Properties

Label 1089.2.d.g.1088.2
Level $1089$
Weight $2$
Character 1089.1088
Analytic conductor $8.696$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1088,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1088");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1088.2
Root \(0.0783900 + 1.17295i\) of defining polynomial
Character \(\chi\) \(=\) 1089.1088
Dual form 1089.2.d.g.1088.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.43632 q^{2} +3.93565 q^{4} +3.79576i q^{5} +0.367791i q^{7} -4.71586 q^{8} -9.24768i q^{10} -0.948263i q^{13} -0.896057i q^{14} +3.61803 q^{16} -3.43470 q^{17} +4.26229i q^{19} +14.9388i q^{20} +4.96800i q^{23} -9.40778 q^{25} +2.31027i q^{26} +1.44750i q^{28} -2.48342 q^{29} +3.51391 q^{31} +0.617031 q^{32} +8.36801 q^{34} -1.39605 q^{35} -7.18234 q^{37} -10.3843i q^{38} -17.9003i q^{40} -2.71910 q^{41} -1.88749i q^{43} -12.1036i q^{46} +0.0206077i q^{47} +6.86473 q^{49} +22.9204 q^{50} -3.73203i q^{52} -5.54524i q^{53} -1.73445i q^{56} +6.05040 q^{58} -6.62419i q^{59} +9.75250i q^{61} -8.56101 q^{62} -8.73935 q^{64} +3.59938 q^{65} +4.46351 q^{67} -13.5178 q^{68} +3.40122 q^{70} -10.3266i q^{71} +4.39587i q^{73} +17.4985 q^{74} +16.7749i q^{76} +10.9371i q^{79} +13.7332i q^{80} +6.62460 q^{82} -9.18325 q^{83} -13.0373i q^{85} +4.59852i q^{86} -3.04837i q^{89} +0.348763 q^{91} +19.5523i q^{92} -0.0502070i q^{94} -16.1786 q^{95} -15.0868 q^{97} -16.7247 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} + 40 q^{16} - 32 q^{25} + 16 q^{31} + 40 q^{34} + 8 q^{37} + 16 q^{49} + 32 q^{58} - 104 q^{64} + 96 q^{67} - 64 q^{70} + 88 q^{82} + 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.43632 −1.72274 −0.861369 0.507980i \(-0.830392\pi\)
−0.861369 + 0.507980i \(0.830392\pi\)
\(3\) 0 0
\(4\) 3.93565 1.96782
\(5\) 3.79576i 1.69751i 0.528782 + 0.848757i \(0.322649\pi\)
−0.528782 + 0.848757i \(0.677351\pi\)
\(6\) 0 0
\(7\) 0.367791i 0.139012i 0.997582 + 0.0695060i \(0.0221423\pi\)
−0.997582 + 0.0695060i \(0.977858\pi\)
\(8\) −4.71586 −1.66731
\(9\) 0 0
\(10\) − 9.24768i − 2.92437i
\(11\) 0 0
\(12\) 0 0
\(13\) − 0.948263i − 0.263001i −0.991316 0.131500i \(-0.958021\pi\)
0.991316 0.131500i \(-0.0419795\pi\)
\(14\) − 0.896057i − 0.239481i
\(15\) 0 0
\(16\) 3.61803 0.904508
\(17\) −3.43470 −0.833036 −0.416518 0.909127i \(-0.636750\pi\)
−0.416518 + 0.909127i \(0.636750\pi\)
\(18\) 0 0
\(19\) 4.26229i 0.977837i 0.872329 + 0.488919i \(0.162609\pi\)
−0.872329 + 0.488919i \(0.837391\pi\)
\(20\) 14.9388i 3.34041i
\(21\) 0 0
\(22\) 0 0
\(23\) 4.96800i 1.03590i 0.855411 + 0.517950i \(0.173305\pi\)
−0.855411 + 0.517950i \(0.826695\pi\)
\(24\) 0 0
\(25\) −9.40778 −1.88156
\(26\) 2.31027i 0.453081i
\(27\) 0 0
\(28\) 1.44750i 0.273551i
\(29\) −2.48342 −0.461159 −0.230580 0.973053i \(-0.574062\pi\)
−0.230580 + 0.973053i \(0.574062\pi\)
\(30\) 0 0
\(31\) 3.51391 0.631117 0.315559 0.948906i \(-0.397808\pi\)
0.315559 + 0.948906i \(0.397808\pi\)
\(32\) 0.617031 0.109077
\(33\) 0 0
\(34\) 8.36801 1.43510
\(35\) −1.39605 −0.235975
\(36\) 0 0
\(37\) −7.18234 −1.18077 −0.590385 0.807122i \(-0.701024\pi\)
−0.590385 + 0.807122i \(0.701024\pi\)
\(38\) − 10.3843i − 1.68456i
\(39\) 0 0
\(40\) − 17.9003i − 2.83028i
\(41\) −2.71910 −0.424653 −0.212326 0.977199i \(-0.568104\pi\)
−0.212326 + 0.977199i \(0.568104\pi\)
\(42\) 0 0
\(43\) − 1.88749i − 0.287839i −0.989589 0.143919i \(-0.954029\pi\)
0.989589 0.143919i \(-0.0459706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) − 12.1036i − 1.78458i
\(47\) 0.0206077i 0.00300594i 0.999999 + 0.00150297i \(0.000478411\pi\)
−0.999999 + 0.00150297i \(0.999522\pi\)
\(48\) 0 0
\(49\) 6.86473 0.980676
\(50\) 22.9204 3.24143
\(51\) 0 0
\(52\) − 3.73203i − 0.517539i
\(53\) − 5.54524i − 0.761697i −0.924637 0.380849i \(-0.875632\pi\)
0.924637 0.380849i \(-0.124368\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 1.73445i − 0.231776i
\(57\) 0 0
\(58\) 6.05040 0.794456
\(59\) − 6.62419i − 0.862396i −0.902257 0.431198i \(-0.858091\pi\)
0.902257 0.431198i \(-0.141909\pi\)
\(60\) 0 0
\(61\) 9.75250i 1.24868i 0.781153 + 0.624340i \(0.214632\pi\)
−0.781153 + 0.624340i \(0.785368\pi\)
\(62\) −8.56101 −1.08725
\(63\) 0 0
\(64\) −8.73935 −1.09242
\(65\) 3.59938 0.446448
\(66\) 0 0
\(67\) 4.46351 0.545305 0.272652 0.962113i \(-0.412099\pi\)
0.272652 + 0.962113i \(0.412099\pi\)
\(68\) −13.5178 −1.63927
\(69\) 0 0
\(70\) 3.40122 0.406523
\(71\) − 10.3266i − 1.22555i −0.790258 0.612774i \(-0.790054\pi\)
0.790258 0.612774i \(-0.209946\pi\)
\(72\) 0 0
\(73\) 4.39587i 0.514498i 0.966345 + 0.257249i \(0.0828160\pi\)
−0.966345 + 0.257249i \(0.917184\pi\)
\(74\) 17.4985 2.03416
\(75\) 0 0
\(76\) 16.7749i 1.92421i
\(77\) 0 0
\(78\) 0 0
\(79\) 10.9371i 1.23052i 0.788324 + 0.615261i \(0.210949\pi\)
−0.788324 + 0.615261i \(0.789051\pi\)
\(80\) 13.7332i 1.53542i
\(81\) 0 0
\(82\) 6.62460 0.731565
\(83\) −9.18325 −1.00799 −0.503996 0.863706i \(-0.668137\pi\)
−0.503996 + 0.863706i \(0.668137\pi\)
\(84\) 0 0
\(85\) − 13.0373i − 1.41409i
\(86\) 4.59852i 0.495871i
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.04837i − 0.323127i −0.986862 0.161563i \(-0.948346\pi\)
0.986862 0.161563i \(-0.0516536\pi\)
\(90\) 0 0
\(91\) 0.348763 0.0365603
\(92\) 19.5523i 2.03847i
\(93\) 0 0
\(94\) − 0.0502070i − 0.00517845i
\(95\) −16.1786 −1.65989
\(96\) 0 0
\(97\) −15.0868 −1.53184 −0.765919 0.642938i \(-0.777715\pi\)
−0.765919 + 0.642938i \(0.777715\pi\)
\(98\) −16.7247 −1.68945
\(99\) 0 0
\(100\) −37.0257 −3.70257
\(101\) 17.4598 1.73732 0.868658 0.495413i \(-0.164983\pi\)
0.868658 + 0.495413i \(0.164983\pi\)
\(102\) 0 0
\(103\) −9.31561 −0.917894 −0.458947 0.888464i \(-0.651773\pi\)
−0.458947 + 0.888464i \(0.651773\pi\)
\(104\) 4.47187i 0.438503i
\(105\) 0 0
\(106\) 13.5100i 1.31220i
\(107\) −15.4255 −1.49124 −0.745620 0.666371i \(-0.767847\pi\)
−0.745620 + 0.666371i \(0.767847\pi\)
\(108\) 0 0
\(109\) − 10.6286i − 1.01803i −0.860757 0.509016i \(-0.830009\pi\)
0.860757 0.509016i \(-0.169991\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.33068i 0.125738i
\(113\) − 1.04702i − 0.0984953i −0.998787 0.0492476i \(-0.984318\pi\)
0.998787 0.0492476i \(-0.0156824\pi\)
\(114\) 0 0
\(115\) −18.8573 −1.75846
\(116\) −9.77386 −0.907480
\(117\) 0 0
\(118\) 16.1386i 1.48568i
\(119\) − 1.26325i − 0.115802i
\(120\) 0 0
\(121\) 0 0
\(122\) − 23.7602i − 2.15115i
\(123\) 0 0
\(124\) 13.8295 1.24193
\(125\) − 16.7309i − 1.49646i
\(126\) 0 0
\(127\) − 17.5450i − 1.55686i −0.627729 0.778432i \(-0.716016\pi\)
0.627729 0.778432i \(-0.283984\pi\)
\(128\) 20.0578 1.77287
\(129\) 0 0
\(130\) −8.76923 −0.769112
\(131\) −13.8890 −1.21349 −0.606744 0.794897i \(-0.707525\pi\)
−0.606744 + 0.794897i \(0.707525\pi\)
\(132\) 0 0
\(133\) −1.56764 −0.135931
\(134\) −10.8745 −0.939417
\(135\) 0 0
\(136\) 16.1975 1.38893
\(137\) 1.03773i 0.0886593i 0.999017 + 0.0443296i \(0.0141152\pi\)
−0.999017 + 0.0443296i \(0.985885\pi\)
\(138\) 0 0
\(139\) 19.8351i 1.68239i 0.540732 + 0.841195i \(0.318147\pi\)
−0.540732 + 0.841195i \(0.681853\pi\)
\(140\) −5.49435 −0.464358
\(141\) 0 0
\(142\) 25.1590i 2.11130i
\(143\) 0 0
\(144\) 0 0
\(145\) − 9.42646i − 0.782825i
\(146\) − 10.7097i − 0.886345i
\(147\) 0 0
\(148\) −28.2672 −2.32355
\(149\) −8.03599 −0.658334 −0.329167 0.944272i \(-0.606768\pi\)
−0.329167 + 0.944272i \(0.606768\pi\)
\(150\) 0 0
\(151\) − 10.0735i − 0.819773i −0.912137 0.409886i \(-0.865568\pi\)
0.912137 0.409886i \(-0.134432\pi\)
\(152\) − 20.1004i − 1.63036i
\(153\) 0 0
\(154\) 0 0
\(155\) 13.3380i 1.07133i
\(156\) 0 0
\(157\) −16.1823 −1.29149 −0.645746 0.763552i \(-0.723453\pi\)
−0.645746 + 0.763552i \(0.723453\pi\)
\(158\) − 26.6463i − 2.11986i
\(159\) 0 0
\(160\) 2.34210i 0.185159i
\(161\) −1.82719 −0.144003
\(162\) 0 0
\(163\) 4.27584 0.334910 0.167455 0.985880i \(-0.446445\pi\)
0.167455 + 0.985880i \(0.446445\pi\)
\(164\) −10.7014 −0.835642
\(165\) 0 0
\(166\) 22.3733 1.73651
\(167\) −18.3529 −1.42019 −0.710094 0.704107i \(-0.751347\pi\)
−0.710094 + 0.704107i \(0.751347\pi\)
\(168\) 0 0
\(169\) 12.1008 0.930831
\(170\) 31.7630i 2.43611i
\(171\) 0 0
\(172\) − 7.42848i − 0.566416i
\(173\) 6.18239 0.470038 0.235019 0.971991i \(-0.424485\pi\)
0.235019 + 0.971991i \(0.424485\pi\)
\(174\) 0 0
\(175\) − 3.46010i − 0.261559i
\(176\) 0 0
\(177\) 0 0
\(178\) 7.42680i 0.556662i
\(179\) 9.22567i 0.689559i 0.938684 + 0.344780i \(0.112046\pi\)
−0.938684 + 0.344780i \(0.887954\pi\)
\(180\) 0 0
\(181\) −4.18767 −0.311267 −0.155634 0.987815i \(-0.549742\pi\)
−0.155634 + 0.987815i \(0.549742\pi\)
\(182\) −0.849698 −0.0629838
\(183\) 0 0
\(184\) − 23.4284i − 1.72716i
\(185\) − 27.2624i − 2.00437i
\(186\) 0 0
\(187\) 0 0
\(188\) 0.0811047i 0.00591517i
\(189\) 0 0
\(190\) 39.4163 2.85956
\(191\) 20.1830i 1.46039i 0.683240 + 0.730194i \(0.260570\pi\)
−0.683240 + 0.730194i \(0.739430\pi\)
\(192\) 0 0
\(193\) − 8.01396i − 0.576857i −0.957501 0.288429i \(-0.906867\pi\)
0.957501 0.288429i \(-0.0931328\pi\)
\(194\) 36.7564 2.63895
\(195\) 0 0
\(196\) 27.0172 1.92980
\(197\) 21.1710 1.50837 0.754187 0.656659i \(-0.228031\pi\)
0.754187 + 0.656659i \(0.228031\pi\)
\(198\) 0 0
\(199\) −10.5160 −0.745457 −0.372729 0.927940i \(-0.621578\pi\)
−0.372729 + 0.927940i \(0.621578\pi\)
\(200\) 44.3658 3.13713
\(201\) 0 0
\(202\) −42.5376 −2.99294
\(203\) − 0.913380i − 0.0641067i
\(204\) 0 0
\(205\) − 10.3211i − 0.720854i
\(206\) 22.6958 1.58129
\(207\) 0 0
\(208\) − 3.43085i − 0.237886i
\(209\) 0 0
\(210\) 0 0
\(211\) − 3.69822i − 0.254596i −0.991864 0.127298i \(-0.959369\pi\)
0.991864 0.127298i \(-0.0406305\pi\)
\(212\) − 21.8241i − 1.49889i
\(213\) 0 0
\(214\) 37.5815 2.56902
\(215\) 7.16444 0.488611
\(216\) 0 0
\(217\) 1.29239i 0.0877329i
\(218\) 25.8946i 1.75380i
\(219\) 0 0
\(220\) 0 0
\(221\) 3.25699i 0.219089i
\(222\) 0 0
\(223\) −17.8971 −1.19848 −0.599240 0.800570i \(-0.704530\pi\)
−0.599240 + 0.800570i \(0.704530\pi\)
\(224\) 0.226939i 0.0151630i
\(225\) 0 0
\(226\) 2.55087i 0.169681i
\(227\) −17.3784 −1.15344 −0.576722 0.816940i \(-0.695668\pi\)
−0.576722 + 0.816940i \(0.695668\pi\)
\(228\) 0 0
\(229\) 4.27666 0.282609 0.141305 0.989966i \(-0.454870\pi\)
0.141305 + 0.989966i \(0.454870\pi\)
\(230\) 45.9425 3.02936
\(231\) 0 0
\(232\) 11.7114 0.768894
\(233\) 23.3828 1.53186 0.765929 0.642925i \(-0.222279\pi\)
0.765929 + 0.642925i \(0.222279\pi\)
\(234\) 0 0
\(235\) −0.0782219 −0.00510263
\(236\) − 26.0705i − 1.69704i
\(237\) 0 0
\(238\) 3.07768i 0.199497i
\(239\) 19.9957 1.29342 0.646708 0.762738i \(-0.276145\pi\)
0.646708 + 0.762738i \(0.276145\pi\)
\(240\) 0 0
\(241\) − 2.32570i − 0.149811i −0.997191 0.0749057i \(-0.976134\pi\)
0.997191 0.0749057i \(-0.0238656\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 38.3824i 2.45718i
\(245\) 26.0569i 1.66471i
\(246\) 0 0
\(247\) 4.04178 0.257172
\(248\) −16.5711 −1.05227
\(249\) 0 0
\(250\) 40.7618i 2.57800i
\(251\) 3.21004i 0.202616i 0.994855 + 0.101308i \(0.0323027\pi\)
−0.994855 + 0.101308i \(0.967697\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 42.7451i 2.68207i
\(255\) 0 0
\(256\) −31.3885 −1.96178
\(257\) 18.0428i 1.12548i 0.826635 + 0.562739i \(0.190252\pi\)
−0.826635 + 0.562739i \(0.809748\pi\)
\(258\) 0 0
\(259\) − 2.64160i − 0.164141i
\(260\) 14.1659 0.878531
\(261\) 0 0
\(262\) 33.8381 2.09052
\(263\) 2.05966 0.127004 0.0635019 0.997982i \(-0.479773\pi\)
0.0635019 + 0.997982i \(0.479773\pi\)
\(264\) 0 0
\(265\) 21.0484 1.29299
\(266\) 3.81926 0.234174
\(267\) 0 0
\(268\) 17.5668 1.07306
\(269\) − 2.87997i − 0.175595i −0.996138 0.0877974i \(-0.972017\pi\)
0.996138 0.0877974i \(-0.0279828\pi\)
\(270\) 0 0
\(271\) − 10.1705i − 0.617814i −0.951092 0.308907i \(-0.900037\pi\)
0.951092 0.308907i \(-0.0999632\pi\)
\(272\) −12.4268 −0.753488
\(273\) 0 0
\(274\) − 2.52824i − 0.152737i
\(275\) 0 0
\(276\) 0 0
\(277\) 7.31072i 0.439259i 0.975583 + 0.219629i \(0.0704848\pi\)
−0.975583 + 0.219629i \(0.929515\pi\)
\(278\) − 48.3246i − 2.89832i
\(279\) 0 0
\(280\) 6.58356 0.393443
\(281\) 2.30543 0.137530 0.0687652 0.997633i \(-0.478094\pi\)
0.0687652 + 0.997633i \(0.478094\pi\)
\(282\) 0 0
\(283\) 24.4328i 1.45238i 0.687494 + 0.726190i \(0.258711\pi\)
−0.687494 + 0.726190i \(0.741289\pi\)
\(284\) − 40.6420i − 2.41166i
\(285\) 0 0
\(286\) 0 0
\(287\) − 1.00006i − 0.0590318i
\(288\) 0 0
\(289\) −5.20286 −0.306051
\(290\) 22.9659i 1.34860i
\(291\) 0 0
\(292\) 17.3006i 1.01244i
\(293\) 10.6614 0.622846 0.311423 0.950271i \(-0.399194\pi\)
0.311423 + 0.950271i \(0.399194\pi\)
\(294\) 0 0
\(295\) 25.1438 1.46393
\(296\) 33.8709 1.96871
\(297\) 0 0
\(298\) 19.5782 1.13414
\(299\) 4.71097 0.272443
\(300\) 0 0
\(301\) 0.694201 0.0400131
\(302\) 24.5423i 1.41225i
\(303\) 0 0
\(304\) 15.4211i 0.884462i
\(305\) −37.0181 −2.11965
\(306\) 0 0
\(307\) − 4.56848i − 0.260737i −0.991466 0.130369i \(-0.958384\pi\)
0.991466 0.130369i \(-0.0416160\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) − 32.4955i − 1.84562i
\(311\) − 9.38221i − 0.532017i −0.963971 0.266008i \(-0.914295\pi\)
0.963971 0.266008i \(-0.0857049\pi\)
\(312\) 0 0
\(313\) −5.01601 −0.283522 −0.141761 0.989901i \(-0.545276\pi\)
−0.141761 + 0.989901i \(0.545276\pi\)
\(314\) 39.4253 2.22490
\(315\) 0 0
\(316\) 43.0446i 2.42145i
\(317\) 11.6762i 0.655801i 0.944712 + 0.327900i \(0.106341\pi\)
−0.944712 + 0.327900i \(0.893659\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) − 33.1725i − 1.85440i
\(321\) 0 0
\(322\) 4.45162 0.248079
\(323\) − 14.6397i − 0.814574i
\(324\) 0 0
\(325\) 8.92105i 0.494851i
\(326\) −10.4173 −0.576961
\(327\) 0 0
\(328\) 12.8229 0.708026
\(329\) −0.00757934 −0.000417863 0
\(330\) 0 0
\(331\) −29.0516 −1.59682 −0.798411 0.602113i \(-0.794326\pi\)
−0.798411 + 0.602113i \(0.794326\pi\)
\(332\) −36.1420 −1.98355
\(333\) 0 0
\(334\) 44.7134 2.44661
\(335\) 16.9424i 0.925663i
\(336\) 0 0
\(337\) − 28.8803i − 1.57321i −0.617456 0.786605i \(-0.711837\pi\)
0.617456 0.786605i \(-0.288163\pi\)
\(338\) −29.4814 −1.60358
\(339\) 0 0
\(340\) − 51.3101i − 2.78268i
\(341\) 0 0
\(342\) 0 0
\(343\) 5.09933i 0.275338i
\(344\) 8.90111i 0.479916i
\(345\) 0 0
\(346\) −15.0623 −0.809752
\(347\) −22.1430 −1.18870 −0.594350 0.804207i \(-0.702590\pi\)
−0.594350 + 0.804207i \(0.702590\pi\)
\(348\) 0 0
\(349\) − 15.6625i − 0.838393i −0.907895 0.419197i \(-0.862312\pi\)
0.907895 0.419197i \(-0.137688\pi\)
\(350\) 8.42991i 0.450598i
\(351\) 0 0
\(352\) 0 0
\(353\) − 11.1636i − 0.594180i −0.954850 0.297090i \(-0.903984\pi\)
0.954850 0.297090i \(-0.0960161\pi\)
\(354\) 0 0
\(355\) 39.1975 2.08038
\(356\) − 11.9973i − 0.635856i
\(357\) 0 0
\(358\) − 22.4767i − 1.18793i
\(359\) 16.5643 0.874233 0.437116 0.899405i \(-0.356000\pi\)
0.437116 + 0.899405i \(0.356000\pi\)
\(360\) 0 0
\(361\) 0.832847 0.0438340
\(362\) 10.2025 0.536232
\(363\) 0 0
\(364\) 1.37261 0.0719442
\(365\) −16.6857 −0.873368
\(366\) 0 0
\(367\) 9.81027 0.512092 0.256046 0.966665i \(-0.417580\pi\)
0.256046 + 0.966665i \(0.417580\pi\)
\(368\) 17.9744i 0.936981i
\(369\) 0 0
\(370\) 66.4200i 3.45301i
\(371\) 2.03949 0.105885
\(372\) 0 0
\(373\) 12.6350i 0.654216i 0.944987 + 0.327108i \(0.106074\pi\)
−0.944987 + 0.327108i \(0.893926\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) − 0.0971830i − 0.00501183i
\(377\) 2.35493i 0.121285i
\(378\) 0 0
\(379\) 35.1020 1.80307 0.901535 0.432706i \(-0.142441\pi\)
0.901535 + 0.432706i \(0.142441\pi\)
\(380\) −63.6735 −3.26638
\(381\) 0 0
\(382\) − 49.1721i − 2.51587i
\(383\) 22.5865i 1.15412i 0.816702 + 0.577059i \(0.195800\pi\)
−0.816702 + 0.577059i \(0.804200\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.5246i 0.993774i
\(387\) 0 0
\(388\) −59.3765 −3.01439
\(389\) − 7.35884i − 0.373108i −0.982445 0.186554i \(-0.940268\pi\)
0.982445 0.186554i \(-0.0597319\pi\)
\(390\) 0 0
\(391\) − 17.0636i − 0.862942i
\(392\) −32.3731 −1.63509
\(393\) 0 0
\(394\) −51.5794 −2.59853
\(395\) −41.5146 −2.08883
\(396\) 0 0
\(397\) 16.7327 0.839790 0.419895 0.907573i \(-0.362067\pi\)
0.419895 + 0.907573i \(0.362067\pi\)
\(398\) 25.6202 1.28423
\(399\) 0 0
\(400\) −34.0377 −1.70188
\(401\) 5.07343i 0.253355i 0.991944 + 0.126677i \(0.0404313\pi\)
−0.991944 + 0.126677i \(0.959569\pi\)
\(402\) 0 0
\(403\) − 3.33211i − 0.165984i
\(404\) 68.7157 3.41873
\(405\) 0 0
\(406\) 2.22528i 0.110439i
\(407\) 0 0
\(408\) 0 0
\(409\) 32.3477i 1.59949i 0.600340 + 0.799745i \(0.295032\pi\)
−0.600340 + 0.799745i \(0.704968\pi\)
\(410\) 25.1454i 1.24184i
\(411\) 0 0
\(412\) −36.6630 −1.80625
\(413\) 2.43632 0.119883
\(414\) 0 0
\(415\) − 34.8574i − 1.71108i
\(416\) − 0.585108i − 0.0286873i
\(417\) 0 0
\(418\) 0 0
\(419\) 27.9075i 1.36337i 0.731645 + 0.681686i \(0.238753\pi\)
−0.731645 + 0.681686i \(0.761247\pi\)
\(420\) 0 0
\(421\) 26.7286 1.30267 0.651337 0.758788i \(-0.274208\pi\)
0.651337 + 0.758788i \(0.274208\pi\)
\(422\) 9.01005i 0.438603i
\(423\) 0 0
\(424\) 26.1506i 1.26998i
\(425\) 32.3129 1.56740
\(426\) 0 0
\(427\) −3.58689 −0.173582
\(428\) −60.7094 −2.93450
\(429\) 0 0
\(430\) −17.4549 −0.841748
\(431\) 0.716622 0.0345185 0.0172592 0.999851i \(-0.494506\pi\)
0.0172592 + 0.999851i \(0.494506\pi\)
\(432\) 0 0
\(433\) 11.4324 0.549407 0.274703 0.961529i \(-0.411420\pi\)
0.274703 + 0.961529i \(0.411420\pi\)
\(434\) − 3.14867i − 0.151141i
\(435\) 0 0
\(436\) − 41.8303i − 2.00331i
\(437\) −21.1751 −1.01294
\(438\) 0 0
\(439\) − 8.57525i − 0.409274i −0.978838 0.204637i \(-0.934399\pi\)
0.978838 0.204637i \(-0.0656015\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 7.93508i − 0.377433i
\(443\) 13.9769i 0.664063i 0.943268 + 0.332031i \(0.107734\pi\)
−0.943268 + 0.332031i \(0.892266\pi\)
\(444\) 0 0
\(445\) 11.5709 0.548512
\(446\) 43.6031 2.06467
\(447\) 0 0
\(448\) − 3.21426i − 0.151859i
\(449\) 21.6079i 1.01974i 0.860252 + 0.509870i \(0.170306\pi\)
−0.860252 + 0.509870i \(0.829694\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 4.12070i − 0.193821i
\(453\) 0 0
\(454\) 42.3393 1.98708
\(455\) 1.32382i 0.0620616i
\(456\) 0 0
\(457\) − 9.80506i − 0.458662i −0.973349 0.229331i \(-0.926346\pi\)
0.973349 0.229331i \(-0.0736537\pi\)
\(458\) −10.4193 −0.486862
\(459\) 0 0
\(460\) −74.2159 −3.46033
\(461\) −12.3585 −0.575595 −0.287797 0.957691i \(-0.592923\pi\)
−0.287797 + 0.957691i \(0.592923\pi\)
\(462\) 0 0
\(463\) −33.8717 −1.57415 −0.787076 0.616856i \(-0.788406\pi\)
−0.787076 + 0.616856i \(0.788406\pi\)
\(464\) −8.98509 −0.417122
\(465\) 0 0
\(466\) −56.9680 −2.63899
\(467\) − 15.7369i − 0.728219i −0.931356 0.364109i \(-0.881373\pi\)
0.931356 0.364109i \(-0.118627\pi\)
\(468\) 0 0
\(469\) 1.64164i 0.0758040i
\(470\) 0.190573 0.00879050
\(471\) 0 0
\(472\) 31.2387i 1.43788i
\(473\) 0 0
\(474\) 0 0
\(475\) − 40.0987i − 1.83986i
\(476\) − 4.97171i − 0.227878i
\(477\) 0 0
\(478\) −48.7159 −2.22821
\(479\) −12.4691 −0.569726 −0.284863 0.958568i \(-0.591948\pi\)
−0.284863 + 0.958568i \(0.591948\pi\)
\(480\) 0 0
\(481\) 6.81075i 0.310544i
\(482\) 5.66614i 0.258086i
\(483\) 0 0
\(484\) 0 0
\(485\) − 57.2660i − 2.60032i
\(486\) 0 0
\(487\) −6.95609 −0.315210 −0.157605 0.987502i \(-0.550377\pi\)
−0.157605 + 0.987502i \(0.550377\pi\)
\(488\) − 45.9914i − 2.08193i
\(489\) 0 0
\(490\) − 63.4828i − 2.86786i
\(491\) 0.301920 0.0136255 0.00681273 0.999977i \(-0.497831\pi\)
0.00681273 + 0.999977i \(0.497831\pi\)
\(492\) 0 0
\(493\) 8.52979 0.384162
\(494\) −9.84705 −0.443040
\(495\) 0 0
\(496\) 12.7135 0.570851
\(497\) 3.79805 0.170366
\(498\) 0 0
\(499\) 6.61671 0.296205 0.148102 0.988972i \(-0.452683\pi\)
0.148102 + 0.988972i \(0.452683\pi\)
\(500\) − 65.8469i − 2.94476i
\(501\) 0 0
\(502\) − 7.82068i − 0.349054i
\(503\) −10.3292 −0.460554 −0.230277 0.973125i \(-0.573963\pi\)
−0.230277 + 0.973125i \(0.573963\pi\)
\(504\) 0 0
\(505\) 66.2732i 2.94912i
\(506\) 0 0
\(507\) 0 0
\(508\) − 69.0508i − 3.06363i
\(509\) 20.3250i 0.900891i 0.892804 + 0.450445i \(0.148735\pi\)
−0.892804 + 0.450445i \(0.851265\pi\)
\(510\) 0 0
\(511\) −1.61676 −0.0715214
\(512\) 36.3567 1.60675
\(513\) 0 0
\(514\) − 43.9580i − 1.93890i
\(515\) − 35.3598i − 1.55814i
\(516\) 0 0
\(517\) 0 0
\(518\) 6.43579i 0.282772i
\(519\) 0 0
\(520\) −16.9742 −0.744366
\(521\) − 11.9982i − 0.525650i −0.964843 0.262825i \(-0.915346\pi\)
0.964843 0.262825i \(-0.0846542\pi\)
\(522\) 0 0
\(523\) 37.8361i 1.65446i 0.561865 + 0.827229i \(0.310084\pi\)
−0.561865 + 0.827229i \(0.689916\pi\)
\(524\) −54.6623 −2.38793
\(525\) 0 0
\(526\) −5.01798 −0.218794
\(527\) −12.0692 −0.525743
\(528\) 0 0
\(529\) −1.68106 −0.0730898
\(530\) −51.2806 −2.22749
\(531\) 0 0
\(532\) −6.16966 −0.267489
\(533\) 2.57842i 0.111684i
\(534\) 0 0
\(535\) − 58.5515i − 2.53140i
\(536\) −21.0493 −0.909191
\(537\) 0 0
\(538\) 7.01652i 0.302504i
\(539\) 0 0
\(540\) 0 0
\(541\) 36.8317i 1.58352i 0.610834 + 0.791759i \(0.290834\pi\)
−0.610834 + 0.791759i \(0.709166\pi\)
\(542\) 24.7786i 1.06433i
\(543\) 0 0
\(544\) −2.11931 −0.0908648
\(545\) 40.3435 1.72812
\(546\) 0 0
\(547\) 36.6744i 1.56809i 0.620706 + 0.784043i \(0.286846\pi\)
−0.620706 + 0.784043i \(0.713154\pi\)
\(548\) 4.08414i 0.174466i
\(549\) 0 0
\(550\) 0 0
\(551\) − 10.5851i − 0.450939i
\(552\) 0 0
\(553\) −4.02258 −0.171057
\(554\) − 17.8113i − 0.756728i
\(555\) 0 0
\(556\) 78.0639i 3.31065i
\(557\) −7.46772 −0.316418 −0.158209 0.987406i \(-0.550572\pi\)
−0.158209 + 0.987406i \(0.550572\pi\)
\(558\) 0 0
\(559\) −1.78983 −0.0757018
\(560\) −5.05095 −0.213441
\(561\) 0 0
\(562\) −5.61676 −0.236929
\(563\) −3.91481 −0.164990 −0.0824948 0.996591i \(-0.526289\pi\)
−0.0824948 + 0.996591i \(0.526289\pi\)
\(564\) 0 0
\(565\) 3.97423 0.167197
\(566\) − 59.5261i − 2.50207i
\(567\) 0 0
\(568\) 48.6990i 2.04336i
\(569\) 37.6712 1.57926 0.789628 0.613585i \(-0.210273\pi\)
0.789628 + 0.613585i \(0.210273\pi\)
\(570\) 0 0
\(571\) 30.3411i 1.26974i 0.772621 + 0.634868i \(0.218946\pi\)
−0.772621 + 0.634868i \(0.781054\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 2.43647i 0.101696i
\(575\) − 46.7379i − 1.94911i
\(576\) 0 0
\(577\) −3.31962 −0.138198 −0.0690988 0.997610i \(-0.522012\pi\)
−0.0690988 + 0.997610i \(0.522012\pi\)
\(578\) 12.6758 0.527245
\(579\) 0 0
\(580\) − 37.0992i − 1.54046i
\(581\) − 3.37752i − 0.140123i
\(582\) 0 0
\(583\) 0 0
\(584\) − 20.7303i − 0.857826i
\(585\) 0 0
\(586\) −25.9746 −1.07300
\(587\) 40.9075i 1.68843i 0.536003 + 0.844216i \(0.319933\pi\)
−0.536003 + 0.844216i \(0.680067\pi\)
\(588\) 0 0
\(589\) 14.9773i 0.617130i
\(590\) −61.2583 −2.52197
\(591\) 0 0
\(592\) −25.9860 −1.06802
\(593\) 4.62924 0.190100 0.0950500 0.995472i \(-0.469699\pi\)
0.0950500 + 0.995472i \(0.469699\pi\)
\(594\) 0 0
\(595\) 4.79500 0.196576
\(596\) −31.6268 −1.29549
\(597\) 0 0
\(598\) −11.4774 −0.469347
\(599\) 30.5789i 1.24942i 0.780858 + 0.624709i \(0.214782\pi\)
−0.780858 + 0.624709i \(0.785218\pi\)
\(600\) 0 0
\(601\) 31.2300i 1.27390i 0.770905 + 0.636950i \(0.219804\pi\)
−0.770905 + 0.636950i \(0.780196\pi\)
\(602\) −1.69129 −0.0689320
\(603\) 0 0
\(604\) − 39.6459i − 1.61317i
\(605\) 0 0
\(606\) 0 0
\(607\) − 30.7667i − 1.24878i −0.781112 0.624391i \(-0.785347\pi\)
0.781112 0.624391i \(-0.214653\pi\)
\(608\) 2.62997i 0.106659i
\(609\) 0 0
\(610\) 90.1880 3.65160
\(611\) 0.0195415 0.000790566 0
\(612\) 0 0
\(613\) 25.4710i 1.02876i 0.857561 + 0.514382i \(0.171979\pi\)
−0.857561 + 0.514382i \(0.828021\pi\)
\(614\) 11.1303i 0.449181i
\(615\) 0 0
\(616\) 0 0
\(617\) 4.20930i 0.169460i 0.996404 + 0.0847300i \(0.0270028\pi\)
−0.996404 + 0.0847300i \(0.972997\pi\)
\(618\) 0 0
\(619\) 38.5032 1.54757 0.773787 0.633446i \(-0.218360\pi\)
0.773787 + 0.633446i \(0.218360\pi\)
\(620\) 52.4935i 2.10819i
\(621\) 0 0
\(622\) 22.8581i 0.916525i
\(623\) 1.12116 0.0449185
\(624\) 0 0
\(625\) 16.4675 0.658700
\(626\) 12.2206 0.488433
\(627\) 0 0
\(628\) −63.6880 −2.54143
\(629\) 24.6692 0.983624
\(630\) 0 0
\(631\) −11.8328 −0.471058 −0.235529 0.971867i \(-0.575682\pi\)
−0.235529 + 0.971867i \(0.575682\pi\)
\(632\) − 51.5779i − 2.05166i
\(633\) 0 0
\(634\) − 28.4469i − 1.12977i
\(635\) 66.5964 2.64280
\(636\) 0 0
\(637\) − 6.50957i − 0.257918i
\(638\) 0 0
\(639\) 0 0
\(640\) 76.1345i 3.00948i
\(641\) 35.9401i 1.41955i 0.704430 + 0.709774i \(0.251203\pi\)
−0.704430 + 0.709774i \(0.748797\pi\)
\(642\) 0 0
\(643\) 3.25527 0.128375 0.0641876 0.997938i \(-0.479554\pi\)
0.0641876 + 0.997938i \(0.479554\pi\)
\(644\) −7.19118 −0.283372
\(645\) 0 0
\(646\) 35.6669i 1.40330i
\(647\) 12.1550i 0.477863i 0.971036 + 0.238931i \(0.0767971\pi\)
−0.971036 + 0.238931i \(0.923203\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) − 21.7345i − 0.852498i
\(651\) 0 0
\(652\) 16.8282 0.659043
\(653\) 25.5204i 0.998690i 0.866403 + 0.499345i \(0.166426\pi\)
−0.866403 + 0.499345i \(0.833574\pi\)
\(654\) 0 0
\(655\) − 52.7193i − 2.05992i
\(656\) −9.83781 −0.384102
\(657\) 0 0
\(658\) 0.0184657 0.000719867 0
\(659\) 27.9441 1.08855 0.544273 0.838908i \(-0.316806\pi\)
0.544273 + 0.838908i \(0.316806\pi\)
\(660\) 0 0
\(661\) −27.3798 −1.06495 −0.532475 0.846446i \(-0.678738\pi\)
−0.532475 + 0.846446i \(0.678738\pi\)
\(662\) 70.7790 2.75091
\(663\) 0 0
\(664\) 43.3069 1.68063
\(665\) − 5.95037i − 0.230745i
\(666\) 0 0
\(667\) − 12.3376i − 0.477715i
\(668\) −72.2304 −2.79468
\(669\) 0 0
\(670\) − 41.2771i − 1.59467i
\(671\) 0 0
\(672\) 0 0
\(673\) − 13.5488i − 0.522267i −0.965303 0.261134i \(-0.915904\pi\)
0.965303 0.261134i \(-0.0840963\pi\)
\(674\) 70.3616i 2.71023i
\(675\) 0 0
\(676\) 47.6245 1.83171
\(677\) 36.6970 1.41038 0.705190 0.709018i \(-0.250862\pi\)
0.705190 + 0.709018i \(0.250862\pi\)
\(678\) 0 0
\(679\) − 5.54881i − 0.212944i
\(680\) 61.4819i 2.35772i
\(681\) 0 0
\(682\) 0 0
\(683\) 30.8347i 1.17986i 0.807455 + 0.589929i \(0.200844\pi\)
−0.807455 + 0.589929i \(0.799156\pi\)
\(684\) 0 0
\(685\) −3.93897 −0.150500
\(686\) − 12.4236i − 0.474335i
\(687\) 0 0
\(688\) − 6.82899i − 0.260353i
\(689\) −5.25835 −0.200327
\(690\) 0 0
\(691\) −47.7199 −1.81535 −0.907676 0.419672i \(-0.862145\pi\)
−0.907676 + 0.419672i \(0.862145\pi\)
\(692\) 24.3317 0.924953
\(693\) 0 0
\(694\) 53.9474 2.04782
\(695\) −75.2892 −2.85588
\(696\) 0 0
\(697\) 9.33929 0.353751
\(698\) 38.1588i 1.44433i
\(699\) 0 0
\(700\) − 13.6177i − 0.514703i
\(701\) −14.0665 −0.531284 −0.265642 0.964072i \(-0.585584\pi\)
−0.265642 + 0.964072i \(0.585584\pi\)
\(702\) 0 0
\(703\) − 30.6133i − 1.15460i
\(704\) 0 0
\(705\) 0 0
\(706\) 27.1981i 1.02362i
\(707\) 6.42157i 0.241508i
\(708\) 0 0
\(709\) −9.07416 −0.340787 −0.170394 0.985376i \(-0.554504\pi\)
−0.170394 + 0.985376i \(0.554504\pi\)
\(710\) −95.4975 −3.58396
\(711\) 0 0
\(712\) 14.3757i 0.538751i
\(713\) 17.4571i 0.653775i
\(714\) 0 0
\(715\) 0 0
\(716\) 36.3090i 1.35693i
\(717\) 0 0
\(718\) −40.3560 −1.50607
\(719\) 33.9415i 1.26580i 0.774232 + 0.632901i \(0.218136\pi\)
−0.774232 + 0.632901i \(0.781864\pi\)
\(720\) 0 0
\(721\) − 3.42620i − 0.127598i
\(722\) −2.02908 −0.0755146
\(723\) 0 0
\(724\) −16.4812 −0.612519
\(725\) 23.3635 0.867697
\(726\) 0 0
\(727\) 30.8992 1.14599 0.572993 0.819560i \(-0.305782\pi\)
0.572993 + 0.819560i \(0.305782\pi\)
\(728\) −1.64472 −0.0609572
\(729\) 0 0
\(730\) 40.6516 1.50458
\(731\) 6.48294i 0.239780i
\(732\) 0 0
\(733\) 41.6009i 1.53657i 0.640110 + 0.768283i \(0.278889\pi\)
−0.640110 + 0.768283i \(0.721111\pi\)
\(734\) −23.9009 −0.882200
\(735\) 0 0
\(736\) 3.06541i 0.112993i
\(737\) 0 0
\(738\) 0 0
\(739\) − 14.3707i − 0.528634i −0.964436 0.264317i \(-0.914854\pi\)
0.964436 0.264317i \(-0.0851465\pi\)
\(740\) − 107.295i − 3.94426i
\(741\) 0 0
\(742\) −4.96885 −0.182412
\(743\) −13.4298 −0.492692 −0.246346 0.969182i \(-0.579230\pi\)
−0.246346 + 0.969182i \(0.579230\pi\)
\(744\) 0 0
\(745\) − 30.5027i − 1.11753i
\(746\) − 30.7829i − 1.12704i
\(747\) 0 0
\(748\) 0 0
\(749\) − 5.67337i − 0.207301i
\(750\) 0 0
\(751\) −36.3646 −1.32696 −0.663481 0.748193i \(-0.730922\pi\)
−0.663481 + 0.748193i \(0.730922\pi\)
\(752\) 0.0745594i 0.00271890i
\(753\) 0 0
\(754\) − 5.73737i − 0.208943i
\(755\) 38.2367 1.39158
\(756\) 0 0
\(757\) 39.9016 1.45025 0.725124 0.688618i \(-0.241782\pi\)
0.725124 + 0.688618i \(0.241782\pi\)
\(758\) −85.5197 −3.10622
\(759\) 0 0
\(760\) 76.2962 2.76755
\(761\) −3.41015 −0.123618 −0.0618089 0.998088i \(-0.519687\pi\)
−0.0618089 + 0.998088i \(0.519687\pi\)
\(762\) 0 0
\(763\) 3.90910 0.141519
\(764\) 79.4331i 2.87379i
\(765\) 0 0
\(766\) − 55.0280i − 1.98824i
\(767\) −6.28147 −0.226811
\(768\) 0 0
\(769\) − 21.4154i − 0.772260i −0.922444 0.386130i \(-0.873812\pi\)
0.922444 0.386130i \(-0.126188\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 31.5401i − 1.13515i
\(773\) − 35.8866i − 1.29075i −0.763866 0.645375i \(-0.776701\pi\)
0.763866 0.645375i \(-0.223299\pi\)
\(774\) 0 0
\(775\) −33.0581 −1.18748
\(776\) 71.1474 2.55404
\(777\) 0 0
\(778\) 17.9285i 0.642767i
\(779\) − 11.5896i − 0.415241i
\(780\) 0 0
\(781\) 0 0
\(782\) 41.5723i 1.48662i
\(783\) 0 0
\(784\) 24.8368 0.887029
\(785\) − 61.4243i − 2.19233i
\(786\) 0 0
\(787\) 48.0635i 1.71328i 0.515917 + 0.856639i \(0.327451\pi\)
−0.515917 + 0.856639i \(0.672549\pi\)
\(788\) 83.3218 2.96822
\(789\) 0 0
\(790\) 101.143 3.59850
\(791\) 0.385085 0.0136920
\(792\) 0 0
\(793\) 9.24793 0.328404
\(794\) −40.7662 −1.44674
\(795\) 0 0
\(796\) −41.3872 −1.46693
\(797\) − 6.04580i − 0.214153i −0.994251 0.107077i \(-0.965851\pi\)
0.994251 0.107077i \(-0.0341490\pi\)
\(798\) 0 0
\(799\) − 0.0707812i − 0.00250406i
\(800\) −5.80489 −0.205234
\(801\) 0 0
\(802\) − 12.3605i − 0.436464i
\(803\) 0 0
\(804\) 0 0
\(805\) − 6.93557i − 0.244447i
\(806\) 8.11809i 0.285947i
\(807\) 0 0
\(808\) −82.3379 −2.89664
\(809\) 7.43425 0.261374 0.130687 0.991424i \(-0.458282\pi\)
0.130687 + 0.991424i \(0.458282\pi\)
\(810\) 0 0
\(811\) 29.1631i 1.02405i 0.858970 + 0.512027i \(0.171105\pi\)
−0.858970 + 0.512027i \(0.828895\pi\)
\(812\) − 3.59474i − 0.126151i
\(813\) 0 0
\(814\) 0 0
\(815\) 16.2301i 0.568514i
\(816\) 0 0
\(817\) 8.04502 0.281460
\(818\) − 78.8093i − 2.75550i
\(819\) 0 0
\(820\) − 40.6201i − 1.41851i
\(821\) −1.07240 −0.0374270 −0.0187135 0.999825i \(-0.505957\pi\)
−0.0187135 + 0.999825i \(0.505957\pi\)
\(822\) 0 0
\(823\) −8.94619 −0.311845 −0.155922 0.987769i \(-0.549835\pi\)
−0.155922 + 0.987769i \(0.549835\pi\)
\(824\) 43.9311 1.53041
\(825\) 0 0
\(826\) −5.93565 −0.206528
\(827\) 35.3031 1.22761 0.613805 0.789458i \(-0.289638\pi\)
0.613805 + 0.789458i \(0.289638\pi\)
\(828\) 0 0
\(829\) 27.0734 0.940298 0.470149 0.882587i \(-0.344200\pi\)
0.470149 + 0.882587i \(0.344200\pi\)
\(830\) 84.9237i 2.94774i
\(831\) 0 0
\(832\) 8.28720i 0.287307i
\(833\) −23.5783 −0.816938
\(834\) 0 0
\(835\) − 69.6630i − 2.41079i
\(836\) 0 0
\(837\) 0 0
\(838\) − 67.9916i − 2.34873i
\(839\) − 37.2329i − 1.28542i −0.766108 0.642712i \(-0.777809\pi\)
0.766108 0.642712i \(-0.222191\pi\)
\(840\) 0 0
\(841\) −22.8326 −0.787332
\(842\) −65.1195 −2.24417
\(843\) 0 0
\(844\) − 14.5549i − 0.501001i
\(845\) 45.9317i 1.58010i
\(846\) 0 0
\(847\) 0 0
\(848\) − 20.0629i − 0.688962i
\(849\) 0 0
\(850\) −78.7245 −2.70023
\(851\) − 35.6819i − 1.22316i
\(852\) 0 0
\(853\) − 35.1190i − 1.20245i −0.799080 0.601225i \(-0.794680\pi\)
0.799080 0.601225i \(-0.205320\pi\)
\(854\) 8.73880 0.299035
\(855\) 0 0
\(856\) 72.7445 2.48636
\(857\) 29.9637 1.02354 0.511770 0.859122i \(-0.328990\pi\)
0.511770 + 0.859122i \(0.328990\pi\)
\(858\) 0 0
\(859\) 17.2684 0.589189 0.294595 0.955622i \(-0.404815\pi\)
0.294595 + 0.955622i \(0.404815\pi\)
\(860\) 28.1967 0.961500
\(861\) 0 0
\(862\) −1.74592 −0.0594663
\(863\) − 34.8150i − 1.18512i −0.805528 0.592558i \(-0.798118\pi\)
0.805528 0.592558i \(-0.201882\pi\)
\(864\) 0 0
\(865\) 23.4668i 0.797897i
\(866\) −27.8530 −0.946484
\(867\) 0 0
\(868\) 5.08638i 0.172643i
\(869\) 0 0
\(870\) 0 0
\(871\) − 4.23258i − 0.143416i
\(872\) 50.1228i 1.69737i
\(873\) 0 0
\(874\) 51.5893 1.74503
\(875\) 6.15348 0.208025
\(876\) 0 0
\(877\) − 1.98289i − 0.0669576i −0.999439 0.0334788i \(-0.989341\pi\)
0.999439 0.0334788i \(-0.0106586\pi\)
\(878\) 20.8920i 0.705072i
\(879\) 0 0
\(880\) 0 0
\(881\) − 48.9571i − 1.64941i −0.565566 0.824703i \(-0.691342\pi\)
0.565566 0.824703i \(-0.308658\pi\)
\(882\) 0 0
\(883\) 34.7553 1.16961 0.584804 0.811175i \(-0.301171\pi\)
0.584804 + 0.811175i \(0.301171\pi\)
\(884\) 12.8184i 0.431129i
\(885\) 0 0
\(886\) − 34.0522i − 1.14401i
\(887\) 14.4931 0.486629 0.243315 0.969947i \(-0.421765\pi\)
0.243315 + 0.969947i \(0.421765\pi\)
\(888\) 0 0
\(889\) 6.45289 0.216423
\(890\) −28.1903 −0.944943
\(891\) 0 0
\(892\) −70.4368 −2.35840
\(893\) −0.0878361 −0.00293932
\(894\) 0 0
\(895\) −35.0184 −1.17054
\(896\) 7.37708i 0.246451i
\(897\) 0 0
\(898\) − 52.6437i − 1.75674i
\(899\) −8.72651 −0.291045
\(900\) 0 0
\(901\) 19.0462i 0.634521i
\(902\) 0 0
\(903\) 0 0
\(904\) 4.93759i 0.164222i
\(905\) − 15.8954i − 0.528381i
\(906\) 0 0
\(907\) 22.7691 0.756037 0.378019 0.925798i \(-0.376606\pi\)
0.378019 + 0.925798i \(0.376606\pi\)
\(908\) −68.3952 −2.26978
\(909\) 0 0
\(910\) − 3.22525i − 0.106916i
\(911\) − 22.6944i − 0.751900i −0.926640 0.375950i \(-0.877316\pi\)
0.926640 0.375950i \(-0.122684\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 23.8883i 0.790153i
\(915\) 0 0
\(916\) 16.8314 0.556126
\(917\) − 5.10826i − 0.168690i
\(918\) 0 0
\(919\) 1.25513i 0.0414029i 0.999786 + 0.0207014i \(0.00658994\pi\)
−0.999786 + 0.0207014i \(0.993410\pi\)
\(920\) 88.9286 2.93189
\(921\) 0 0
\(922\) 30.1093 0.991598
\(923\) −9.79237 −0.322320
\(924\) 0 0
\(925\) 67.5699 2.22169
\(926\) 82.5223 2.71185
\(927\) 0 0
\(928\) −1.53235 −0.0503017
\(929\) 2.87512i 0.0943296i 0.998887 + 0.0471648i \(0.0150186\pi\)
−0.998887 + 0.0471648i \(0.984981\pi\)
\(930\) 0 0
\(931\) 29.2595i 0.958941i
\(932\) 92.0265 3.01443
\(933\) 0 0
\(934\) 38.3402i 1.25453i
\(935\) 0 0
\(936\) 0 0
\(937\) 30.8451i 1.00767i 0.863801 + 0.503833i \(0.168077\pi\)
−0.863801 + 0.503833i \(0.831923\pi\)
\(938\) − 3.99956i − 0.130590i
\(939\) 0 0
\(940\) −0.307854 −0.0100411
\(941\) −6.54086 −0.213226 −0.106613 0.994301i \(-0.534001\pi\)
−0.106613 + 0.994301i \(0.534001\pi\)
\(942\) 0 0
\(943\) − 13.5085i − 0.439898i
\(944\) − 23.9665i − 0.780044i
\(945\) 0 0
\(946\) 0 0
\(947\) 33.2579i 1.08074i 0.841429 + 0.540368i \(0.181715\pi\)
−0.841429 + 0.540368i \(0.818285\pi\)
\(948\) 0 0
\(949\) 4.16844 0.135313
\(950\) 97.6933i 3.16959i
\(951\) 0 0
\(952\) 5.95731i 0.193078i
\(953\) −54.9548 −1.78016 −0.890081 0.455803i \(-0.849352\pi\)
−0.890081 + 0.455803i \(0.849352\pi\)
\(954\) 0 0
\(955\) −76.6097 −2.47903
\(956\) 78.6961 2.54521
\(957\) 0 0
\(958\) 30.3786 0.981488
\(959\) −0.381668 −0.0123247
\(960\) 0 0
\(961\) −18.6524 −0.601691
\(962\) − 16.5932i − 0.534985i
\(963\) 0 0
\(964\) − 9.15313i − 0.294803i
\(965\) 30.4190 0.979224
\(966\) 0 0
\(967\) − 34.0395i − 1.09464i −0.836925 0.547318i \(-0.815649\pi\)
0.836925 0.547318i \(-0.184351\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 139.518i 4.47966i
\(971\) − 38.0638i − 1.22153i −0.791814 0.610763i \(-0.790863\pi\)
0.791814 0.610763i \(-0.209137\pi\)
\(972\) 0 0
\(973\) −7.29517 −0.233872
\(974\) 16.9472 0.543025
\(975\) 0 0
\(976\) 35.2849i 1.12944i
\(977\) 32.1005i 1.02699i 0.858094 + 0.513493i \(0.171649\pi\)
−0.858094 + 0.513493i \(0.828351\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 102.551i 3.27586i
\(981\) 0 0
\(982\) −0.735573 −0.0234731
\(983\) 21.4305i 0.683526i 0.939786 + 0.341763i \(0.111024\pi\)
−0.939786 + 0.341763i \(0.888976\pi\)
\(984\) 0 0
\(985\) 80.3602i 2.56049i
\(986\) −20.7813 −0.661811
\(987\) 0 0
\(988\) 15.9070 0.506069
\(989\) 9.37704 0.298172
\(990\) 0 0
\(991\) −29.3068 −0.930962 −0.465481 0.885058i \(-0.654119\pi\)
−0.465481 + 0.885058i \(0.654119\pi\)
\(992\) 2.16819 0.0688402
\(993\) 0 0
\(994\) −9.25326 −0.293496
\(995\) − 39.9161i − 1.26542i
\(996\) 0 0
\(997\) 32.7622i 1.03759i 0.854899 + 0.518795i \(0.173619\pi\)
−0.854899 + 0.518795i \(0.826381\pi\)
\(998\) −16.1204 −0.510283
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.d.g.1088.2 16
3.2 odd 2 inner 1089.2.d.g.1088.15 16
11.6 odd 10 99.2.j.a.8.1 16
11.9 even 5 99.2.j.a.62.4 yes 16
11.10 odd 2 inner 1089.2.d.g.1088.16 16
33.17 even 10 99.2.j.a.8.4 yes 16
33.20 odd 10 99.2.j.a.62.1 yes 16
33.32 even 2 inner 1089.2.d.g.1088.1 16
44.31 odd 10 1584.2.cd.c.161.1 16
44.39 even 10 1584.2.cd.c.305.4 16
99.20 odd 30 891.2.u.c.458.1 32
99.31 even 15 891.2.u.c.755.1 32
99.50 even 30 891.2.u.c.107.4 32
99.61 odd 30 891.2.u.c.701.4 32
99.83 even 30 891.2.u.c.701.1 32
99.86 odd 30 891.2.u.c.755.4 32
99.94 odd 30 891.2.u.c.107.1 32
99.97 even 15 891.2.u.c.458.4 32
132.83 odd 10 1584.2.cd.c.305.1 16
132.119 even 10 1584.2.cd.c.161.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.8.1 16 11.6 odd 10
99.2.j.a.8.4 yes 16 33.17 even 10
99.2.j.a.62.1 yes 16 33.20 odd 10
99.2.j.a.62.4 yes 16 11.9 even 5
891.2.u.c.107.1 32 99.94 odd 30
891.2.u.c.107.4 32 99.50 even 30
891.2.u.c.458.1 32 99.20 odd 30
891.2.u.c.458.4 32 99.97 even 15
891.2.u.c.701.1 32 99.83 even 30
891.2.u.c.701.4 32 99.61 odd 30
891.2.u.c.755.1 32 99.31 even 15
891.2.u.c.755.4 32 99.86 odd 30
1089.2.d.g.1088.1 16 33.32 even 2 inner
1089.2.d.g.1088.2 16 1.1 even 1 trivial
1089.2.d.g.1088.15 16 3.2 odd 2 inner
1089.2.d.g.1088.16 16 11.10 odd 2 inner
1584.2.cd.c.161.1 16 44.31 odd 10
1584.2.cd.c.161.4 16 132.119 even 10
1584.2.cd.c.305.1 16 132.83 odd 10
1584.2.cd.c.305.4 16 44.39 even 10