i −1.04285 0.938989i
\(647\) −7.14454 9.83361i −0.280881 0.386599i 0.645145 0.764060i \(-0.276797\pi\)
−0.926025 + 0.377461i \(0.876797\pi\)
\(648\) 0 0
\(649\) −15.7682 15.2984i −0.618956 0.600516i
\(650\) −18.8227 + 10.8673i −0.738285 + 0.426249i
\(651\) 0 0
\(652\) −16.4605 3.49878i −0.644642 0.137023i
\(653\) −18.9653 + 17.0765i −0.742171 + 0.668254i −0.950823 0.309736i \(-0.899759\pi\)
0.208651 + 0.977990i \(0.433093\pi\)
\(654\) 0 0
\(655\) −52.4305 5.51067i −2.04863 0.215320i
\(656\) 3.04005 9.35631i 0.118694 0.365303i
\(657\) 0 0
\(658\) −0.0149391 + 0.0108539i −0.000582385 + 0.000423127i
\(659\) 13.9720 + 24.2003i 0.544273 + 0.942708i 0.998652 + 0.0519000i \(0.0165277\pi\)
−0.454379 + 0.890808i \(0.650139\pi\)
\(660\) 0 0
\(661\) 13.6899 23.7116i 0.532475 0.922274i −0.466806 0.884360i \(-0.654595\pi\)
0.999281 0.0379144i \(-0.0120714\pi\)
\(662\) 7.39843 + 70.3913i 0.287548 + 2.73584i
\(663\) 0 0
\(664\) −42.3605 + 9.00401i −1.64391 + 0.349423i
\(665\) −3.49754 + 4.81395i −0.135629 + 0.186677i
\(666\) 0 0
\(667\) 11.7338 + 3.81254i 0.454334 + 0.147622i
\(668\) 48.3316 53.6777i 1.87001 2.07685i
\(669\) 0 0
\(670\) −35.7470 20.6386i −1.38103 0.797337i
\(671\) 1.20425 32.3230i 0.0464896 1.24781i
\(672\) 0 0
\(673\) −5.51079 + 12.3774i −0.212425 + 0.477115i −0.988060 0.154067i \(-0.950763\pi\)
0.775635 + 0.631181i \(0.217430\pi\)
\(674\) −66.9179 + 21.7429i −2.57758 + 0.837507i
\(675\) 0 0
\(676\) −38.5290 27.9930i −1.48189 1.07665i
\(677\) 3.83588 36.4960i 0.147425 1.40265i −0.631422 0.775440i \(-0.717528\pi\)
0.778847 0.627214i \(-0.215805\pi\)
\(678\) 0 0
\(679\) 1.15366 5.42756i 0.0442735 0.208291i
\(680\) 61.1451 6.42661i 2.34481 0.246449i
\(681\) 0 0
\(682\) −27.5341 6.93330i −1.05434 0.265490i
\(683\) 30.8347i 1.17986i 0.807455 + 0.589929i \(0.200844\pi\)
−0.807455 + 0.589929i \(0.799156\pi\)
\(684\) 0 0
\(685\) −1.21721 3.74619i −0.0465072 0.143134i
\(686\) 2.58301 + 12.1521i 0.0986198 + 0.463969i
\(687\) 0 0
\(688\) 2.77760 + 6.23859i 0.105895 + 0.237844i
\(689\) 3.51852 + 3.90771i 0.134045 + 0.148872i
\(690\) 0 0
\(691\) −43.5943 19.4094i −1.65841 0.738370i −0.658507 0.752574i \(-0.728812\pi\)
−0.999899 + 0.0142040i \(0.995479\pi\)
\(692\) −24.3317 −0.924953
\(693\) 0 0
\(694\) 53.9474 2.04782
\(695\) 68.7801 + 30.6229i 2.60898 + 1.16159i
\(696\) 0 0
\(697\) 6.24921 + 6.94045i 0.236706 + 0.262888i
\(698\) 15.5206 + 34.8598i 0.587463 + 1.31946i
\(699\) 0 0
\(700\) −2.83129 13.3202i −0.107013 0.503455i
\(701\) 4.34678 + 13.3780i 0.164176 + 0.505281i 0.998975 0.0452742i \(-0.0144162\pi\)
−0.834799 + 0.550555i \(0.814416\pi\)
\(702\) 0 0
\(703\) 30.6133i 1.15460i
\(704\) −18.5794 22.2473i −0.700239 0.838477i
\(705\) 0 0
\(706\) −27.0491 + 2.84298i −1.01801 + 0.106997i
\(707\) 1.33512 6.28124i 0.0502123 0.236230i
\(708\) 0 0
\(709\) 0.948508 9.02445i 0.0356220 0.338920i −0.962167 0.272460i \(-0.912163\pi\)
0.997789 0.0664604i \(-0.0211706\pi\)
\(710\) −77.2591 56.1320i −2.89948 2.10660i
\(711\) 0 0
\(712\) 13.6721 4.44233i 0.512383 0.166483i
\(713\) −7.10045 + 15.9479i −0.265914 + 0.597253i
\(714\) 0 0
\(715\) 9.91242 6.65242i 0.370703 0.248786i
\(716\) −31.4445 18.1545i −1.17514 0.678466i
\(717\) 0 0
\(718\) −27.0035 + 29.9904i −1.00776 + 1.11923i
\(719\) 32.2802 + 10.4885i 1.20385 + 0.391155i 0.841176 0.540761i \(-0.181864\pi\)
0.362674 + 0.931916i \(0.381864\pi\)
\(720\) 0 0
\(721\) 2.01387 2.77186i 0.0750005 0.103229i
\(722\) −1.98474 + 0.421870i −0.0738644 + 0.0157004i
\(723\) 0 0
\(724\) 1.72276 + 16.3909i 0.0640257 + 0.609164i
\(725\) 11.6817 20.2334i 0.433849 0.751448i
\(726\) 0 0
\(727\) −15.4496 26.7595i −0.572993 0.992454i −0.996256 0.0864469i \(-0.972449\pi\)
0.423263 0.906007i \(-0.360885\pi\)
\(728\) −1.33060 + 0.966740i −0.0493154 + 0.0358298i
\(729\) 0 0
\(730\) 12.5620 38.6620i 0.464942 1.43094i
\(731\) −6.44742 0.677652i −0.238467 0.0250638i
\(732\) 0 0
\(733\) 30.9155 27.8365i 1.14189 1.02816i 0.142628 0.989776i \(-0.454445\pi\)
0.999263 0.0383869i \(-0.0122219\pi\)
\(734\) −23.3787 4.96929i −0.862922 0.183420i
\(735\) 0 0
\(736\) −2.65472 + 1.53271i −0.0978545 + 0.0564963i
\(737\) 13.2904 + 6.52058i 0.489558 + 0.240189i
\(738\) 0 0
\(739\) −8.44687 11.6261i −0.310723 0.427674i 0.624883 0.780718i \(-0.285146\pi\)
−0.935607 + 0.353044i \(0.885146\pi\)
\(740\) −79.7360 71.7946i −2.93115 2.63922i
\(741\) 0 0
\(742\) −4.53927 + 2.02101i −0.166642 + 0.0741938i
\(743\) 12.2687 5.46239i 0.450096 0.200396i −0.169154 0.985590i \(-0.554103\pi\)
0.619250 + 0.785194i \(0.287437\pi\)
\(744\) 0 0
\(745\) 22.6679 + 20.4103i 0.830488 + 0.747775i
\(746\) 18.0937 + 24.9039i 0.662459 + 0.911796i
\(747\) 0 0
\(748\) −44.1703 + 7.68220i −1.61502 + 0.280889i
\(749\) −4.91328 + 2.83669i −0.179528 + 0.103650i
\(750\) 0 0
\(751\) 35.5699 + 7.56062i 1.29796 + 0.275891i 0.804540 0.593898i \(-0.202412\pi\)
0.493424 + 0.869789i \(0.335745\pi\)
\(752\) −0.0554084 + 0.0498900i −0.00202054 + 0.00181930i
\(753\) 0 0
\(754\) −5.70594 0.599718i −0.207798 0.0218405i
\(755\) −11.8158 + 36.3653i −0.430021 + 1.32347i
\(756\) 0 0
\(757\) −32.2811 + 23.4536i −1.17328 + 0.852435i −0.991397 0.130887i \(-0.958218\pi\)
−0.181878 + 0.983321i \(0.558218\pi\)
\(758\) −42.7599 74.0623i −1.55311 2.69006i
\(759\) 0 0
\(760\) −38.1481 + 66.0744i −1.38378 + 2.39677i
\(761\) −0.356458 3.39147i −0.0129216 0.122941i 0.986160 0.165799i \(-0.0530203\pi\)
−0.999081 + 0.0428583i \(0.986354\pi\)
\(762\) 0 0
\(763\) −3.82367 + 0.812747i −0.138426 + 0.0294234i
\(764\) 46.6896 64.2627i 1.68917 2.32494i
\(765\) 0 0
\(766\) 52.3347 + 17.0046i 1.89093 + 0.614401i
\(767\) 4.20312 4.66804i 0.151766 0.168553i
\(768\) 0 0
\(769\) −18.5463 10.7077i −0.668796 0.386130i 0.126824 0.991925i \(-0.459522\pi\)
−0.795620 + 0.605795i \(0.792855\pi\)
\(770\) 3.08404 + 10.8508i 0.111141 + 0.391035i
\(771\) 0 0
\(772\) −12.8285 + 28.8133i −0.461709 + 1.03701i
\(773\) 34.1302 11.0896i 1.22758 0.398864i 0.377741 0.925911i \(-0.376701\pi\)
0.849836 + 0.527048i \(0.176701\pi\)
\(774\) 0 0
\(775\) 26.7446 + 19.4311i 0.960694 + 0.697985i
\(776\) 7.43693 70.7577i 0.266970 2.54005i
\(777\) 0 0
\(778\) −3.72754 + 17.5367i −0.133639 + 0.628721i
\(779\) −11.5261 + 1.21145i −0.412966 + 0.0434045i
\(780\) 0 0
\(781\) 29.0029 + 18.2172i 1.03781 + 0.651864i
\(782\) 41.5723i 1.48662i
\(783\) 0 0
\(784\) 7.67500 + 23.6212i 0.274107 + 0.843615i
\(785\) 12.7708 + 60.0820i 0.455810 + 2.14442i
\(786\) 0 0
\(787\) −19.5492 43.9082i −0.696853 1.56516i −0.819740 0.572736i \(-0.805882\pi\)
0.122887 0.992421i \(-0.460785\pi\)
\(788\) −55.7532 61.9202i −1.98612 2.20581i
\(789\) 0 0
\(790\) 92.3986 + 41.1385i 3.28740 + 1.46364i
\(791\) −0.385085 −0.0136920
\(792\) 0 0
\(793\) 9.24793 0.328404
\(794\) 37.2418 + 16.5811i 1.32166 + 0.588441i
\(795\) 0 0
\(796\) −27.6934 30.7566i −0.981567 1.09014i
\(797\) −2.45905 5.52311i −0.0871039 0.195639i 0.864741 0.502218i \(-0.167482\pi\)
−0.951845 + 0.306579i \(0.900816\pi\)
\(798\) 0 0
\(799\) −0.0147162 0.0692345i −0.000520623 0.00244934i
\(800\) 1.79381 + 5.52078i 0.0634208 + 0.195189i
\(801\) 0 0
\(802\) 12.3605i 0.436464i
\(803\) −3.56008 + 14.1381i −0.125633 + 0.498923i
\(804\) 0 0
\(805\) 6.89758 0.724964i 0.243108 0.0255516i
\(806\) 1.68785 7.94069i 0.0594518 0.279699i
\(807\) 0 0
\(808\) 8.60666 81.8869i 0.302781 2.88077i
\(809\) 6.01444 + 4.36974i 0.211456 + 0.153632i 0.688472 0.725263i \(-0.258282\pi\)
−0.477016 + 0.878895i \(0.658282\pi\)
\(810\) 0 0
\(811\) 27.7357 9.01188i 0.973933 0.316450i 0.221530 0.975154i \(-0.428895\pi\)
0.752402 + 0.658704i \(0.228895\pi\)
\(812\) 1.46211 3.28396i 0.0513101 0.115244i
\(813\) 0 0
\(814\) 45.6494 + 35.8371i 1.60001 + 1.25609i
\(815\) −14.0556 8.11503i −0.492348 0.284257i
\(816\) 0 0
\(817\) 5.38317 5.97861i 0.188333 0.209165i
\(818\) −74.9521 24.3534i −2.62064 0.851497i
\(819\) 0 0
\(820\) 23.8759 32.8623i 0.833782 1.14760i
\(821\) −1.04896 + 0.222964i −0.0366091 + 0.00778150i −0.226180 0.974086i \(-0.572624\pi\)
0.189571 + 0.981867i \(0.439290\pi\)
\(822\) 0 0
\(823\) 0.935132 + 8.89719i 0.0325967 + 0.310136i 0.998657 + 0.0518182i \(0.0165016\pi\)
−0.966060 + 0.258318i \(0.916832\pi\)
\(824\) 21.9655 38.0454i 0.765206 1.32538i
\(825\) 0 0
\(826\) 2.96782 + 5.14042i 0.103264 + 0.178858i
\(827\) 28.5608 20.7507i 0.993157 0.721571i 0.0325471 0.999470i \(-0.489638\pi\)
0.960610 + 0.277899i \(0.0896381\pi\)
\(828\) 0 0
\(829\) 8.36614 25.7483i 0.290568 0.894276i −0.694106 0.719873i \(-0.744200\pi\)
0.984674 0.174404i \(-0.0557998\pi\)
\(830\) −84.4585 8.87694i −2.93160 0.308123i
\(831\) 0 0
\(832\) 6.15859 5.54522i 0.213511 0.192246i
\(833\) −23.0630 4.90220i −0.799086 0.169851i
\(834\) 0 0
\(835\) 60.3300 34.8315i 2.08780 1.20539i
\(836\) 24.5058 49.9483i 0.847552 1.72750i
\(837\) 0 0
\(838\) −39.9645 55.0064i −1.38055 1.90016i
\(839\) −27.6695 24.9137i −0.955256 0.860116i 0.0349983 0.999387i \(-0.488857\pi\)
−0.990254 + 0.139271i \(0.955524\pi\)
\(840\) 0 0
\(841\) −20.8586 + 9.28687i −0.719264 + 0.320237i
\(842\) 59.4896 26.4865i 2.05015 0.912785i
\(843\) 0 0
\(844\) 10.8164 + 9.73914i 0.372316 + 0.335235i
\(845\) −26.9980 37.1595i −0.928759 1.27833i
\(846\) 0 0
\(847\) −1.36596 3.80813i −0.0469349 0.130849i
\(848\) −17.3750 + 10.0314i −0.596658 + 0.344481i
\(849\) 0 0
\(850\) 77.0042 + 16.3677i 2.64122 + 0.561409i
\(851\) 26.5168 23.8759i 0.908985 0.818454i
\(852\) 0 0
\(853\) −34.9266 3.67093i −1.19586 0.125690i −0.514405 0.857547i \(-0.671987\pi\)
−0.681458 + 0.731857i \(0.738654\pi\)
\(854\) −2.70044 + 8.31109i −0.0924070 + 0.284400i
\(855\) 0 0
\(856\) −58.8516 + 42.7582i −2.01151 + 1.46144i
\(857\) 14.9819 + 25.9493i 0.511770 + 0.886412i 0.999907 + 0.0136449i \(0.00434344\pi\)
−0.488137 + 0.872767i \(0.662323\pi\)
\(858\) 0 0
\(859\) −8.63419 + 14.9548i −0.294595 + 0.510253i −0.974891 0.222685i \(-0.928518\pi\)
0.680296 + 0.732938i \(0.261851\pi\)
\(860\) 2.94736 + 28.0423i 0.100504 + 0.956233i
\(861\) 0 0
\(862\) 1.70777 0.362997i 0.0581668 0.0123637i
\(863\) −20.4637 + 28.1659i −0.696593 + 0.958778i 0.303389 + 0.952867i \(0.401882\pi\)
−0.999983 + 0.00591175i \(0.998118\pi\)
\(864\) 0 0
\(865\) −22.3183 7.25166i −0.758845 0.246564i
\(866\) 18.6373 20.6988i 0.633321 0.703374i
\(867\) 0 0
\(868\) 4.40493 + 2.54319i 0.149513 + 0.0863215i
\(869\) −34.0576 12.4860i −1.15533 0.423560i
\(870\) 0 0
\(871\) −1.72155 + 3.86666i −0.0583324 + 0.131017i
\(872\) −47.6696 + 15.4888i −1.61430 + 0.524517i
\(873\) 0 0
\(874\) −41.7366 30.3234i −1.41176 1.02570i
\(875\) 0.643213 6.11977i 0.0217446 0.206886i
\(876\) 0 0
\(877\) 0.412267 1.93956i 0.0139213 0.0654944i −0.970639 0.240542i \(-0.922675\pi\)
0.984560 + 0.175048i \(0.0560080\pi\)
\(878\) 20.7776 2.18381i 0.701210 0.0737001i
\(879\) 0 0
\(880\) 16.9639 + 42.2709i 0.571854 + 1.42495i
\(881\) 48.9571i 1.64941i −0.565566 0.824703i \(-0.691342\pi\)
0.565566 0.824703i \(-0.308658\pi\)
\(882\) 0 0
\(883\) 10.7400 + 33.0542i 0.361429 + 1.11236i 0.952187 + 0.305515i \(0.0988286\pi\)
−0.590758 + 0.806848i \(0.701171\pi\)
\(884\) −2.66509 12.5383i −0.0896368 0.421708i
\(885\) 0 0
\(886\) 13.8503 + 31.1082i 0.465309 + 1.04510i
\(887\) −9.69775 10.7704i −0.325618 0.361636i 0.558002 0.829839i \(-0.311568\pi\)
−0.883621 + 0.468204i \(0.844901\pi\)
\(888\) 0 0
\(889\) 5.89500 + 2.62462i 0.197712 + 0.0880271i
\(890\) 28.1903 0.944943
\(891\) 0 0
\(892\) −70.4368 −2.35840
\(893\) 0.0802423 + 0.0357262i 0.00268521 + 0.00119553i
\(894\) 0 0
\(895\) −23.4319 26.0238i −0.783242 0.869879i
\(896\) 3.00053 + 6.73930i 0.100241 + 0.225144i
\(897\) 0 0
\(898\) −10.9452 51.4933i −0.365247 1.71835i
\(899\) 2.69664 + 8.29941i 0.0899380 + 0.276801i
\(900\) 0 0
\(901\) 19.0462i 0.634521i
\(902\) −11.6865 + 18.6055i −0.389117 + 0.619496i
\(903\) 0 0
\(904\) −4.91054 + 0.516119i −0.163322 + 0.0171659i
\(905\) −3.30484 + 15.5480i −0.109857 + 0.516835i
\(906\) 0 0
\(907\) −2.38002 + 22.6444i −0.0790274 + 0.751896i 0.881213 + 0.472720i \(0.156728\pi\)
−0.960240 + 0.279176i \(0.909939\pi\)
\(908\) −55.3329 40.2017i −1.83629 1.33414i
\(909\) 0 0
\(910\) −3.06739 + 0.996656i −0.101683 + 0.0330388i
\(911\) 9.23066 20.7324i 0.305825 0.686895i −0.693615 0.720346i \(-0.743983\pi\)
0.999440 + 0.0334508i \(0.0106497\pi\)
\(912\) 0 0
\(913\) 30.4363 + 1.13396i 1.00729 + 0.0375286i
\(914\) −20.6878 11.9441i −0.684293 0.395077i
\(915\) 0 0
\(916\) 11.2624 12.5082i 0.372121 0.413282i
\(917\) −4.85824 1.57854i −0.160433 0.0521280i
\(918\) 0 0
\(919\) −0.737746 + 1.01542i −0.0243360 + 0.0334956i −0.821012 0.570911i \(-0.806590\pi\)
0.796676 + 0.604407i \(0.206590\pi\)
\(920\) 86.9852 18.4893i 2.86782 0.609574i
\(921\) 0 0
\(922\) −3.14728 29.9444i −0.103650 0.986166i
\(923\) −4.89619 + 8.48045i −0.161160 + 0.279137i
\(924\) 0 0
\(925\) −33.7850 58.5173i −1.11084 1.92404i
\(926\) 66.7619 48.5054i 2.19393 1.59399i
\(927\) 0 0
\(928\) −0.473521 + 1.45735i −0.0155441 + 0.0478398i
\(929\) −2.85937 0.300532i −0.0938129 0.00986013i 0.0575057 0.998345i \(-0.481685\pi\)
−0.151319 + 0.988485i \(0.548352\pi\)
\(930\) 0 0
\(931\) 21.7440 19.5784i 0.712632 0.641657i
\(932\) 90.0155 + 19.1334i 2.94856 + 0.626735i
\(933\) 0 0
\(934\) −33.2036 + 19.1701i −1.08645 + 0.627265i
\(935\) −42.8048 6.11769i −1.39987 0.200070i
\(936\) 0 0
\(937\) 18.1303 + 24.9542i 0.592291 + 0.815219i 0.994975 0.100120i \(-0.0319227\pi\)
−0.402684 + 0.915339i \(0.631923\pi\)
\(938\) −2.97225 2.67623i −0.0970475 0.0873820i
\(939\) 0 0
\(940\) −0.281239 + 0.125215i −0.00917299 + 0.00408408i
\(941\) 5.97537 2.66041i 0.194792 0.0867268i −0.307023 0.951702i \(-0.599333\pi\)
0.501814 + 0.864975i \(0.332666\pi\)
\(942\) 0 0
\(943\) 10.0388 + 9.03896i 0.326908 + 0.294349i
\(944\) 14.0872 + 19.3893i 0.458498 + 0.631069i
\(945\) 0 0
\(946\) −2.61336 15.0260i −0.0849675 0.488537i
\(947\) 28.8021 16.6289i 0.935944 0.540368i 0.0472574 0.998883i \(-0.484952\pi\)
0.888687 + 0.458515i \(0.151619\pi\)
\(948\) 0 0
\(949\) −4.07735 0.866668i −0.132356 0.0281332i
\(950\) −72.6003 + 65.3696i −2.35546 + 2.12087i
\(951\) 0 0
\(952\) 5.92468 + 0.622709i 0.192020 + 0.0201821i
\(953\) 16.9820 52.2651i 0.550100 1.69303i −0.158445 0.987368i \(-0.550648\pi\)
0.708545 0.705666i \(-0.249352\pi\)
\(954\) 0 0
\(955\) 61.9785 45.0300i 2.00558 1.45714i
\(956\) 39.3481 + 68.1528i 1.27261 + 2.20422i
\(957\) 0 0
\(958\) −15.1893 + 26.3086i −0.490744 + 0.849994i
\(959\) −0.0398952 0.379577i −0.00128828 0.0122572i
\(960\) 0 0
\(961\) 18.2448 3.87806i 0.588543 0.125099i
\(962\) −9.75321 + 13.4241i −0.314456 + 0.432812i
\(963\) 0 0
\(964\) 8.70515 + 2.82847i 0.280374 + 0.0910990i
\(965\) −20.3543 + 22.6058i −0.655229 + 0.727705i
\(966\) 0 0
\(967\) −29.4790 17.0197i −0.947982 0.547318i −0.0555286 0.998457i \(-0.517684\pi\)
−0.892454 + 0.451139i \(0.851018\pi\)
\(968\) −22.5225 46.7300i −0.723899 1.50196i
\(969\) 0 0
\(970\) 56.7472 127.456i 1.82204 4.09238i
\(971\) 36.2008 11.7624i 1.16174 0.377472i 0.336186 0.941796i \(-0.390863\pi\)
0.825554 + 0.564323i \(0.190863\pi\)
\(972\) 0 0
\(973\) 5.90192 + 4.28799i 0.189207 + 0.137467i
\(974\) 1.77147 16.8544i 0.0567615 0.540050i
\(975\) 0 0
\(976\) −7.33614 + 34.5138i −0.234824 + 1.10476i
\(977\) 31.9247 3.35542i 1.02136 0.107349i 0.420985 0.907068i \(-0.361684\pi\)
0.600376 + 0.799718i \(0.295018\pi\)
\(978\) 0 0
\(979\) −10.0873 + 0.681727i −0.322391 + 0.0217881i
\(980\) 102.551i 3.27586i
\(981\) 0 0
\(982\) −0.227305 0.699572i −0.00725358 0.0223242i
\(983\) −4.45564 20.9622i −0.142113 0.668589i −0.990306 0.138902i \(-0.955643\pi\)
0.848193 0.529687i \(-0.177691\pi\)
\(984\) 0 0
\(985\) −32.6854 73.4127i −1.04144 2.33912i
\(986\) 13.9054 + 15.4435i 0.442838 + 0.491821i
\(987\) 0 0
\(988\) 14.5318 + 6.46996i 0.462317 + 0.205837i
\(989\) −9.37704 −0.298172
\(990\) 0 0
\(991\) −29.3068 −0.930962 −0.465481 0.885058i \(-0.654119\pi\)
−0.465481 + 0.885058i \(0.654119\pi\)
\(992\) −1.98074 0.881883i −0.0628886 0.0279998i
\(993\) 0 0
\(994\) −6.19164 6.87651i −0.196387 0.218110i
\(995\) −16.2353 36.4651i −0.514695 1.15602i
\(996\) 0 0
\(997\) 6.81165 + 32.0463i 0.215727 + 1.01492i 0.944081 + 0.329715i \(0.106953\pi\)
−0.728354 + 0.685202i \(0.759714\pi\)
\(998\) 4.98148 + 15.3314i 0.157686 + 0.485308i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.u.c.701.4 32
3.2 odd 2 inner 891.2.u.c.701.1 32
9.2 odd 6 inner 891.2.u.c.107.4 32
9.4 even 3 99.2.j.a.8.1 16
9.5 odd 6 99.2.j.a.8.4 yes 16
9.7 even 3 inner 891.2.u.c.107.1 32
11.7 odd 10 inner 891.2.u.c.458.4 32
33.29 even 10 inner 891.2.u.c.458.1 32
36.23 even 6 1584.2.cd.c.305.1 16
36.31 odd 6 1584.2.cd.c.305.4 16
99.7 odd 30 inner 891.2.u.c.755.1 32
99.13 odd 30 1089.2.d.g.1088.2 16
99.29 even 30 inner 891.2.u.c.755.4 32
99.31 even 15 1089.2.d.g.1088.16 16
99.40 odd 30 99.2.j.a.62.4 yes 16
99.68 even 30 1089.2.d.g.1088.15 16
99.86 odd 30 1089.2.d.g.1088.1 16
99.95 even 30 99.2.j.a.62.1 yes 16
396.95 odd 30 1584.2.cd.c.161.4 16
396.139 even 30 1584.2.cd.c.161.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.8.1 16 9.4 even 3
99.2.j.a.8.4 yes 16 9.5 odd 6
99.2.j.a.62.1 yes 16 99.95 even 30
99.2.j.a.62.4 yes 16 99.40 odd 30
891.2.u.c.107.1 32 9.7 even 3 inner
891.2.u.c.107.4 32 9.2 odd 6 inner
891.2.u.c.458.1 32 33.29 even 10 inner
891.2.u.c.458.4 32 11.7 odd 10 inner
891.2.u.c.701.1 32 3.2 odd 2 inner
891.2.u.c.701.4 32 1.1 even 1 trivial
891.2.u.c.755.1 32 99.7 odd 30 inner
891.2.u.c.755.4 32 99.29 even 30 inner
1089.2.d.g.1088.1 16 99.86 odd 30
1089.2.d.g.1088.2 16 99.13 odd 30
1089.2.d.g.1088.15 16 99.68 even 30
1089.2.d.g.1088.16 16 99.31 even 15
1584.2.cd.c.161.1 16 396.139 even 30
1584.2.cd.c.161.4 16 396.95 odd 30
1584.2.cd.c.305.1 16 36.23 even 6
1584.2.cd.c.305.4 16 36.31 odd 6