Properties

Label 8925.2.a.bz
Level 89258925
Weight 22
Character orbit 8925.a
Self dual yes
Analytic conductor 71.26671.266
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8925,2,Mod(1,8925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 8925=352717 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,-5,11,0,-1,-5,3,5,0,4,-11,-16,-1,0,19,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 71.266483804071.2664838040
Analytic rank: 11
Dimension: 55
Coefficient field: 5.5.674848.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x5x410x3+8x2+21x11 x^{5} - x^{4} - 10x^{3} + 8x^{2} + 21x - 11 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 1785)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2q3+(β2+2)q4β1q6q7+(β3+2β1)q8+q9+(β2+1)q11+(β22)q12+(β23)q13++(β2+1)q99+O(q100) q + \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - \beta_1 q^{6} - q^{7} + (\beta_{3} + 2 \beta_1) q^{8} + q^{9} + ( - \beta_{2} + 1) q^{11} + ( - \beta_{2} - 2) q^{12} + ( - \beta_{2} - 3) q^{13}+ \cdots + ( - \beta_{2} + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+q25q3+11q4q65q7+3q8+5q9+4q1111q1216q13q14+19q165q17+q182q19+5q212q22+4q233q24++4q99+O(q100) 5 q + q^{2} - 5 q^{3} + 11 q^{4} - q^{6} - 5 q^{7} + 3 q^{8} + 5 q^{9} + 4 q^{11} - 11 q^{12} - 16 q^{13} - q^{14} + 19 q^{16} - 5 q^{17} + q^{18} - 2 q^{19} + 5 q^{21} - 2 q^{22} + 4 q^{23} - 3 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x5x410x3+8x2+21x11 x^{5} - x^{4} - 10x^{3} + 8x^{2} + 21x - 11 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== ν36ν \nu^{3} - 6\nu Copy content Toggle raw display
β4\beta_{4}== ν48ν2ν+9 \nu^{4} - 8\nu^{2} - \nu + 9 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display
ν3\nu^{3}== β3+6β1 \beta_{3} + 6\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β4+8β2+β1+23 \beta_{4} + 8\beta_{2} + \beta _1 + 23 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.59638
−1.60618
0.489771
1.94778
2.76501
−2.59638 −1.00000 4.74118 0 2.59638 −1.00000 −7.11714 1.00000 0
1.2 −1.60618 −1.00000 0.579823 0 1.60618 −1.00000 2.28106 1.00000 0
1.3 0.489771 −1.00000 −1.76012 0 −0.489771 −1.00000 −1.84160 1.00000 0
1.4 1.94778 −1.00000 1.79385 0 −1.94778 −1.00000 −0.401533 1.00000 0
1.5 2.76501 −1.00000 5.64527 0 −2.76501 −1.00000 10.0792 1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
77 +1 +1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8925.2.a.bz 5
5.b even 2 1 1785.2.a.bc 5
15.d odd 2 1 5355.2.a.bs 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1785.2.a.bc 5 5.b even 2 1
5355.2.a.bs 5 15.d odd 2 1
8925.2.a.bz 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8925))S_{2}^{\mathrm{new}}(\Gamma_0(8925)):

T25T2410T23+8T22+21T211 T_{2}^{5} - T_{2}^{4} - 10T_{2}^{3} + 8T_{2}^{2} + 21T_{2} - 11 Copy content Toggle raw display
T1154T11412T113+36T112+32T1164 T_{11}^{5} - 4T_{11}^{4} - 12T_{11}^{3} + 36T_{11}^{2} + 32T_{11} - 64 Copy content Toggle raw display
T135+16T134+84T133+148T132128 T_{13}^{5} + 16T_{13}^{4} + 84T_{13}^{3} + 148T_{13}^{2} - 128 Copy content Toggle raw display
T2354T23444T233+32T232+320T23+128 T_{23}^{5} - 4T_{23}^{4} - 44T_{23}^{3} + 32T_{23}^{2} + 320T_{23} + 128 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5T4+11 T^{5} - T^{4} + \cdots - 11 Copy content Toggle raw display
33 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
1111 T54T4+64 T^{5} - 4 T^{4} + \cdots - 64 Copy content Toggle raw display
1313 T5+16T4+128 T^{5} + 16 T^{4} + \cdots - 128 Copy content Toggle raw display
1717 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
1919 T5+2T4++800 T^{5} + 2 T^{4} + \cdots + 800 Copy content Toggle raw display
2323 T54T4++128 T^{5} - 4 T^{4} + \cdots + 128 Copy content Toggle raw display
2929 T52T4++704 T^{5} - 2 T^{4} + \cdots + 704 Copy content Toggle raw display
3131 T54T4+64 T^{5} - 4 T^{4} + \cdots - 64 Copy content Toggle raw display
3737 T5+2T4++1024 T^{5} + 2 T^{4} + \cdots + 1024 Copy content Toggle raw display
4141 (T+2)5 (T + 2)^{5} Copy content Toggle raw display
4343 T5+6T4++6272 T^{5} + 6 T^{4} + \cdots + 6272 Copy content Toggle raw display
4747 T5+22T4++1504 T^{5} + 22 T^{4} + \cdots + 1504 Copy content Toggle raw display
5353 T58T4++13904 T^{5} - 8 T^{4} + \cdots + 13904 Copy content Toggle raw display
5959 T512T4+2816 T^{5} - 12 T^{4} + \cdots - 2816 Copy content Toggle raw display
6161 T514T4++176 T^{5} - 14 T^{4} + \cdots + 176 Copy content Toggle raw display
6767 T5+10T4++52864 T^{5} + 10 T^{4} + \cdots + 52864 Copy content Toggle raw display
7171 T5+8T4++448 T^{5} + 8 T^{4} + \cdots + 448 Copy content Toggle raw display
7373 T5+24T4+6400 T^{5} + 24 T^{4} + \cdots - 6400 Copy content Toggle raw display
7979 T56T4+35936 T^{5} - 6 T^{4} + \cdots - 35936 Copy content Toggle raw display
8383 T5+14T4++6304 T^{5} + 14 T^{4} + \cdots + 6304 Copy content Toggle raw display
8989 T56T4+7552 T^{5} - 6 T^{4} + \cdots - 7552 Copy content Toggle raw display
9797 T5268T3++3712 T^{5} - 268 T^{3} + \cdots + 3712 Copy content Toggle raw display
show more
show less