Properties

Label 8925.2.a.bz
Level $8925$
Weight $2$
Character orbit 8925.a
Self dual yes
Analytic conductor $71.266$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2664838040\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.674848.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 8x^{2} + 21x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - \beta_1 q^{6} - q^{7} + (\beta_{3} + 2 \beta_1) q^{8} + q^{9} + ( - \beta_{2} + 1) q^{11} + ( - \beta_{2} - 2) q^{12} + ( - \beta_{2} - 3) q^{13}+ \cdots + ( - \beta_{2} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 5 q^{3} + 11 q^{4} - q^{6} - 5 q^{7} + 3 q^{8} + 5 q^{9} + 4 q^{11} - 11 q^{12} - 16 q^{13} - q^{14} + 19 q^{16} - 5 q^{17} + q^{18} - 2 q^{19} + 5 q^{21} - 2 q^{22} + 4 q^{23} - 3 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 10x^{3} + 8x^{2} + 21x - 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 6\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 8\nu^{2} - \nu + 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 8\beta_{2} + \beta _1 + 23 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.59638
−1.60618
0.489771
1.94778
2.76501
−2.59638 −1.00000 4.74118 0 2.59638 −1.00000 −7.11714 1.00000 0
1.2 −1.60618 −1.00000 0.579823 0 1.60618 −1.00000 2.28106 1.00000 0
1.3 0.489771 −1.00000 −1.76012 0 −0.489771 −1.00000 −1.84160 1.00000 0
1.4 1.94778 −1.00000 1.79385 0 −1.94778 −1.00000 −0.401533 1.00000 0
1.5 2.76501 −1.00000 5.64527 0 −2.76501 −1.00000 10.0792 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8925.2.a.bz 5
5.b even 2 1 1785.2.a.bc 5
15.d odd 2 1 5355.2.a.bs 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1785.2.a.bc 5 5.b even 2 1
5355.2.a.bs 5 15.d odd 2 1
8925.2.a.bz 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8925))\):

\( T_{2}^{5} - T_{2}^{4} - 10T_{2}^{3} + 8T_{2}^{2} + 21T_{2} - 11 \) Copy content Toggle raw display
\( T_{11}^{5} - 4T_{11}^{4} - 12T_{11}^{3} + 36T_{11}^{2} + 32T_{11} - 64 \) Copy content Toggle raw display
\( T_{13}^{5} + 16T_{13}^{4} + 84T_{13}^{3} + 148T_{13}^{2} - 128 \) Copy content Toggle raw display
\( T_{23}^{5} - 4T_{23}^{4} - 44T_{23}^{3} + 32T_{23}^{2} + 320T_{23} + 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} + \cdots - 11 \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( (T + 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$13$ \( T^{5} + 16 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$17$ \( (T + 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + 2 T^{4} + \cdots + 800 \) Copy content Toggle raw display
$23$ \( T^{5} - 4 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$29$ \( T^{5} - 2 T^{4} + \cdots + 704 \) Copy content Toggle raw display
$31$ \( T^{5} - 4 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$37$ \( T^{5} + 2 T^{4} + \cdots + 1024 \) Copy content Toggle raw display
$41$ \( (T + 2)^{5} \) Copy content Toggle raw display
$43$ \( T^{5} + 6 T^{4} + \cdots + 6272 \) Copy content Toggle raw display
$47$ \( T^{5} + 22 T^{4} + \cdots + 1504 \) Copy content Toggle raw display
$53$ \( T^{5} - 8 T^{4} + \cdots + 13904 \) Copy content Toggle raw display
$59$ \( T^{5} - 12 T^{4} + \cdots - 2816 \) Copy content Toggle raw display
$61$ \( T^{5} - 14 T^{4} + \cdots + 176 \) Copy content Toggle raw display
$67$ \( T^{5} + 10 T^{4} + \cdots + 52864 \) Copy content Toggle raw display
$71$ \( T^{5} + 8 T^{4} + \cdots + 448 \) Copy content Toggle raw display
$73$ \( T^{5} + 24 T^{4} + \cdots - 6400 \) Copy content Toggle raw display
$79$ \( T^{5} - 6 T^{4} + \cdots - 35936 \) Copy content Toggle raw display
$83$ \( T^{5} + 14 T^{4} + \cdots + 6304 \) Copy content Toggle raw display
$89$ \( T^{5} - 6 T^{4} + \cdots - 7552 \) Copy content Toggle raw display
$97$ \( T^{5} - 268 T^{3} + \cdots + 3712 \) Copy content Toggle raw display
show more
show less