Properties

Label 8925.2.a.cu.1.6
Level $8925$
Weight $2$
Character 8925.1
Self dual yes
Analytic conductor $71.266$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2664838040\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} - 18 x^{12} + 54 x^{11} + 124 x^{10} - 366 x^{9} - 416 x^{8} + 1164 x^{7} + 727 x^{6} + \cdots - 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.10180\) of defining polynomial
Character \(\chi\) \(=\) 8925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.10180 q^{2} -1.00000 q^{3} -0.786043 q^{4} +1.10180 q^{6} -1.00000 q^{7} +3.06965 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.10180 q^{2} -1.00000 q^{3} -0.786043 q^{4} +1.10180 q^{6} -1.00000 q^{7} +3.06965 q^{8} +1.00000 q^{9} -3.04644 q^{11} +0.786043 q^{12} -0.439346 q^{13} +1.10180 q^{14} -1.81005 q^{16} +1.00000 q^{17} -1.10180 q^{18} -5.90487 q^{19} +1.00000 q^{21} +3.35656 q^{22} +7.65430 q^{23} -3.06965 q^{24} +0.484071 q^{26} -1.00000 q^{27} +0.786043 q^{28} -8.16879 q^{29} +9.73478 q^{31} -4.14500 q^{32} +3.04644 q^{33} -1.10180 q^{34} -0.786043 q^{36} +3.68208 q^{37} +6.50597 q^{38} +0.439346 q^{39} +8.19605 q^{41} -1.10180 q^{42} -10.3591 q^{43} +2.39463 q^{44} -8.43348 q^{46} -9.33290 q^{47} +1.81005 q^{48} +1.00000 q^{49} -1.00000 q^{51} +0.345345 q^{52} -12.4473 q^{53} +1.10180 q^{54} -3.06965 q^{56} +5.90487 q^{57} +9.00035 q^{58} +10.5293 q^{59} +12.1407 q^{61} -10.7257 q^{62} -1.00000 q^{63} +8.18705 q^{64} -3.35656 q^{66} +2.39025 q^{67} -0.786043 q^{68} -7.65430 q^{69} +2.34874 q^{71} +3.06965 q^{72} +3.03284 q^{73} -4.05690 q^{74} +4.64148 q^{76} +3.04644 q^{77} -0.484071 q^{78} -11.3895 q^{79} +1.00000 q^{81} -9.03039 q^{82} -10.1906 q^{83} -0.786043 q^{84} +11.4136 q^{86} +8.16879 q^{87} -9.35152 q^{88} +8.78928 q^{89} +0.439346 q^{91} -6.01661 q^{92} -9.73478 q^{93} +10.2830 q^{94} +4.14500 q^{96} +3.56287 q^{97} -1.10180 q^{98} -3.04644 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 3 q^{2} - 14 q^{3} + 17 q^{4} + 3 q^{6} - 14 q^{7} - 15 q^{8} + 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 14 q - 3 q^{2} - 14 q^{3} + 17 q^{4} + 3 q^{6} - 14 q^{7} - 15 q^{8} + 14 q^{9} + 4 q^{11} - 17 q^{12} + q^{13} + 3 q^{14} + 19 q^{16} + 14 q^{17} - 3 q^{18} - 6 q^{19} + 14 q^{21} - 12 q^{22} - 7 q^{23} + 15 q^{24} - 2 q^{26} - 14 q^{27} - 17 q^{28} + 20 q^{29} - 7 q^{31} - 33 q^{32} - 4 q^{33} - 3 q^{34} + 17 q^{36} - 9 q^{37} - 18 q^{38} - q^{39} + 25 q^{41} - 3 q^{42} - 28 q^{43} + 24 q^{44} - 10 q^{46} - 29 q^{47} - 19 q^{48} + 14 q^{49} - 14 q^{51} - 4 q^{52} - 26 q^{53} + 3 q^{54} + 15 q^{56} + 6 q^{57} - 2 q^{58} + 14 q^{59} - 9 q^{61} - 28 q^{62} - 14 q^{63} + 27 q^{64} + 12 q^{66} - 32 q^{67} + 17 q^{68} + 7 q^{69} + 2 q^{71} - 15 q^{72} - 18 q^{73} + 64 q^{74} - 42 q^{76} - 4 q^{77} + 2 q^{78} - 4 q^{79} + 14 q^{81} - 42 q^{82} - 51 q^{83} + 17 q^{84} + 44 q^{86} - 20 q^{87} - 32 q^{88} + 38 q^{89} - q^{91} + 16 q^{92} + 7 q^{93} + 8 q^{94} + 33 q^{96} - 14 q^{97} - 3 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10180 −0.779088 −0.389544 0.921008i \(-0.627367\pi\)
−0.389544 + 0.921008i \(0.627367\pi\)
\(3\) −1.00000 −0.577350
\(4\) −0.786043 −0.393022
\(5\) 0 0
\(6\) 1.10180 0.449807
\(7\) −1.00000 −0.377964
\(8\) 3.06965 1.08529
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.04644 −0.918536 −0.459268 0.888298i \(-0.651888\pi\)
−0.459268 + 0.888298i \(0.651888\pi\)
\(12\) 0.786043 0.226911
\(13\) −0.439346 −0.121853 −0.0609264 0.998142i \(-0.519405\pi\)
−0.0609264 + 0.998142i \(0.519405\pi\)
\(14\) 1.10180 0.294468
\(15\) 0 0
\(16\) −1.81005 −0.452512
\(17\) 1.00000 0.242536
\(18\) −1.10180 −0.259696
\(19\) −5.90487 −1.35467 −0.677335 0.735675i \(-0.736865\pi\)
−0.677335 + 0.735675i \(0.736865\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 3.35656 0.715621
\(23\) 7.65430 1.59603 0.798016 0.602637i \(-0.205883\pi\)
0.798016 + 0.602637i \(0.205883\pi\)
\(24\) −3.06965 −0.626591
\(25\) 0 0
\(26\) 0.484071 0.0949341
\(27\) −1.00000 −0.192450
\(28\) 0.786043 0.148548
\(29\) −8.16879 −1.51691 −0.758453 0.651728i \(-0.774044\pi\)
−0.758453 + 0.651728i \(0.774044\pi\)
\(30\) 0 0
\(31\) 9.73478 1.74842 0.874209 0.485551i \(-0.161381\pi\)
0.874209 + 0.485551i \(0.161381\pi\)
\(32\) −4.14500 −0.732740
\(33\) 3.04644 0.530317
\(34\) −1.10180 −0.188957
\(35\) 0 0
\(36\) −0.786043 −0.131007
\(37\) 3.68208 0.605330 0.302665 0.953097i \(-0.402124\pi\)
0.302665 + 0.953097i \(0.402124\pi\)
\(38\) 6.50597 1.05541
\(39\) 0.439346 0.0703517
\(40\) 0 0
\(41\) 8.19605 1.28001 0.640004 0.768371i \(-0.278933\pi\)
0.640004 + 0.768371i \(0.278933\pi\)
\(42\) −1.10180 −0.170011
\(43\) −10.3591 −1.57975 −0.789876 0.613267i \(-0.789855\pi\)
−0.789876 + 0.613267i \(0.789855\pi\)
\(44\) 2.39463 0.361005
\(45\) 0 0
\(46\) −8.43348 −1.24345
\(47\) −9.33290 −1.36134 −0.680672 0.732589i \(-0.738312\pi\)
−0.680672 + 0.732589i \(0.738312\pi\)
\(48\) 1.81005 0.261258
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0.345345 0.0478908
\(53\) −12.4473 −1.70976 −0.854881 0.518824i \(-0.826370\pi\)
−0.854881 + 0.518824i \(0.826370\pi\)
\(54\) 1.10180 0.149936
\(55\) 0 0
\(56\) −3.06965 −0.410200
\(57\) 5.90487 0.782119
\(58\) 9.00035 1.18180
\(59\) 10.5293 1.37080 0.685402 0.728165i \(-0.259627\pi\)
0.685402 + 0.728165i \(0.259627\pi\)
\(60\) 0 0
\(61\) 12.1407 1.55446 0.777229 0.629218i \(-0.216625\pi\)
0.777229 + 0.629218i \(0.216625\pi\)
\(62\) −10.7257 −1.36217
\(63\) −1.00000 −0.125988
\(64\) 8.18705 1.02338
\(65\) 0 0
\(66\) −3.35656 −0.413164
\(67\) 2.39025 0.292016 0.146008 0.989283i \(-0.453357\pi\)
0.146008 + 0.989283i \(0.453357\pi\)
\(68\) −0.786043 −0.0953218
\(69\) −7.65430 −0.921469
\(70\) 0 0
\(71\) 2.34874 0.278744 0.139372 0.990240i \(-0.455492\pi\)
0.139372 + 0.990240i \(0.455492\pi\)
\(72\) 3.06965 0.361762
\(73\) 3.03284 0.354967 0.177484 0.984124i \(-0.443204\pi\)
0.177484 + 0.984124i \(0.443204\pi\)
\(74\) −4.05690 −0.471605
\(75\) 0 0
\(76\) 4.64148 0.532415
\(77\) 3.04644 0.347174
\(78\) −0.484071 −0.0548102
\(79\) −11.3895 −1.28142 −0.640708 0.767784i \(-0.721359\pi\)
−0.640708 + 0.767784i \(0.721359\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −9.03039 −0.997239
\(83\) −10.1906 −1.11856 −0.559281 0.828978i \(-0.688923\pi\)
−0.559281 + 0.828978i \(0.688923\pi\)
\(84\) −0.786043 −0.0857644
\(85\) 0 0
\(86\) 11.4136 1.23077
\(87\) 8.16879 0.875786
\(88\) −9.35152 −0.996875
\(89\) 8.78928 0.931662 0.465831 0.884874i \(-0.345755\pi\)
0.465831 + 0.884874i \(0.345755\pi\)
\(90\) 0 0
\(91\) 0.439346 0.0460560
\(92\) −6.01661 −0.627275
\(93\) −9.73478 −1.00945
\(94\) 10.2830 1.06061
\(95\) 0 0
\(96\) 4.14500 0.423047
\(97\) 3.56287 0.361755 0.180877 0.983506i \(-0.442106\pi\)
0.180877 + 0.983506i \(0.442106\pi\)
\(98\) −1.10180 −0.111298
\(99\) −3.04644 −0.306179
\(100\) 0 0
\(101\) 15.9788 1.58995 0.794975 0.606642i \(-0.207484\pi\)
0.794975 + 0.606642i \(0.207484\pi\)
\(102\) 1.10180 0.109094
\(103\) 7.30742 0.720021 0.360011 0.932948i \(-0.382773\pi\)
0.360011 + 0.932948i \(0.382773\pi\)
\(104\) −1.34864 −0.132245
\(105\) 0 0
\(106\) 13.7144 1.33206
\(107\) −8.43009 −0.814967 −0.407484 0.913213i \(-0.633594\pi\)
−0.407484 + 0.913213i \(0.633594\pi\)
\(108\) 0.786043 0.0756371
\(109\) 4.50550 0.431549 0.215774 0.976443i \(-0.430772\pi\)
0.215774 + 0.976443i \(0.430772\pi\)
\(110\) 0 0
\(111\) −3.68208 −0.349487
\(112\) 1.81005 0.171034
\(113\) 6.16464 0.579920 0.289960 0.957039i \(-0.406358\pi\)
0.289960 + 0.957039i \(0.406358\pi\)
\(114\) −6.50597 −0.609340
\(115\) 0 0
\(116\) 6.42102 0.596177
\(117\) −0.439346 −0.0406176
\(118\) −11.6012 −1.06798
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −1.71920 −0.156291
\(122\) −13.3766 −1.21106
\(123\) −8.19605 −0.739013
\(124\) −7.65196 −0.687166
\(125\) 0 0
\(126\) 1.10180 0.0981559
\(127\) −10.2969 −0.913703 −0.456851 0.889543i \(-0.651023\pi\)
−0.456851 + 0.889543i \(0.651023\pi\)
\(128\) −0.730462 −0.0645643
\(129\) 10.3591 0.912070
\(130\) 0 0
\(131\) −4.92183 −0.430022 −0.215011 0.976612i \(-0.568979\pi\)
−0.215011 + 0.976612i \(0.568979\pi\)
\(132\) −2.39463 −0.208426
\(133\) 5.90487 0.512017
\(134\) −2.63358 −0.227506
\(135\) 0 0
\(136\) 3.06965 0.263221
\(137\) −1.94023 −0.165765 −0.0828825 0.996559i \(-0.526413\pi\)
−0.0828825 + 0.996559i \(0.526413\pi\)
\(138\) 8.43348 0.717906
\(139\) 3.81408 0.323506 0.161753 0.986831i \(-0.448285\pi\)
0.161753 + 0.986831i \(0.448285\pi\)
\(140\) 0 0
\(141\) 9.33290 0.785972
\(142\) −2.58784 −0.217166
\(143\) 1.33844 0.111926
\(144\) −1.81005 −0.150837
\(145\) 0 0
\(146\) −3.34158 −0.276551
\(147\) −1.00000 −0.0824786
\(148\) −2.89427 −0.237908
\(149\) 2.84752 0.233278 0.116639 0.993174i \(-0.462788\pi\)
0.116639 + 0.993174i \(0.462788\pi\)
\(150\) 0 0
\(151\) 1.87286 0.152411 0.0762054 0.997092i \(-0.475720\pi\)
0.0762054 + 0.997092i \(0.475720\pi\)
\(152\) −18.1259 −1.47021
\(153\) 1.00000 0.0808452
\(154\) −3.35656 −0.270479
\(155\) 0 0
\(156\) −0.345345 −0.0276498
\(157\) −8.58171 −0.684895 −0.342447 0.939537i \(-0.611256\pi\)
−0.342447 + 0.939537i \(0.611256\pi\)
\(158\) 12.5489 0.998336
\(159\) 12.4473 0.987132
\(160\) 0 0
\(161\) −7.65430 −0.603243
\(162\) −1.10180 −0.0865653
\(163\) 23.0878 1.80837 0.904187 0.427137i \(-0.140478\pi\)
0.904187 + 0.427137i \(0.140478\pi\)
\(164\) −6.44245 −0.503071
\(165\) 0 0
\(166\) 11.2280 0.871459
\(167\) −3.39386 −0.262625 −0.131312 0.991341i \(-0.541919\pi\)
−0.131312 + 0.991341i \(0.541919\pi\)
\(168\) 3.06965 0.236829
\(169\) −12.8070 −0.985152
\(170\) 0 0
\(171\) −5.90487 −0.451557
\(172\) 8.14272 0.620876
\(173\) −2.55812 −0.194491 −0.0972453 0.995260i \(-0.531003\pi\)
−0.0972453 + 0.995260i \(0.531003\pi\)
\(174\) −9.00035 −0.682314
\(175\) 0 0
\(176\) 5.51421 0.415649
\(177\) −10.5293 −0.791434
\(178\) −9.68401 −0.725847
\(179\) 7.83699 0.585764 0.292882 0.956149i \(-0.405386\pi\)
0.292882 + 0.956149i \(0.405386\pi\)
\(180\) 0 0
\(181\) −22.8457 −1.69811 −0.849054 0.528307i \(-0.822827\pi\)
−0.849054 + 0.528307i \(0.822827\pi\)
\(182\) −0.484071 −0.0358817
\(183\) −12.1407 −0.897466
\(184\) 23.4960 1.73215
\(185\) 0 0
\(186\) 10.7257 0.786450
\(187\) −3.04644 −0.222778
\(188\) 7.33606 0.535037
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −9.30557 −0.673327 −0.336664 0.941625i \(-0.609298\pi\)
−0.336664 + 0.941625i \(0.609298\pi\)
\(192\) −8.18705 −0.590849
\(193\) 19.4366 1.39908 0.699540 0.714594i \(-0.253388\pi\)
0.699540 + 0.714594i \(0.253388\pi\)
\(194\) −3.92556 −0.281839
\(195\) 0 0
\(196\) −0.786043 −0.0561460
\(197\) 19.1313 1.36305 0.681525 0.731795i \(-0.261317\pi\)
0.681525 + 0.731795i \(0.261317\pi\)
\(198\) 3.35656 0.238540
\(199\) −7.83165 −0.555171 −0.277586 0.960701i \(-0.589534\pi\)
−0.277586 + 0.960701i \(0.589534\pi\)
\(200\) 0 0
\(201\) −2.39025 −0.168596
\(202\) −17.6054 −1.23871
\(203\) 8.16879 0.573336
\(204\) 0.786043 0.0550340
\(205\) 0 0
\(206\) −8.05129 −0.560960
\(207\) 7.65430 0.532010
\(208\) 0.795239 0.0551399
\(209\) 17.9888 1.24431
\(210\) 0 0
\(211\) 9.76289 0.672105 0.336053 0.941843i \(-0.390908\pi\)
0.336053 + 0.941843i \(0.390908\pi\)
\(212\) 9.78409 0.671974
\(213\) −2.34874 −0.160933
\(214\) 9.28824 0.634931
\(215\) 0 0
\(216\) −3.06965 −0.208864
\(217\) −9.73478 −0.660840
\(218\) −4.96415 −0.336215
\(219\) −3.03284 −0.204940
\(220\) 0 0
\(221\) −0.439346 −0.0295536
\(222\) 4.05690 0.272282
\(223\) 6.18501 0.414179 0.207090 0.978322i \(-0.433601\pi\)
0.207090 + 0.978322i \(0.433601\pi\)
\(224\) 4.14500 0.276950
\(225\) 0 0
\(226\) −6.79218 −0.451809
\(227\) −10.2016 −0.677101 −0.338551 0.940948i \(-0.609937\pi\)
−0.338551 + 0.940948i \(0.609937\pi\)
\(228\) −4.64148 −0.307390
\(229\) 0.173014 0.0114331 0.00571655 0.999984i \(-0.498180\pi\)
0.00571655 + 0.999984i \(0.498180\pi\)
\(230\) 0 0
\(231\) −3.04644 −0.200441
\(232\) −25.0754 −1.64628
\(233\) −9.68797 −0.634680 −0.317340 0.948312i \(-0.602790\pi\)
−0.317340 + 0.948312i \(0.602790\pi\)
\(234\) 0.484071 0.0316447
\(235\) 0 0
\(236\) −8.27652 −0.538755
\(237\) 11.3895 0.739826
\(238\) 1.10180 0.0714189
\(239\) 13.7928 0.892183 0.446091 0.894987i \(-0.352816\pi\)
0.446091 + 0.894987i \(0.352816\pi\)
\(240\) 0 0
\(241\) 14.8482 0.956458 0.478229 0.878235i \(-0.341279\pi\)
0.478229 + 0.878235i \(0.341279\pi\)
\(242\) 1.89421 0.121765
\(243\) −1.00000 −0.0641500
\(244\) −9.54312 −0.610935
\(245\) 0 0
\(246\) 9.03039 0.575756
\(247\) 2.59428 0.165070
\(248\) 29.8824 1.89753
\(249\) 10.1906 0.645803
\(250\) 0 0
\(251\) 5.41270 0.341646 0.170823 0.985302i \(-0.445357\pi\)
0.170823 + 0.985302i \(0.445357\pi\)
\(252\) 0.786043 0.0495161
\(253\) −23.3184 −1.46601
\(254\) 11.3451 0.711855
\(255\) 0 0
\(256\) −15.5693 −0.973080
\(257\) −9.73884 −0.607492 −0.303746 0.952753i \(-0.598237\pi\)
−0.303746 + 0.952753i \(0.598237\pi\)
\(258\) −11.4136 −0.710583
\(259\) −3.68208 −0.228793
\(260\) 0 0
\(261\) −8.16879 −0.505635
\(262\) 5.42285 0.335025
\(263\) 20.0693 1.23753 0.618763 0.785578i \(-0.287634\pi\)
0.618763 + 0.785578i \(0.287634\pi\)
\(264\) 9.35152 0.575546
\(265\) 0 0
\(266\) −6.50597 −0.398907
\(267\) −8.78928 −0.537895
\(268\) −1.87884 −0.114769
\(269\) 13.3115 0.811617 0.405808 0.913958i \(-0.366990\pi\)
0.405808 + 0.913958i \(0.366990\pi\)
\(270\) 0 0
\(271\) −7.51453 −0.456475 −0.228238 0.973605i \(-0.573296\pi\)
−0.228238 + 0.973605i \(0.573296\pi\)
\(272\) −1.81005 −0.109750
\(273\) −0.439346 −0.0265905
\(274\) 2.13774 0.129146
\(275\) 0 0
\(276\) 6.01661 0.362157
\(277\) 15.6195 0.938484 0.469242 0.883070i \(-0.344527\pi\)
0.469242 + 0.883070i \(0.344527\pi\)
\(278\) −4.20234 −0.252040
\(279\) 9.73478 0.582806
\(280\) 0 0
\(281\) 9.60615 0.573055 0.286527 0.958072i \(-0.407499\pi\)
0.286527 + 0.958072i \(0.407499\pi\)
\(282\) −10.2830 −0.612341
\(283\) −11.4373 −0.679877 −0.339938 0.940448i \(-0.610406\pi\)
−0.339938 + 0.940448i \(0.610406\pi\)
\(284\) −1.84621 −0.109553
\(285\) 0 0
\(286\) −1.47469 −0.0872004
\(287\) −8.19605 −0.483798
\(288\) −4.14500 −0.244247
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −3.56287 −0.208859
\(292\) −2.38394 −0.139510
\(293\) 12.2750 0.717111 0.358555 0.933508i \(-0.383269\pi\)
0.358555 + 0.933508i \(0.383269\pi\)
\(294\) 1.10180 0.0642581
\(295\) 0 0
\(296\) 11.3027 0.656957
\(297\) 3.04644 0.176772
\(298\) −3.13739 −0.181744
\(299\) −3.36289 −0.194481
\(300\) 0 0
\(301\) 10.3591 0.597090
\(302\) −2.06351 −0.118741
\(303\) −15.9788 −0.917958
\(304\) 10.6881 0.613005
\(305\) 0 0
\(306\) −1.10180 −0.0629855
\(307\) 5.40443 0.308447 0.154224 0.988036i \(-0.450712\pi\)
0.154224 + 0.988036i \(0.450712\pi\)
\(308\) −2.39463 −0.136447
\(309\) −7.30742 −0.415704
\(310\) 0 0
\(311\) 32.2620 1.82941 0.914706 0.404120i \(-0.132422\pi\)
0.914706 + 0.404120i \(0.132422\pi\)
\(312\) 1.34864 0.0763518
\(313\) −21.0758 −1.19128 −0.595638 0.803253i \(-0.703101\pi\)
−0.595638 + 0.803253i \(0.703101\pi\)
\(314\) 9.45530 0.533593
\(315\) 0 0
\(316\) 8.95262 0.503624
\(317\) 3.98509 0.223825 0.111912 0.993718i \(-0.464302\pi\)
0.111912 + 0.993718i \(0.464302\pi\)
\(318\) −13.7144 −0.769063
\(319\) 24.8857 1.39333
\(320\) 0 0
\(321\) 8.43009 0.470522
\(322\) 8.43348 0.469980
\(323\) −5.90487 −0.328556
\(324\) −0.786043 −0.0436691
\(325\) 0 0
\(326\) −25.4380 −1.40888
\(327\) −4.50550 −0.249155
\(328\) 25.1590 1.38918
\(329\) 9.33290 0.514539
\(330\) 0 0
\(331\) −8.35495 −0.459230 −0.229615 0.973282i \(-0.573747\pi\)
−0.229615 + 0.973282i \(0.573747\pi\)
\(332\) 8.01025 0.439619
\(333\) 3.68208 0.201777
\(334\) 3.73934 0.204608
\(335\) 0 0
\(336\) −1.81005 −0.0987463
\(337\) −14.9303 −0.813306 −0.406653 0.913583i \(-0.633304\pi\)
−0.406653 + 0.913583i \(0.633304\pi\)
\(338\) 14.1107 0.767520
\(339\) −6.16464 −0.334817
\(340\) 0 0
\(341\) −29.6564 −1.60598
\(342\) 6.50597 0.351803
\(343\) −1.00000 −0.0539949
\(344\) −31.7989 −1.71448
\(345\) 0 0
\(346\) 2.81853 0.151525
\(347\) 3.39494 0.182250 0.0911249 0.995839i \(-0.470954\pi\)
0.0911249 + 0.995839i \(0.470954\pi\)
\(348\) −6.42102 −0.344203
\(349\) −15.7574 −0.843475 −0.421737 0.906718i \(-0.638580\pi\)
−0.421737 + 0.906718i \(0.638580\pi\)
\(350\) 0 0
\(351\) 0.439346 0.0234506
\(352\) 12.6275 0.673048
\(353\) −23.7404 −1.26358 −0.631788 0.775141i \(-0.717679\pi\)
−0.631788 + 0.775141i \(0.717679\pi\)
\(354\) 11.6012 0.616597
\(355\) 0 0
\(356\) −6.90876 −0.366163
\(357\) 1.00000 0.0529256
\(358\) −8.63477 −0.456362
\(359\) 31.2687 1.65030 0.825148 0.564916i \(-0.191092\pi\)
0.825148 + 0.564916i \(0.191092\pi\)
\(360\) 0 0
\(361\) 15.8675 0.835132
\(362\) 25.1713 1.32298
\(363\) 1.71920 0.0902349
\(364\) −0.345345 −0.0181010
\(365\) 0 0
\(366\) 13.3766 0.699205
\(367\) 22.1182 1.15456 0.577279 0.816547i \(-0.304114\pi\)
0.577279 + 0.816547i \(0.304114\pi\)
\(368\) −13.8547 −0.722224
\(369\) 8.19605 0.426669
\(370\) 0 0
\(371\) 12.4473 0.646229
\(372\) 7.65196 0.396735
\(373\) −17.9326 −0.928514 −0.464257 0.885701i \(-0.653679\pi\)
−0.464257 + 0.885701i \(0.653679\pi\)
\(374\) 3.35656 0.173563
\(375\) 0 0
\(376\) −28.6488 −1.47745
\(377\) 3.58893 0.184839
\(378\) −1.10180 −0.0566703
\(379\) −24.4538 −1.25611 −0.628053 0.778171i \(-0.716148\pi\)
−0.628053 + 0.778171i \(0.716148\pi\)
\(380\) 0 0
\(381\) 10.2969 0.527527
\(382\) 10.2528 0.524581
\(383\) −33.0565 −1.68911 −0.844555 0.535469i \(-0.820135\pi\)
−0.844555 + 0.535469i \(0.820135\pi\)
\(384\) 0.730462 0.0372762
\(385\) 0 0
\(386\) −21.4152 −1.09001
\(387\) −10.3591 −0.526584
\(388\) −2.80057 −0.142178
\(389\) 24.9851 1.26679 0.633397 0.773827i \(-0.281660\pi\)
0.633397 + 0.773827i \(0.281660\pi\)
\(390\) 0 0
\(391\) 7.65430 0.387094
\(392\) 3.06965 0.155041
\(393\) 4.92183 0.248273
\(394\) −21.0788 −1.06194
\(395\) 0 0
\(396\) 2.39463 0.120335
\(397\) −19.9555 −1.00154 −0.500768 0.865582i \(-0.666949\pi\)
−0.500768 + 0.865582i \(0.666949\pi\)
\(398\) 8.62889 0.432527
\(399\) −5.90487 −0.295613
\(400\) 0 0
\(401\) 16.3095 0.814458 0.407229 0.913326i \(-0.366495\pi\)
0.407229 + 0.913326i \(0.366495\pi\)
\(402\) 2.63358 0.131351
\(403\) −4.27694 −0.213050
\(404\) −12.5600 −0.624885
\(405\) 0 0
\(406\) −9.00035 −0.446680
\(407\) −11.2172 −0.556017
\(408\) −3.06965 −0.151971
\(409\) −0.397490 −0.0196546 −0.00982730 0.999952i \(-0.503128\pi\)
−0.00982730 + 0.999952i \(0.503128\pi\)
\(410\) 0 0
\(411\) 1.94023 0.0957045
\(412\) −5.74395 −0.282984
\(413\) −10.5293 −0.518115
\(414\) −8.43348 −0.414483
\(415\) 0 0
\(416\) 1.82109 0.0892864
\(417\) −3.81408 −0.186776
\(418\) −19.8200 −0.969430
\(419\) −20.3671 −0.995000 −0.497500 0.867464i \(-0.665748\pi\)
−0.497500 + 0.867464i \(0.665748\pi\)
\(420\) 0 0
\(421\) −26.6356 −1.29814 −0.649071 0.760728i \(-0.724842\pi\)
−0.649071 + 0.760728i \(0.724842\pi\)
\(422\) −10.7567 −0.523629
\(423\) −9.33290 −0.453781
\(424\) −38.2088 −1.85558
\(425\) 0 0
\(426\) 2.58784 0.125381
\(427\) −12.1407 −0.587530
\(428\) 6.62641 0.320300
\(429\) −1.33844 −0.0646206
\(430\) 0 0
\(431\) 11.5505 0.556368 0.278184 0.960528i \(-0.410268\pi\)
0.278184 + 0.960528i \(0.410268\pi\)
\(432\) 1.81005 0.0870860
\(433\) 2.95930 0.142215 0.0711074 0.997469i \(-0.477347\pi\)
0.0711074 + 0.997469i \(0.477347\pi\)
\(434\) 10.7257 0.514852
\(435\) 0 0
\(436\) −3.54152 −0.169608
\(437\) −45.1976 −2.16210
\(438\) 3.34158 0.159667
\(439\) 15.5747 0.743338 0.371669 0.928365i \(-0.378786\pi\)
0.371669 + 0.928365i \(0.378786\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0.484071 0.0230249
\(443\) 6.36488 0.302405 0.151202 0.988503i \(-0.451685\pi\)
0.151202 + 0.988503i \(0.451685\pi\)
\(444\) 2.89427 0.137356
\(445\) 0 0
\(446\) −6.81463 −0.322682
\(447\) −2.84752 −0.134683
\(448\) −8.18705 −0.386802
\(449\) −3.81045 −0.179826 −0.0899131 0.995950i \(-0.528659\pi\)
−0.0899131 + 0.995950i \(0.528659\pi\)
\(450\) 0 0
\(451\) −24.9688 −1.17573
\(452\) −4.84567 −0.227921
\(453\) −1.87286 −0.0879944
\(454\) 11.2400 0.527522
\(455\) 0 0
\(456\) 18.1259 0.848824
\(457\) −15.3587 −0.718452 −0.359226 0.933251i \(-0.616959\pi\)
−0.359226 + 0.933251i \(0.616959\pi\)
\(458\) −0.190626 −0.00890739
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −22.0311 −1.02609 −0.513045 0.858361i \(-0.671483\pi\)
−0.513045 + 0.858361i \(0.671483\pi\)
\(462\) 3.35656 0.156161
\(463\) −36.3054 −1.68725 −0.843627 0.536930i \(-0.819584\pi\)
−0.843627 + 0.536930i \(0.819584\pi\)
\(464\) 14.7859 0.686418
\(465\) 0 0
\(466\) 10.6742 0.494472
\(467\) −30.3145 −1.40279 −0.701393 0.712775i \(-0.747438\pi\)
−0.701393 + 0.712775i \(0.747438\pi\)
\(468\) 0.345345 0.0159636
\(469\) −2.39025 −0.110372
\(470\) 0 0
\(471\) 8.58171 0.395424
\(472\) 32.3214 1.48771
\(473\) 31.5584 1.45106
\(474\) −12.5489 −0.576390
\(475\) 0 0
\(476\) 0.786043 0.0360282
\(477\) −12.4473 −0.569921
\(478\) −15.1969 −0.695089
\(479\) −42.1665 −1.92664 −0.963318 0.268361i \(-0.913518\pi\)
−0.963318 + 0.268361i \(0.913518\pi\)
\(480\) 0 0
\(481\) −1.61771 −0.0737611
\(482\) −16.3597 −0.745165
\(483\) 7.65430 0.348283
\(484\) 1.35137 0.0614259
\(485\) 0 0
\(486\) 1.10180 0.0499785
\(487\) −13.3369 −0.604351 −0.302176 0.953252i \(-0.597713\pi\)
−0.302176 + 0.953252i \(0.597713\pi\)
\(488\) 37.2678 1.68703
\(489\) −23.0878 −1.04407
\(490\) 0 0
\(491\) −23.8826 −1.07781 −0.538904 0.842367i \(-0.681162\pi\)
−0.538904 + 0.842367i \(0.681162\pi\)
\(492\) 6.44245 0.290448
\(493\) −8.16879 −0.367904
\(494\) −2.85837 −0.128604
\(495\) 0 0
\(496\) −17.6204 −0.791180
\(497\) −2.34874 −0.105356
\(498\) −11.2280 −0.503137
\(499\) 40.4328 1.81002 0.905011 0.425388i \(-0.139862\pi\)
0.905011 + 0.425388i \(0.139862\pi\)
\(500\) 0 0
\(501\) 3.39386 0.151626
\(502\) −5.96369 −0.266173
\(503\) −41.7195 −1.86018 −0.930091 0.367329i \(-0.880272\pi\)
−0.930091 + 0.367329i \(0.880272\pi\)
\(504\) −3.06965 −0.136733
\(505\) 0 0
\(506\) 25.6921 1.14215
\(507\) 12.8070 0.568778
\(508\) 8.09382 0.359105
\(509\) 28.0323 1.24251 0.621256 0.783608i \(-0.286623\pi\)
0.621256 + 0.783608i \(0.286623\pi\)
\(510\) 0 0
\(511\) −3.03284 −0.134165
\(512\) 18.6151 0.822679
\(513\) 5.90487 0.260706
\(514\) 10.7302 0.473290
\(515\) 0 0
\(516\) −8.14272 −0.358463
\(517\) 28.4321 1.25044
\(518\) 4.05690 0.178250
\(519\) 2.55812 0.112289
\(520\) 0 0
\(521\) 14.2991 0.626455 0.313227 0.949678i \(-0.398590\pi\)
0.313227 + 0.949678i \(0.398590\pi\)
\(522\) 9.00035 0.393934
\(523\) −36.8839 −1.61282 −0.806409 0.591358i \(-0.798592\pi\)
−0.806409 + 0.591358i \(0.798592\pi\)
\(524\) 3.86877 0.169008
\(525\) 0 0
\(526\) −22.1123 −0.964142
\(527\) 9.73478 0.424053
\(528\) −5.51421 −0.239975
\(529\) 35.5883 1.54732
\(530\) 0 0
\(531\) 10.5293 0.456934
\(532\) −4.64148 −0.201234
\(533\) −3.60091 −0.155973
\(534\) 9.68401 0.419068
\(535\) 0 0
\(536\) 7.33726 0.316921
\(537\) −7.83699 −0.338191
\(538\) −14.6666 −0.632321
\(539\) −3.04644 −0.131219
\(540\) 0 0
\(541\) −42.2184 −1.81511 −0.907555 0.419933i \(-0.862054\pi\)
−0.907555 + 0.419933i \(0.862054\pi\)
\(542\) 8.27949 0.355635
\(543\) 22.8457 0.980403
\(544\) −4.14500 −0.177715
\(545\) 0 0
\(546\) 0.484071 0.0207163
\(547\) 25.9995 1.11166 0.555829 0.831296i \(-0.312401\pi\)
0.555829 + 0.831296i \(0.312401\pi\)
\(548\) 1.52510 0.0651492
\(549\) 12.1407 0.518152
\(550\) 0 0
\(551\) 48.2356 2.05491
\(552\) −23.4960 −1.00006
\(553\) 11.3895 0.484330
\(554\) −17.2095 −0.731162
\(555\) 0 0
\(556\) −2.99803 −0.127145
\(557\) 35.3873 1.49941 0.749704 0.661773i \(-0.230196\pi\)
0.749704 + 0.661773i \(0.230196\pi\)
\(558\) −10.7257 −0.454057
\(559\) 4.55124 0.192497
\(560\) 0 0
\(561\) 3.04644 0.128621
\(562\) −10.5840 −0.446460
\(563\) −16.3680 −0.689831 −0.344915 0.938634i \(-0.612092\pi\)
−0.344915 + 0.938634i \(0.612092\pi\)
\(564\) −7.33606 −0.308904
\(565\) 0 0
\(566\) 12.6016 0.529684
\(567\) −1.00000 −0.0419961
\(568\) 7.20983 0.302518
\(569\) −30.6319 −1.28416 −0.642079 0.766638i \(-0.721928\pi\)
−0.642079 + 0.766638i \(0.721928\pi\)
\(570\) 0 0
\(571\) −41.5486 −1.73875 −0.869376 0.494150i \(-0.835479\pi\)
−0.869376 + 0.494150i \(0.835479\pi\)
\(572\) −1.05207 −0.0439894
\(573\) 9.30557 0.388746
\(574\) 9.03039 0.376921
\(575\) 0 0
\(576\) 8.18705 0.341127
\(577\) −12.6099 −0.524955 −0.262478 0.964938i \(-0.584540\pi\)
−0.262478 + 0.964938i \(0.584540\pi\)
\(578\) −1.10180 −0.0458287
\(579\) −19.4366 −0.807759
\(580\) 0 0
\(581\) 10.1906 0.422777
\(582\) 3.92556 0.162720
\(583\) 37.9198 1.57048
\(584\) 9.30977 0.385241
\(585\) 0 0
\(586\) −13.5245 −0.558692
\(587\) 10.9579 0.452282 0.226141 0.974095i \(-0.427389\pi\)
0.226141 + 0.974095i \(0.427389\pi\)
\(588\) 0.786043 0.0324159
\(589\) −57.4826 −2.36853
\(590\) 0 0
\(591\) −19.1313 −0.786957
\(592\) −6.66474 −0.273919
\(593\) 43.7442 1.79636 0.898180 0.439627i \(-0.144889\pi\)
0.898180 + 0.439627i \(0.144889\pi\)
\(594\) −3.35656 −0.137721
\(595\) 0 0
\(596\) −2.23828 −0.0916833
\(597\) 7.83165 0.320528
\(598\) 3.70522 0.151518
\(599\) −13.8647 −0.566498 −0.283249 0.959046i \(-0.591412\pi\)
−0.283249 + 0.959046i \(0.591412\pi\)
\(600\) 0 0
\(601\) −27.8746 −1.13703 −0.568514 0.822673i \(-0.692482\pi\)
−0.568514 + 0.822673i \(0.692482\pi\)
\(602\) −11.4136 −0.465186
\(603\) 2.39025 0.0973387
\(604\) −1.47215 −0.0599008
\(605\) 0 0
\(606\) 17.6054 0.715170
\(607\) 2.81833 0.114392 0.0571962 0.998363i \(-0.481784\pi\)
0.0571962 + 0.998363i \(0.481784\pi\)
\(608\) 24.4757 0.992621
\(609\) −8.16879 −0.331016
\(610\) 0 0
\(611\) 4.10038 0.165883
\(612\) −0.786043 −0.0317739
\(613\) −12.5272 −0.505970 −0.252985 0.967470i \(-0.581412\pi\)
−0.252985 + 0.967470i \(0.581412\pi\)
\(614\) −5.95458 −0.240307
\(615\) 0 0
\(616\) 9.35152 0.376783
\(617\) 48.3928 1.94822 0.974111 0.226069i \(-0.0725876\pi\)
0.974111 + 0.226069i \(0.0725876\pi\)
\(618\) 8.05129 0.323870
\(619\) −19.4428 −0.781471 −0.390735 0.920503i \(-0.627779\pi\)
−0.390735 + 0.920503i \(0.627779\pi\)
\(620\) 0 0
\(621\) −7.65430 −0.307156
\(622\) −35.5462 −1.42527
\(623\) −8.78928 −0.352135
\(624\) −0.795239 −0.0318350
\(625\) 0 0
\(626\) 23.2213 0.928108
\(627\) −17.9888 −0.718405
\(628\) 6.74559 0.269179
\(629\) 3.68208 0.146814
\(630\) 0 0
\(631\) 4.93929 0.196630 0.0983149 0.995155i \(-0.468655\pi\)
0.0983149 + 0.995155i \(0.468655\pi\)
\(632\) −34.9618 −1.39070
\(633\) −9.76289 −0.388040
\(634\) −4.39076 −0.174379
\(635\) 0 0
\(636\) −9.78409 −0.387964
\(637\) −0.439346 −0.0174075
\(638\) −27.4190 −1.08553
\(639\) 2.34874 0.0929148
\(640\) 0 0
\(641\) −32.2483 −1.27373 −0.636865 0.770976i \(-0.719769\pi\)
−0.636865 + 0.770976i \(0.719769\pi\)
\(642\) −9.28824 −0.366578
\(643\) −27.7433 −1.09409 −0.547045 0.837103i \(-0.684247\pi\)
−0.547045 + 0.837103i \(0.684247\pi\)
\(644\) 6.01661 0.237088
\(645\) 0 0
\(646\) 6.50597 0.255974
\(647\) 1.02524 0.0403063 0.0201531 0.999797i \(-0.493585\pi\)
0.0201531 + 0.999797i \(0.493585\pi\)
\(648\) 3.06965 0.120587
\(649\) −32.0770 −1.25913
\(650\) 0 0
\(651\) 9.73478 0.381536
\(652\) −18.1480 −0.710730
\(653\) −50.1760 −1.96354 −0.981769 0.190080i \(-0.939125\pi\)
−0.981769 + 0.190080i \(0.939125\pi\)
\(654\) 4.96415 0.194114
\(655\) 0 0
\(656\) −14.8353 −0.579219
\(657\) 3.03284 0.118322
\(658\) −10.2830 −0.400872
\(659\) −43.9669 −1.71271 −0.856355 0.516388i \(-0.827276\pi\)
−0.856355 + 0.516388i \(0.827276\pi\)
\(660\) 0 0
\(661\) −15.5771 −0.605879 −0.302939 0.953010i \(-0.597968\pi\)
−0.302939 + 0.953010i \(0.597968\pi\)
\(662\) 9.20546 0.357780
\(663\) 0.439346 0.0170628
\(664\) −31.2816 −1.21396
\(665\) 0 0
\(666\) −4.05690 −0.157202
\(667\) −62.5263 −2.42103
\(668\) 2.66772 0.103217
\(669\) −6.18501 −0.239126
\(670\) 0 0
\(671\) −36.9859 −1.42783
\(672\) −4.14500 −0.159897
\(673\) −38.4772 −1.48319 −0.741594 0.670848i \(-0.765930\pi\)
−0.741594 + 0.670848i \(0.765930\pi\)
\(674\) 16.4502 0.633637
\(675\) 0 0
\(676\) 10.0668 0.387186
\(677\) −19.3144 −0.742312 −0.371156 0.928570i \(-0.621039\pi\)
−0.371156 + 0.928570i \(0.621039\pi\)
\(678\) 6.79218 0.260852
\(679\) −3.56287 −0.136730
\(680\) 0 0
\(681\) 10.2016 0.390925
\(682\) 32.6753 1.25120
\(683\) 0.181089 0.00692916 0.00346458 0.999994i \(-0.498897\pi\)
0.00346458 + 0.999994i \(0.498897\pi\)
\(684\) 4.64148 0.177472
\(685\) 0 0
\(686\) 1.10180 0.0420668
\(687\) −0.173014 −0.00660090
\(688\) 18.7505 0.714857
\(689\) 5.46866 0.208339
\(690\) 0 0
\(691\) 7.55113 0.287259 0.143629 0.989632i \(-0.454123\pi\)
0.143629 + 0.989632i \(0.454123\pi\)
\(692\) 2.01080 0.0764390
\(693\) 3.04644 0.115725
\(694\) −3.74053 −0.141989
\(695\) 0 0
\(696\) 25.0754 0.950479
\(697\) 8.19605 0.310448
\(698\) 17.3615 0.657141
\(699\) 9.68797 0.366433
\(700\) 0 0
\(701\) 13.7957 0.521058 0.260529 0.965466i \(-0.416103\pi\)
0.260529 + 0.965466i \(0.416103\pi\)
\(702\) −0.484071 −0.0182701
\(703\) −21.7422 −0.820023
\(704\) −24.9414 −0.940013
\(705\) 0 0
\(706\) 26.1571 0.984437
\(707\) −15.9788 −0.600945
\(708\) 8.27652 0.311051
\(709\) 25.3542 0.952196 0.476098 0.879392i \(-0.342051\pi\)
0.476098 + 0.879392i \(0.342051\pi\)
\(710\) 0 0
\(711\) −11.3895 −0.427139
\(712\) 26.9801 1.01112
\(713\) 74.5129 2.79053
\(714\) −1.10180 −0.0412337
\(715\) 0 0
\(716\) −6.16021 −0.230218
\(717\) −13.7928 −0.515102
\(718\) −34.4517 −1.28573
\(719\) −14.1092 −0.526186 −0.263093 0.964770i \(-0.584743\pi\)
−0.263093 + 0.964770i \(0.584743\pi\)
\(720\) 0 0
\(721\) −7.30742 −0.272142
\(722\) −17.4828 −0.650641
\(723\) −14.8482 −0.552211
\(724\) 17.9577 0.667393
\(725\) 0 0
\(726\) −1.89421 −0.0703009
\(727\) −17.6802 −0.655721 −0.327860 0.944726i \(-0.606328\pi\)
−0.327860 + 0.944726i \(0.606328\pi\)
\(728\) 1.34864 0.0499840
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.3591 −0.383146
\(732\) 9.54312 0.352724
\(733\) −35.4352 −1.30883 −0.654414 0.756136i \(-0.727085\pi\)
−0.654414 + 0.756136i \(0.727085\pi\)
\(734\) −24.3697 −0.899503
\(735\) 0 0
\(736\) −31.7271 −1.16948
\(737\) −7.28177 −0.268227
\(738\) −9.03039 −0.332413
\(739\) 17.4636 0.642408 0.321204 0.947010i \(-0.395912\pi\)
0.321204 + 0.947010i \(0.395912\pi\)
\(740\) 0 0
\(741\) −2.59428 −0.0953034
\(742\) −13.7144 −0.503470
\(743\) −10.6247 −0.389784 −0.194892 0.980825i \(-0.562436\pi\)
−0.194892 + 0.980825i \(0.562436\pi\)
\(744\) −29.8824 −1.09554
\(745\) 0 0
\(746\) 19.7581 0.723394
\(747\) −10.1906 −0.372854
\(748\) 2.39463 0.0875565
\(749\) 8.43009 0.308029
\(750\) 0 0
\(751\) −18.2518 −0.666018 −0.333009 0.942924i \(-0.608064\pi\)
−0.333009 + 0.942924i \(0.608064\pi\)
\(752\) 16.8930 0.616025
\(753\) −5.41270 −0.197250
\(754\) −3.95427 −0.144006
\(755\) 0 0
\(756\) −0.786043 −0.0285881
\(757\) −5.39572 −0.196111 −0.0980554 0.995181i \(-0.531262\pi\)
−0.0980554 + 0.995181i \(0.531262\pi\)
\(758\) 26.9431 0.978617
\(759\) 23.3184 0.846403
\(760\) 0 0
\(761\) 0.498875 0.0180842 0.00904210 0.999959i \(-0.497122\pi\)
0.00904210 + 0.999959i \(0.497122\pi\)
\(762\) −11.3451 −0.410990
\(763\) −4.50550 −0.163110
\(764\) 7.31458 0.264632
\(765\) 0 0
\(766\) 36.4216 1.31597
\(767\) −4.62603 −0.167036
\(768\) 15.5693 0.561808
\(769\) −18.3495 −0.661698 −0.330849 0.943684i \(-0.607335\pi\)
−0.330849 + 0.943684i \(0.607335\pi\)
\(770\) 0 0
\(771\) 9.73884 0.350736
\(772\) −15.2780 −0.549869
\(773\) 19.7746 0.711242 0.355621 0.934630i \(-0.384269\pi\)
0.355621 + 0.934630i \(0.384269\pi\)
\(774\) 11.4136 0.410255
\(775\) 0 0
\(776\) 10.9368 0.392608
\(777\) 3.68208 0.132094
\(778\) −27.5285 −0.986944
\(779\) −48.3966 −1.73399
\(780\) 0 0
\(781\) −7.15530 −0.256037
\(782\) −8.43348 −0.301581
\(783\) 8.16879 0.291929
\(784\) −1.81005 −0.0646446
\(785\) 0 0
\(786\) −5.42285 −0.193427
\(787\) −54.9074 −1.95724 −0.978620 0.205679i \(-0.934060\pi\)
−0.978620 + 0.205679i \(0.934060\pi\)
\(788\) −15.0380 −0.535708
\(789\) −20.0693 −0.714486
\(790\) 0 0
\(791\) −6.16464 −0.219189
\(792\) −9.35152 −0.332292
\(793\) −5.33397 −0.189415
\(794\) 21.9869 0.780284
\(795\) 0 0
\(796\) 6.15602 0.218194
\(797\) 1.68210 0.0595829 0.0297915 0.999556i \(-0.490516\pi\)
0.0297915 + 0.999556i \(0.490516\pi\)
\(798\) 6.50597 0.230309
\(799\) −9.33290 −0.330174
\(800\) 0 0
\(801\) 8.78928 0.310554
\(802\) −17.9698 −0.634534
\(803\) −9.23937 −0.326050
\(804\) 1.87884 0.0662617
\(805\) 0 0
\(806\) 4.71232 0.165984
\(807\) −13.3115 −0.468587
\(808\) 49.0494 1.72555
\(809\) −23.3025 −0.819271 −0.409635 0.912249i \(-0.634344\pi\)
−0.409635 + 0.912249i \(0.634344\pi\)
\(810\) 0 0
\(811\) 34.6479 1.21665 0.608326 0.793687i \(-0.291841\pi\)
0.608326 + 0.793687i \(0.291841\pi\)
\(812\) −6.42102 −0.225334
\(813\) 7.51453 0.263546
\(814\) 12.3591 0.433187
\(815\) 0 0
\(816\) 1.81005 0.0633644
\(817\) 61.1693 2.14004
\(818\) 0.437953 0.0153127
\(819\) 0.439346 0.0153520
\(820\) 0 0
\(821\) −49.0570 −1.71210 −0.856050 0.516893i \(-0.827089\pi\)
−0.856050 + 0.516893i \(0.827089\pi\)
\(822\) −2.13774 −0.0745622
\(823\) 36.0235 1.25570 0.627850 0.778335i \(-0.283935\pi\)
0.627850 + 0.778335i \(0.283935\pi\)
\(824\) 22.4312 0.781429
\(825\) 0 0
\(826\) 11.6012 0.403657
\(827\) −20.2569 −0.704400 −0.352200 0.935925i \(-0.614566\pi\)
−0.352200 + 0.935925i \(0.614566\pi\)
\(828\) −6.01661 −0.209092
\(829\) −8.08234 −0.280711 −0.140356 0.990101i \(-0.544825\pi\)
−0.140356 + 0.990101i \(0.544825\pi\)
\(830\) 0 0
\(831\) −15.6195 −0.541834
\(832\) −3.59695 −0.124702
\(833\) 1.00000 0.0346479
\(834\) 4.20234 0.145515
\(835\) 0 0
\(836\) −14.1400 −0.489042
\(837\) −9.73478 −0.336483
\(838\) 22.4404 0.775192
\(839\) 7.77593 0.268455 0.134227 0.990951i \(-0.457145\pi\)
0.134227 + 0.990951i \(0.457145\pi\)
\(840\) 0 0
\(841\) 37.7291 1.30100
\(842\) 29.3471 1.01137
\(843\) −9.60615 −0.330853
\(844\) −7.67406 −0.264152
\(845\) 0 0
\(846\) 10.2830 0.353535
\(847\) 1.71920 0.0590726
\(848\) 22.5301 0.773688
\(849\) 11.4373 0.392527
\(850\) 0 0
\(851\) 28.1837 0.966126
\(852\) 1.84621 0.0632502
\(853\) 16.3466 0.559697 0.279848 0.960044i \(-0.409716\pi\)
0.279848 + 0.960044i \(0.409716\pi\)
\(854\) 13.3766 0.457737
\(855\) 0 0
\(856\) −25.8774 −0.884473
\(857\) 39.7324 1.35723 0.678617 0.734493i \(-0.262580\pi\)
0.678617 + 0.734493i \(0.262580\pi\)
\(858\) 1.47469 0.0503452
\(859\) −21.9711 −0.749646 −0.374823 0.927096i \(-0.622296\pi\)
−0.374823 + 0.927096i \(0.622296\pi\)
\(860\) 0 0
\(861\) 8.19605 0.279321
\(862\) −12.7263 −0.433459
\(863\) 28.2334 0.961077 0.480538 0.876974i \(-0.340441\pi\)
0.480538 + 0.876974i \(0.340441\pi\)
\(864\) 4.14500 0.141016
\(865\) 0 0
\(866\) −3.26054 −0.110798
\(867\) −1.00000 −0.0339618
\(868\) 7.65196 0.259724
\(869\) 34.6974 1.17703
\(870\) 0 0
\(871\) −1.05015 −0.0355830
\(872\) 13.8303 0.468354
\(873\) 3.56287 0.120585
\(874\) 49.7986 1.68446
\(875\) 0 0
\(876\) 2.38394 0.0805460
\(877\) −41.0884 −1.38746 −0.693729 0.720237i \(-0.744033\pi\)
−0.693729 + 0.720237i \(0.744033\pi\)
\(878\) −17.1601 −0.579126
\(879\) −12.2750 −0.414024
\(880\) 0 0
\(881\) −45.6061 −1.53651 −0.768255 0.640144i \(-0.778875\pi\)
−0.768255 + 0.640144i \(0.778875\pi\)
\(882\) −1.10180 −0.0370994
\(883\) −13.5143 −0.454794 −0.227397 0.973802i \(-0.573021\pi\)
−0.227397 + 0.973802i \(0.573021\pi\)
\(884\) 0.345345 0.0116152
\(885\) 0 0
\(886\) −7.01281 −0.235600
\(887\) −45.8729 −1.54026 −0.770130 0.637886i \(-0.779809\pi\)
−0.770130 + 0.637886i \(0.779809\pi\)
\(888\) −11.3027 −0.379294
\(889\) 10.2969 0.345347
\(890\) 0 0
\(891\) −3.04644 −0.102060
\(892\) −4.86169 −0.162781
\(893\) 55.1096 1.84417
\(894\) 3.13739 0.104930
\(895\) 0 0
\(896\) 0.730462 0.0244030
\(897\) 3.36289 0.112284
\(898\) 4.19834 0.140100
\(899\) −79.5213 −2.65218
\(900\) 0 0
\(901\) −12.4473 −0.414678
\(902\) 27.5105 0.916000
\(903\) −10.3591 −0.344730
\(904\) 18.9233 0.629380
\(905\) 0 0
\(906\) 2.06351 0.0685554
\(907\) −33.6478 −1.11726 −0.558629 0.829418i \(-0.688672\pi\)
−0.558629 + 0.829418i \(0.688672\pi\)
\(908\) 8.01887 0.266116
\(909\) 15.9788 0.529983
\(910\) 0 0
\(911\) −9.72408 −0.322173 −0.161087 0.986940i \(-0.551500\pi\)
−0.161087 + 0.986940i \(0.551500\pi\)
\(912\) −10.6881 −0.353919
\(913\) 31.0450 1.02744
\(914\) 16.9222 0.559737
\(915\) 0 0
\(916\) −0.135997 −0.00449345
\(917\) 4.92183 0.162533
\(918\) 1.10180 0.0363647
\(919\) 9.65047 0.318340 0.159170 0.987251i \(-0.449118\pi\)
0.159170 + 0.987251i \(0.449118\pi\)
\(920\) 0 0
\(921\) −5.40443 −0.178082
\(922\) 24.2738 0.799415
\(923\) −1.03191 −0.0339658
\(924\) 2.39463 0.0787777
\(925\) 0 0
\(926\) 40.0012 1.31452
\(927\) 7.30742 0.240007
\(928\) 33.8596 1.11150
\(929\) 28.8272 0.945790 0.472895 0.881119i \(-0.343209\pi\)
0.472895 + 0.881119i \(0.343209\pi\)
\(930\) 0 0
\(931\) −5.90487 −0.193524
\(932\) 7.61517 0.249443
\(933\) −32.2620 −1.05621
\(934\) 33.4004 1.09289
\(935\) 0 0
\(936\) −1.34864 −0.0440817
\(937\) −3.70199 −0.120939 −0.0604694 0.998170i \(-0.519260\pi\)
−0.0604694 + 0.998170i \(0.519260\pi\)
\(938\) 2.63358 0.0859893
\(939\) 21.0758 0.687783
\(940\) 0 0
\(941\) −2.27664 −0.0742163 −0.0371081 0.999311i \(-0.511815\pi\)
−0.0371081 + 0.999311i \(0.511815\pi\)
\(942\) −9.45530 −0.308070
\(943\) 62.7350 2.04293
\(944\) −19.0586 −0.620305
\(945\) 0 0
\(946\) −34.7710 −1.13050
\(947\) −35.7225 −1.16083 −0.580413 0.814322i \(-0.697109\pi\)
−0.580413 + 0.814322i \(0.697109\pi\)
\(948\) −8.95262 −0.290768
\(949\) −1.33247 −0.0432537
\(950\) 0 0
\(951\) −3.98509 −0.129225
\(952\) −3.06965 −0.0994881
\(953\) 2.30568 0.0746884 0.0373442 0.999302i \(-0.488110\pi\)
0.0373442 + 0.999302i \(0.488110\pi\)
\(954\) 13.7144 0.444019
\(955\) 0 0
\(956\) −10.8417 −0.350647
\(957\) −24.8857 −0.804441
\(958\) 46.4589 1.50102
\(959\) 1.94023 0.0626533
\(960\) 0 0
\(961\) 63.7658 2.05696
\(962\) 1.78239 0.0574664
\(963\) −8.43009 −0.271656
\(964\) −11.6713 −0.375909
\(965\) 0 0
\(966\) −8.43348 −0.271343
\(967\) −34.1970 −1.09970 −0.549850 0.835263i \(-0.685315\pi\)
−0.549850 + 0.835263i \(0.685315\pi\)
\(968\) −5.27736 −0.169621
\(969\) 5.90487 0.189692
\(970\) 0 0
\(971\) 27.4706 0.881572 0.440786 0.897612i \(-0.354700\pi\)
0.440786 + 0.897612i \(0.354700\pi\)
\(972\) 0.786043 0.0252124
\(973\) −3.81408 −0.122274
\(974\) 14.6945 0.470843
\(975\) 0 0
\(976\) −21.9753 −0.703411
\(977\) 6.27388 0.200719 0.100360 0.994951i \(-0.468001\pi\)
0.100360 + 0.994951i \(0.468001\pi\)
\(978\) 25.4380 0.813419
\(979\) −26.7760 −0.855765
\(980\) 0 0
\(981\) 4.50550 0.143850
\(982\) 26.3138 0.839708
\(983\) −53.7390 −1.71401 −0.857004 0.515310i \(-0.827677\pi\)
−0.857004 + 0.515310i \(0.827677\pi\)
\(984\) −25.1590 −0.802041
\(985\) 0 0
\(986\) 9.00035 0.286629
\(987\) −9.33290 −0.297069
\(988\) −2.03922 −0.0648762
\(989\) −79.2918 −2.52133
\(990\) 0 0
\(991\) 0.161791 0.00513947 0.00256973 0.999997i \(-0.499182\pi\)
0.00256973 + 0.999997i \(0.499182\pi\)
\(992\) −40.3507 −1.28113
\(993\) 8.35495 0.265136
\(994\) 2.58784 0.0820812
\(995\) 0 0
\(996\) −8.01025 −0.253814
\(997\) 18.7831 0.594867 0.297433 0.954743i \(-0.403869\pi\)
0.297433 + 0.954743i \(0.403869\pi\)
\(998\) −44.5488 −1.41017
\(999\) −3.68208 −0.116496
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8925.2.a.cu.1.6 14
5.2 odd 4 1785.2.g.g.1429.11 28
5.3 odd 4 1785.2.g.g.1429.18 yes 28
5.4 even 2 8925.2.a.cx.1.9 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.g.1429.11 28 5.2 odd 4
1785.2.g.g.1429.18 yes 28 5.3 odd 4
8925.2.a.cu.1.6 14 1.1 even 1 trivial
8925.2.a.cx.1.9 14 5.4 even 2