gp: [N,k,chi] = [8925,2,Mod(1,8925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8925.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [5,1,-5,11,0,-1,-5,3,5,0,4,-11,-16,-1,0,19,-5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − x 4 − 10 x 3 + 8 x 2 + 21 x − 11 x^{5} - x^{4} - 10x^{3} + 8x^{2} + 21x - 11 x 5 − x 4 − 1 0 x 3 + 8 x 2 + 2 1 x − 1 1
x^5 - x^4 - 10*x^3 + 8*x^2 + 21*x - 11
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 4 \nu^{2} - 4 ν 2 − 4
v^2 - 4
β 3 \beta_{3} β 3 = = =
ν 3 − 6 ν \nu^{3} - 6\nu ν 3 − 6 ν
v^3 - 6*v
β 4 \beta_{4} β 4 = = =
ν 4 − 8 ν 2 − ν + 9 \nu^{4} - 8\nu^{2} - \nu + 9 ν 4 − 8 ν 2 − ν + 9
v^4 - 8*v^2 - v + 9
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 4 \beta_{2} + 4 β 2 + 4
b2 + 4
ν 3 \nu^{3} ν 3 = = =
β 3 + 6 β 1 \beta_{3} + 6\beta_1 β 3 + 6 β 1
b3 + 6*b1
ν 4 \nu^{4} ν 4 = = =
β 4 + 8 β 2 + β 1 + 23 \beta_{4} + 8\beta_{2} + \beta _1 + 23 β 4 + 8 β 2 + β 1 + 2 3
b4 + 8*b2 + b1 + 23
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
+ 1 +1 + 1
17 17 1 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 8925 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(8925)) S 2 n e w ( Γ 0 ( 8 9 2 5 ) ) :
T 2 5 − T 2 4 − 10 T 2 3 + 8 T 2 2 + 21 T 2 − 11 T_{2}^{5} - T_{2}^{4} - 10T_{2}^{3} + 8T_{2}^{2} + 21T_{2} - 11 T 2 5 − T 2 4 − 1 0 T 2 3 + 8 T 2 2 + 2 1 T 2 − 1 1
T2^5 - T2^4 - 10*T2^3 + 8*T2^2 + 21*T2 - 11
T 11 5 − 4 T 11 4 − 12 T 11 3 + 36 T 11 2 + 32 T 11 − 64 T_{11}^{5} - 4T_{11}^{4} - 12T_{11}^{3} + 36T_{11}^{2} + 32T_{11} - 64 T 1 1 5 − 4 T 1 1 4 − 1 2 T 1 1 3 + 3 6 T 1 1 2 + 3 2 T 1 1 − 6 4
T11^5 - 4*T11^4 - 12*T11^3 + 36*T11^2 + 32*T11 - 64
T 13 5 + 16 T 13 4 + 84 T 13 3 + 148 T 13 2 − 128 T_{13}^{5} + 16T_{13}^{4} + 84T_{13}^{3} + 148T_{13}^{2} - 128 T 1 3 5 + 1 6 T 1 3 4 + 8 4 T 1 3 3 + 1 4 8 T 1 3 2 − 1 2 8
T13^5 + 16*T13^4 + 84*T13^3 + 148*T13^2 - 128
T 23 5 − 4 T 23 4 − 44 T 23 3 + 32 T 23 2 + 320 T 23 + 128 T_{23}^{5} - 4T_{23}^{4} - 44T_{23}^{3} + 32T_{23}^{2} + 320T_{23} + 128 T 2 3 5 − 4 T 2 3 4 − 4 4 T 2 3 3 + 3 2 T 2 3 2 + 3 2 0 T 2 3 + 1 2 8
T23^5 - 4*T23^4 - 44*T23^3 + 32*T23^2 + 320*T23 + 128
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 − T 4 + ⋯ − 11 T^{5} - T^{4} + \cdots - 11 T 5 − T 4 + ⋯ − 1 1
T^5 - T^4 - 10*T^3 + 8*T^2 + 21*T - 11
3 3 3
( T + 1 ) 5 (T + 1)^{5} ( T + 1 ) 5
(T + 1)^5
5 5 5
T 5 T^{5} T 5
T^5
7 7 7
( T + 1 ) 5 (T + 1)^{5} ( T + 1 ) 5
(T + 1)^5
11 11 1 1
T 5 − 4 T 4 + ⋯ − 64 T^{5} - 4 T^{4} + \cdots - 64 T 5 − 4 T 4 + ⋯ − 6 4
T^5 - 4*T^4 - 12*T^3 + 36*T^2 + 32*T - 64
13 13 1 3
T 5 + 16 T 4 + ⋯ − 128 T^{5} + 16 T^{4} + \cdots - 128 T 5 + 1 6 T 4 + ⋯ − 1 2 8
T^5 + 16*T^4 + 84*T^3 + 148*T^2 - 128
17 17 1 7
( T + 1 ) 5 (T + 1)^{5} ( T + 1 ) 5
(T + 1)^5
19 19 1 9
T 5 + 2 T 4 + ⋯ + 800 T^{5} + 2 T^{4} + \cdots + 800 T 5 + 2 T 4 + ⋯ + 8 0 0
T^5 + 2*T^4 - 80*T^3 - 112*T^2 + 1520*T + 800
23 23 2 3
T 5 − 4 T 4 + ⋯ + 128 T^{5} - 4 T^{4} + \cdots + 128 T 5 − 4 T 4 + ⋯ + 1 2 8
T^5 - 4*T^4 - 44*T^3 + 32*T^2 + 320*T + 128
29 29 2 9
T 5 − 2 T 4 + ⋯ + 704 T^{5} - 2 T^{4} + \cdots + 704 T 5 − 2 T 4 + ⋯ + 7 0 4
T^5 - 2*T^4 - 48*T^3 - 12*T^2 + 480*T + 704
31 31 3 1
T 5 − 4 T 4 + ⋯ − 64 T^{5} - 4 T^{4} + \cdots - 64 T 5 − 4 T 4 + ⋯ − 6 4
T^5 - 4*T^4 - 12*T^3 + 36*T^2 + 32*T - 64
37 37 3 7
T 5 + 2 T 4 + ⋯ + 1024 T^{5} + 2 T^{4} + \cdots + 1024 T 5 + 2 T 4 + ⋯ + 1 0 2 4
T^5 + 2*T^4 - 84*T^3 - 360*T^2 + 1024
41 41 4 1
( T + 2 ) 5 (T + 2)^{5} ( T + 2 ) 5
(T + 2)^5
43 43 4 3
T 5 + 6 T 4 + ⋯ + 6272 T^{5} + 6 T^{4} + \cdots + 6272 T 5 + 6 T 4 + ⋯ + 6 2 7 2
T^5 + 6*T^4 - 68*T^3 - 392*T^2 + 1152*T + 6272
47 47 4 7
T 5 + 22 T 4 + ⋯ + 1504 T^{5} + 22 T^{4} + \cdots + 1504 T 5 + 2 2 T 4 + ⋯ + 1 5 0 4
T^5 + 22*T^4 + 112*T^3 - 240*T^2 - 1424*T + 1504
53 53 5 3
T 5 − 8 T 4 + ⋯ + 13904 T^{5} - 8 T^{4} + \cdots + 13904 T 5 − 8 T 4 + ⋯ + 1 3 9 0 4
T^5 - 8*T^4 - 136*T^3 + 404*T^2 + 6528*T + 13904
59 59 5 9
T 5 − 12 T 4 + ⋯ − 2816 T^{5} - 12 T^{4} + \cdots - 2816 T 5 − 1 2 T 4 + ⋯ − 2 8 1 6
T^5 - 12*T^4 - 24*T^3 + 464*T^2 + 256*T - 2816
61 61 6 1
T 5 − 14 T 4 + ⋯ + 176 T^{5} - 14 T^{4} + \cdots + 176 T 5 − 1 4 T 4 + ⋯ + 1 7 6
T^5 - 14*T^4 - 36*T^3 + 772*T^2 - 1648*T + 176
67 67 6 7
T 5 + 10 T 4 + ⋯ + 52864 T^{5} + 10 T^{4} + \cdots + 52864 T 5 + 1 0 T 4 + ⋯ + 5 2 8 6 4
T^5 + 10*T^4 - 284*T^3 - 2216*T^2 + 17408*T + 52864
71 71 7 1
T 5 + 8 T 4 + ⋯ + 448 T^{5} + 8 T^{4} + \cdots + 448 T 5 + 8 T 4 + ⋯ + 4 4 8
T^5 + 8*T^4 - 156*T^3 - 924*T^2 + 4512*T + 448
73 73 7 3
T 5 + 24 T 4 + ⋯ − 6400 T^{5} + 24 T^{4} + \cdots - 6400 T 5 + 2 4 T 4 + ⋯ − 6 4 0 0
T^5 + 24*T^4 + 68*T^3 - 1456*T^2 - 6720*T - 6400
79 79 7 9
T 5 − 6 T 4 + ⋯ − 35936 T^{5} - 6 T^{4} + \cdots - 35936 T 5 − 6 T 4 + ⋯ − 3 5 9 3 6
T^5 - 6*T^4 - 184*T^3 + 1264*T^2 + 4944*T - 35936
83 83 8 3
T 5 + 14 T 4 + ⋯ + 6304 T^{5} + 14 T^{4} + \cdots + 6304 T 5 + 1 4 T 4 + ⋯ + 6 3 0 4
T^5 + 14*T^4 - 88*T^3 - 832*T^2 + 2832*T + 6304
89 89 8 9
T 5 − 6 T 4 + ⋯ − 7552 T^{5} - 6 T^{4} + \cdots - 7552 T 5 − 6 T 4 + ⋯ − 7 5 5 2
T^5 - 6*T^4 - 100*T^3 + 616*T^2 + 1280*T - 7552
97 97 9 7
T 5 − 268 T 3 + ⋯ + 3712 T^{5} - 268 T^{3} + \cdots + 3712 T 5 − 2 6 8 T 3 + ⋯ + 3 7 1 2
T^5 - 268*T^3 - 656*T^2 + 2304*T + 3712
show more
show less