Properties

Label 8925.2.a.cu.1.6
Level 89258925
Weight 22
Character 8925.1
Self dual yes
Analytic conductor 71.26671.266
Analytic rank 11
Dimension 1414
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8925=352717 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 71.266483804071.2664838040
Analytic rank: 11
Dimension: 1414
Coefficient field: Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x143x1318x12+54x11+124x10366x9416x8+1164x7+727x6+40 x^{14} - 3 x^{13} - 18 x^{12} + 54 x^{11} + 124 x^{10} - 366 x^{9} - 416 x^{8} + 1164 x^{7} + 727 x^{6} + \cdots - 40 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 1785)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 1.101801.10180 of defining polynomial
Character χ\chi == 8925.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.10180q21.00000q30.786043q4+1.10180q61.00000q7+3.06965q8+1.00000q93.04644q11+0.786043q120.439346q13+1.10180q141.81005q16+1.00000q171.10180q185.90487q19+1.00000q21+3.35656q22+7.65430q233.06965q24+0.484071q261.00000q27+0.786043q288.16879q29+9.73478q314.14500q32+3.04644q331.10180q340.786043q36+3.68208q37+6.50597q38+0.439346q39+8.19605q411.10180q4210.3591q43+2.39463q448.43348q469.33290q47+1.81005q48+1.00000q491.00000q51+0.345345q5212.4473q53+1.10180q543.06965q56+5.90487q57+9.00035q58+10.5293q59+12.1407q6110.7257q621.00000q63+8.18705q643.35656q66+2.39025q670.786043q687.65430q69+2.34874q71+3.06965q72+3.03284q734.05690q74+4.64148q76+3.04644q770.484071q7811.3895q79+1.00000q819.03039q8210.1906q830.786043q84+11.4136q86+8.16879q879.35152q88+8.78928q89+0.439346q916.01661q929.73478q93+10.2830q94+4.14500q96+3.56287q971.10180q983.04644q99+O(q100)q-1.10180 q^{2} -1.00000 q^{3} -0.786043 q^{4} +1.10180 q^{6} -1.00000 q^{7} +3.06965 q^{8} +1.00000 q^{9} -3.04644 q^{11} +0.786043 q^{12} -0.439346 q^{13} +1.10180 q^{14} -1.81005 q^{16} +1.00000 q^{17} -1.10180 q^{18} -5.90487 q^{19} +1.00000 q^{21} +3.35656 q^{22} +7.65430 q^{23} -3.06965 q^{24} +0.484071 q^{26} -1.00000 q^{27} +0.786043 q^{28} -8.16879 q^{29} +9.73478 q^{31} -4.14500 q^{32} +3.04644 q^{33} -1.10180 q^{34} -0.786043 q^{36} +3.68208 q^{37} +6.50597 q^{38} +0.439346 q^{39} +8.19605 q^{41} -1.10180 q^{42} -10.3591 q^{43} +2.39463 q^{44} -8.43348 q^{46} -9.33290 q^{47} +1.81005 q^{48} +1.00000 q^{49} -1.00000 q^{51} +0.345345 q^{52} -12.4473 q^{53} +1.10180 q^{54} -3.06965 q^{56} +5.90487 q^{57} +9.00035 q^{58} +10.5293 q^{59} +12.1407 q^{61} -10.7257 q^{62} -1.00000 q^{63} +8.18705 q^{64} -3.35656 q^{66} +2.39025 q^{67} -0.786043 q^{68} -7.65430 q^{69} +2.34874 q^{71} +3.06965 q^{72} +3.03284 q^{73} -4.05690 q^{74} +4.64148 q^{76} +3.04644 q^{77} -0.484071 q^{78} -11.3895 q^{79} +1.00000 q^{81} -9.03039 q^{82} -10.1906 q^{83} -0.786043 q^{84} +11.4136 q^{86} +8.16879 q^{87} -9.35152 q^{88} +8.78928 q^{89} +0.439346 q^{91} -6.01661 q^{92} -9.73478 q^{93} +10.2830 q^{94} +4.14500 q^{96} +3.56287 q^{97} -1.10180 q^{98} -3.04644 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 14q3q214q3+17q4+3q614q715q8+14q9+4q1117q12+q13+3q14+19q16+14q173q186q19+14q2112q227q23++4q99+O(q100) 14 q - 3 q^{2} - 14 q^{3} + 17 q^{4} + 3 q^{6} - 14 q^{7} - 15 q^{8} + 14 q^{9} + 4 q^{11} - 17 q^{12} + q^{13} + 3 q^{14} + 19 q^{16} + 14 q^{17} - 3 q^{18} - 6 q^{19} + 14 q^{21} - 12 q^{22} - 7 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.10180 −0.779088 −0.389544 0.921008i 0.627367π-0.627367\pi
−0.389544 + 0.921008i 0.627367π0.627367\pi
33 −1.00000 −0.577350
44 −0.786043 −0.393022
55 0 0
66 1.10180 0.449807
77 −1.00000 −0.377964
88 3.06965 1.08529
99 1.00000 0.333333
1010 0 0
1111 −3.04644 −0.918536 −0.459268 0.888298i 0.651888π-0.651888\pi
−0.459268 + 0.888298i 0.651888π0.651888\pi
1212 0.786043 0.226911
1313 −0.439346 −0.121853 −0.0609264 0.998142i 0.519405π-0.519405\pi
−0.0609264 + 0.998142i 0.519405π0.519405\pi
1414 1.10180 0.294468
1515 0 0
1616 −1.81005 −0.452512
1717 1.00000 0.242536
1818 −1.10180 −0.259696
1919 −5.90487 −1.35467 −0.677335 0.735675i 0.736865π-0.736865\pi
−0.677335 + 0.735675i 0.736865π0.736865\pi
2020 0 0
2121 1.00000 0.218218
2222 3.35656 0.715621
2323 7.65430 1.59603 0.798016 0.602637i 0.205883π-0.205883\pi
0.798016 + 0.602637i 0.205883π0.205883\pi
2424 −3.06965 −0.626591
2525 0 0
2626 0.484071 0.0949341
2727 −1.00000 −0.192450
2828 0.786043 0.148548
2929 −8.16879 −1.51691 −0.758453 0.651728i 0.774044π-0.774044\pi
−0.758453 + 0.651728i 0.774044π0.774044\pi
3030 0 0
3131 9.73478 1.74842 0.874209 0.485551i 0.161381π-0.161381\pi
0.874209 + 0.485551i 0.161381π0.161381\pi
3232 −4.14500 −0.732740
3333 3.04644 0.530317
3434 −1.10180 −0.188957
3535 0 0
3636 −0.786043 −0.131007
3737 3.68208 0.605330 0.302665 0.953097i 0.402124π-0.402124\pi
0.302665 + 0.953097i 0.402124π0.402124\pi
3838 6.50597 1.05541
3939 0.439346 0.0703517
4040 0 0
4141 8.19605 1.28001 0.640004 0.768371i 0.278933π-0.278933\pi
0.640004 + 0.768371i 0.278933π0.278933\pi
4242 −1.10180 −0.170011
4343 −10.3591 −1.57975 −0.789876 0.613267i 0.789855π-0.789855\pi
−0.789876 + 0.613267i 0.789855π0.789855\pi
4444 2.39463 0.361005
4545 0 0
4646 −8.43348 −1.24345
4747 −9.33290 −1.36134 −0.680672 0.732589i 0.738312π-0.738312\pi
−0.680672 + 0.732589i 0.738312π0.738312\pi
4848 1.81005 0.261258
4949 1.00000 0.142857
5050 0 0
5151 −1.00000 −0.140028
5252 0.345345 0.0478908
5353 −12.4473 −1.70976 −0.854881 0.518824i 0.826370π-0.826370\pi
−0.854881 + 0.518824i 0.826370π0.826370\pi
5454 1.10180 0.149936
5555 0 0
5656 −3.06965 −0.410200
5757 5.90487 0.782119
5858 9.00035 1.18180
5959 10.5293 1.37080 0.685402 0.728165i 0.259627π-0.259627\pi
0.685402 + 0.728165i 0.259627π0.259627\pi
6060 0 0
6161 12.1407 1.55446 0.777229 0.629218i 0.216625π-0.216625\pi
0.777229 + 0.629218i 0.216625π0.216625\pi
6262 −10.7257 −1.36217
6363 −1.00000 −0.125988
6464 8.18705 1.02338
6565 0 0
6666 −3.35656 −0.413164
6767 2.39025 0.292016 0.146008 0.989283i 0.453357π-0.453357\pi
0.146008 + 0.989283i 0.453357π0.453357\pi
6868 −0.786043 −0.0953218
6969 −7.65430 −0.921469
7070 0 0
7171 2.34874 0.278744 0.139372 0.990240i 0.455492π-0.455492\pi
0.139372 + 0.990240i 0.455492π0.455492\pi
7272 3.06965 0.361762
7373 3.03284 0.354967 0.177484 0.984124i 0.443204π-0.443204\pi
0.177484 + 0.984124i 0.443204π0.443204\pi
7474 −4.05690 −0.471605
7575 0 0
7676 4.64148 0.532415
7777 3.04644 0.347174
7878 −0.484071 −0.0548102
7979 −11.3895 −1.28142 −0.640708 0.767784i 0.721359π-0.721359\pi
−0.640708 + 0.767784i 0.721359π0.721359\pi
8080 0 0
8181 1.00000 0.111111
8282 −9.03039 −0.997239
8383 −10.1906 −1.11856 −0.559281 0.828978i 0.688923π-0.688923\pi
−0.559281 + 0.828978i 0.688923π0.688923\pi
8484 −0.786043 −0.0857644
8585 0 0
8686 11.4136 1.23077
8787 8.16879 0.875786
8888 −9.35152 −0.996875
8989 8.78928 0.931662 0.465831 0.884874i 0.345755π-0.345755\pi
0.465831 + 0.884874i 0.345755π0.345755\pi
9090 0 0
9191 0.439346 0.0460560
9292 −6.01661 −0.627275
9393 −9.73478 −1.00945
9494 10.2830 1.06061
9595 0 0
9696 4.14500 0.423047
9797 3.56287 0.361755 0.180877 0.983506i 0.442106π-0.442106\pi
0.180877 + 0.983506i 0.442106π0.442106\pi
9898 −1.10180 −0.111298
9999 −3.04644 −0.306179
100100 0 0
101101 15.9788 1.58995 0.794975 0.606642i 0.207484π-0.207484\pi
0.794975 + 0.606642i 0.207484π0.207484\pi
102102 1.10180 0.109094
103103 7.30742 0.720021 0.360011 0.932948i 0.382773π-0.382773\pi
0.360011 + 0.932948i 0.382773π0.382773\pi
104104 −1.34864 −0.132245
105105 0 0
106106 13.7144 1.33206
107107 −8.43009 −0.814967 −0.407484 0.913213i 0.633594π-0.633594\pi
−0.407484 + 0.913213i 0.633594π0.633594\pi
108108 0.786043 0.0756371
109109 4.50550 0.431549 0.215774 0.976443i 0.430772π-0.430772\pi
0.215774 + 0.976443i 0.430772π0.430772\pi
110110 0 0
111111 −3.68208 −0.349487
112112 1.81005 0.171034
113113 6.16464 0.579920 0.289960 0.957039i 0.406358π-0.406358\pi
0.289960 + 0.957039i 0.406358π0.406358\pi
114114 −6.50597 −0.609340
115115 0 0
116116 6.42102 0.596177
117117 −0.439346 −0.0406176
118118 −11.6012 −1.06798
119119 −1.00000 −0.0916698
120120 0 0
121121 −1.71920 −0.156291
122122 −13.3766 −1.21106
123123 −8.19605 −0.739013
124124 −7.65196 −0.687166
125125 0 0
126126 1.10180 0.0981559
127127 −10.2969 −0.913703 −0.456851 0.889543i 0.651023π-0.651023\pi
−0.456851 + 0.889543i 0.651023π0.651023\pi
128128 −0.730462 −0.0645643
129129 10.3591 0.912070
130130 0 0
131131 −4.92183 −0.430022 −0.215011 0.976612i 0.568979π-0.568979\pi
−0.215011 + 0.976612i 0.568979π0.568979\pi
132132 −2.39463 −0.208426
133133 5.90487 0.512017
134134 −2.63358 −0.227506
135135 0 0
136136 3.06965 0.263221
137137 −1.94023 −0.165765 −0.0828825 0.996559i 0.526413π-0.526413\pi
−0.0828825 + 0.996559i 0.526413π0.526413\pi
138138 8.43348 0.717906
139139 3.81408 0.323506 0.161753 0.986831i 0.448285π-0.448285\pi
0.161753 + 0.986831i 0.448285π0.448285\pi
140140 0 0
141141 9.33290 0.785972
142142 −2.58784 −0.217166
143143 1.33844 0.111926
144144 −1.81005 −0.150837
145145 0 0
146146 −3.34158 −0.276551
147147 −1.00000 −0.0824786
148148 −2.89427 −0.237908
149149 2.84752 0.233278 0.116639 0.993174i 0.462788π-0.462788\pi
0.116639 + 0.993174i 0.462788π0.462788\pi
150150 0 0
151151 1.87286 0.152411 0.0762054 0.997092i 0.475720π-0.475720\pi
0.0762054 + 0.997092i 0.475720π0.475720\pi
152152 −18.1259 −1.47021
153153 1.00000 0.0808452
154154 −3.35656 −0.270479
155155 0 0
156156 −0.345345 −0.0276498
157157 −8.58171 −0.684895 −0.342447 0.939537i 0.611256π-0.611256\pi
−0.342447 + 0.939537i 0.611256π0.611256\pi
158158 12.5489 0.998336
159159 12.4473 0.987132
160160 0 0
161161 −7.65430 −0.603243
162162 −1.10180 −0.0865653
163163 23.0878 1.80837 0.904187 0.427137i 0.140478π-0.140478\pi
0.904187 + 0.427137i 0.140478π0.140478\pi
164164 −6.44245 −0.503071
165165 0 0
166166 11.2280 0.871459
167167 −3.39386 −0.262625 −0.131312 0.991341i 0.541919π-0.541919\pi
−0.131312 + 0.991341i 0.541919π0.541919\pi
168168 3.06965 0.236829
169169 −12.8070 −0.985152
170170 0 0
171171 −5.90487 −0.451557
172172 8.14272 0.620876
173173 −2.55812 −0.194491 −0.0972453 0.995260i 0.531003π-0.531003\pi
−0.0972453 + 0.995260i 0.531003π0.531003\pi
174174 −9.00035 −0.682314
175175 0 0
176176 5.51421 0.415649
177177 −10.5293 −0.791434
178178 −9.68401 −0.725847
179179 7.83699 0.585764 0.292882 0.956149i 0.405386π-0.405386\pi
0.292882 + 0.956149i 0.405386π0.405386\pi
180180 0 0
181181 −22.8457 −1.69811 −0.849054 0.528307i 0.822827π-0.822827\pi
−0.849054 + 0.528307i 0.822827π0.822827\pi
182182 −0.484071 −0.0358817
183183 −12.1407 −0.897466
184184 23.4960 1.73215
185185 0 0
186186 10.7257 0.786450
187187 −3.04644 −0.222778
188188 7.33606 0.535037
189189 1.00000 0.0727393
190190 0 0
191191 −9.30557 −0.673327 −0.336664 0.941625i 0.609298π-0.609298\pi
−0.336664 + 0.941625i 0.609298π0.609298\pi
192192 −8.18705 −0.590849
193193 19.4366 1.39908 0.699540 0.714594i 0.253388π-0.253388\pi
0.699540 + 0.714594i 0.253388π0.253388\pi
194194 −3.92556 −0.281839
195195 0 0
196196 −0.786043 −0.0561460
197197 19.1313 1.36305 0.681525 0.731795i 0.261317π-0.261317\pi
0.681525 + 0.731795i 0.261317π0.261317\pi
198198 3.35656 0.238540
199199 −7.83165 −0.555171 −0.277586 0.960701i 0.589534π-0.589534\pi
−0.277586 + 0.960701i 0.589534π0.589534\pi
200200 0 0
201201 −2.39025 −0.168596
202202 −17.6054 −1.23871
203203 8.16879 0.573336
204204 0.786043 0.0550340
205205 0 0
206206 −8.05129 −0.560960
207207 7.65430 0.532010
208208 0.795239 0.0551399
209209 17.9888 1.24431
210210 0 0
211211 9.76289 0.672105 0.336053 0.941843i 0.390908π-0.390908\pi
0.336053 + 0.941843i 0.390908π0.390908\pi
212212 9.78409 0.671974
213213 −2.34874 −0.160933
214214 9.28824 0.634931
215215 0 0
216216 −3.06965 −0.208864
217217 −9.73478 −0.660840
218218 −4.96415 −0.336215
219219 −3.03284 −0.204940
220220 0 0
221221 −0.439346 −0.0295536
222222 4.05690 0.272282
223223 6.18501 0.414179 0.207090 0.978322i 0.433601π-0.433601\pi
0.207090 + 0.978322i 0.433601π0.433601\pi
224224 4.14500 0.276950
225225 0 0
226226 −6.79218 −0.451809
227227 −10.2016 −0.677101 −0.338551 0.940948i 0.609937π-0.609937\pi
−0.338551 + 0.940948i 0.609937π0.609937\pi
228228 −4.64148 −0.307390
229229 0.173014 0.0114331 0.00571655 0.999984i 0.498180π-0.498180\pi
0.00571655 + 0.999984i 0.498180π0.498180\pi
230230 0 0
231231 −3.04644 −0.200441
232232 −25.0754 −1.64628
233233 −9.68797 −0.634680 −0.317340 0.948312i 0.602790π-0.602790\pi
−0.317340 + 0.948312i 0.602790π0.602790\pi
234234 0.484071 0.0316447
235235 0 0
236236 −8.27652 −0.538755
237237 11.3895 0.739826
238238 1.10180 0.0714189
239239 13.7928 0.892183 0.446091 0.894987i 0.352816π-0.352816\pi
0.446091 + 0.894987i 0.352816π0.352816\pi
240240 0 0
241241 14.8482 0.956458 0.478229 0.878235i 0.341279π-0.341279\pi
0.478229 + 0.878235i 0.341279π0.341279\pi
242242 1.89421 0.121765
243243 −1.00000 −0.0641500
244244 −9.54312 −0.610935
245245 0 0
246246 9.03039 0.575756
247247 2.59428 0.165070
248248 29.8824 1.89753
249249 10.1906 0.645803
250250 0 0
251251 5.41270 0.341646 0.170823 0.985302i 0.445357π-0.445357\pi
0.170823 + 0.985302i 0.445357π0.445357\pi
252252 0.786043 0.0495161
253253 −23.3184 −1.46601
254254 11.3451 0.711855
255255 0 0
256256 −15.5693 −0.973080
257257 −9.73884 −0.607492 −0.303746 0.952753i 0.598237π-0.598237\pi
−0.303746 + 0.952753i 0.598237π0.598237\pi
258258 −11.4136 −0.710583
259259 −3.68208 −0.228793
260260 0 0
261261 −8.16879 −0.505635
262262 5.42285 0.335025
263263 20.0693 1.23753 0.618763 0.785578i 0.287634π-0.287634\pi
0.618763 + 0.785578i 0.287634π0.287634\pi
264264 9.35152 0.575546
265265 0 0
266266 −6.50597 −0.398907
267267 −8.78928 −0.537895
268268 −1.87884 −0.114769
269269 13.3115 0.811617 0.405808 0.913958i 0.366990π-0.366990\pi
0.405808 + 0.913958i 0.366990π0.366990\pi
270270 0 0
271271 −7.51453 −0.456475 −0.228238 0.973605i 0.573296π-0.573296\pi
−0.228238 + 0.973605i 0.573296π0.573296\pi
272272 −1.81005 −0.109750
273273 −0.439346 −0.0265905
274274 2.13774 0.129146
275275 0 0
276276 6.01661 0.362157
277277 15.6195 0.938484 0.469242 0.883070i 0.344527π-0.344527\pi
0.469242 + 0.883070i 0.344527π0.344527\pi
278278 −4.20234 −0.252040
279279 9.73478 0.582806
280280 0 0
281281 9.60615 0.573055 0.286527 0.958072i 0.407499π-0.407499\pi
0.286527 + 0.958072i 0.407499π0.407499\pi
282282 −10.2830 −0.612341
283283 −11.4373 −0.679877 −0.339938 0.940448i 0.610406π-0.610406\pi
−0.339938 + 0.940448i 0.610406π0.610406\pi
284284 −1.84621 −0.109553
285285 0 0
286286 −1.47469 −0.0872004
287287 −8.19605 −0.483798
288288 −4.14500 −0.244247
289289 1.00000 0.0588235
290290 0 0
291291 −3.56287 −0.208859
292292 −2.38394 −0.139510
293293 12.2750 0.717111 0.358555 0.933508i 0.383269π-0.383269\pi
0.358555 + 0.933508i 0.383269π0.383269\pi
294294 1.10180 0.0642581
295295 0 0
296296 11.3027 0.656957
297297 3.04644 0.176772
298298 −3.13739 −0.181744
299299 −3.36289 −0.194481
300300 0 0
301301 10.3591 0.597090
302302 −2.06351 −0.118741
303303 −15.9788 −0.917958
304304 10.6881 0.613005
305305 0 0
306306 −1.10180 −0.0629855
307307 5.40443 0.308447 0.154224 0.988036i 0.450712π-0.450712\pi
0.154224 + 0.988036i 0.450712π0.450712\pi
308308 −2.39463 −0.136447
309309 −7.30742 −0.415704
310310 0 0
311311 32.2620 1.82941 0.914706 0.404120i 0.132422π-0.132422\pi
0.914706 + 0.404120i 0.132422π0.132422\pi
312312 1.34864 0.0763518
313313 −21.0758 −1.19128 −0.595638 0.803253i 0.703101π-0.703101\pi
−0.595638 + 0.803253i 0.703101π0.703101\pi
314314 9.45530 0.533593
315315 0 0
316316 8.95262 0.503624
317317 3.98509 0.223825 0.111912 0.993718i 0.464302π-0.464302\pi
0.111912 + 0.993718i 0.464302π0.464302\pi
318318 −13.7144 −0.769063
319319 24.8857 1.39333
320320 0 0
321321 8.43009 0.470522
322322 8.43348 0.469980
323323 −5.90487 −0.328556
324324 −0.786043 −0.0436691
325325 0 0
326326 −25.4380 −1.40888
327327 −4.50550 −0.249155
328328 25.1590 1.38918
329329 9.33290 0.514539
330330 0 0
331331 −8.35495 −0.459230 −0.229615 0.973282i 0.573747π-0.573747\pi
−0.229615 + 0.973282i 0.573747π0.573747\pi
332332 8.01025 0.439619
333333 3.68208 0.201777
334334 3.73934 0.204608
335335 0 0
336336 −1.81005 −0.0987463
337337 −14.9303 −0.813306 −0.406653 0.913583i 0.633304π-0.633304\pi
−0.406653 + 0.913583i 0.633304π0.633304\pi
338338 14.1107 0.767520
339339 −6.16464 −0.334817
340340 0 0
341341 −29.6564 −1.60598
342342 6.50597 0.351803
343343 −1.00000 −0.0539949
344344 −31.7989 −1.71448
345345 0 0
346346 2.81853 0.151525
347347 3.39494 0.182250 0.0911249 0.995839i 0.470954π-0.470954\pi
0.0911249 + 0.995839i 0.470954π0.470954\pi
348348 −6.42102 −0.344203
349349 −15.7574 −0.843475 −0.421737 0.906718i 0.638580π-0.638580\pi
−0.421737 + 0.906718i 0.638580π0.638580\pi
350350 0 0
351351 0.439346 0.0234506
352352 12.6275 0.673048
353353 −23.7404 −1.26358 −0.631788 0.775141i 0.717679π-0.717679\pi
−0.631788 + 0.775141i 0.717679π0.717679\pi
354354 11.6012 0.616597
355355 0 0
356356 −6.90876 −0.366163
357357 1.00000 0.0529256
358358 −8.63477 −0.456362
359359 31.2687 1.65030 0.825148 0.564916i 0.191092π-0.191092\pi
0.825148 + 0.564916i 0.191092π0.191092\pi
360360 0 0
361361 15.8675 0.835132
362362 25.1713 1.32298
363363 1.71920 0.0902349
364364 −0.345345 −0.0181010
365365 0 0
366366 13.3766 0.699205
367367 22.1182 1.15456 0.577279 0.816547i 0.304114π-0.304114\pi
0.577279 + 0.816547i 0.304114π0.304114\pi
368368 −13.8547 −0.722224
369369 8.19605 0.426669
370370 0 0
371371 12.4473 0.646229
372372 7.65196 0.396735
373373 −17.9326 −0.928514 −0.464257 0.885701i 0.653679π-0.653679\pi
−0.464257 + 0.885701i 0.653679π0.653679\pi
374374 3.35656 0.173563
375375 0 0
376376 −28.6488 −1.47745
377377 3.58893 0.184839
378378 −1.10180 −0.0566703
379379 −24.4538 −1.25611 −0.628053 0.778171i 0.716148π-0.716148\pi
−0.628053 + 0.778171i 0.716148π0.716148\pi
380380 0 0
381381 10.2969 0.527527
382382 10.2528 0.524581
383383 −33.0565 −1.68911 −0.844555 0.535469i 0.820135π-0.820135\pi
−0.844555 + 0.535469i 0.820135π0.820135\pi
384384 0.730462 0.0372762
385385 0 0
386386 −21.4152 −1.09001
387387 −10.3591 −0.526584
388388 −2.80057 −0.142178
389389 24.9851 1.26679 0.633397 0.773827i 0.281660π-0.281660\pi
0.633397 + 0.773827i 0.281660π0.281660\pi
390390 0 0
391391 7.65430 0.387094
392392 3.06965 0.155041
393393 4.92183 0.248273
394394 −21.0788 −1.06194
395395 0 0
396396 2.39463 0.120335
397397 −19.9555 −1.00154 −0.500768 0.865582i 0.666949π-0.666949\pi
−0.500768 + 0.865582i 0.666949π0.666949\pi
398398 8.62889 0.432527
399399 −5.90487 −0.295613
400400 0 0
401401 16.3095 0.814458 0.407229 0.913326i 0.366495π-0.366495\pi
0.407229 + 0.913326i 0.366495π0.366495\pi
402402 2.63358 0.131351
403403 −4.27694 −0.213050
404404 −12.5600 −0.624885
405405 0 0
406406 −9.00035 −0.446680
407407 −11.2172 −0.556017
408408 −3.06965 −0.151971
409409 −0.397490 −0.0196546 −0.00982730 0.999952i 0.503128π-0.503128\pi
−0.00982730 + 0.999952i 0.503128π0.503128\pi
410410 0 0
411411 1.94023 0.0957045
412412 −5.74395 −0.282984
413413 −10.5293 −0.518115
414414 −8.43348 −0.414483
415415 0 0
416416 1.82109 0.0892864
417417 −3.81408 −0.186776
418418 −19.8200 −0.969430
419419 −20.3671 −0.995000 −0.497500 0.867464i 0.665748π-0.665748\pi
−0.497500 + 0.867464i 0.665748π0.665748\pi
420420 0 0
421421 −26.6356 −1.29814 −0.649071 0.760728i 0.724842π-0.724842\pi
−0.649071 + 0.760728i 0.724842π0.724842\pi
422422 −10.7567 −0.523629
423423 −9.33290 −0.453781
424424 −38.2088 −1.85558
425425 0 0
426426 2.58784 0.125381
427427 −12.1407 −0.587530
428428 6.62641 0.320300
429429 −1.33844 −0.0646206
430430 0 0
431431 11.5505 0.556368 0.278184 0.960528i 0.410268π-0.410268\pi
0.278184 + 0.960528i 0.410268π0.410268\pi
432432 1.81005 0.0870860
433433 2.95930 0.142215 0.0711074 0.997469i 0.477347π-0.477347\pi
0.0711074 + 0.997469i 0.477347π0.477347\pi
434434 10.7257 0.514852
435435 0 0
436436 −3.54152 −0.169608
437437 −45.1976 −2.16210
438438 3.34158 0.159667
439439 15.5747 0.743338 0.371669 0.928365i 0.378786π-0.378786\pi
0.371669 + 0.928365i 0.378786π0.378786\pi
440440 0 0
441441 1.00000 0.0476190
442442 0.484071 0.0230249
443443 6.36488 0.302405 0.151202 0.988503i 0.451685π-0.451685\pi
0.151202 + 0.988503i 0.451685π0.451685\pi
444444 2.89427 0.137356
445445 0 0
446446 −6.81463 −0.322682
447447 −2.84752 −0.134683
448448 −8.18705 −0.386802
449449 −3.81045 −0.179826 −0.0899131 0.995950i 0.528659π-0.528659\pi
−0.0899131 + 0.995950i 0.528659π0.528659\pi
450450 0 0
451451 −24.9688 −1.17573
452452 −4.84567 −0.227921
453453 −1.87286 −0.0879944
454454 11.2400 0.527522
455455 0 0
456456 18.1259 0.848824
457457 −15.3587 −0.718452 −0.359226 0.933251i 0.616959π-0.616959\pi
−0.359226 + 0.933251i 0.616959π0.616959\pi
458458 −0.190626 −0.00890739
459459 −1.00000 −0.0466760
460460 0 0
461461 −22.0311 −1.02609 −0.513045 0.858361i 0.671483π-0.671483\pi
−0.513045 + 0.858361i 0.671483π0.671483\pi
462462 3.35656 0.156161
463463 −36.3054 −1.68725 −0.843627 0.536930i 0.819584π-0.819584\pi
−0.843627 + 0.536930i 0.819584π0.819584\pi
464464 14.7859 0.686418
465465 0 0
466466 10.6742 0.494472
467467 −30.3145 −1.40279 −0.701393 0.712775i 0.747438π-0.747438\pi
−0.701393 + 0.712775i 0.747438π0.747438\pi
468468 0.345345 0.0159636
469469 −2.39025 −0.110372
470470 0 0
471471 8.58171 0.395424
472472 32.3214 1.48771
473473 31.5584 1.45106
474474 −12.5489 −0.576390
475475 0 0
476476 0.786043 0.0360282
477477 −12.4473 −0.569921
478478 −15.1969 −0.695089
479479 −42.1665 −1.92664 −0.963318 0.268361i 0.913518π-0.913518\pi
−0.963318 + 0.268361i 0.913518π0.913518\pi
480480 0 0
481481 −1.61771 −0.0737611
482482 −16.3597 −0.745165
483483 7.65430 0.348283
484484 1.35137 0.0614259
485485 0 0
486486 1.10180 0.0499785
487487 −13.3369 −0.604351 −0.302176 0.953252i 0.597713π-0.597713\pi
−0.302176 + 0.953252i 0.597713π0.597713\pi
488488 37.2678 1.68703
489489 −23.0878 −1.04407
490490 0 0
491491 −23.8826 −1.07781 −0.538904 0.842367i 0.681162π-0.681162\pi
−0.538904 + 0.842367i 0.681162π0.681162\pi
492492 6.44245 0.290448
493493 −8.16879 −0.367904
494494 −2.85837 −0.128604
495495 0 0
496496 −17.6204 −0.791180
497497 −2.34874 −0.105356
498498 −11.2280 −0.503137
499499 40.4328 1.81002 0.905011 0.425388i 0.139862π-0.139862\pi
0.905011 + 0.425388i 0.139862π0.139862\pi
500500 0 0
501501 3.39386 0.151626
502502 −5.96369 −0.266173
503503 −41.7195 −1.86018 −0.930091 0.367329i 0.880272π-0.880272\pi
−0.930091 + 0.367329i 0.880272π0.880272\pi
504504 −3.06965 −0.136733
505505 0 0
506506 25.6921 1.14215
507507 12.8070 0.568778
508508 8.09382 0.359105
509509 28.0323 1.24251 0.621256 0.783608i 0.286623π-0.286623\pi
0.621256 + 0.783608i 0.286623π0.286623\pi
510510 0 0
511511 −3.03284 −0.134165
512512 18.6151 0.822679
513513 5.90487 0.260706
514514 10.7302 0.473290
515515 0 0
516516 −8.14272 −0.358463
517517 28.4321 1.25044
518518 4.05690 0.178250
519519 2.55812 0.112289
520520 0 0
521521 14.2991 0.626455 0.313227 0.949678i 0.398590π-0.398590\pi
0.313227 + 0.949678i 0.398590π0.398590\pi
522522 9.00035 0.393934
523523 −36.8839 −1.61282 −0.806409 0.591358i 0.798592π-0.798592\pi
−0.806409 + 0.591358i 0.798592π0.798592\pi
524524 3.86877 0.169008
525525 0 0
526526 −22.1123 −0.964142
527527 9.73478 0.424053
528528 −5.51421 −0.239975
529529 35.5883 1.54732
530530 0 0
531531 10.5293 0.456934
532532 −4.64148 −0.201234
533533 −3.60091 −0.155973
534534 9.68401 0.419068
535535 0 0
536536 7.33726 0.316921
537537 −7.83699 −0.338191
538538 −14.6666 −0.632321
539539 −3.04644 −0.131219
540540 0 0
541541 −42.2184 −1.81511 −0.907555 0.419933i 0.862054π-0.862054\pi
−0.907555 + 0.419933i 0.862054π0.862054\pi
542542 8.27949 0.355635
543543 22.8457 0.980403
544544 −4.14500 −0.177715
545545 0 0
546546 0.484071 0.0207163
547547 25.9995 1.11166 0.555829 0.831296i 0.312401π-0.312401\pi
0.555829 + 0.831296i 0.312401π0.312401\pi
548548 1.52510 0.0651492
549549 12.1407 0.518152
550550 0 0
551551 48.2356 2.05491
552552 −23.4960 −1.00006
553553 11.3895 0.484330
554554 −17.2095 −0.731162
555555 0 0
556556 −2.99803 −0.127145
557557 35.3873 1.49941 0.749704 0.661773i 0.230196π-0.230196\pi
0.749704 + 0.661773i 0.230196π0.230196\pi
558558 −10.7257 −0.454057
559559 4.55124 0.192497
560560 0 0
561561 3.04644 0.128621
562562 −10.5840 −0.446460
563563 −16.3680 −0.689831 −0.344915 0.938634i 0.612092π-0.612092\pi
−0.344915 + 0.938634i 0.612092π0.612092\pi
564564 −7.33606 −0.308904
565565 0 0
566566 12.6016 0.529684
567567 −1.00000 −0.0419961
568568 7.20983 0.302518
569569 −30.6319 −1.28416 −0.642079 0.766638i 0.721928π-0.721928\pi
−0.642079 + 0.766638i 0.721928π0.721928\pi
570570 0 0
571571 −41.5486 −1.73875 −0.869376 0.494150i 0.835479π-0.835479\pi
−0.869376 + 0.494150i 0.835479π0.835479\pi
572572 −1.05207 −0.0439894
573573 9.30557 0.388746
574574 9.03039 0.376921
575575 0 0
576576 8.18705 0.341127
577577 −12.6099 −0.524955 −0.262478 0.964938i 0.584540π-0.584540\pi
−0.262478 + 0.964938i 0.584540π0.584540\pi
578578 −1.10180 −0.0458287
579579 −19.4366 −0.807759
580580 0 0
581581 10.1906 0.422777
582582 3.92556 0.162720
583583 37.9198 1.57048
584584 9.30977 0.385241
585585 0 0
586586 −13.5245 −0.558692
587587 10.9579 0.452282 0.226141 0.974095i 0.427389π-0.427389\pi
0.226141 + 0.974095i 0.427389π0.427389\pi
588588 0.786043 0.0324159
589589 −57.4826 −2.36853
590590 0 0
591591 −19.1313 −0.786957
592592 −6.66474 −0.273919
593593 43.7442 1.79636 0.898180 0.439627i 0.144889π-0.144889\pi
0.898180 + 0.439627i 0.144889π0.144889\pi
594594 −3.35656 −0.137721
595595 0 0
596596 −2.23828 −0.0916833
597597 7.83165 0.320528
598598 3.70522 0.151518
599599 −13.8647 −0.566498 −0.283249 0.959046i 0.591412π-0.591412\pi
−0.283249 + 0.959046i 0.591412π0.591412\pi
600600 0 0
601601 −27.8746 −1.13703 −0.568514 0.822673i 0.692482π-0.692482\pi
−0.568514 + 0.822673i 0.692482π0.692482\pi
602602 −11.4136 −0.465186
603603 2.39025 0.0973387
604604 −1.47215 −0.0599008
605605 0 0
606606 17.6054 0.715170
607607 2.81833 0.114392 0.0571962 0.998363i 0.481784π-0.481784\pi
0.0571962 + 0.998363i 0.481784π0.481784\pi
608608 24.4757 0.992621
609609 −8.16879 −0.331016
610610 0 0
611611 4.10038 0.165883
612612 −0.786043 −0.0317739
613613 −12.5272 −0.505970 −0.252985 0.967470i 0.581412π-0.581412\pi
−0.252985 + 0.967470i 0.581412π0.581412\pi
614614 −5.95458 −0.240307
615615 0 0
616616 9.35152 0.376783
617617 48.3928 1.94822 0.974111 0.226069i 0.0725876π-0.0725876\pi
0.974111 + 0.226069i 0.0725876π0.0725876\pi
618618 8.05129 0.323870
619619 −19.4428 −0.781471 −0.390735 0.920503i 0.627779π-0.627779\pi
−0.390735 + 0.920503i 0.627779π0.627779\pi
620620 0 0
621621 −7.65430 −0.307156
622622 −35.5462 −1.42527
623623 −8.78928 −0.352135
624624 −0.795239 −0.0318350
625625 0 0
626626 23.2213 0.928108
627627 −17.9888 −0.718405
628628 6.74559 0.269179
629629 3.68208 0.146814
630630 0 0
631631 4.93929 0.196630 0.0983149 0.995155i 0.468655π-0.468655\pi
0.0983149 + 0.995155i 0.468655π0.468655\pi
632632 −34.9618 −1.39070
633633 −9.76289 −0.388040
634634 −4.39076 −0.174379
635635 0 0
636636 −9.78409 −0.387964
637637 −0.439346 −0.0174075
638638 −27.4190 −1.08553
639639 2.34874 0.0929148
640640 0 0
641641 −32.2483 −1.27373 −0.636865 0.770976i 0.719769π-0.719769\pi
−0.636865 + 0.770976i 0.719769π0.719769\pi
642642 −9.28824 −0.366578
643643 −27.7433 −1.09409 −0.547045 0.837103i 0.684247π-0.684247\pi
−0.547045 + 0.837103i 0.684247π0.684247\pi
644644 6.01661 0.237088
645645 0 0
646646 6.50597 0.255974
647647 1.02524 0.0403063 0.0201531 0.999797i 0.493585π-0.493585\pi
0.0201531 + 0.999797i 0.493585π0.493585\pi
648648 3.06965 0.120587
649649 −32.0770 −1.25913
650650 0 0
651651 9.73478 0.381536
652652 −18.1480 −0.710730
653653 −50.1760 −1.96354 −0.981769 0.190080i 0.939125π-0.939125\pi
−0.981769 + 0.190080i 0.939125π0.939125\pi
654654 4.96415 0.194114
655655 0 0
656656 −14.8353 −0.579219
657657 3.03284 0.118322
658658 −10.2830 −0.400872
659659 −43.9669 −1.71271 −0.856355 0.516388i 0.827276π-0.827276\pi
−0.856355 + 0.516388i 0.827276π0.827276\pi
660660 0 0
661661 −15.5771 −0.605879 −0.302939 0.953010i 0.597968π-0.597968\pi
−0.302939 + 0.953010i 0.597968π0.597968\pi
662662 9.20546 0.357780
663663 0.439346 0.0170628
664664 −31.2816 −1.21396
665665 0 0
666666 −4.05690 −0.157202
667667 −62.5263 −2.42103
668668 2.66772 0.103217
669669 −6.18501 −0.239126
670670 0 0
671671 −36.9859 −1.42783
672672 −4.14500 −0.159897
673673 −38.4772 −1.48319 −0.741594 0.670848i 0.765930π-0.765930\pi
−0.741594 + 0.670848i 0.765930π0.765930\pi
674674 16.4502 0.633637
675675 0 0
676676 10.0668 0.387186
677677 −19.3144 −0.742312 −0.371156 0.928570i 0.621039π-0.621039\pi
−0.371156 + 0.928570i 0.621039π0.621039\pi
678678 6.79218 0.260852
679679 −3.56287 −0.136730
680680 0 0
681681 10.2016 0.390925
682682 32.6753 1.25120
683683 0.181089 0.00692916 0.00346458 0.999994i 0.498897π-0.498897\pi
0.00346458 + 0.999994i 0.498897π0.498897\pi
684684 4.64148 0.177472
685685 0 0
686686 1.10180 0.0420668
687687 −0.173014 −0.00660090
688688 18.7505 0.714857
689689 5.46866 0.208339
690690 0 0
691691 7.55113 0.287259 0.143629 0.989632i 0.454123π-0.454123\pi
0.143629 + 0.989632i 0.454123π0.454123\pi
692692 2.01080 0.0764390
693693 3.04644 0.115725
694694 −3.74053 −0.141989
695695 0 0
696696 25.0754 0.950479
697697 8.19605 0.310448
698698 17.3615 0.657141
699699 9.68797 0.366433
700700 0 0
701701 13.7957 0.521058 0.260529 0.965466i 0.416103π-0.416103\pi
0.260529 + 0.965466i 0.416103π0.416103\pi
702702 −0.484071 −0.0182701
703703 −21.7422 −0.820023
704704 −24.9414 −0.940013
705705 0 0
706706 26.1571 0.984437
707707 −15.9788 −0.600945
708708 8.27652 0.311051
709709 25.3542 0.952196 0.476098 0.879392i 0.342051π-0.342051\pi
0.476098 + 0.879392i 0.342051π0.342051\pi
710710 0 0
711711 −11.3895 −0.427139
712712 26.9801 1.01112
713713 74.5129 2.79053
714714 −1.10180 −0.0412337
715715 0 0
716716 −6.16021 −0.230218
717717 −13.7928 −0.515102
718718 −34.4517 −1.28573
719719 −14.1092 −0.526186 −0.263093 0.964770i 0.584743π-0.584743\pi
−0.263093 + 0.964770i 0.584743π0.584743\pi
720720 0 0
721721 −7.30742 −0.272142
722722 −17.4828 −0.650641
723723 −14.8482 −0.552211
724724 17.9577 0.667393
725725 0 0
726726 −1.89421 −0.0703009
727727 −17.6802 −0.655721 −0.327860 0.944726i 0.606328π-0.606328\pi
−0.327860 + 0.944726i 0.606328π0.606328\pi
728728 1.34864 0.0499840
729729 1.00000 0.0370370
730730 0 0
731731 −10.3591 −0.383146
732732 9.54312 0.352724
733733 −35.4352 −1.30883 −0.654414 0.756136i 0.727085π-0.727085\pi
−0.654414 + 0.756136i 0.727085π0.727085\pi
734734 −24.3697 −0.899503
735735 0 0
736736 −31.7271 −1.16948
737737 −7.28177 −0.268227
738738 −9.03039 −0.332413
739739 17.4636 0.642408 0.321204 0.947010i 0.395912π-0.395912\pi
0.321204 + 0.947010i 0.395912π0.395912\pi
740740 0 0
741741 −2.59428 −0.0953034
742742 −13.7144 −0.503470
743743 −10.6247 −0.389784 −0.194892 0.980825i 0.562436π-0.562436\pi
−0.194892 + 0.980825i 0.562436π0.562436\pi
744744 −29.8824 −1.09554
745745 0 0
746746 19.7581 0.723394
747747 −10.1906 −0.372854
748748 2.39463 0.0875565
749749 8.43009 0.308029
750750 0 0
751751 −18.2518 −0.666018 −0.333009 0.942924i 0.608064π-0.608064\pi
−0.333009 + 0.942924i 0.608064π0.608064\pi
752752 16.8930 0.616025
753753 −5.41270 −0.197250
754754 −3.95427 −0.144006
755755 0 0
756756 −0.786043 −0.0285881
757757 −5.39572 −0.196111 −0.0980554 0.995181i 0.531262π-0.531262\pi
−0.0980554 + 0.995181i 0.531262π0.531262\pi
758758 26.9431 0.978617
759759 23.3184 0.846403
760760 0 0
761761 0.498875 0.0180842 0.00904210 0.999959i 0.497122π-0.497122\pi
0.00904210 + 0.999959i 0.497122π0.497122\pi
762762 −11.3451 −0.410990
763763 −4.50550 −0.163110
764764 7.31458 0.264632
765765 0 0
766766 36.4216 1.31597
767767 −4.62603 −0.167036
768768 15.5693 0.561808
769769 −18.3495 −0.661698 −0.330849 0.943684i 0.607335π-0.607335\pi
−0.330849 + 0.943684i 0.607335π0.607335\pi
770770 0 0
771771 9.73884 0.350736
772772 −15.2780 −0.549869
773773 19.7746 0.711242 0.355621 0.934630i 0.384269π-0.384269\pi
0.355621 + 0.934630i 0.384269π0.384269\pi
774774 11.4136 0.410255
775775 0 0
776776 10.9368 0.392608
777777 3.68208 0.132094
778778 −27.5285 −0.986944
779779 −48.3966 −1.73399
780780 0 0
781781 −7.15530 −0.256037
782782 −8.43348 −0.301581
783783 8.16879 0.291929
784784 −1.81005 −0.0646446
785785 0 0
786786 −5.42285 −0.193427
787787 −54.9074 −1.95724 −0.978620 0.205679i 0.934060π-0.934060\pi
−0.978620 + 0.205679i 0.934060π0.934060\pi
788788 −15.0380 −0.535708
789789 −20.0693 −0.714486
790790 0 0
791791 −6.16464 −0.219189
792792 −9.35152 −0.332292
793793 −5.33397 −0.189415
794794 21.9869 0.780284
795795 0 0
796796 6.15602 0.218194
797797 1.68210 0.0595829 0.0297915 0.999556i 0.490516π-0.490516\pi
0.0297915 + 0.999556i 0.490516π0.490516\pi
798798 6.50597 0.230309
799799 −9.33290 −0.330174
800800 0 0
801801 8.78928 0.310554
802802 −17.9698 −0.634534
803803 −9.23937 −0.326050
804804 1.87884 0.0662617
805805 0 0
806806 4.71232 0.165984
807807 −13.3115 −0.468587
808808 49.0494 1.72555
809809 −23.3025 −0.819271 −0.409635 0.912249i 0.634344π-0.634344\pi
−0.409635 + 0.912249i 0.634344π0.634344\pi
810810 0 0
811811 34.6479 1.21665 0.608326 0.793687i 0.291841π-0.291841\pi
0.608326 + 0.793687i 0.291841π0.291841\pi
812812 −6.42102 −0.225334
813813 7.51453 0.263546
814814 12.3591 0.433187
815815 0 0
816816 1.81005 0.0633644
817817 61.1693 2.14004
818818 0.437953 0.0153127
819819 0.439346 0.0153520
820820 0 0
821821 −49.0570 −1.71210 −0.856050 0.516893i 0.827089π-0.827089\pi
−0.856050 + 0.516893i 0.827089π0.827089\pi
822822 −2.13774 −0.0745622
823823 36.0235 1.25570 0.627850 0.778335i 0.283935π-0.283935\pi
0.627850 + 0.778335i 0.283935π0.283935\pi
824824 22.4312 0.781429
825825 0 0
826826 11.6012 0.403657
827827 −20.2569 −0.704400 −0.352200 0.935925i 0.614566π-0.614566\pi
−0.352200 + 0.935925i 0.614566π0.614566\pi
828828 −6.01661 −0.209092
829829 −8.08234 −0.280711 −0.140356 0.990101i 0.544825π-0.544825\pi
−0.140356 + 0.990101i 0.544825π0.544825\pi
830830 0 0
831831 −15.6195 −0.541834
832832 −3.59695 −0.124702
833833 1.00000 0.0346479
834834 4.20234 0.145515
835835 0 0
836836 −14.1400 −0.489042
837837 −9.73478 −0.336483
838838 22.4404 0.775192
839839 7.77593 0.268455 0.134227 0.990951i 0.457145π-0.457145\pi
0.134227 + 0.990951i 0.457145π0.457145\pi
840840 0 0
841841 37.7291 1.30100
842842 29.3471 1.01137
843843 −9.60615 −0.330853
844844 −7.67406 −0.264152
845845 0 0
846846 10.2830 0.353535
847847 1.71920 0.0590726
848848 22.5301 0.773688
849849 11.4373 0.392527
850850 0 0
851851 28.1837 0.966126
852852 1.84621 0.0632502
853853 16.3466 0.559697 0.279848 0.960044i 0.409716π-0.409716\pi
0.279848 + 0.960044i 0.409716π0.409716\pi
854854 13.3766 0.457737
855855 0 0
856856 −25.8774 −0.884473
857857 39.7324 1.35723 0.678617 0.734493i 0.262580π-0.262580\pi
0.678617 + 0.734493i 0.262580π0.262580\pi
858858 1.47469 0.0503452
859859 −21.9711 −0.749646 −0.374823 0.927096i 0.622296π-0.622296\pi
−0.374823 + 0.927096i 0.622296π0.622296\pi
860860 0 0
861861 8.19605 0.279321
862862 −12.7263 −0.433459
863863 28.2334 0.961077 0.480538 0.876974i 0.340441π-0.340441\pi
0.480538 + 0.876974i 0.340441π0.340441\pi
864864 4.14500 0.141016
865865 0 0
866866 −3.26054 −0.110798
867867 −1.00000 −0.0339618
868868 7.65196 0.259724
869869 34.6974 1.17703
870870 0 0
871871 −1.05015 −0.0355830
872872 13.8303 0.468354
873873 3.56287 0.120585
874874 49.7986 1.68446
875875 0 0
876876 2.38394 0.0805460
877877 −41.0884 −1.38746 −0.693729 0.720237i 0.744033π-0.744033\pi
−0.693729 + 0.720237i 0.744033π0.744033\pi
878878 −17.1601 −0.579126
879879 −12.2750 −0.414024
880880 0 0
881881 −45.6061 −1.53651 −0.768255 0.640144i 0.778875π-0.778875\pi
−0.768255 + 0.640144i 0.778875π0.778875\pi
882882 −1.10180 −0.0370994
883883 −13.5143 −0.454794 −0.227397 0.973802i 0.573021π-0.573021\pi
−0.227397 + 0.973802i 0.573021π0.573021\pi
884884 0.345345 0.0116152
885885 0 0
886886 −7.01281 −0.235600
887887 −45.8729 −1.54026 −0.770130 0.637886i 0.779809π-0.779809\pi
−0.770130 + 0.637886i 0.779809π0.779809\pi
888888 −11.3027 −0.379294
889889 10.2969 0.345347
890890 0 0
891891 −3.04644 −0.102060
892892 −4.86169 −0.162781
893893 55.1096 1.84417
894894 3.13739 0.104930
895895 0 0
896896 0.730462 0.0244030
897897 3.36289 0.112284
898898 4.19834 0.140100
899899 −79.5213 −2.65218
900900 0 0
901901 −12.4473 −0.414678
902902 27.5105 0.916000
903903 −10.3591 −0.344730
904904 18.9233 0.629380
905905 0 0
906906 2.06351 0.0685554
907907 −33.6478 −1.11726 −0.558629 0.829418i 0.688672π-0.688672\pi
−0.558629 + 0.829418i 0.688672π0.688672\pi
908908 8.01887 0.266116
909909 15.9788 0.529983
910910 0 0
911911 −9.72408 −0.322173 −0.161087 0.986940i 0.551500π-0.551500\pi
−0.161087 + 0.986940i 0.551500π0.551500\pi
912912 −10.6881 −0.353919
913913 31.0450 1.02744
914914 16.9222 0.559737
915915 0 0
916916 −0.135997 −0.00449345
917917 4.92183 0.162533
918918 1.10180 0.0363647
919919 9.65047 0.318340 0.159170 0.987251i 0.449118π-0.449118\pi
0.159170 + 0.987251i 0.449118π0.449118\pi
920920 0 0
921921 −5.40443 −0.178082
922922 24.2738 0.799415
923923 −1.03191 −0.0339658
924924 2.39463 0.0787777
925925 0 0
926926 40.0012 1.31452
927927 7.30742 0.240007
928928 33.8596 1.11150
929929 28.8272 0.945790 0.472895 0.881119i 0.343209π-0.343209\pi
0.472895 + 0.881119i 0.343209π0.343209\pi
930930 0 0
931931 −5.90487 −0.193524
932932 7.61517 0.249443
933933 −32.2620 −1.05621
934934 33.4004 1.09289
935935 0 0
936936 −1.34864 −0.0440817
937937 −3.70199 −0.120939 −0.0604694 0.998170i 0.519260π-0.519260\pi
−0.0604694 + 0.998170i 0.519260π0.519260\pi
938938 2.63358 0.0859893
939939 21.0758 0.687783
940940 0 0
941941 −2.27664 −0.0742163 −0.0371081 0.999311i 0.511815π-0.511815\pi
−0.0371081 + 0.999311i 0.511815π0.511815\pi
942942 −9.45530 −0.308070
943943 62.7350 2.04293
944944 −19.0586 −0.620305
945945 0 0
946946 −34.7710 −1.13050
947947 −35.7225 −1.16083 −0.580413 0.814322i 0.697109π-0.697109\pi
−0.580413 + 0.814322i 0.697109π0.697109\pi
948948 −8.95262 −0.290768
949949 −1.33247 −0.0432537
950950 0 0
951951 −3.98509 −0.129225
952952 −3.06965 −0.0994881
953953 2.30568 0.0746884 0.0373442 0.999302i 0.488110π-0.488110\pi
0.0373442 + 0.999302i 0.488110π0.488110\pi
954954 13.7144 0.444019
955955 0 0
956956 −10.8417 −0.350647
957957 −24.8857 −0.804441
958958 46.4589 1.50102
959959 1.94023 0.0626533
960960 0 0
961961 63.7658 2.05696
962962 1.78239 0.0574664
963963 −8.43009 −0.271656
964964 −11.6713 −0.375909
965965 0 0
966966 −8.43348 −0.271343
967967 −34.1970 −1.09970 −0.549850 0.835263i 0.685315π-0.685315\pi
−0.549850 + 0.835263i 0.685315π0.685315\pi
968968 −5.27736 −0.169621
969969 5.90487 0.189692
970970 0 0
971971 27.4706 0.881572 0.440786 0.897612i 0.354700π-0.354700\pi
0.440786 + 0.897612i 0.354700π0.354700\pi
972972 0.786043 0.0252124
973973 −3.81408 −0.122274
974974 14.6945 0.470843
975975 0 0
976976 −21.9753 −0.703411
977977 6.27388 0.200719 0.100360 0.994951i 0.468001π-0.468001\pi
0.100360 + 0.994951i 0.468001π0.468001\pi
978978 25.4380 0.813419
979979 −26.7760 −0.855765
980980 0 0
981981 4.50550 0.143850
982982 26.3138 0.839708
983983 −53.7390 −1.71401 −0.857004 0.515310i 0.827677π-0.827677\pi
−0.857004 + 0.515310i 0.827677π0.827677\pi
984984 −25.1590 −0.802041
985985 0 0
986986 9.00035 0.286629
987987 −9.33290 −0.297069
988988 −2.03922 −0.0648762
989989 −79.2918 −2.52133
990990 0 0
991991 0.161791 0.00513947 0.00256973 0.999997i 0.499182π-0.499182\pi
0.00256973 + 0.999997i 0.499182π0.499182\pi
992992 −40.3507 −1.28113
993993 8.35495 0.265136
994994 2.58784 0.0820812
995995 0 0
996996 −8.01025 −0.253814
997997 18.7831 0.594867 0.297433 0.954743i 0.403869π-0.403869\pi
0.297433 + 0.954743i 0.403869π0.403869\pi
998998 −44.5488 −1.41017
999999 −3.68208 −0.116496
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8925.2.a.cu.1.6 14
5.2 odd 4 1785.2.g.g.1429.11 28
5.3 odd 4 1785.2.g.g.1429.18 yes 28
5.4 even 2 8925.2.a.cx.1.9 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.g.1429.11 28 5.2 odd 4
1785.2.g.g.1429.18 yes 28 5.3 odd 4
8925.2.a.cu.1.6 14 1.1 even 1 trivial
8925.2.a.cx.1.9 14 5.4 even 2