Properties

Label 1089.2.d.g.1088.2
Level 10891089
Weight 22
Character 1089.1088
Analytic conductor 8.6968.696
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1088,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1088");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1089.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.695708780128.69570878012
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+2x1416x1272x10+26x8+360x6+725x4+1000x2+625 x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 28 2^{8}
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1088.2
Root 0.0783900+1.17295i0.0783900 + 1.17295i of defining polynomial
Character χ\chi == 1089.1088
Dual form 1089.2.d.g.1088.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.43632q2+3.93565q4+3.79576iq5+0.367791iq74.71586q89.24768iq100.948263iq130.896057iq14+3.61803q163.43470q17+4.26229iq19+14.9388iq20+4.96800iq239.40778q25+2.31027iq26+1.44750iq282.48342q29+3.51391q31+0.617031q32+8.36801q341.39605q357.18234q3710.3843iq3817.9003iq402.71910q411.88749iq4312.1036iq46+0.0206077iq47+6.86473q49+22.9204q503.73203iq525.54524iq531.73445iq56+6.05040q586.62419iq59+9.75250iq618.56101q628.73935q64+3.59938q65+4.46351q6713.5178q68+3.40122q7010.3266iq71+4.39587iq73+17.4985q74+16.7749iq76+10.9371iq79+13.7332iq80+6.62460q829.18325q8313.0373iq85+4.59852iq863.04837iq89+0.348763q91+19.5523iq920.0502070iq9416.1786q9515.0868q9716.7247q98+O(q100)q-2.43632 q^{2} +3.93565 q^{4} +3.79576i q^{5} +0.367791i q^{7} -4.71586 q^{8} -9.24768i q^{10} -0.948263i q^{13} -0.896057i q^{14} +3.61803 q^{16} -3.43470 q^{17} +4.26229i q^{19} +14.9388i q^{20} +4.96800i q^{23} -9.40778 q^{25} +2.31027i q^{26} +1.44750i q^{28} -2.48342 q^{29} +3.51391 q^{31} +0.617031 q^{32} +8.36801 q^{34} -1.39605 q^{35} -7.18234 q^{37} -10.3843i q^{38} -17.9003i q^{40} -2.71910 q^{41} -1.88749i q^{43} -12.1036i q^{46} +0.0206077i q^{47} +6.86473 q^{49} +22.9204 q^{50} -3.73203i q^{52} -5.54524i q^{53} -1.73445i q^{56} +6.05040 q^{58} -6.62419i q^{59} +9.75250i q^{61} -8.56101 q^{62} -8.73935 q^{64} +3.59938 q^{65} +4.46351 q^{67} -13.5178 q^{68} +3.40122 q^{70} -10.3266i q^{71} +4.39587i q^{73} +17.4985 q^{74} +16.7749i q^{76} +10.9371i q^{79} +13.7332i q^{80} +6.62460 q^{82} -9.18325 q^{83} -13.0373i q^{85} +4.59852i q^{86} -3.04837i q^{89} +0.348763 q^{91} +19.5523i q^{92} -0.0502070i q^{94} -16.1786 q^{95} -15.0868 q^{97} -16.7247 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+16q4+40q1632q25+16q31+40q34+8q37+16q49+32q58104q64+96q6764q70+88q82+48q91+O(q100) 16 q + 16 q^{4} + 40 q^{16} - 32 q^{25} + 16 q^{31} + 40 q^{34} + 8 q^{37} + 16 q^{49} + 32 q^{58} - 104 q^{64} + 96 q^{67} - 64 q^{70} + 88 q^{82} + 48 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1089Z)×\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times.

nn 244244 848848
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.43632 −1.72274 −0.861369 0.507980i 0.830392π-0.830392\pi
−0.861369 + 0.507980i 0.830392π0.830392\pi
33 0 0
44 3.93565 1.96782
55 3.79576i 1.69751i 0.528782 + 0.848757i 0.322649π0.322649\pi
−0.528782 + 0.848757i 0.677351π0.677351\pi
66 0 0
77 0.367791i 0.139012i 0.997582 + 0.0695060i 0.0221423π0.0221423\pi
−0.997582 + 0.0695060i 0.977858π0.977858\pi
88 −4.71586 −1.66731
99 0 0
1010 − 9.24768i − 2.92437i
1111 0 0
1212 0 0
1313 − 0.948263i − 0.263001i −0.991316 0.131500i 0.958021π-0.958021\pi
0.991316 0.131500i 0.0419795π-0.0419795\pi
1414 − 0.896057i − 0.239481i
1515 0 0
1616 3.61803 0.904508
1717 −3.43470 −0.833036 −0.416518 0.909127i 0.636750π-0.636750\pi
−0.416518 + 0.909127i 0.636750π0.636750\pi
1818 0 0
1919 4.26229i 0.977837i 0.872329 + 0.488919i 0.162609π0.162609\pi
−0.872329 + 0.488919i 0.837391π0.837391\pi
2020 14.9388i 3.34041i
2121 0 0
2222 0 0
2323 4.96800i 1.03590i 0.855411 + 0.517950i 0.173305π0.173305\pi
−0.855411 + 0.517950i 0.826695π0.826695\pi
2424 0 0
2525 −9.40778 −1.88156
2626 2.31027i 0.453081i
2727 0 0
2828 1.44750i 0.273551i
2929 −2.48342 −0.461159 −0.230580 0.973053i 0.574062π-0.574062\pi
−0.230580 + 0.973053i 0.574062π0.574062\pi
3030 0 0
3131 3.51391 0.631117 0.315559 0.948906i 0.397808π-0.397808\pi
0.315559 + 0.948906i 0.397808π0.397808\pi
3232 0.617031 0.109077
3333 0 0
3434 8.36801 1.43510
3535 −1.39605 −0.235975
3636 0 0
3737 −7.18234 −1.18077 −0.590385 0.807122i 0.701024π-0.701024\pi
−0.590385 + 0.807122i 0.701024π0.701024\pi
3838 − 10.3843i − 1.68456i
3939 0 0
4040 − 17.9003i − 2.83028i
4141 −2.71910 −0.424653 −0.212326 0.977199i 0.568104π-0.568104\pi
−0.212326 + 0.977199i 0.568104π0.568104\pi
4242 0 0
4343 − 1.88749i − 0.287839i −0.989589 0.143919i 0.954029π-0.954029\pi
0.989589 0.143919i 0.0459706π-0.0459706\pi
4444 0 0
4545 0 0
4646 − 12.1036i − 1.78458i
4747 0.0206077i 0.00300594i 0.999999 + 0.00150297i 0.000478411π0.000478411\pi
−0.999999 + 0.00150297i 0.999522π0.999522\pi
4848 0 0
4949 6.86473 0.980676
5050 22.9204 3.24143
5151 0 0
5252 − 3.73203i − 0.517539i
5353 − 5.54524i − 0.761697i −0.924637 0.380849i 0.875632π-0.875632\pi
0.924637 0.380849i 0.124368π-0.124368\pi
5454 0 0
5555 0 0
5656 − 1.73445i − 0.231776i
5757 0 0
5858 6.05040 0.794456
5959 − 6.62419i − 0.862396i −0.902257 0.431198i 0.858091π-0.858091\pi
0.902257 0.431198i 0.141909π-0.141909\pi
6060 0 0
6161 9.75250i 1.24868i 0.781153 + 0.624340i 0.214632π0.214632\pi
−0.781153 + 0.624340i 0.785368π0.785368\pi
6262 −8.56101 −1.08725
6363 0 0
6464 −8.73935 −1.09242
6565 3.59938 0.446448
6666 0 0
6767 4.46351 0.545305 0.272652 0.962113i 0.412099π-0.412099\pi
0.272652 + 0.962113i 0.412099π0.412099\pi
6868 −13.5178 −1.63927
6969 0 0
7070 3.40122 0.406523
7171 − 10.3266i − 1.22555i −0.790258 0.612774i 0.790054π-0.790054\pi
0.790258 0.612774i 0.209946π-0.209946\pi
7272 0 0
7373 4.39587i 0.514498i 0.966345 + 0.257249i 0.0828160π0.0828160\pi
−0.966345 + 0.257249i 0.917184π0.917184\pi
7474 17.4985 2.03416
7575 0 0
7676 16.7749i 1.92421i
7777 0 0
7878 0 0
7979 10.9371i 1.23052i 0.788324 + 0.615261i 0.210949π0.210949\pi
−0.788324 + 0.615261i 0.789051π0.789051\pi
8080 13.7332i 1.53542i
8181 0 0
8282 6.62460 0.731565
8383 −9.18325 −1.00799 −0.503996 0.863706i 0.668137π-0.668137\pi
−0.503996 + 0.863706i 0.668137π0.668137\pi
8484 0 0
8585 − 13.0373i − 1.41409i
8686 4.59852i 0.495871i
8787 0 0
8888 0 0
8989 − 3.04837i − 0.323127i −0.986862 0.161563i 0.948346π-0.948346\pi
0.986862 0.161563i 0.0516536π-0.0516536\pi
9090 0 0
9191 0.348763 0.0365603
9292 19.5523i 2.03847i
9393 0 0
9494 − 0.0502070i − 0.00517845i
9595 −16.1786 −1.65989
9696 0 0
9797 −15.0868 −1.53184 −0.765919 0.642938i 0.777715π-0.777715\pi
−0.765919 + 0.642938i 0.777715π0.777715\pi
9898 −16.7247 −1.68945
9999 0 0
100100 −37.0257 −3.70257
101101 17.4598 1.73732 0.868658 0.495413i 0.164983π-0.164983\pi
0.868658 + 0.495413i 0.164983π0.164983\pi
102102 0 0
103103 −9.31561 −0.917894 −0.458947 0.888464i 0.651773π-0.651773\pi
−0.458947 + 0.888464i 0.651773π0.651773\pi
104104 4.47187i 0.438503i
105105 0 0
106106 13.5100i 1.31220i
107107 −15.4255 −1.49124 −0.745620 0.666371i 0.767847π-0.767847\pi
−0.745620 + 0.666371i 0.767847π0.767847\pi
108108 0 0
109109 − 10.6286i − 1.01803i −0.860757 0.509016i 0.830009π-0.830009\pi
0.860757 0.509016i 0.169991π-0.169991\pi
110110 0 0
111111 0 0
112112 1.33068i 0.125738i
113113 − 1.04702i − 0.0984953i −0.998787 0.0492476i 0.984318π-0.984318\pi
0.998787 0.0492476i 0.0156824π-0.0156824\pi
114114 0 0
115115 −18.8573 −1.75846
116116 −9.77386 −0.907480
117117 0 0
118118 16.1386i 1.48568i
119119 − 1.26325i − 0.115802i
120120 0 0
121121 0 0
122122 − 23.7602i − 2.15115i
123123 0 0
124124 13.8295 1.24193
125125 − 16.7309i − 1.49646i
126126 0 0
127127 − 17.5450i − 1.55686i −0.627729 0.778432i 0.716016π-0.716016\pi
0.627729 0.778432i 0.283984π-0.283984\pi
128128 20.0578 1.77287
129129 0 0
130130 −8.76923 −0.769112
131131 −13.8890 −1.21349 −0.606744 0.794897i 0.707525π-0.707525\pi
−0.606744 + 0.794897i 0.707525π0.707525\pi
132132 0 0
133133 −1.56764 −0.135931
134134 −10.8745 −0.939417
135135 0 0
136136 16.1975 1.38893
137137 1.03773i 0.0886593i 0.999017 + 0.0443296i 0.0141152π0.0141152\pi
−0.999017 + 0.0443296i 0.985885π0.985885\pi
138138 0 0
139139 19.8351i 1.68239i 0.540732 + 0.841195i 0.318147π0.318147\pi
−0.540732 + 0.841195i 0.681853π0.681853\pi
140140 −5.49435 −0.464358
141141 0 0
142142 25.1590i 2.11130i
143143 0 0
144144 0 0
145145 − 9.42646i − 0.782825i
146146 − 10.7097i − 0.886345i
147147 0 0
148148 −28.2672 −2.32355
149149 −8.03599 −0.658334 −0.329167 0.944272i 0.606768π-0.606768\pi
−0.329167 + 0.944272i 0.606768π0.606768\pi
150150 0 0
151151 − 10.0735i − 0.819773i −0.912137 0.409886i 0.865568π-0.865568\pi
0.912137 0.409886i 0.134432π-0.134432\pi
152152 − 20.1004i − 1.63036i
153153 0 0
154154 0 0
155155 13.3380i 1.07133i
156156 0 0
157157 −16.1823 −1.29149 −0.645746 0.763552i 0.723453π-0.723453\pi
−0.645746 + 0.763552i 0.723453π0.723453\pi
158158 − 26.6463i − 2.11986i
159159 0 0
160160 2.34210i 0.185159i
161161 −1.82719 −0.144003
162162 0 0
163163 4.27584 0.334910 0.167455 0.985880i 0.446445π-0.446445\pi
0.167455 + 0.985880i 0.446445π0.446445\pi
164164 −10.7014 −0.835642
165165 0 0
166166 22.3733 1.73651
167167 −18.3529 −1.42019 −0.710094 0.704107i 0.751347π-0.751347\pi
−0.710094 + 0.704107i 0.751347π0.751347\pi
168168 0 0
169169 12.1008 0.930831
170170 31.7630i 2.43611i
171171 0 0
172172 − 7.42848i − 0.566416i
173173 6.18239 0.470038 0.235019 0.971991i 0.424485π-0.424485\pi
0.235019 + 0.971991i 0.424485π0.424485\pi
174174 0 0
175175 − 3.46010i − 0.261559i
176176 0 0
177177 0 0
178178 7.42680i 0.556662i
179179 9.22567i 0.689559i 0.938684 + 0.344780i 0.112046π0.112046\pi
−0.938684 + 0.344780i 0.887954π0.887954\pi
180180 0 0
181181 −4.18767 −0.311267 −0.155634 0.987815i 0.549742π-0.549742\pi
−0.155634 + 0.987815i 0.549742π0.549742\pi
182182 −0.849698 −0.0629838
183183 0 0
184184 − 23.4284i − 1.72716i
185185 − 27.2624i − 2.00437i
186186 0 0
187187 0 0
188188 0.0811047i 0.00591517i
189189 0 0
190190 39.4163 2.85956
191191 20.1830i 1.46039i 0.683240 + 0.730194i 0.260570π0.260570\pi
−0.683240 + 0.730194i 0.739430π0.739430\pi
192192 0 0
193193 − 8.01396i − 0.576857i −0.957501 0.288429i 0.906867π-0.906867\pi
0.957501 0.288429i 0.0931328π-0.0931328\pi
194194 36.7564 2.63895
195195 0 0
196196 27.0172 1.92980
197197 21.1710 1.50837 0.754187 0.656659i 0.228031π-0.228031\pi
0.754187 + 0.656659i 0.228031π0.228031\pi
198198 0 0
199199 −10.5160 −0.745457 −0.372729 0.927940i 0.621578π-0.621578\pi
−0.372729 + 0.927940i 0.621578π0.621578\pi
200200 44.3658 3.13713
201201 0 0
202202 −42.5376 −2.99294
203203 − 0.913380i − 0.0641067i
204204 0 0
205205 − 10.3211i − 0.720854i
206206 22.6958 1.58129
207207 0 0
208208 − 3.43085i − 0.237886i
209209 0 0
210210 0 0
211211 − 3.69822i − 0.254596i −0.991864 0.127298i 0.959369π-0.959369\pi
0.991864 0.127298i 0.0406305π-0.0406305\pi
212212 − 21.8241i − 1.49889i
213213 0 0
214214 37.5815 2.56902
215215 7.16444 0.488611
216216 0 0
217217 1.29239i 0.0877329i
218218 25.8946i 1.75380i
219219 0 0
220220 0 0
221221 3.25699i 0.219089i
222222 0 0
223223 −17.8971 −1.19848 −0.599240 0.800570i 0.704530π-0.704530\pi
−0.599240 + 0.800570i 0.704530π0.704530\pi
224224 0.226939i 0.0151630i
225225 0 0
226226 2.55087i 0.169681i
227227 −17.3784 −1.15344 −0.576722 0.816940i 0.695668π-0.695668\pi
−0.576722 + 0.816940i 0.695668π0.695668\pi
228228 0 0
229229 4.27666 0.282609 0.141305 0.989966i 0.454870π-0.454870\pi
0.141305 + 0.989966i 0.454870π0.454870\pi
230230 45.9425 3.02936
231231 0 0
232232 11.7114 0.768894
233233 23.3828 1.53186 0.765929 0.642925i 0.222279π-0.222279\pi
0.765929 + 0.642925i 0.222279π0.222279\pi
234234 0 0
235235 −0.0782219 −0.00510263
236236 − 26.0705i − 1.69704i
237237 0 0
238238 3.07768i 0.199497i
239239 19.9957 1.29342 0.646708 0.762738i 0.276145π-0.276145\pi
0.646708 + 0.762738i 0.276145π0.276145\pi
240240 0 0
241241 − 2.32570i − 0.149811i −0.997191 0.0749057i 0.976134π-0.976134\pi
0.997191 0.0749057i 0.0238656π-0.0238656\pi
242242 0 0
243243 0 0
244244 38.3824i 2.45718i
245245 26.0569i 1.66471i
246246 0 0
247247 4.04178 0.257172
248248 −16.5711 −1.05227
249249 0 0
250250 40.7618i 2.57800i
251251 3.21004i 0.202616i 0.994855 + 0.101308i 0.0323027π0.0323027\pi
−0.994855 + 0.101308i 0.967697π0.967697\pi
252252 0 0
253253 0 0
254254 42.7451i 2.68207i
255255 0 0
256256 −31.3885 −1.96178
257257 18.0428i 1.12548i 0.826635 + 0.562739i 0.190252π0.190252\pi
−0.826635 + 0.562739i 0.809748π0.809748\pi
258258 0 0
259259 − 2.64160i − 0.164141i
260260 14.1659 0.878531
261261 0 0
262262 33.8381 2.09052
263263 2.05966 0.127004 0.0635019 0.997982i 0.479773π-0.479773\pi
0.0635019 + 0.997982i 0.479773π0.479773\pi
264264 0 0
265265 21.0484 1.29299
266266 3.81926 0.234174
267267 0 0
268268 17.5668 1.07306
269269 − 2.87997i − 0.175595i −0.996138 0.0877974i 0.972017π-0.972017\pi
0.996138 0.0877974i 0.0279828π-0.0279828\pi
270270 0 0
271271 − 10.1705i − 0.617814i −0.951092 0.308907i 0.900037π-0.900037\pi
0.951092 0.308907i 0.0999632π-0.0999632\pi
272272 −12.4268 −0.753488
273273 0 0
274274 − 2.52824i − 0.152737i
275275 0 0
276276 0 0
277277 7.31072i 0.439259i 0.975583 + 0.219629i 0.0704848π0.0704848\pi
−0.975583 + 0.219629i 0.929515π0.929515\pi
278278 − 48.3246i − 2.89832i
279279 0 0
280280 6.58356 0.393443
281281 2.30543 0.137530 0.0687652 0.997633i 0.478094π-0.478094\pi
0.0687652 + 0.997633i 0.478094π0.478094\pi
282282 0 0
283283 24.4328i 1.45238i 0.687494 + 0.726190i 0.258711π0.258711\pi
−0.687494 + 0.726190i 0.741289π0.741289\pi
284284 − 40.6420i − 2.41166i
285285 0 0
286286 0 0
287287 − 1.00006i − 0.0590318i
288288 0 0
289289 −5.20286 −0.306051
290290 22.9659i 1.34860i
291291 0 0
292292 17.3006i 1.01244i
293293 10.6614 0.622846 0.311423 0.950271i 0.399194π-0.399194\pi
0.311423 + 0.950271i 0.399194π0.399194\pi
294294 0 0
295295 25.1438 1.46393
296296 33.8709 1.96871
297297 0 0
298298 19.5782 1.13414
299299 4.71097 0.272443
300300 0 0
301301 0.694201 0.0400131
302302 24.5423i 1.41225i
303303 0 0
304304 15.4211i 0.884462i
305305 −37.0181 −2.11965
306306 0 0
307307 − 4.56848i − 0.260737i −0.991466 0.130369i 0.958384π-0.958384\pi
0.991466 0.130369i 0.0416160π-0.0416160\pi
308308 0 0
309309 0 0
310310 − 32.4955i − 1.84562i
311311 − 9.38221i − 0.532017i −0.963971 0.266008i 0.914295π-0.914295\pi
0.963971 0.266008i 0.0857049π-0.0857049\pi
312312 0 0
313313 −5.01601 −0.283522 −0.141761 0.989901i 0.545276π-0.545276\pi
−0.141761 + 0.989901i 0.545276π0.545276\pi
314314 39.4253 2.22490
315315 0 0
316316 43.0446i 2.42145i
317317 11.6762i 0.655801i 0.944712 + 0.327900i 0.106341π0.106341\pi
−0.944712 + 0.327900i 0.893659π0.893659\pi
318318 0 0
319319 0 0
320320 − 33.1725i − 1.85440i
321321 0 0
322322 4.45162 0.248079
323323 − 14.6397i − 0.814574i
324324 0 0
325325 8.92105i 0.494851i
326326 −10.4173 −0.576961
327327 0 0
328328 12.8229 0.708026
329329 −0.00757934 −0.000417863 0
330330 0 0
331331 −29.0516 −1.59682 −0.798411 0.602113i 0.794326π-0.794326\pi
−0.798411 + 0.602113i 0.794326π0.794326\pi
332332 −36.1420 −1.98355
333333 0 0
334334 44.7134 2.44661
335335 16.9424i 0.925663i
336336 0 0
337337 − 28.8803i − 1.57321i −0.617456 0.786605i 0.711837π-0.711837\pi
0.617456 0.786605i 0.288163π-0.288163\pi
338338 −29.4814 −1.60358
339339 0 0
340340 − 51.3101i − 2.78268i
341341 0 0
342342 0 0
343343 5.09933i 0.275338i
344344 8.90111i 0.479916i
345345 0 0
346346 −15.0623 −0.809752
347347 −22.1430 −1.18870 −0.594350 0.804207i 0.702590π-0.702590\pi
−0.594350 + 0.804207i 0.702590π0.702590\pi
348348 0 0
349349 − 15.6625i − 0.838393i −0.907895 0.419197i 0.862312π-0.862312\pi
0.907895 0.419197i 0.137688π-0.137688\pi
350350 8.42991i 0.450598i
351351 0 0
352352 0 0
353353 − 11.1636i − 0.594180i −0.954850 0.297090i 0.903984π-0.903984\pi
0.954850 0.297090i 0.0960161π-0.0960161\pi
354354 0 0
355355 39.1975 2.08038
356356 − 11.9973i − 0.635856i
357357 0 0
358358 − 22.4767i − 1.18793i
359359 16.5643 0.874233 0.437116 0.899405i 0.356000π-0.356000\pi
0.437116 + 0.899405i 0.356000π0.356000\pi
360360 0 0
361361 0.832847 0.0438340
362362 10.2025 0.536232
363363 0 0
364364 1.37261 0.0719442
365365 −16.6857 −0.873368
366366 0 0
367367 9.81027 0.512092 0.256046 0.966665i 0.417580π-0.417580\pi
0.256046 + 0.966665i 0.417580π0.417580\pi
368368 17.9744i 0.936981i
369369 0 0
370370 66.4200i 3.45301i
371371 2.03949 0.105885
372372 0 0
373373 12.6350i 0.654216i 0.944987 + 0.327108i 0.106074π0.106074\pi
−0.944987 + 0.327108i 0.893926π0.893926\pi
374374 0 0
375375 0 0
376376 − 0.0971830i − 0.00501183i
377377 2.35493i 0.121285i
378378 0 0
379379 35.1020 1.80307 0.901535 0.432706i 0.142441π-0.142441\pi
0.901535 + 0.432706i 0.142441π0.142441\pi
380380 −63.6735 −3.26638
381381 0 0
382382 − 49.1721i − 2.51587i
383383 22.5865i 1.15412i 0.816702 + 0.577059i 0.195800π0.195800\pi
−0.816702 + 0.577059i 0.804200π0.804200\pi
384384 0 0
385385 0 0
386386 19.5246i 0.993774i
387387 0 0
388388 −59.3765 −3.01439
389389 − 7.35884i − 0.373108i −0.982445 0.186554i 0.940268π-0.940268\pi
0.982445 0.186554i 0.0597319π-0.0597319\pi
390390 0 0
391391 − 17.0636i − 0.862942i
392392 −32.3731 −1.63509
393393 0 0
394394 −51.5794 −2.59853
395395 −41.5146 −2.08883
396396 0 0
397397 16.7327 0.839790 0.419895 0.907573i 0.362067π-0.362067\pi
0.419895 + 0.907573i 0.362067π0.362067\pi
398398 25.6202 1.28423
399399 0 0
400400 −34.0377 −1.70188
401401 5.07343i 0.253355i 0.991944 + 0.126677i 0.0404313π0.0404313\pi
−0.991944 + 0.126677i 0.959569π0.959569\pi
402402 0 0
403403 − 3.33211i − 0.165984i
404404 68.7157 3.41873
405405 0 0
406406 2.22528i 0.110439i
407407 0 0
408408 0 0
409409 32.3477i 1.59949i 0.600340 + 0.799745i 0.295032π0.295032\pi
−0.600340 + 0.799745i 0.704968π0.704968\pi
410410 25.1454i 1.24184i
411411 0 0
412412 −36.6630 −1.80625
413413 2.43632 0.119883
414414 0 0
415415 − 34.8574i − 1.71108i
416416 − 0.585108i − 0.0286873i
417417 0 0
418418 0 0
419419 27.9075i 1.36337i 0.731645 + 0.681686i 0.238753π0.238753\pi
−0.731645 + 0.681686i 0.761247π0.761247\pi
420420 0 0
421421 26.7286 1.30267 0.651337 0.758788i 0.274208π-0.274208\pi
0.651337 + 0.758788i 0.274208π0.274208\pi
422422 9.01005i 0.438603i
423423 0 0
424424 26.1506i 1.26998i
425425 32.3129 1.56740
426426 0 0
427427 −3.58689 −0.173582
428428 −60.7094 −2.93450
429429 0 0
430430 −17.4549 −0.841748
431431 0.716622 0.0345185 0.0172592 0.999851i 0.494506π-0.494506\pi
0.0172592 + 0.999851i 0.494506π0.494506\pi
432432 0 0
433433 11.4324 0.549407 0.274703 0.961529i 0.411420π-0.411420\pi
0.274703 + 0.961529i 0.411420π0.411420\pi
434434 − 3.14867i − 0.151141i
435435 0 0
436436 − 41.8303i − 2.00331i
437437 −21.1751 −1.01294
438438 0 0
439439 − 8.57525i − 0.409274i −0.978838 0.204637i 0.934399π-0.934399\pi
0.978838 0.204637i 0.0656015π-0.0656015\pi
440440 0 0
441441 0 0
442442 − 7.93508i − 0.377433i
443443 13.9769i 0.664063i 0.943268 + 0.332031i 0.107734π0.107734\pi
−0.943268 + 0.332031i 0.892266π0.892266\pi
444444 0 0
445445 11.5709 0.548512
446446 43.6031 2.06467
447447 0 0
448448 − 3.21426i − 0.151859i
449449 21.6079i 1.01974i 0.860252 + 0.509870i 0.170306π0.170306\pi
−0.860252 + 0.509870i 0.829694π0.829694\pi
450450 0 0
451451 0 0
452452 − 4.12070i − 0.193821i
453453 0 0
454454 42.3393 1.98708
455455 1.32382i 0.0620616i
456456 0 0
457457 − 9.80506i − 0.458662i −0.973349 0.229331i 0.926346π-0.926346\pi
0.973349 0.229331i 0.0736537π-0.0736537\pi
458458 −10.4193 −0.486862
459459 0 0
460460 −74.2159 −3.46033
461461 −12.3585 −0.575595 −0.287797 0.957691i 0.592923π-0.592923\pi
−0.287797 + 0.957691i 0.592923π0.592923\pi
462462 0 0
463463 −33.8717 −1.57415 −0.787076 0.616856i 0.788406π-0.788406\pi
−0.787076 + 0.616856i 0.788406π0.788406\pi
464464 −8.98509 −0.417122
465465 0 0
466466 −56.9680 −2.63899
467467 − 15.7369i − 0.728219i −0.931356 0.364109i 0.881373π-0.881373\pi
0.931356 0.364109i 0.118627π-0.118627\pi
468468 0 0
469469 1.64164i 0.0758040i
470470 0.190573 0.00879050
471471 0 0
472472 31.2387i 1.43788i
473473 0 0
474474 0 0
475475 − 40.0987i − 1.83986i
476476 − 4.97171i − 0.227878i
477477 0 0
478478 −48.7159 −2.22821
479479 −12.4691 −0.569726 −0.284863 0.958568i 0.591948π-0.591948\pi
−0.284863 + 0.958568i 0.591948π0.591948\pi
480480 0 0
481481 6.81075i 0.310544i
482482 5.66614i 0.258086i
483483 0 0
484484 0 0
485485 − 57.2660i − 2.60032i
486486 0 0
487487 −6.95609 −0.315210 −0.157605 0.987502i 0.550377π-0.550377\pi
−0.157605 + 0.987502i 0.550377π0.550377\pi
488488 − 45.9914i − 2.08193i
489489 0 0
490490 − 63.4828i − 2.86786i
491491 0.301920 0.0136255 0.00681273 0.999977i 0.497831π-0.497831\pi
0.00681273 + 0.999977i 0.497831π0.497831\pi
492492 0 0
493493 8.52979 0.384162
494494 −9.84705 −0.443040
495495 0 0
496496 12.7135 0.570851
497497 3.79805 0.170366
498498 0 0
499499 6.61671 0.296205 0.148102 0.988972i 0.452683π-0.452683\pi
0.148102 + 0.988972i 0.452683π0.452683\pi
500500 − 65.8469i − 2.94476i
501501 0 0
502502 − 7.82068i − 0.349054i
503503 −10.3292 −0.460554 −0.230277 0.973125i 0.573963π-0.573963\pi
−0.230277 + 0.973125i 0.573963π0.573963\pi
504504 0 0
505505 66.2732i 2.94912i
506506 0 0
507507 0 0
508508 − 69.0508i − 3.06363i
509509 20.3250i 0.900891i 0.892804 + 0.450445i 0.148735π0.148735\pi
−0.892804 + 0.450445i 0.851265π0.851265\pi
510510 0 0
511511 −1.61676 −0.0715214
512512 36.3567 1.60675
513513 0 0
514514 − 43.9580i − 1.93890i
515515 − 35.3598i − 1.55814i
516516 0 0
517517 0 0
518518 6.43579i 0.282772i
519519 0 0
520520 −16.9742 −0.744366
521521 − 11.9982i − 0.525650i −0.964843 0.262825i 0.915346π-0.915346\pi
0.964843 0.262825i 0.0846542π-0.0846542\pi
522522 0 0
523523 37.8361i 1.65446i 0.561865 + 0.827229i 0.310084π0.310084\pi
−0.561865 + 0.827229i 0.689916π0.689916\pi
524524 −54.6623 −2.38793
525525 0 0
526526 −5.01798 −0.218794
527527 −12.0692 −0.525743
528528 0 0
529529 −1.68106 −0.0730898
530530 −51.2806 −2.22749
531531 0 0
532532 −6.16966 −0.267489
533533 2.57842i 0.111684i
534534 0 0
535535 − 58.5515i − 2.53140i
536536 −21.0493 −0.909191
537537 0 0
538538 7.01652i 0.302504i
539539 0 0
540540 0 0
541541 36.8317i 1.58352i 0.610834 + 0.791759i 0.290834π0.290834\pi
−0.610834 + 0.791759i 0.709166π0.709166\pi
542542 24.7786i 1.06433i
543543 0 0
544544 −2.11931 −0.0908648
545545 40.3435 1.72812
546546 0 0
547547 36.6744i 1.56809i 0.620706 + 0.784043i 0.286846π0.286846\pi
−0.620706 + 0.784043i 0.713154π0.713154\pi
548548 4.08414i 0.174466i
549549 0 0
550550 0 0
551551 − 10.5851i − 0.450939i
552552 0 0
553553 −4.02258 −0.171057
554554 − 17.8113i − 0.756728i
555555 0 0
556556 78.0639i 3.31065i
557557 −7.46772 −0.316418 −0.158209 0.987406i 0.550572π-0.550572\pi
−0.158209 + 0.987406i 0.550572π0.550572\pi
558558 0 0
559559 −1.78983 −0.0757018
560560 −5.05095 −0.213441
561561 0 0
562562 −5.61676 −0.236929
563563 −3.91481 −0.164990 −0.0824948 0.996591i 0.526289π-0.526289\pi
−0.0824948 + 0.996591i 0.526289π0.526289\pi
564564 0 0
565565 3.97423 0.167197
566566 − 59.5261i − 2.50207i
567567 0 0
568568 48.6990i 2.04336i
569569 37.6712 1.57926 0.789628 0.613585i 0.210273π-0.210273\pi
0.789628 + 0.613585i 0.210273π0.210273\pi
570570 0 0
571571 30.3411i 1.26974i 0.772621 + 0.634868i 0.218946π0.218946\pi
−0.772621 + 0.634868i 0.781054π0.781054\pi
572572 0 0
573573 0 0
574574 2.43647i 0.101696i
575575 − 46.7379i − 1.94911i
576576 0 0
577577 −3.31962 −0.138198 −0.0690988 0.997610i 0.522012π-0.522012\pi
−0.0690988 + 0.997610i 0.522012π0.522012\pi
578578 12.6758 0.527245
579579 0 0
580580 − 37.0992i − 1.54046i
581581 − 3.37752i − 0.140123i
582582 0 0
583583 0 0
584584 − 20.7303i − 0.857826i
585585 0 0
586586 −25.9746 −1.07300
587587 40.9075i 1.68843i 0.536003 + 0.844216i 0.319933π0.319933\pi
−0.536003 + 0.844216i 0.680067π0.680067\pi
588588 0 0
589589 14.9773i 0.617130i
590590 −61.2583 −2.52197
591591 0 0
592592 −25.9860 −1.06802
593593 4.62924 0.190100 0.0950500 0.995472i 0.469699π-0.469699\pi
0.0950500 + 0.995472i 0.469699π0.469699\pi
594594 0 0
595595 4.79500 0.196576
596596 −31.6268 −1.29549
597597 0 0
598598 −11.4774 −0.469347
599599 30.5789i 1.24942i 0.780858 + 0.624709i 0.214782π0.214782\pi
−0.780858 + 0.624709i 0.785218π0.785218\pi
600600 0 0
601601 31.2300i 1.27390i 0.770905 + 0.636950i 0.219804π0.219804\pi
−0.770905 + 0.636950i 0.780196π0.780196\pi
602602 −1.69129 −0.0689320
603603 0 0
604604 − 39.6459i − 1.61317i
605605 0 0
606606 0 0
607607 − 30.7667i − 1.24878i −0.781112 0.624391i 0.785347π-0.785347\pi
0.781112 0.624391i 0.214653π-0.214653\pi
608608 2.62997i 0.106659i
609609 0 0
610610 90.1880 3.65160
611611 0.0195415 0.000790566 0
612612 0 0
613613 25.4710i 1.02876i 0.857561 + 0.514382i 0.171979π0.171979\pi
−0.857561 + 0.514382i 0.828021π0.828021\pi
614614 11.1303i 0.449181i
615615 0 0
616616 0 0
617617 4.20930i 0.169460i 0.996404 + 0.0847300i 0.0270028π0.0270028\pi
−0.996404 + 0.0847300i 0.972997π0.972997\pi
618618 0 0
619619 38.5032 1.54757 0.773787 0.633446i 0.218360π-0.218360\pi
0.773787 + 0.633446i 0.218360π0.218360\pi
620620 52.4935i 2.10819i
621621 0 0
622622 22.8581i 0.916525i
623623 1.12116 0.0449185
624624 0 0
625625 16.4675 0.658700
626626 12.2206 0.488433
627627 0 0
628628 −63.6880 −2.54143
629629 24.6692 0.983624
630630 0 0
631631 −11.8328 −0.471058 −0.235529 0.971867i 0.575682π-0.575682\pi
−0.235529 + 0.971867i 0.575682π0.575682\pi
632632 − 51.5779i − 2.05166i
633633 0 0
634634 − 28.4469i − 1.12977i
635635 66.5964 2.64280
636636 0 0
637637 − 6.50957i − 0.257918i
638638 0 0
639639 0 0
640640 76.1345i 3.00948i
641641 35.9401i 1.41955i 0.704430 + 0.709774i 0.251203π0.251203\pi
−0.704430 + 0.709774i 0.748797π0.748797\pi
642642 0 0
643643 3.25527 0.128375 0.0641876 0.997938i 0.479554π-0.479554\pi
0.0641876 + 0.997938i 0.479554π0.479554\pi
644644 −7.19118 −0.283372
645645 0 0
646646 35.6669i 1.40330i
647647 12.1550i 0.477863i 0.971036 + 0.238931i 0.0767971π0.0767971\pi
−0.971036 + 0.238931i 0.923203π0.923203\pi
648648 0 0
649649 0 0
650650 − 21.7345i − 0.852498i
651651 0 0
652652 16.8282 0.659043
653653 25.5204i 0.998690i 0.866403 + 0.499345i 0.166426π0.166426\pi
−0.866403 + 0.499345i 0.833574π0.833574\pi
654654 0 0
655655 − 52.7193i − 2.05992i
656656 −9.83781 −0.384102
657657 0 0
658658 0.0184657 0.000719867 0
659659 27.9441 1.08855 0.544273 0.838908i 0.316806π-0.316806\pi
0.544273 + 0.838908i 0.316806π0.316806\pi
660660 0 0
661661 −27.3798 −1.06495 −0.532475 0.846446i 0.678738π-0.678738\pi
−0.532475 + 0.846446i 0.678738π0.678738\pi
662662 70.7790 2.75091
663663 0 0
664664 43.3069 1.68063
665665 − 5.95037i − 0.230745i
666666 0 0
667667 − 12.3376i − 0.477715i
668668 −72.2304 −2.79468
669669 0 0
670670 − 41.2771i − 1.59467i
671671 0 0
672672 0 0
673673 − 13.5488i − 0.522267i −0.965303 0.261134i 0.915904π-0.915904\pi
0.965303 0.261134i 0.0840963π-0.0840963\pi
674674 70.3616i 2.71023i
675675 0 0
676676 47.6245 1.83171
677677 36.6970 1.41038 0.705190 0.709018i 0.250862π-0.250862\pi
0.705190 + 0.709018i 0.250862π0.250862\pi
678678 0 0
679679 − 5.54881i − 0.212944i
680680 61.4819i 2.35772i
681681 0 0
682682 0 0
683683 30.8347i 1.17986i 0.807455 + 0.589929i 0.200844π0.200844\pi
−0.807455 + 0.589929i 0.799156π0.799156\pi
684684 0 0
685685 −3.93897 −0.150500
686686 − 12.4236i − 0.474335i
687687 0 0
688688 − 6.82899i − 0.260353i
689689 −5.25835 −0.200327
690690 0 0
691691 −47.7199 −1.81535 −0.907676 0.419672i 0.862145π-0.862145\pi
−0.907676 + 0.419672i 0.862145π0.862145\pi
692692 24.3317 0.924953
693693 0 0
694694 53.9474 2.04782
695695 −75.2892 −2.85588
696696 0 0
697697 9.33929 0.353751
698698 38.1588i 1.44433i
699699 0 0
700700 − 13.6177i − 0.514703i
701701 −14.0665 −0.531284 −0.265642 0.964072i 0.585584π-0.585584\pi
−0.265642 + 0.964072i 0.585584π0.585584\pi
702702 0 0
703703 − 30.6133i − 1.15460i
704704 0 0
705705 0 0
706706 27.1981i 1.02362i
707707 6.42157i 0.241508i
708708 0 0
709709 −9.07416 −0.340787 −0.170394 0.985376i 0.554504π-0.554504\pi
−0.170394 + 0.985376i 0.554504π0.554504\pi
710710 −95.4975 −3.58396
711711 0 0
712712 14.3757i 0.538751i
713713 17.4571i 0.653775i
714714 0 0
715715 0 0
716716 36.3090i 1.35693i
717717 0 0
718718 −40.3560 −1.50607
719719 33.9415i 1.26580i 0.774232 + 0.632901i 0.218136π0.218136\pi
−0.774232 + 0.632901i 0.781864π0.781864\pi
720720 0 0
721721 − 3.42620i − 0.127598i
722722 −2.02908 −0.0755146
723723 0 0
724724 −16.4812 −0.612519
725725 23.3635 0.867697
726726 0 0
727727 30.8992 1.14599 0.572993 0.819560i 0.305782π-0.305782\pi
0.572993 + 0.819560i 0.305782π0.305782\pi
728728 −1.64472 −0.0609572
729729 0 0
730730 40.6516 1.50458
731731 6.48294i 0.239780i
732732 0 0
733733 41.6009i 1.53657i 0.640110 + 0.768283i 0.278889π0.278889\pi
−0.640110 + 0.768283i 0.721111π0.721111\pi
734734 −23.9009 −0.882200
735735 0 0
736736 3.06541i 0.112993i
737737 0 0
738738 0 0
739739 − 14.3707i − 0.528634i −0.964436 0.264317i 0.914854π-0.914854\pi
0.964436 0.264317i 0.0851465π-0.0851465\pi
740740 − 107.295i − 3.94426i
741741 0 0
742742 −4.96885 −0.182412
743743 −13.4298 −0.492692 −0.246346 0.969182i 0.579230π-0.579230\pi
−0.246346 + 0.969182i 0.579230π0.579230\pi
744744 0 0
745745 − 30.5027i − 1.11753i
746746 − 30.7829i − 1.12704i
747747 0 0
748748 0 0
749749 − 5.67337i − 0.207301i
750750 0 0
751751 −36.3646 −1.32696 −0.663481 0.748193i 0.730922π-0.730922\pi
−0.663481 + 0.748193i 0.730922π0.730922\pi
752752 0.0745594i 0.00271890i
753753 0 0
754754 − 5.73737i − 0.208943i
755755 38.2367 1.39158
756756 0 0
757757 39.9016 1.45025 0.725124 0.688618i 0.241782π-0.241782\pi
0.725124 + 0.688618i 0.241782π0.241782\pi
758758 −85.5197 −3.10622
759759 0 0
760760 76.2962 2.76755
761761 −3.41015 −0.123618 −0.0618089 0.998088i 0.519687π-0.519687\pi
−0.0618089 + 0.998088i 0.519687π0.519687\pi
762762 0 0
763763 3.90910 0.141519
764764 79.4331i 2.87379i
765765 0 0
766766 − 55.0280i − 1.98824i
767767 −6.28147 −0.226811
768768 0 0
769769 − 21.4154i − 0.772260i −0.922444 0.386130i 0.873812π-0.873812\pi
0.922444 0.386130i 0.126188π-0.126188\pi
770770 0 0
771771 0 0
772772 − 31.5401i − 1.13515i
773773 − 35.8866i − 1.29075i −0.763866 0.645375i 0.776701π-0.776701\pi
0.763866 0.645375i 0.223299π-0.223299\pi
774774 0 0
775775 −33.0581 −1.18748
776776 71.1474 2.55404
777777 0 0
778778 17.9285i 0.642767i
779779 − 11.5896i − 0.415241i
780780 0 0
781781 0 0
782782 41.5723i 1.48662i
783783 0 0
784784 24.8368 0.887029
785785 − 61.4243i − 2.19233i
786786 0 0
787787 48.0635i 1.71328i 0.515917 + 0.856639i 0.327451π0.327451\pi
−0.515917 + 0.856639i 0.672549π0.672549\pi
788788 83.3218 2.96822
789789 0 0
790790 101.143 3.59850
791791 0.385085 0.0136920
792792 0 0
793793 9.24793 0.328404
794794 −40.7662 −1.44674
795795 0 0
796796 −41.3872 −1.46693
797797 − 6.04580i − 0.214153i −0.994251 0.107077i 0.965851π-0.965851\pi
0.994251 0.107077i 0.0341490π-0.0341490\pi
798798 0 0
799799 − 0.0707812i − 0.00250406i
800800 −5.80489 −0.205234
801801 0 0
802802 − 12.3605i − 0.436464i
803803 0 0
804804 0 0
805805 − 6.93557i − 0.244447i
806806 8.11809i 0.285947i
807807 0 0
808808 −82.3379 −2.89664
809809 7.43425 0.261374 0.130687 0.991424i 0.458282π-0.458282\pi
0.130687 + 0.991424i 0.458282π0.458282\pi
810810 0 0
811811 29.1631i 1.02405i 0.858970 + 0.512027i 0.171105π0.171105\pi
−0.858970 + 0.512027i 0.828895π0.828895\pi
812812 − 3.59474i − 0.126151i
813813 0 0
814814 0 0
815815 16.2301i 0.568514i
816816 0 0
817817 8.04502 0.281460
818818 − 78.8093i − 2.75550i
819819 0 0
820820 − 40.6201i − 1.41851i
821821 −1.07240 −0.0374270 −0.0187135 0.999825i 0.505957π-0.505957\pi
−0.0187135 + 0.999825i 0.505957π0.505957\pi
822822 0 0
823823 −8.94619 −0.311845 −0.155922 0.987769i 0.549835π-0.549835\pi
−0.155922 + 0.987769i 0.549835π0.549835\pi
824824 43.9311 1.53041
825825 0 0
826826 −5.93565 −0.206528
827827 35.3031 1.22761 0.613805 0.789458i 0.289638π-0.289638\pi
0.613805 + 0.789458i 0.289638π0.289638\pi
828828 0 0
829829 27.0734 0.940298 0.470149 0.882587i 0.344200π-0.344200\pi
0.470149 + 0.882587i 0.344200π0.344200\pi
830830 84.9237i 2.94774i
831831 0 0
832832 8.28720i 0.287307i
833833 −23.5783 −0.816938
834834 0 0
835835 − 69.6630i − 2.41079i
836836 0 0
837837 0 0
838838 − 67.9916i − 2.34873i
839839 − 37.2329i − 1.28542i −0.766108 0.642712i 0.777809π-0.777809\pi
0.766108 0.642712i 0.222191π-0.222191\pi
840840 0 0
841841 −22.8326 −0.787332
842842 −65.1195 −2.24417
843843 0 0
844844 − 14.5549i − 0.501001i
845845 45.9317i 1.58010i
846846 0 0
847847 0 0
848848 − 20.0629i − 0.688962i
849849 0 0
850850 −78.7245 −2.70023
851851 − 35.6819i − 1.22316i
852852 0 0
853853 − 35.1190i − 1.20245i −0.799080 0.601225i 0.794680π-0.794680\pi
0.799080 0.601225i 0.205320π-0.205320\pi
854854 8.73880 0.299035
855855 0 0
856856 72.7445 2.48636
857857 29.9637 1.02354 0.511770 0.859122i 0.328990π-0.328990\pi
0.511770 + 0.859122i 0.328990π0.328990\pi
858858 0 0
859859 17.2684 0.589189 0.294595 0.955622i 0.404815π-0.404815\pi
0.294595 + 0.955622i 0.404815π0.404815\pi
860860 28.1967 0.961500
861861 0 0
862862 −1.74592 −0.0594663
863863 − 34.8150i − 1.18512i −0.805528 0.592558i 0.798118π-0.798118\pi
0.805528 0.592558i 0.201882π-0.201882\pi
864864 0 0
865865 23.4668i 0.797897i
866866 −27.8530 −0.946484
867867 0 0
868868 5.08638i 0.172643i
869869 0 0
870870 0 0
871871 − 4.23258i − 0.143416i
872872 50.1228i 1.69737i
873873 0 0
874874 51.5893 1.74503
875875 6.15348 0.208025
876876 0 0
877877 − 1.98289i − 0.0669576i −0.999439 0.0334788i 0.989341π-0.989341\pi
0.999439 0.0334788i 0.0106586π-0.0106586\pi
878878 20.8920i 0.705072i
879879 0 0
880880 0 0
881881 − 48.9571i − 1.64941i −0.565566 0.824703i 0.691342π-0.691342\pi
0.565566 0.824703i 0.308658π-0.308658\pi
882882 0 0
883883 34.7553 1.16961 0.584804 0.811175i 0.301171π-0.301171\pi
0.584804 + 0.811175i 0.301171π0.301171\pi
884884 12.8184i 0.431129i
885885 0 0
886886 − 34.0522i − 1.14401i
887887 14.4931 0.486629 0.243315 0.969947i 0.421765π-0.421765\pi
0.243315 + 0.969947i 0.421765π0.421765\pi
888888 0 0
889889 6.45289 0.216423
890890 −28.1903 −0.944943
891891 0 0
892892 −70.4368 −2.35840
893893 −0.0878361 −0.00293932
894894 0 0
895895 −35.0184 −1.17054
896896 7.37708i 0.246451i
897897 0 0
898898 − 52.6437i − 1.75674i
899899 −8.72651 −0.291045
900900 0 0
901901 19.0462i 0.634521i
902902 0 0
903903 0 0
904904 4.93759i 0.164222i
905905 − 15.8954i − 0.528381i
906906 0 0
907907 22.7691 0.756037 0.378019 0.925798i 0.376606π-0.376606\pi
0.378019 + 0.925798i 0.376606π0.376606\pi
908908 −68.3952 −2.26978
909909 0 0
910910 − 3.22525i − 0.106916i
911911 − 22.6944i − 0.751900i −0.926640 0.375950i 0.877316π-0.877316\pi
0.926640 0.375950i 0.122684π-0.122684\pi
912912 0 0
913913 0 0
914914 23.8883i 0.790153i
915915 0 0
916916 16.8314 0.556126
917917 − 5.10826i − 0.168690i
918918 0 0
919919 1.25513i 0.0414029i 0.999786 + 0.0207014i 0.00658994π0.00658994\pi
−0.999786 + 0.0207014i 0.993410π0.993410\pi
920920 88.9286 2.93189
921921 0 0
922922 30.1093 0.991598
923923 −9.79237 −0.322320
924924 0 0
925925 67.5699 2.22169
926926 82.5223 2.71185
927927 0 0
928928 −1.53235 −0.0503017
929929 2.87512i 0.0943296i 0.998887 + 0.0471648i 0.0150186π0.0150186\pi
−0.998887 + 0.0471648i 0.984981π0.984981\pi
930930 0 0
931931 29.2595i 0.958941i
932932 92.0265 3.01443
933933 0 0
934934 38.3402i 1.25453i
935935 0 0
936936 0 0
937937 30.8451i 1.00767i 0.863801 + 0.503833i 0.168077π0.168077\pi
−0.863801 + 0.503833i 0.831923π0.831923\pi
938938 − 3.99956i − 0.130590i
939939 0 0
940940 −0.307854 −0.0100411
941941 −6.54086 −0.213226 −0.106613 0.994301i 0.534001π-0.534001\pi
−0.106613 + 0.994301i 0.534001π0.534001\pi
942942 0 0
943943 − 13.5085i − 0.439898i
944944 − 23.9665i − 0.780044i
945945 0 0
946946 0 0
947947 33.2579i 1.08074i 0.841429 + 0.540368i 0.181715π0.181715\pi
−0.841429 + 0.540368i 0.818285π0.818285\pi
948948 0 0
949949 4.16844 0.135313
950950 97.6933i 3.16959i
951951 0 0
952952 5.95731i 0.193078i
953953 −54.9548 −1.78016 −0.890081 0.455803i 0.849352π-0.849352\pi
−0.890081 + 0.455803i 0.849352π0.849352\pi
954954 0 0
955955 −76.6097 −2.47903
956956 78.6961 2.54521
957957 0 0
958958 30.3786 0.981488
959959 −0.381668 −0.0123247
960960 0 0
961961 −18.6524 −0.601691
962962 − 16.5932i − 0.534985i
963963 0 0
964964 − 9.15313i − 0.294803i
965965 30.4190 0.979224
966966 0 0
967967 − 34.0395i − 1.09464i −0.836925 0.547318i 0.815649π-0.815649\pi
0.836925 0.547318i 0.184351π-0.184351\pi
968968 0 0
969969 0 0
970970 139.518i 4.47966i
971971 − 38.0638i − 1.22153i −0.791814 0.610763i 0.790863π-0.790863\pi
0.791814 0.610763i 0.209137π-0.209137\pi
972972 0 0
973973 −7.29517 −0.233872
974974 16.9472 0.543025
975975 0 0
976976 35.2849i 1.12944i
977977 32.1005i 1.02699i 0.858094 + 0.513493i 0.171649π0.171649\pi
−0.858094 + 0.513493i 0.828351π0.828351\pi
978978 0 0
979979 0 0
980980 102.551i 3.27586i
981981 0 0
982982 −0.735573 −0.0234731
983983 21.4305i 0.683526i 0.939786 + 0.341763i 0.111024π0.111024\pi
−0.939786 + 0.341763i 0.888976π0.888976\pi
984984 0 0
985985 80.3602i 2.56049i
986986 −20.7813 −0.661811
987987 0 0
988988 15.9070 0.506069
989989 9.37704 0.298172
990990 0 0
991991 −29.3068 −0.930962 −0.465481 0.885058i 0.654119π-0.654119\pi
−0.465481 + 0.885058i 0.654119π0.654119\pi
992992 2.16819 0.0688402
993993 0 0
994994 −9.25326 −0.293496
995995 − 39.9161i − 1.26542i
996996 0 0
997997 32.7622i 1.03759i 0.854899 + 0.518795i 0.173619π0.173619\pi
−0.854899 + 0.518795i 0.826381π0.826381\pi
998998 −16.1204 −0.510283
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.d.g.1088.2 16
3.2 odd 2 inner 1089.2.d.g.1088.15 16
11.6 odd 10 99.2.j.a.8.1 16
11.9 even 5 99.2.j.a.62.4 yes 16
11.10 odd 2 inner 1089.2.d.g.1088.16 16
33.17 even 10 99.2.j.a.8.4 yes 16
33.20 odd 10 99.2.j.a.62.1 yes 16
33.32 even 2 inner 1089.2.d.g.1088.1 16
44.31 odd 10 1584.2.cd.c.161.1 16
44.39 even 10 1584.2.cd.c.305.4 16
99.20 odd 30 891.2.u.c.458.1 32
99.31 even 15 891.2.u.c.755.1 32
99.50 even 30 891.2.u.c.107.4 32
99.61 odd 30 891.2.u.c.701.4 32
99.83 even 30 891.2.u.c.701.1 32
99.86 odd 30 891.2.u.c.755.4 32
99.94 odd 30 891.2.u.c.107.1 32
99.97 even 15 891.2.u.c.458.4 32
132.83 odd 10 1584.2.cd.c.305.1 16
132.119 even 10 1584.2.cd.c.161.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.8.1 16 11.6 odd 10
99.2.j.a.8.4 yes 16 33.17 even 10
99.2.j.a.62.1 yes 16 33.20 odd 10
99.2.j.a.62.4 yes 16 11.9 even 5
891.2.u.c.107.1 32 99.94 odd 30
891.2.u.c.107.4 32 99.50 even 30
891.2.u.c.458.1 32 99.20 odd 30
891.2.u.c.458.4 32 99.97 even 15
891.2.u.c.701.1 32 99.83 even 30
891.2.u.c.701.4 32 99.61 odd 30
891.2.u.c.755.1 32 99.31 even 15
891.2.u.c.755.4 32 99.86 odd 30
1089.2.d.g.1088.1 16 33.32 even 2 inner
1089.2.d.g.1088.2 16 1.1 even 1 trivial
1089.2.d.g.1088.15 16 3.2 odd 2 inner
1089.2.d.g.1088.16 16 11.10 odd 2 inner
1584.2.cd.c.161.1 16 44.31 odd 10
1584.2.cd.c.161.4 16 132.119 even 10
1584.2.cd.c.305.1 16 132.83 odd 10
1584.2.cd.c.305.4 16 44.39 even 10