Properties

Label 8925.2.a.cu.1.2
Level $8925$
Weight $2$
Character 8925.1
Self dual yes
Analytic conductor $71.266$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2664838040\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} - 18 x^{12} + 54 x^{11} + 124 x^{10} - 366 x^{9} - 416 x^{8} + 1164 x^{7} + 727 x^{6} + \cdots - 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.53468\) of defining polynomial
Character \(\chi\) \(=\) 8925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.53468 q^{2} -1.00000 q^{3} +4.42458 q^{4} +2.53468 q^{6} -1.00000 q^{7} -6.14554 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.53468 q^{2} -1.00000 q^{3} +4.42458 q^{4} +2.53468 q^{6} -1.00000 q^{7} -6.14554 q^{8} +1.00000 q^{9} +2.67562 q^{11} -4.42458 q^{12} -2.82990 q^{13} +2.53468 q^{14} +6.72778 q^{16} +1.00000 q^{17} -2.53468 q^{18} +6.17364 q^{19} +1.00000 q^{21} -6.78182 q^{22} +2.83634 q^{23} +6.14554 q^{24} +7.17288 q^{26} -1.00000 q^{27} -4.42458 q^{28} -3.59961 q^{29} +0.268975 q^{31} -4.76167 q^{32} -2.67562 q^{33} -2.53468 q^{34} +4.42458 q^{36} -0.972382 q^{37} -15.6482 q^{38} +2.82990 q^{39} -9.16460 q^{41} -2.53468 q^{42} -4.71924 q^{43} +11.8385 q^{44} -7.18921 q^{46} +13.4273 q^{47} -6.72778 q^{48} +1.00000 q^{49} -1.00000 q^{51} -12.5211 q^{52} -10.3318 q^{53} +2.53468 q^{54} +6.14554 q^{56} -6.17364 q^{57} +9.12383 q^{58} +7.82368 q^{59} -12.2096 q^{61} -0.681766 q^{62} -1.00000 q^{63} -1.38627 q^{64} +6.78182 q^{66} +0.100710 q^{67} +4.42458 q^{68} -2.83634 q^{69} +13.9605 q^{71} -6.14554 q^{72} -12.9290 q^{73} +2.46467 q^{74} +27.3158 q^{76} -2.67562 q^{77} -7.17288 q^{78} -13.0779 q^{79} +1.00000 q^{81} +23.2293 q^{82} -8.22428 q^{83} +4.42458 q^{84} +11.9617 q^{86} +3.59961 q^{87} -16.4431 q^{88} +9.68583 q^{89} +2.82990 q^{91} +12.5496 q^{92} -0.268975 q^{93} -34.0339 q^{94} +4.76167 q^{96} +5.84462 q^{97} -2.53468 q^{98} +2.67562 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 3 q^{2} - 14 q^{3} + 17 q^{4} + 3 q^{6} - 14 q^{7} - 15 q^{8} + 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 14 q - 3 q^{2} - 14 q^{3} + 17 q^{4} + 3 q^{6} - 14 q^{7} - 15 q^{8} + 14 q^{9} + 4 q^{11} - 17 q^{12} + q^{13} + 3 q^{14} + 19 q^{16} + 14 q^{17} - 3 q^{18} - 6 q^{19} + 14 q^{21} - 12 q^{22} - 7 q^{23} + 15 q^{24} - 2 q^{26} - 14 q^{27} - 17 q^{28} + 20 q^{29} - 7 q^{31} - 33 q^{32} - 4 q^{33} - 3 q^{34} + 17 q^{36} - 9 q^{37} - 18 q^{38} - q^{39} + 25 q^{41} - 3 q^{42} - 28 q^{43} + 24 q^{44} - 10 q^{46} - 29 q^{47} - 19 q^{48} + 14 q^{49} - 14 q^{51} - 4 q^{52} - 26 q^{53} + 3 q^{54} + 15 q^{56} + 6 q^{57} - 2 q^{58} + 14 q^{59} - 9 q^{61} - 28 q^{62} - 14 q^{63} + 27 q^{64} + 12 q^{66} - 32 q^{67} + 17 q^{68} + 7 q^{69} + 2 q^{71} - 15 q^{72} - 18 q^{73} + 64 q^{74} - 42 q^{76} - 4 q^{77} + 2 q^{78} - 4 q^{79} + 14 q^{81} - 42 q^{82} - 51 q^{83} + 17 q^{84} + 44 q^{86} - 20 q^{87} - 32 q^{88} + 38 q^{89} - q^{91} + 16 q^{92} + 7 q^{93} + 8 q^{94} + 33 q^{96} - 14 q^{97} - 3 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.53468 −1.79229 −0.896143 0.443765i \(-0.853643\pi\)
−0.896143 + 0.443765i \(0.853643\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.42458 2.21229
\(5\) 0 0
\(6\) 2.53468 1.03478
\(7\) −1.00000 −0.377964
\(8\) −6.14554 −2.17278
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.67562 0.806729 0.403364 0.915039i \(-0.367841\pi\)
0.403364 + 0.915039i \(0.367841\pi\)
\(12\) −4.42458 −1.27727
\(13\) −2.82990 −0.784873 −0.392436 0.919779i \(-0.628368\pi\)
−0.392436 + 0.919779i \(0.628368\pi\)
\(14\) 2.53468 0.677421
\(15\) 0 0
\(16\) 6.72778 1.68194
\(17\) 1.00000 0.242536
\(18\) −2.53468 −0.597429
\(19\) 6.17364 1.41633 0.708165 0.706047i \(-0.249523\pi\)
0.708165 + 0.706047i \(0.249523\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −6.78182 −1.44589
\(23\) 2.83634 0.591418 0.295709 0.955278i \(-0.404444\pi\)
0.295709 + 0.955278i \(0.404444\pi\)
\(24\) 6.14554 1.25445
\(25\) 0 0
\(26\) 7.17288 1.40672
\(27\) −1.00000 −0.192450
\(28\) −4.42458 −0.836168
\(29\) −3.59961 −0.668430 −0.334215 0.942497i \(-0.608471\pi\)
−0.334215 + 0.942497i \(0.608471\pi\)
\(30\) 0 0
\(31\) 0.268975 0.0483094 0.0241547 0.999708i \(-0.492311\pi\)
0.0241547 + 0.999708i \(0.492311\pi\)
\(32\) −4.76167 −0.841751
\(33\) −2.67562 −0.465765
\(34\) −2.53468 −0.434693
\(35\) 0 0
\(36\) 4.42458 0.737431
\(37\) −0.972382 −0.159859 −0.0799293 0.996801i \(-0.525469\pi\)
−0.0799293 + 0.996801i \(0.525469\pi\)
\(38\) −15.6482 −2.53847
\(39\) 2.82990 0.453146
\(40\) 0 0
\(41\) −9.16460 −1.43127 −0.715635 0.698475i \(-0.753862\pi\)
−0.715635 + 0.698475i \(0.753862\pi\)
\(42\) −2.53468 −0.391109
\(43\) −4.71924 −0.719677 −0.359839 0.933015i \(-0.617168\pi\)
−0.359839 + 0.933015i \(0.617168\pi\)
\(44\) 11.8385 1.78472
\(45\) 0 0
\(46\) −7.18921 −1.05999
\(47\) 13.4273 1.95857 0.979287 0.202479i \(-0.0648998\pi\)
0.979287 + 0.202479i \(0.0648998\pi\)
\(48\) −6.72778 −0.971071
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) −12.5211 −1.73637
\(53\) −10.3318 −1.41919 −0.709593 0.704612i \(-0.751121\pi\)
−0.709593 + 0.704612i \(0.751121\pi\)
\(54\) 2.53468 0.344926
\(55\) 0 0
\(56\) 6.14554 0.821232
\(57\) −6.17364 −0.817718
\(58\) 9.12383 1.19802
\(59\) 7.82368 1.01856 0.509278 0.860602i \(-0.329912\pi\)
0.509278 + 0.860602i \(0.329912\pi\)
\(60\) 0 0
\(61\) −12.2096 −1.56328 −0.781642 0.623727i \(-0.785618\pi\)
−0.781642 + 0.623727i \(0.785618\pi\)
\(62\) −0.681766 −0.0865843
\(63\) −1.00000 −0.125988
\(64\) −1.38627 −0.173284
\(65\) 0 0
\(66\) 6.78182 0.834785
\(67\) 0.100710 0.0123036 0.00615182 0.999981i \(-0.498042\pi\)
0.00615182 + 0.999981i \(0.498042\pi\)
\(68\) 4.42458 0.536560
\(69\) −2.83634 −0.341455
\(70\) 0 0
\(71\) 13.9605 1.65680 0.828401 0.560136i \(-0.189251\pi\)
0.828401 + 0.560136i \(0.189251\pi\)
\(72\) −6.14554 −0.724258
\(73\) −12.9290 −1.51323 −0.756614 0.653861i \(-0.773148\pi\)
−0.756614 + 0.653861i \(0.773148\pi\)
\(74\) 2.46467 0.286513
\(75\) 0 0
\(76\) 27.3158 3.13334
\(77\) −2.67562 −0.304915
\(78\) −7.17288 −0.812168
\(79\) −13.0779 −1.47138 −0.735691 0.677317i \(-0.763142\pi\)
−0.735691 + 0.677317i \(0.763142\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 23.2293 2.56525
\(83\) −8.22428 −0.902732 −0.451366 0.892339i \(-0.649063\pi\)
−0.451366 + 0.892339i \(0.649063\pi\)
\(84\) 4.42458 0.482762
\(85\) 0 0
\(86\) 11.9617 1.28987
\(87\) 3.59961 0.385918
\(88\) −16.4431 −1.75284
\(89\) 9.68583 1.02670 0.513348 0.858181i \(-0.328405\pi\)
0.513348 + 0.858181i \(0.328405\pi\)
\(90\) 0 0
\(91\) 2.82990 0.296654
\(92\) 12.5496 1.30839
\(93\) −0.268975 −0.0278914
\(94\) −34.0339 −3.51032
\(95\) 0 0
\(96\) 4.76167 0.485985
\(97\) 5.84462 0.593431 0.296715 0.954966i \(-0.404109\pi\)
0.296715 + 0.954966i \(0.404109\pi\)
\(98\) −2.53468 −0.256041
\(99\) 2.67562 0.268910
\(100\) 0 0
\(101\) 3.76952 0.375081 0.187541 0.982257i \(-0.439948\pi\)
0.187541 + 0.982257i \(0.439948\pi\)
\(102\) 2.53468 0.250970
\(103\) 15.3905 1.51648 0.758238 0.651978i \(-0.226061\pi\)
0.758238 + 0.651978i \(0.226061\pi\)
\(104\) 17.3912 1.70535
\(105\) 0 0
\(106\) 26.1878 2.54359
\(107\) −10.4289 −1.00820 −0.504098 0.863647i \(-0.668175\pi\)
−0.504098 + 0.863647i \(0.668175\pi\)
\(108\) −4.42458 −0.425756
\(109\) −12.1216 −1.16104 −0.580519 0.814247i \(-0.697150\pi\)
−0.580519 + 0.814247i \(0.697150\pi\)
\(110\) 0 0
\(111\) 0.972382 0.0922944
\(112\) −6.72778 −0.635715
\(113\) 6.13424 0.577061 0.288531 0.957471i \(-0.406833\pi\)
0.288531 + 0.957471i \(0.406833\pi\)
\(114\) 15.6482 1.46559
\(115\) 0 0
\(116\) −15.9268 −1.47876
\(117\) −2.82990 −0.261624
\(118\) −19.8305 −1.82555
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −3.84107 −0.349189
\(122\) 30.9475 2.80185
\(123\) 9.16460 0.826344
\(124\) 1.19010 0.106875
\(125\) 0 0
\(126\) 2.53468 0.225807
\(127\) 18.9227 1.67912 0.839560 0.543267i \(-0.182813\pi\)
0.839560 + 0.543267i \(0.182813\pi\)
\(128\) 13.0371 1.15233
\(129\) 4.71924 0.415506
\(130\) 0 0
\(131\) −8.60741 −0.752033 −0.376017 0.926613i \(-0.622706\pi\)
−0.376017 + 0.926613i \(0.622706\pi\)
\(132\) −11.8385 −1.03041
\(133\) −6.17364 −0.535322
\(134\) −0.255266 −0.0220517
\(135\) 0 0
\(136\) −6.14554 −0.526975
\(137\) −9.20549 −0.786478 −0.393239 0.919436i \(-0.628646\pi\)
−0.393239 + 0.919436i \(0.628646\pi\)
\(138\) 7.18921 0.611986
\(139\) −16.3493 −1.38673 −0.693363 0.720589i \(-0.743872\pi\)
−0.693363 + 0.720589i \(0.743872\pi\)
\(140\) 0 0
\(141\) −13.4273 −1.13078
\(142\) −35.3852 −2.96946
\(143\) −7.57172 −0.633179
\(144\) 6.72778 0.560648
\(145\) 0 0
\(146\) 32.7709 2.71214
\(147\) −1.00000 −0.0824786
\(148\) −4.30239 −0.353654
\(149\) 5.64922 0.462802 0.231401 0.972858i \(-0.425669\pi\)
0.231401 + 0.972858i \(0.425669\pi\)
\(150\) 0 0
\(151\) −0.979344 −0.0796979 −0.0398489 0.999206i \(-0.512688\pi\)
−0.0398489 + 0.999206i \(0.512688\pi\)
\(152\) −37.9403 −3.07737
\(153\) 1.00000 0.0808452
\(154\) 6.78182 0.546495
\(155\) 0 0
\(156\) 12.5211 1.00249
\(157\) 13.5350 1.08021 0.540104 0.841598i \(-0.318385\pi\)
0.540104 + 0.841598i \(0.318385\pi\)
\(158\) 33.1483 2.63714
\(159\) 10.3318 0.819367
\(160\) 0 0
\(161\) −2.83634 −0.223535
\(162\) −2.53468 −0.199143
\(163\) −1.69805 −0.133001 −0.0665007 0.997786i \(-0.521183\pi\)
−0.0665007 + 0.997786i \(0.521183\pi\)
\(164\) −40.5495 −3.16639
\(165\) 0 0
\(166\) 20.8459 1.61795
\(167\) −5.93222 −0.459049 −0.229525 0.973303i \(-0.573717\pi\)
−0.229525 + 0.973303i \(0.573717\pi\)
\(168\) −6.14554 −0.474138
\(169\) −4.99167 −0.383975
\(170\) 0 0
\(171\) 6.17364 0.472110
\(172\) −20.8807 −1.59214
\(173\) −11.0062 −0.836786 −0.418393 0.908266i \(-0.637407\pi\)
−0.418393 + 0.908266i \(0.637407\pi\)
\(174\) −9.12383 −0.691676
\(175\) 0 0
\(176\) 18.0010 1.35687
\(177\) −7.82368 −0.588064
\(178\) −24.5504 −1.84013
\(179\) 18.2252 1.36221 0.681106 0.732185i \(-0.261499\pi\)
0.681106 + 0.732185i \(0.261499\pi\)
\(180\) 0 0
\(181\) −4.89359 −0.363738 −0.181869 0.983323i \(-0.558215\pi\)
−0.181869 + 0.983323i \(0.558215\pi\)
\(182\) −7.17288 −0.531689
\(183\) 12.2096 0.902563
\(184\) −17.4308 −1.28502
\(185\) 0 0
\(186\) 0.681766 0.0499895
\(187\) 2.67562 0.195660
\(188\) 59.4102 4.33294
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 3.22202 0.233137 0.116569 0.993183i \(-0.462811\pi\)
0.116569 + 0.993183i \(0.462811\pi\)
\(192\) 1.38627 0.100046
\(193\) −7.47523 −0.538079 −0.269040 0.963129i \(-0.586706\pi\)
−0.269040 + 0.963129i \(0.586706\pi\)
\(194\) −14.8142 −1.06360
\(195\) 0 0
\(196\) 4.42458 0.316042
\(197\) −1.31764 −0.0938780 −0.0469390 0.998898i \(-0.514947\pi\)
−0.0469390 + 0.998898i \(0.514947\pi\)
\(198\) −6.78182 −0.481963
\(199\) −3.75784 −0.266386 −0.133193 0.991090i \(-0.542523\pi\)
−0.133193 + 0.991090i \(0.542523\pi\)
\(200\) 0 0
\(201\) −0.100710 −0.00710351
\(202\) −9.55451 −0.672253
\(203\) 3.59961 0.252643
\(204\) −4.42458 −0.309783
\(205\) 0 0
\(206\) −39.0101 −2.71796
\(207\) 2.83634 0.197139
\(208\) −19.0389 −1.32011
\(209\) 16.5183 1.14259
\(210\) 0 0
\(211\) 3.94059 0.271281 0.135641 0.990758i \(-0.456691\pi\)
0.135641 + 0.990758i \(0.456691\pi\)
\(212\) −45.7140 −3.13965
\(213\) −13.9605 −0.956555
\(214\) 26.4338 1.80698
\(215\) 0 0
\(216\) 6.14554 0.418151
\(217\) −0.268975 −0.0182592
\(218\) 30.7243 2.08091
\(219\) 12.9290 0.873663
\(220\) 0 0
\(221\) −2.82990 −0.190360
\(222\) −2.46467 −0.165418
\(223\) −12.3046 −0.823976 −0.411988 0.911189i \(-0.635165\pi\)
−0.411988 + 0.911189i \(0.635165\pi\)
\(224\) 4.76167 0.318152
\(225\) 0 0
\(226\) −15.5483 −1.03426
\(227\) 10.7792 0.715441 0.357720 0.933829i \(-0.383554\pi\)
0.357720 + 0.933829i \(0.383554\pi\)
\(228\) −27.3158 −1.80903
\(229\) −16.8801 −1.11547 −0.557734 0.830020i \(-0.688329\pi\)
−0.557734 + 0.830020i \(0.688329\pi\)
\(230\) 0 0
\(231\) 2.67562 0.176043
\(232\) 22.1215 1.45235
\(233\) −14.4278 −0.945194 −0.472597 0.881279i \(-0.656683\pi\)
−0.472597 + 0.881279i \(0.656683\pi\)
\(234\) 7.17288 0.468906
\(235\) 0 0
\(236\) 34.6165 2.25334
\(237\) 13.0779 0.849503
\(238\) 2.53468 0.164299
\(239\) 6.81210 0.440638 0.220319 0.975428i \(-0.429290\pi\)
0.220319 + 0.975428i \(0.429290\pi\)
\(240\) 0 0
\(241\) 0.719989 0.0463786 0.0231893 0.999731i \(-0.492618\pi\)
0.0231893 + 0.999731i \(0.492618\pi\)
\(242\) 9.73588 0.625846
\(243\) −1.00000 −0.0641500
\(244\) −54.0226 −3.45844
\(245\) 0 0
\(246\) −23.2293 −1.48105
\(247\) −17.4708 −1.11164
\(248\) −1.65300 −0.104965
\(249\) 8.22428 0.521192
\(250\) 0 0
\(251\) −24.1847 −1.52653 −0.763263 0.646088i \(-0.776404\pi\)
−0.763263 + 0.646088i \(0.776404\pi\)
\(252\) −4.42458 −0.278723
\(253\) 7.58896 0.477114
\(254\) −47.9630 −3.00946
\(255\) 0 0
\(256\) −30.2722 −1.89202
\(257\) −21.4316 −1.33687 −0.668433 0.743773i \(-0.733035\pi\)
−0.668433 + 0.743773i \(0.733035\pi\)
\(258\) −11.9617 −0.744706
\(259\) 0.972382 0.0604209
\(260\) 0 0
\(261\) −3.59961 −0.222810
\(262\) 21.8170 1.34786
\(263\) −8.00460 −0.493585 −0.246793 0.969068i \(-0.579377\pi\)
−0.246793 + 0.969068i \(0.579377\pi\)
\(264\) 16.4431 1.01200
\(265\) 0 0
\(266\) 15.6482 0.959451
\(267\) −9.68583 −0.592763
\(268\) 0.445598 0.0272193
\(269\) 15.2324 0.928735 0.464367 0.885643i \(-0.346282\pi\)
0.464367 + 0.885643i \(0.346282\pi\)
\(270\) 0 0
\(271\) 12.3967 0.753048 0.376524 0.926407i \(-0.377119\pi\)
0.376524 + 0.926407i \(0.377119\pi\)
\(272\) 6.72778 0.407931
\(273\) −2.82990 −0.171273
\(274\) 23.3329 1.40959
\(275\) 0 0
\(276\) −12.5496 −0.755399
\(277\) −22.2410 −1.33633 −0.668166 0.744013i \(-0.732920\pi\)
−0.668166 + 0.744013i \(0.732920\pi\)
\(278\) 41.4401 2.48541
\(279\) 0.268975 0.0161031
\(280\) 0 0
\(281\) 30.3105 1.80817 0.904086 0.427350i \(-0.140553\pi\)
0.904086 + 0.427350i \(0.140553\pi\)
\(282\) 34.0339 2.02669
\(283\) 7.53626 0.447984 0.223992 0.974591i \(-0.428091\pi\)
0.223992 + 0.974591i \(0.428091\pi\)
\(284\) 61.7692 3.66533
\(285\) 0 0
\(286\) 19.1919 1.13484
\(287\) 9.16460 0.540969
\(288\) −4.76167 −0.280584
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −5.84462 −0.342618
\(292\) −57.2056 −3.34770
\(293\) 27.8572 1.62743 0.813717 0.581261i \(-0.197441\pi\)
0.813717 + 0.581261i \(0.197441\pi\)
\(294\) 2.53468 0.147825
\(295\) 0 0
\(296\) 5.97581 0.347337
\(297\) −2.67562 −0.155255
\(298\) −14.3190 −0.829475
\(299\) −8.02656 −0.464188
\(300\) 0 0
\(301\) 4.71924 0.272012
\(302\) 2.48232 0.142841
\(303\) −3.76952 −0.216553
\(304\) 41.5349 2.38219
\(305\) 0 0
\(306\) −2.53468 −0.144898
\(307\) −14.2241 −0.811814 −0.405907 0.913914i \(-0.633044\pi\)
−0.405907 + 0.913914i \(0.633044\pi\)
\(308\) −11.8385 −0.674561
\(309\) −15.3905 −0.875538
\(310\) 0 0
\(311\) −18.4183 −1.04440 −0.522202 0.852822i \(-0.674889\pi\)
−0.522202 + 0.852822i \(0.674889\pi\)
\(312\) −17.3912 −0.984585
\(313\) 9.24130 0.522349 0.261175 0.965292i \(-0.415890\pi\)
0.261175 + 0.965292i \(0.415890\pi\)
\(314\) −34.3068 −1.93604
\(315\) 0 0
\(316\) −57.8644 −3.25513
\(317\) 10.1457 0.569839 0.284920 0.958551i \(-0.408033\pi\)
0.284920 + 0.958551i \(0.408033\pi\)
\(318\) −26.1878 −1.46854
\(319\) −9.63116 −0.539242
\(320\) 0 0
\(321\) 10.4289 0.582082
\(322\) 7.18921 0.400639
\(323\) 6.17364 0.343510
\(324\) 4.42458 0.245810
\(325\) 0 0
\(326\) 4.30400 0.238377
\(327\) 12.1216 0.670326
\(328\) 56.3214 3.10983
\(329\) −13.4273 −0.740271
\(330\) 0 0
\(331\) 8.09315 0.444840 0.222420 0.974951i \(-0.428604\pi\)
0.222420 + 0.974951i \(0.428604\pi\)
\(332\) −36.3890 −1.99711
\(333\) −0.972382 −0.0532862
\(334\) 15.0363 0.822748
\(335\) 0 0
\(336\) 6.72778 0.367030
\(337\) 6.19090 0.337240 0.168620 0.985681i \(-0.446069\pi\)
0.168620 + 0.985681i \(0.446069\pi\)
\(338\) 12.6523 0.688193
\(339\) −6.13424 −0.333166
\(340\) 0 0
\(341\) 0.719675 0.0389726
\(342\) −15.6482 −0.846156
\(343\) −1.00000 −0.0539949
\(344\) 29.0023 1.56370
\(345\) 0 0
\(346\) 27.8972 1.49976
\(347\) 25.4722 1.36742 0.683710 0.729754i \(-0.260365\pi\)
0.683710 + 0.729754i \(0.260365\pi\)
\(348\) 15.9268 0.853764
\(349\) 11.6109 0.621519 0.310759 0.950489i \(-0.399417\pi\)
0.310759 + 0.950489i \(0.399417\pi\)
\(350\) 0 0
\(351\) 2.82990 0.151049
\(352\) −12.7404 −0.679065
\(353\) 27.4324 1.46008 0.730040 0.683404i \(-0.239501\pi\)
0.730040 + 0.683404i \(0.239501\pi\)
\(354\) 19.8305 1.05398
\(355\) 0 0
\(356\) 42.8558 2.27135
\(357\) 1.00000 0.0529256
\(358\) −46.1949 −2.44148
\(359\) −9.01857 −0.475982 −0.237991 0.971267i \(-0.576489\pi\)
−0.237991 + 0.971267i \(0.576489\pi\)
\(360\) 0 0
\(361\) 19.1138 1.00599
\(362\) 12.4037 0.651923
\(363\) 3.84107 0.201604
\(364\) 12.5211 0.656285
\(365\) 0 0
\(366\) −30.9475 −1.61765
\(367\) 0.540557 0.0282168 0.0141084 0.999900i \(-0.495509\pi\)
0.0141084 + 0.999900i \(0.495509\pi\)
\(368\) 19.0823 0.994732
\(369\) −9.16460 −0.477090
\(370\) 0 0
\(371\) 10.3318 0.536402
\(372\) −1.19010 −0.0617040
\(373\) −6.14299 −0.318072 −0.159036 0.987273i \(-0.550839\pi\)
−0.159036 + 0.987273i \(0.550839\pi\)
\(374\) −6.78182 −0.350680
\(375\) 0 0
\(376\) −82.5180 −4.25554
\(377\) 10.1865 0.524632
\(378\) −2.53468 −0.130370
\(379\) −5.98190 −0.307269 −0.153635 0.988128i \(-0.549098\pi\)
−0.153635 + 0.988128i \(0.549098\pi\)
\(380\) 0 0
\(381\) −18.9227 −0.969440
\(382\) −8.16678 −0.417849
\(383\) 16.7998 0.858427 0.429214 0.903203i \(-0.358791\pi\)
0.429214 + 0.903203i \(0.358791\pi\)
\(384\) −13.0371 −0.665296
\(385\) 0 0
\(386\) 18.9473 0.964392
\(387\) −4.71924 −0.239892
\(388\) 25.8600 1.31284
\(389\) 6.62924 0.336116 0.168058 0.985777i \(-0.446250\pi\)
0.168058 + 0.985777i \(0.446250\pi\)
\(390\) 0 0
\(391\) 2.83634 0.143440
\(392\) −6.14554 −0.310396
\(393\) 8.60741 0.434187
\(394\) 3.33979 0.168256
\(395\) 0 0
\(396\) 11.8385 0.594907
\(397\) −11.0069 −0.552421 −0.276211 0.961097i \(-0.589079\pi\)
−0.276211 + 0.961097i \(0.589079\pi\)
\(398\) 9.52490 0.477440
\(399\) 6.17364 0.309068
\(400\) 0 0
\(401\) 11.8228 0.590405 0.295202 0.955435i \(-0.404613\pi\)
0.295202 + 0.955435i \(0.404613\pi\)
\(402\) 0.255266 0.0127315
\(403\) −0.761173 −0.0379167
\(404\) 16.6786 0.829789
\(405\) 0 0
\(406\) −9.12383 −0.452808
\(407\) −2.60172 −0.128963
\(408\) 6.14554 0.304249
\(409\) −16.2239 −0.802222 −0.401111 0.916029i \(-0.631376\pi\)
−0.401111 + 0.916029i \(0.631376\pi\)
\(410\) 0 0
\(411\) 9.20549 0.454074
\(412\) 68.0968 3.35489
\(413\) −7.82368 −0.384978
\(414\) −7.18921 −0.353330
\(415\) 0 0
\(416\) 13.4750 0.660668
\(417\) 16.3493 0.800627
\(418\) −41.8685 −2.04786
\(419\) 10.0431 0.490637 0.245318 0.969443i \(-0.421108\pi\)
0.245318 + 0.969443i \(0.421108\pi\)
\(420\) 0 0
\(421\) −0.327910 −0.0159814 −0.00799069 0.999968i \(-0.502544\pi\)
−0.00799069 + 0.999968i \(0.502544\pi\)
\(422\) −9.98812 −0.486214
\(423\) 13.4273 0.652858
\(424\) 63.4946 3.08357
\(425\) 0 0
\(426\) 35.3852 1.71442
\(427\) 12.2096 0.590866
\(428\) −46.1434 −2.23042
\(429\) 7.57172 0.365566
\(430\) 0 0
\(431\) 30.6790 1.47775 0.738877 0.673840i \(-0.235356\pi\)
0.738877 + 0.673840i \(0.235356\pi\)
\(432\) −6.72778 −0.323690
\(433\) −22.8410 −1.09767 −0.548834 0.835931i \(-0.684928\pi\)
−0.548834 + 0.835931i \(0.684928\pi\)
\(434\) 0.681766 0.0327258
\(435\) 0 0
\(436\) −53.6330 −2.56856
\(437\) 17.5105 0.837643
\(438\) −32.7709 −1.56585
\(439\) −3.59112 −0.171395 −0.0856975 0.996321i \(-0.527312\pi\)
−0.0856975 + 0.996321i \(0.527312\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 7.17288 0.341179
\(443\) −11.0622 −0.525583 −0.262792 0.964853i \(-0.584643\pi\)
−0.262792 + 0.964853i \(0.584643\pi\)
\(444\) 4.30239 0.204182
\(445\) 0 0
\(446\) 31.1881 1.47680
\(447\) −5.64922 −0.267199
\(448\) 1.38627 0.0654953
\(449\) 31.5468 1.48878 0.744392 0.667742i \(-0.232739\pi\)
0.744392 + 0.667742i \(0.232739\pi\)
\(450\) 0 0
\(451\) −24.5209 −1.15465
\(452\) 27.1415 1.27663
\(453\) 0.979344 0.0460136
\(454\) −27.3218 −1.28228
\(455\) 0 0
\(456\) 37.9403 1.77672
\(457\) −17.7329 −0.829512 −0.414756 0.909933i \(-0.636133\pi\)
−0.414756 + 0.909933i \(0.636133\pi\)
\(458\) 42.7856 1.99924
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −42.3347 −1.97173 −0.985863 0.167556i \(-0.946413\pi\)
−0.985863 + 0.167556i \(0.946413\pi\)
\(462\) −6.78182 −0.315519
\(463\) 13.1494 0.611105 0.305553 0.952175i \(-0.401159\pi\)
0.305553 + 0.952175i \(0.401159\pi\)
\(464\) −24.2173 −1.12426
\(465\) 0 0
\(466\) 36.5697 1.69406
\(467\) 23.4306 1.08424 0.542119 0.840302i \(-0.317622\pi\)
0.542119 + 0.840302i \(0.317622\pi\)
\(468\) −12.5211 −0.578789
\(469\) −0.100710 −0.00465034
\(470\) 0 0
\(471\) −13.5350 −0.623659
\(472\) −48.0807 −2.21309
\(473\) −12.6269 −0.580584
\(474\) −33.1483 −1.52255
\(475\) 0 0
\(476\) −4.42458 −0.202800
\(477\) −10.3318 −0.473062
\(478\) −17.2665 −0.789750
\(479\) −34.2130 −1.56323 −0.781617 0.623759i \(-0.785605\pi\)
−0.781617 + 0.623759i \(0.785605\pi\)
\(480\) 0 0
\(481\) 2.75174 0.125469
\(482\) −1.82494 −0.0831237
\(483\) 2.83634 0.129058
\(484\) −16.9952 −0.772507
\(485\) 0 0
\(486\) 2.53468 0.114975
\(487\) 23.0901 1.04631 0.523157 0.852236i \(-0.324754\pi\)
0.523157 + 0.852236i \(0.324754\pi\)
\(488\) 75.0348 3.39667
\(489\) 1.69805 0.0767884
\(490\) 0 0
\(491\) −13.7848 −0.622099 −0.311049 0.950394i \(-0.600680\pi\)
−0.311049 + 0.950394i \(0.600680\pi\)
\(492\) 40.5495 1.82811
\(493\) −3.59961 −0.162118
\(494\) 44.2828 1.99238
\(495\) 0 0
\(496\) 1.80961 0.0812537
\(497\) −13.9605 −0.626212
\(498\) −20.8459 −0.934126
\(499\) −35.6592 −1.59632 −0.798162 0.602443i \(-0.794194\pi\)
−0.798162 + 0.602443i \(0.794194\pi\)
\(500\) 0 0
\(501\) 5.93222 0.265032
\(502\) 61.3005 2.73597
\(503\) 19.4662 0.867955 0.433978 0.900924i \(-0.357110\pi\)
0.433978 + 0.900924i \(0.357110\pi\)
\(504\) 6.14554 0.273744
\(505\) 0 0
\(506\) −19.2356 −0.855125
\(507\) 4.99167 0.221688
\(508\) 83.7251 3.71470
\(509\) −37.2678 −1.65187 −0.825934 0.563767i \(-0.809351\pi\)
−0.825934 + 0.563767i \(0.809351\pi\)
\(510\) 0 0
\(511\) 12.9290 0.571947
\(512\) 50.6562 2.23871
\(513\) −6.17364 −0.272573
\(514\) 54.3221 2.39605
\(515\) 0 0
\(516\) 20.8807 0.919220
\(517\) 35.9263 1.58004
\(518\) −2.46467 −0.108292
\(519\) 11.0062 0.483119
\(520\) 0 0
\(521\) 20.1590 0.883182 0.441591 0.897216i \(-0.354414\pi\)
0.441591 + 0.897216i \(0.354414\pi\)
\(522\) 9.12383 0.399339
\(523\) 1.53917 0.0673031 0.0336516 0.999434i \(-0.489286\pi\)
0.0336516 + 0.999434i \(0.489286\pi\)
\(524\) −38.0842 −1.66372
\(525\) 0 0
\(526\) 20.2891 0.884646
\(527\) 0.268975 0.0117168
\(528\) −18.0010 −0.783391
\(529\) −14.9552 −0.650225
\(530\) 0 0
\(531\) 7.82368 0.339519
\(532\) −27.3158 −1.18429
\(533\) 25.9349 1.12336
\(534\) 24.5504 1.06240
\(535\) 0 0
\(536\) −0.618915 −0.0267331
\(537\) −18.2252 −0.786474
\(538\) −38.6092 −1.66456
\(539\) 2.67562 0.115247
\(540\) 0 0
\(541\) −40.9976 −1.76262 −0.881311 0.472536i \(-0.843339\pi\)
−0.881311 + 0.472536i \(0.843339\pi\)
\(542\) −31.4217 −1.34968
\(543\) 4.89359 0.210004
\(544\) −4.76167 −0.204155
\(545\) 0 0
\(546\) 7.17288 0.306971
\(547\) −20.3683 −0.870885 −0.435442 0.900217i \(-0.643408\pi\)
−0.435442 + 0.900217i \(0.643408\pi\)
\(548\) −40.7305 −1.73992
\(549\) −12.2096 −0.521095
\(550\) 0 0
\(551\) −22.2227 −0.946717
\(552\) 17.4308 0.741906
\(553\) 13.0779 0.556130
\(554\) 56.3737 2.39509
\(555\) 0 0
\(556\) −72.3387 −3.06784
\(557\) 17.9048 0.758650 0.379325 0.925263i \(-0.376156\pi\)
0.379325 + 0.925263i \(0.376156\pi\)
\(558\) −0.681766 −0.0288614
\(559\) 13.3550 0.564855
\(560\) 0 0
\(561\) −2.67562 −0.112965
\(562\) −76.8273 −3.24076
\(563\) −43.4886 −1.83283 −0.916413 0.400233i \(-0.868929\pi\)
−0.916413 + 0.400233i \(0.868929\pi\)
\(564\) −59.4102 −2.50162
\(565\) 0 0
\(566\) −19.1020 −0.802916
\(567\) −1.00000 −0.0419961
\(568\) −85.7945 −3.59986
\(569\) 36.2315 1.51890 0.759452 0.650564i \(-0.225467\pi\)
0.759452 + 0.650564i \(0.225467\pi\)
\(570\) 0 0
\(571\) 26.4307 1.10609 0.553045 0.833152i \(-0.313466\pi\)
0.553045 + 0.833152i \(0.313466\pi\)
\(572\) −33.5017 −1.40078
\(573\) −3.22202 −0.134602
\(574\) −23.2293 −0.969572
\(575\) 0 0
\(576\) −1.38627 −0.0577614
\(577\) 7.24749 0.301717 0.150859 0.988555i \(-0.451796\pi\)
0.150859 + 0.988555i \(0.451796\pi\)
\(578\) −2.53468 −0.105429
\(579\) 7.47523 0.310660
\(580\) 0 0
\(581\) 8.22428 0.341200
\(582\) 14.8142 0.614069
\(583\) −27.6440 −1.14490
\(584\) 79.4558 3.28791
\(585\) 0 0
\(586\) −70.6090 −2.91683
\(587\) −44.9985 −1.85729 −0.928644 0.370972i \(-0.879025\pi\)
−0.928644 + 0.370972i \(0.879025\pi\)
\(588\) −4.42458 −0.182467
\(589\) 1.66056 0.0684220
\(590\) 0 0
\(591\) 1.31764 0.0542005
\(592\) −6.54197 −0.268873
\(593\) 38.0682 1.56328 0.781638 0.623733i \(-0.214385\pi\)
0.781638 + 0.623733i \(0.214385\pi\)
\(594\) 6.78182 0.278262
\(595\) 0 0
\(596\) 24.9955 1.02385
\(597\) 3.75784 0.153798
\(598\) 20.3447 0.831958
\(599\) −11.6339 −0.475350 −0.237675 0.971345i \(-0.576385\pi\)
−0.237675 + 0.971345i \(0.576385\pi\)
\(600\) 0 0
\(601\) 7.59027 0.309614 0.154807 0.987945i \(-0.450524\pi\)
0.154807 + 0.987945i \(0.450524\pi\)
\(602\) −11.9617 −0.487524
\(603\) 0.100710 0.00410121
\(604\) −4.33319 −0.176315
\(605\) 0 0
\(606\) 9.55451 0.388125
\(607\) −28.0706 −1.13935 −0.569675 0.821870i \(-0.692931\pi\)
−0.569675 + 0.821870i \(0.692931\pi\)
\(608\) −29.3968 −1.19220
\(609\) −3.59961 −0.145863
\(610\) 0 0
\(611\) −37.9979 −1.53723
\(612\) 4.42458 0.178853
\(613\) 35.9949 1.45382 0.726911 0.686732i \(-0.240955\pi\)
0.726911 + 0.686732i \(0.240955\pi\)
\(614\) 36.0536 1.45500
\(615\) 0 0
\(616\) 16.4431 0.662511
\(617\) −11.5231 −0.463903 −0.231951 0.972727i \(-0.574511\pi\)
−0.231951 + 0.972727i \(0.574511\pi\)
\(618\) 39.0101 1.56921
\(619\) −43.6477 −1.75435 −0.877176 0.480170i \(-0.840575\pi\)
−0.877176 + 0.480170i \(0.840575\pi\)
\(620\) 0 0
\(621\) −2.83634 −0.113818
\(622\) 46.6844 1.87187
\(623\) −9.68583 −0.388055
\(624\) 19.0389 0.762167
\(625\) 0 0
\(626\) −23.4237 −0.936200
\(627\) −16.5183 −0.659677
\(628\) 59.8866 2.38974
\(629\) −0.972382 −0.0387714
\(630\) 0 0
\(631\) 28.5906 1.13817 0.569086 0.822278i \(-0.307297\pi\)
0.569086 + 0.822278i \(0.307297\pi\)
\(632\) 80.3709 3.19698
\(633\) −3.94059 −0.156624
\(634\) −25.7161 −1.02132
\(635\) 0 0
\(636\) 45.7140 1.81268
\(637\) −2.82990 −0.112125
\(638\) 24.4119 0.966476
\(639\) 13.9605 0.552267
\(640\) 0 0
\(641\) 23.7289 0.937236 0.468618 0.883401i \(-0.344752\pi\)
0.468618 + 0.883401i \(0.344752\pi\)
\(642\) −26.4338 −1.04326
\(643\) 42.9662 1.69442 0.847211 0.531257i \(-0.178280\pi\)
0.847211 + 0.531257i \(0.178280\pi\)
\(644\) −12.5496 −0.494525
\(645\) 0 0
\(646\) −15.6482 −0.615669
\(647\) −42.7951 −1.68245 −0.841225 0.540686i \(-0.818165\pi\)
−0.841225 + 0.540686i \(0.818165\pi\)
\(648\) −6.14554 −0.241419
\(649\) 20.9332 0.821699
\(650\) 0 0
\(651\) 0.268975 0.0105420
\(652\) −7.51316 −0.294238
\(653\) 7.30739 0.285960 0.142980 0.989726i \(-0.454332\pi\)
0.142980 + 0.989726i \(0.454332\pi\)
\(654\) −30.7243 −1.20142
\(655\) 0 0
\(656\) −61.6574 −2.40732
\(657\) −12.9290 −0.504410
\(658\) 34.0339 1.32678
\(659\) 8.24440 0.321156 0.160578 0.987023i \(-0.448664\pi\)
0.160578 + 0.987023i \(0.448664\pi\)
\(660\) 0 0
\(661\) −8.85399 −0.344380 −0.172190 0.985064i \(-0.555084\pi\)
−0.172190 + 0.985064i \(0.555084\pi\)
\(662\) −20.5135 −0.797280
\(663\) 2.82990 0.109904
\(664\) 50.5426 1.96143
\(665\) 0 0
\(666\) 2.46467 0.0955042
\(667\) −10.2097 −0.395322
\(668\) −26.2476 −1.01555
\(669\) 12.3046 0.475723
\(670\) 0 0
\(671\) −32.6683 −1.26115
\(672\) −4.76167 −0.183685
\(673\) 40.6122 1.56549 0.782743 0.622345i \(-0.213820\pi\)
0.782743 + 0.622345i \(0.213820\pi\)
\(674\) −15.6919 −0.604431
\(675\) 0 0
\(676\) −22.0861 −0.849464
\(677\) −10.6023 −0.407478 −0.203739 0.979025i \(-0.565309\pi\)
−0.203739 + 0.979025i \(0.565309\pi\)
\(678\) 15.5483 0.597130
\(679\) −5.84462 −0.224296
\(680\) 0 0
\(681\) −10.7792 −0.413060
\(682\) −1.82414 −0.0698501
\(683\) −16.1464 −0.617827 −0.308913 0.951090i \(-0.599965\pi\)
−0.308913 + 0.951090i \(0.599965\pi\)
\(684\) 27.3158 1.04445
\(685\) 0 0
\(686\) 2.53468 0.0967744
\(687\) 16.8801 0.644016
\(688\) −31.7500 −1.21046
\(689\) 29.2380 1.11388
\(690\) 0 0
\(691\) −31.5928 −1.20185 −0.600923 0.799307i \(-0.705200\pi\)
−0.600923 + 0.799307i \(0.705200\pi\)
\(692\) −48.6979 −1.85122
\(693\) −2.67562 −0.101638
\(694\) −64.5638 −2.45081
\(695\) 0 0
\(696\) −22.1215 −0.838514
\(697\) −9.16460 −0.347134
\(698\) −29.4299 −1.11394
\(699\) 14.4278 0.545708
\(700\) 0 0
\(701\) −15.0683 −0.569122 −0.284561 0.958658i \(-0.591848\pi\)
−0.284561 + 0.958658i \(0.591848\pi\)
\(702\) −7.17288 −0.270723
\(703\) −6.00314 −0.226413
\(704\) −3.70914 −0.139793
\(705\) 0 0
\(706\) −69.5323 −2.61688
\(707\) −3.76952 −0.141767
\(708\) −34.6165 −1.30097
\(709\) 32.9168 1.23622 0.618108 0.786093i \(-0.287899\pi\)
0.618108 + 0.786093i \(0.287899\pi\)
\(710\) 0 0
\(711\) −13.0779 −0.490461
\(712\) −59.5246 −2.23078
\(713\) 0.762906 0.0285711
\(714\) −2.53468 −0.0948579
\(715\) 0 0
\(716\) 80.6387 3.01361
\(717\) −6.81210 −0.254402
\(718\) 22.8592 0.853097
\(719\) −50.5233 −1.88420 −0.942101 0.335330i \(-0.891152\pi\)
−0.942101 + 0.335330i \(0.891152\pi\)
\(720\) 0 0
\(721\) −15.3905 −0.573174
\(722\) −48.4473 −1.80302
\(723\) −0.719989 −0.0267767
\(724\) −21.6521 −0.804694
\(725\) 0 0
\(726\) −9.73588 −0.361332
\(727\) 39.0916 1.44983 0.724914 0.688839i \(-0.241879\pi\)
0.724914 + 0.688839i \(0.241879\pi\)
\(728\) −17.3912 −0.644562
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.71924 −0.174547
\(732\) 54.0226 1.99673
\(733\) 15.1802 0.560695 0.280347 0.959899i \(-0.409550\pi\)
0.280347 + 0.959899i \(0.409550\pi\)
\(734\) −1.37014 −0.0505727
\(735\) 0 0
\(736\) −13.5057 −0.497827
\(737\) 0.269460 0.00992570
\(738\) 23.2293 0.855082
\(739\) −33.2452 −1.22294 −0.611472 0.791266i \(-0.709422\pi\)
−0.611472 + 0.791266i \(0.709422\pi\)
\(740\) 0 0
\(741\) 17.4708 0.641805
\(742\) −26.1878 −0.961386
\(743\) 13.0619 0.479194 0.239597 0.970872i \(-0.422985\pi\)
0.239597 + 0.970872i \(0.422985\pi\)
\(744\) 1.65300 0.0606018
\(745\) 0 0
\(746\) 15.5705 0.570077
\(747\) −8.22428 −0.300911
\(748\) 11.8385 0.432858
\(749\) 10.4289 0.381062
\(750\) 0 0
\(751\) 0.708627 0.0258582 0.0129291 0.999916i \(-0.495884\pi\)
0.0129291 + 0.999916i \(0.495884\pi\)
\(752\) 90.3359 3.29421
\(753\) 24.1847 0.881340
\(754\) −25.8195 −0.940292
\(755\) 0 0
\(756\) 4.42458 0.160921
\(757\) 22.8545 0.830663 0.415331 0.909670i \(-0.363666\pi\)
0.415331 + 0.909670i \(0.363666\pi\)
\(758\) 15.1622 0.550715
\(759\) −7.58896 −0.275462
\(760\) 0 0
\(761\) −19.0731 −0.691399 −0.345700 0.938345i \(-0.612358\pi\)
−0.345700 + 0.938345i \(0.612358\pi\)
\(762\) 47.9630 1.73751
\(763\) 12.1216 0.438831
\(764\) 14.2561 0.515767
\(765\) 0 0
\(766\) −42.5819 −1.53855
\(767\) −22.1402 −0.799437
\(768\) 30.2722 1.09236
\(769\) 24.5762 0.886239 0.443120 0.896463i \(-0.353872\pi\)
0.443120 + 0.896463i \(0.353872\pi\)
\(770\) 0 0
\(771\) 21.4316 0.771840
\(772\) −33.0748 −1.19039
\(773\) −38.3443 −1.37915 −0.689575 0.724214i \(-0.742203\pi\)
−0.689575 + 0.724214i \(0.742203\pi\)
\(774\) 11.9617 0.429956
\(775\) 0 0
\(776\) −35.9183 −1.28939
\(777\) −0.972382 −0.0348840
\(778\) −16.8030 −0.602416
\(779\) −56.5789 −2.02715
\(780\) 0 0
\(781\) 37.3528 1.33659
\(782\) −7.18921 −0.257086
\(783\) 3.59961 0.128639
\(784\) 6.72778 0.240278
\(785\) 0 0
\(786\) −21.8170 −0.778187
\(787\) 45.5389 1.62329 0.811643 0.584154i \(-0.198574\pi\)
0.811643 + 0.584154i \(0.198574\pi\)
\(788\) −5.83001 −0.207686
\(789\) 8.00460 0.284971
\(790\) 0 0
\(791\) −6.13424 −0.218109
\(792\) −16.4431 −0.584280
\(793\) 34.5520 1.22698
\(794\) 27.8990 0.990097
\(795\) 0 0
\(796\) −16.6269 −0.589324
\(797\) 19.1640 0.678825 0.339412 0.940638i \(-0.389772\pi\)
0.339412 + 0.940638i \(0.389772\pi\)
\(798\) −15.6482 −0.553939
\(799\) 13.4273 0.475024
\(800\) 0 0
\(801\) 9.68583 0.342232
\(802\) −29.9671 −1.05817
\(803\) −34.5931 −1.22077
\(804\) −0.445598 −0.0157150
\(805\) 0 0
\(806\) 1.92933 0.0679577
\(807\) −15.2324 −0.536205
\(808\) −23.1657 −0.814967
\(809\) −22.3419 −0.785500 −0.392750 0.919645i \(-0.628476\pi\)
−0.392750 + 0.919645i \(0.628476\pi\)
\(810\) 0 0
\(811\) 21.2903 0.747604 0.373802 0.927509i \(-0.378054\pi\)
0.373802 + 0.927509i \(0.378054\pi\)
\(812\) 15.9268 0.558920
\(813\) −12.3967 −0.434772
\(814\) 6.59452 0.231138
\(815\) 0 0
\(816\) −6.72778 −0.235519
\(817\) −29.1349 −1.01930
\(818\) 41.1224 1.43781
\(819\) 2.82990 0.0988847
\(820\) 0 0
\(821\) −9.71416 −0.339027 −0.169513 0.985528i \(-0.554220\pi\)
−0.169513 + 0.985528i \(0.554220\pi\)
\(822\) −23.3329 −0.813830
\(823\) 10.8097 0.376803 0.188401 0.982092i \(-0.439669\pi\)
0.188401 + 0.982092i \(0.439669\pi\)
\(824\) −94.5832 −3.29496
\(825\) 0 0
\(826\) 19.8305 0.689991
\(827\) 1.59735 0.0555454 0.0277727 0.999614i \(-0.491159\pi\)
0.0277727 + 0.999614i \(0.491159\pi\)
\(828\) 12.5496 0.436130
\(829\) −13.4929 −0.468629 −0.234315 0.972161i \(-0.575285\pi\)
−0.234315 + 0.972161i \(0.575285\pi\)
\(830\) 0 0
\(831\) 22.2410 0.771531
\(832\) 3.92301 0.136006
\(833\) 1.00000 0.0346479
\(834\) −41.4401 −1.43495
\(835\) 0 0
\(836\) 73.0866 2.52775
\(837\) −0.268975 −0.00929715
\(838\) −25.4560 −0.879362
\(839\) 2.17356 0.0750397 0.0375198 0.999296i \(-0.488054\pi\)
0.0375198 + 0.999296i \(0.488054\pi\)
\(840\) 0 0
\(841\) −16.0428 −0.553201
\(842\) 0.831147 0.0286432
\(843\) −30.3105 −1.04395
\(844\) 17.4355 0.600154
\(845\) 0 0
\(846\) −34.0339 −1.17011
\(847\) 3.84107 0.131981
\(848\) −69.5102 −2.38699
\(849\) −7.53626 −0.258644
\(850\) 0 0
\(851\) −2.75801 −0.0945433
\(852\) −61.7692 −2.11618
\(853\) −40.4215 −1.38400 −0.692002 0.721895i \(-0.743271\pi\)
−0.692002 + 0.721895i \(0.743271\pi\)
\(854\) −30.9475 −1.05900
\(855\) 0 0
\(856\) 64.0909 2.19058
\(857\) −31.2983 −1.06913 −0.534564 0.845128i \(-0.679524\pi\)
−0.534564 + 0.845128i \(0.679524\pi\)
\(858\) −19.1919 −0.655200
\(859\) −35.0656 −1.19642 −0.598211 0.801339i \(-0.704122\pi\)
−0.598211 + 0.801339i \(0.704122\pi\)
\(860\) 0 0
\(861\) −9.16460 −0.312329
\(862\) −77.7613 −2.64856
\(863\) −42.9879 −1.46333 −0.731663 0.681666i \(-0.761256\pi\)
−0.731663 + 0.681666i \(0.761256\pi\)
\(864\) 4.76167 0.161995
\(865\) 0 0
\(866\) 57.8945 1.96734
\(867\) −1.00000 −0.0339618
\(868\) −1.19010 −0.0403948
\(869\) −34.9915 −1.18701
\(870\) 0 0
\(871\) −0.284998 −0.00965679
\(872\) 74.4937 2.52267
\(873\) 5.84462 0.197810
\(874\) −44.3836 −1.50130
\(875\) 0 0
\(876\) 57.2056 1.93280
\(877\) 3.94069 0.133068 0.0665338 0.997784i \(-0.478806\pi\)
0.0665338 + 0.997784i \(0.478806\pi\)
\(878\) 9.10233 0.307189
\(879\) −27.8572 −0.939600
\(880\) 0 0
\(881\) −25.2993 −0.852355 −0.426177 0.904640i \(-0.640140\pi\)
−0.426177 + 0.904640i \(0.640140\pi\)
\(882\) −2.53468 −0.0853470
\(883\) −50.1801 −1.68869 −0.844347 0.535797i \(-0.820011\pi\)
−0.844347 + 0.535797i \(0.820011\pi\)
\(884\) −12.5211 −0.421131
\(885\) 0 0
\(886\) 28.0392 0.941996
\(887\) −46.5689 −1.56363 −0.781815 0.623510i \(-0.785706\pi\)
−0.781815 + 0.623510i \(0.785706\pi\)
\(888\) −5.97581 −0.200535
\(889\) −18.9227 −0.634648
\(890\) 0 0
\(891\) 2.67562 0.0896365
\(892\) −54.4427 −1.82288
\(893\) 82.8953 2.77399
\(894\) 14.3190 0.478897
\(895\) 0 0
\(896\) −13.0371 −0.435538
\(897\) 8.02656 0.267999
\(898\) −79.9609 −2.66833
\(899\) −0.968205 −0.0322915
\(900\) 0 0
\(901\) −10.3318 −0.344203
\(902\) 62.1527 2.06946
\(903\) −4.71924 −0.157046
\(904\) −37.6982 −1.25382
\(905\) 0 0
\(906\) −2.48232 −0.0824695
\(907\) 5.67017 0.188275 0.0941375 0.995559i \(-0.469991\pi\)
0.0941375 + 0.995559i \(0.469991\pi\)
\(908\) 47.6935 1.58276
\(909\) 3.76952 0.125027
\(910\) 0 0
\(911\) 14.3073 0.474022 0.237011 0.971507i \(-0.423832\pi\)
0.237011 + 0.971507i \(0.423832\pi\)
\(912\) −41.5349 −1.37536
\(913\) −22.0050 −0.728260
\(914\) 44.9473 1.48672
\(915\) 0 0
\(916\) −74.6874 −2.46774
\(917\) 8.60741 0.284242
\(918\) 2.53468 0.0836568
\(919\) 7.39494 0.243936 0.121968 0.992534i \(-0.461079\pi\)
0.121968 + 0.992534i \(0.461079\pi\)
\(920\) 0 0
\(921\) 14.2241 0.468701
\(922\) 107.305 3.53390
\(923\) −39.5067 −1.30038
\(924\) 11.8385 0.389458
\(925\) 0 0
\(926\) −33.3295 −1.09528
\(927\) 15.3905 0.505492
\(928\) 17.1401 0.562652
\(929\) −53.4925 −1.75503 −0.877516 0.479547i \(-0.840801\pi\)
−0.877516 + 0.479547i \(0.840801\pi\)
\(930\) 0 0
\(931\) 6.17364 0.202333
\(932\) −63.8369 −2.09105
\(933\) 18.4183 0.602987
\(934\) −59.3890 −1.94327
\(935\) 0 0
\(936\) 17.3912 0.568451
\(937\) −15.9601 −0.521394 −0.260697 0.965421i \(-0.583952\pi\)
−0.260697 + 0.965421i \(0.583952\pi\)
\(938\) 0.255266 0.00833474
\(939\) −9.24130 −0.301579
\(940\) 0 0
\(941\) −29.6449 −0.966396 −0.483198 0.875511i \(-0.660525\pi\)
−0.483198 + 0.875511i \(0.660525\pi\)
\(942\) 34.3068 1.11778
\(943\) −25.9939 −0.846479
\(944\) 52.6360 1.71316
\(945\) 0 0
\(946\) 32.0050 1.04057
\(947\) 34.8186 1.13145 0.565727 0.824593i \(-0.308596\pi\)
0.565727 + 0.824593i \(0.308596\pi\)
\(948\) 57.8644 1.87935
\(949\) 36.5879 1.18769
\(950\) 0 0
\(951\) −10.1457 −0.328997
\(952\) 6.14554 0.199178
\(953\) −44.3859 −1.43780 −0.718901 0.695113i \(-0.755354\pi\)
−0.718901 + 0.695113i \(0.755354\pi\)
\(954\) 26.1878 0.847863
\(955\) 0 0
\(956\) 30.1407 0.974820
\(957\) 9.63116 0.311331
\(958\) 86.7189 2.80176
\(959\) 9.20549 0.297261
\(960\) 0 0
\(961\) −30.9277 −0.997666
\(962\) −6.97478 −0.224876
\(963\) −10.4289 −0.336065
\(964\) 3.18565 0.102603
\(965\) 0 0
\(966\) −7.18921 −0.231309
\(967\) 13.5056 0.434312 0.217156 0.976137i \(-0.430322\pi\)
0.217156 + 0.976137i \(0.430322\pi\)
\(968\) 23.6055 0.758708
\(969\) −6.17364 −0.198326
\(970\) 0 0
\(971\) 51.2881 1.64591 0.822956 0.568105i \(-0.192323\pi\)
0.822956 + 0.568105i \(0.192323\pi\)
\(972\) −4.42458 −0.141919
\(973\) 16.3493 0.524133
\(974\) −58.5260 −1.87530
\(975\) 0 0
\(976\) −82.1437 −2.62936
\(977\) −54.6359 −1.74796 −0.873979 0.485964i \(-0.838469\pi\)
−0.873979 + 0.485964i \(0.838469\pi\)
\(978\) −4.30400 −0.137627
\(979\) 25.9156 0.828265
\(980\) 0 0
\(981\) −12.1216 −0.387013
\(982\) 34.9400 1.11498
\(983\) 21.4549 0.684305 0.342152 0.939645i \(-0.388844\pi\)
0.342152 + 0.939645i \(0.388844\pi\)
\(984\) −56.3214 −1.79546
\(985\) 0 0
\(986\) 9.12383 0.290562
\(987\) 13.4273 0.427396
\(988\) −77.3009 −2.45927
\(989\) −13.3854 −0.425630
\(990\) 0 0
\(991\) −44.8117 −1.42349 −0.711745 0.702438i \(-0.752095\pi\)
−0.711745 + 0.702438i \(0.752095\pi\)
\(992\) −1.28077 −0.0406645
\(993\) −8.09315 −0.256828
\(994\) 35.3852 1.12235
\(995\) 0 0
\(996\) 36.3890 1.15303
\(997\) −45.3790 −1.43717 −0.718584 0.695440i \(-0.755209\pi\)
−0.718584 + 0.695440i \(0.755209\pi\)
\(998\) 90.3845 2.86107
\(999\) 0.972382 0.0307648
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8925.2.a.cu.1.2 14
5.2 odd 4 1785.2.g.g.1429.2 28
5.3 odd 4 1785.2.g.g.1429.27 yes 28
5.4 even 2 8925.2.a.cx.1.13 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.g.1429.2 28 5.2 odd 4
1785.2.g.g.1429.27 yes 28 5.3 odd 4
8925.2.a.cu.1.2 14 1.1 even 1 trivial
8925.2.a.cx.1.13 14 5.4 even 2