Properties

Label 896.2.bi.a.143.18
Level $896$
Weight $2$
Character 896.143
Analytic conductor $7.155$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [896,2,Mod(47,896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(896, base_ring=CyclotomicField(24))
 
chi = DirichletCharacter(H, H._module([12, 9, 20]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("896.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.bi (of order \(24\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 143.18
Character \(\chi\) \(=\) 896.143
Dual form 896.2.bi.a.495.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.586792 + 0.0772527i) q^{3} +(3.65404 - 0.481063i) q^{5} +(-0.750581 + 2.53705i) q^{7} +(-2.55942 - 0.685795i) q^{9} +(-0.154965 + 0.118909i) q^{11} +(1.79545 + 4.33461i) q^{13} +2.18132 q^{15} +(-1.63000 + 2.82324i) q^{17} +(5.96708 + 4.57870i) q^{19} +(-0.636429 + 1.43074i) q^{21} +(-0.227620 + 0.849490i) q^{23} +(8.29094 - 2.22155i) q^{25} +(-3.08928 - 1.27962i) q^{27} +(-0.793041 - 1.91457i) q^{29} +(1.85113 - 3.20626i) q^{31} +(-0.100118 + 0.0578032i) q^{33} +(-1.52217 + 9.63156i) q^{35} +(-1.34829 - 10.2413i) q^{37} +(0.718698 + 2.68222i) q^{39} +(3.81582 + 3.81582i) q^{41} +(2.28159 + 0.945065i) q^{43} +(-9.68213 - 1.27468i) q^{45} +(1.58163 - 0.913157i) q^{47} +(-5.87326 - 3.80853i) q^{49} +(-1.17457 + 1.53073i) q^{51} +(-5.48905 - 7.15347i) q^{53} +(-0.509044 + 0.509044i) q^{55} +(3.14772 + 3.14772i) q^{57} +(-6.76333 + 5.18969i) q^{59} +(5.03692 + 3.86496i) q^{61} +(3.66095 - 5.97864i) q^{63} +(8.64588 + 14.9751i) q^{65} +(1.56386 - 11.8787i) q^{67} +(-0.199191 + 0.480890i) q^{69} +(4.95899 - 4.95899i) q^{71} +(7.60300 - 2.03722i) q^{73} +(5.03668 - 0.663091i) q^{75} +(-0.185363 - 0.482404i) q^{77} +(-2.39290 - 4.14462i) q^{79} +(5.17023 + 2.98503i) q^{81} +(-5.02518 + 2.08150i) q^{83} +(-4.59792 + 11.1004i) q^{85} +(-0.317445 - 1.18472i) q^{87} +(0.0968732 + 0.0259571i) q^{89} +(-12.3448 + 1.30168i) q^{91} +(1.33392 - 1.73840i) q^{93} +(24.0066 + 13.8602i) q^{95} +9.39885i q^{97} +(0.478166 - 0.198063i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 12 q^{3} - 12 q^{5} + 8 q^{7} - 4 q^{9} + 4 q^{11} + 32 q^{15} + 12 q^{19} - 8 q^{21} - 4 q^{23} - 4 q^{25} - 16 q^{29} - 24 q^{33} + 32 q^{35} - 4 q^{37} + 4 q^{39} + 32 q^{43} - 48 q^{45} + 24 q^{47}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.586792 + 0.0772527i 0.338785 + 0.0446018i 0.297999 0.954566i \(-0.403681\pi\)
0.0407853 + 0.999168i \(0.487014\pi\)
\(4\) 0 0
\(5\) 3.65404 0.481063i 1.63414 0.215138i 0.743135 0.669141i \(-0.233338\pi\)
0.891000 + 0.454003i \(0.150005\pi\)
\(6\) 0 0
\(7\) −0.750581 + 2.53705i −0.283693 + 0.958915i
\(8\) 0 0
\(9\) −2.55942 0.685795i −0.853140 0.228598i
\(10\) 0 0
\(11\) −0.154965 + 0.118909i −0.0467236 + 0.0358523i −0.631859 0.775083i \(-0.717708\pi\)
0.585136 + 0.810935i \(0.301041\pi\)
\(12\) 0 0
\(13\) 1.79545 + 4.33461i 0.497969 + 1.20220i 0.950575 + 0.310494i \(0.100494\pi\)
−0.452606 + 0.891711i \(0.649506\pi\)
\(14\) 0 0
\(15\) 2.18132 0.563215
\(16\) 0 0
\(17\) −1.63000 + 2.82324i −0.395333 + 0.684736i −0.993144 0.116901i \(-0.962704\pi\)
0.597811 + 0.801637i \(0.296037\pi\)
\(18\) 0 0
\(19\) 5.96708 + 4.57870i 1.36894 + 1.05043i 0.992273 + 0.124077i \(0.0395970\pi\)
0.376668 + 0.926348i \(0.377070\pi\)
\(20\) 0 0
\(21\) −0.636429 + 1.43074i −0.138880 + 0.312212i
\(22\) 0 0
\(23\) −0.227620 + 0.849490i −0.0474621 + 0.177131i −0.985588 0.169163i \(-0.945893\pi\)
0.938126 + 0.346294i \(0.112560\pi\)
\(24\) 0 0
\(25\) 8.29094 2.22155i 1.65819 0.444310i
\(26\) 0 0
\(27\) −3.08928 1.27962i −0.594532 0.246263i
\(28\) 0 0
\(29\) −0.793041 1.91457i −0.147264 0.355527i 0.832985 0.553296i \(-0.186630\pi\)
−0.980249 + 0.197769i \(0.936630\pi\)
\(30\) 0 0
\(31\) 1.85113 3.20626i 0.332473 0.575861i −0.650523 0.759487i \(-0.725450\pi\)
0.982996 + 0.183626i \(0.0587835\pi\)
\(32\) 0 0
\(33\) −0.100118 + 0.0578032i −0.0174283 + 0.0100622i
\(34\) 0 0
\(35\) −1.52217 + 9.63156i −0.257294 + 1.62803i
\(36\) 0 0
\(37\) −1.34829 10.2413i −0.221657 1.68365i −0.634558 0.772876i \(-0.718818\pi\)
0.412901 0.910776i \(-0.364516\pi\)
\(38\) 0 0
\(39\) 0.718698 + 2.68222i 0.115084 + 0.429499i
\(40\) 0 0
\(41\) 3.81582 + 3.81582i 0.595930 + 0.595930i 0.939227 0.343297i \(-0.111544\pi\)
−0.343297 + 0.939227i \(0.611544\pi\)
\(42\) 0 0
\(43\) 2.28159 + 0.945065i 0.347939 + 0.144121i 0.549807 0.835292i \(-0.314701\pi\)
−0.201868 + 0.979413i \(0.564701\pi\)
\(44\) 0 0
\(45\) −9.68213 1.27468i −1.44333 0.190018i
\(46\) 0 0
\(47\) 1.58163 0.913157i 0.230705 0.133198i −0.380192 0.924907i \(-0.624142\pi\)
0.610897 + 0.791710i \(0.290809\pi\)
\(48\) 0 0
\(49\) −5.87326 3.80853i −0.839037 0.544075i
\(50\) 0 0
\(51\) −1.17457 + 1.53073i −0.164473 + 0.214346i
\(52\) 0 0
\(53\) −5.48905 7.15347i −0.753979 0.982604i −0.999911 0.0133173i \(-0.995761\pi\)
0.245933 0.969287i \(-0.420906\pi\)
\(54\) 0 0
\(55\) −0.509044 + 0.509044i −0.0686395 + 0.0686395i
\(56\) 0 0
\(57\) 3.14772 + 3.14772i 0.416925 + 0.416925i
\(58\) 0 0
\(59\) −6.76333 + 5.18969i −0.880511 + 0.675640i −0.946682 0.322169i \(-0.895588\pi\)
0.0661717 + 0.997808i \(0.478921\pi\)
\(60\) 0 0
\(61\) 5.03692 + 3.86496i 0.644911 + 0.494858i 0.878665 0.477438i \(-0.158434\pi\)
−0.233754 + 0.972296i \(0.575101\pi\)
\(62\) 0 0
\(63\) 3.66095 5.97864i 0.461236 0.753237i
\(64\) 0 0
\(65\) 8.64588 + 14.9751i 1.07239 + 1.85743i
\(66\) 0 0
\(67\) 1.56386 11.8787i 0.191056 1.45121i −0.580089 0.814553i \(-0.696982\pi\)
0.771145 0.636660i \(-0.219684\pi\)
\(68\) 0 0
\(69\) −0.199191 + 0.480890i −0.0239798 + 0.0578923i
\(70\) 0 0
\(71\) 4.95899 4.95899i 0.588524 0.588524i −0.348708 0.937231i \(-0.613379\pi\)
0.937231 + 0.348708i \(0.113379\pi\)
\(72\) 0 0
\(73\) 7.60300 2.03722i 0.889864 0.238438i 0.215206 0.976569i \(-0.430958\pi\)
0.674658 + 0.738130i \(0.264291\pi\)
\(74\) 0 0
\(75\) 5.03668 0.663091i 0.581586 0.0765672i
\(76\) 0 0
\(77\) −0.185363 0.482404i −0.0211241 0.0549750i
\(78\) 0 0
\(79\) −2.39290 4.14462i −0.269222 0.466306i 0.699439 0.714692i \(-0.253433\pi\)
−0.968661 + 0.248386i \(0.920100\pi\)
\(80\) 0 0
\(81\) 5.17023 + 2.98503i 0.574470 + 0.331670i
\(82\) 0 0
\(83\) −5.02518 + 2.08150i −0.551585 + 0.228474i −0.641027 0.767518i \(-0.721491\pi\)
0.0894425 + 0.995992i \(0.471491\pi\)
\(84\) 0 0
\(85\) −4.59792 + 11.1004i −0.498714 + 1.20400i
\(86\) 0 0
\(87\) −0.317445 1.18472i −0.0340336 0.127015i
\(88\) 0 0
\(89\) 0.0968732 + 0.0259571i 0.0102685 + 0.00275145i 0.263950 0.964536i \(-0.414975\pi\)
−0.253681 + 0.967288i \(0.581641\pi\)
\(90\) 0 0
\(91\) −12.3448 + 1.30168i −1.29408 + 0.136453i
\(92\) 0 0
\(93\) 1.33392 1.73840i 0.138321 0.180264i
\(94\) 0 0
\(95\) 24.0066 + 13.8602i 2.46302 + 1.42203i
\(96\) 0 0
\(97\) 9.39885i 0.954309i 0.878819 + 0.477155i \(0.158332\pi\)
−0.878819 + 0.477155i \(0.841668\pi\)
\(98\) 0 0
\(99\) 0.478166 0.198063i 0.0480575 0.0199061i
\(100\) 0 0
\(101\) 0.838796 + 1.09314i 0.0834634 + 0.108772i 0.833219 0.552944i \(-0.186495\pi\)
−0.749755 + 0.661715i \(0.769829\pi\)
\(102\) 0 0
\(103\) 2.98824 11.1523i 0.294440 1.09887i −0.647221 0.762303i \(-0.724069\pi\)
0.941661 0.336563i \(-0.109265\pi\)
\(104\) 0 0
\(105\) −1.63726 + 5.53413i −0.159780 + 0.540076i
\(106\) 0 0
\(107\) 0.839491 + 6.37657i 0.0811566 + 0.616446i 0.982895 + 0.184165i \(0.0589579\pi\)
−0.901739 + 0.432281i \(0.857709\pi\)
\(108\) 0 0
\(109\) −0.915766 + 6.95593i −0.0877144 + 0.666257i 0.889946 + 0.456066i \(0.150742\pi\)
−0.977660 + 0.210191i \(0.932591\pi\)
\(110\) 0 0
\(111\) 6.11365i 0.580282i
\(112\) 0 0
\(113\) 1.27034i 0.119504i −0.998213 0.0597519i \(-0.980969\pi\)
0.998213 0.0597519i \(-0.0190310\pi\)
\(114\) 0 0
\(115\) −0.423074 + 3.21357i −0.0394519 + 0.299667i
\(116\) 0 0
\(117\) −1.62267 12.3254i −0.150016 1.13948i
\(118\) 0 0
\(119\) −5.93926 6.25446i −0.544451 0.573345i
\(120\) 0 0
\(121\) −2.83713 + 10.5883i −0.257921 + 0.962576i
\(122\) 0 0
\(123\) 1.94431 + 2.53387i 0.175312 + 0.228472i
\(124\) 0 0
\(125\) 12.2016 5.05406i 1.09134 0.452049i
\(126\) 0 0
\(127\) 6.29532i 0.558619i −0.960201 0.279310i \(-0.909894\pi\)
0.960201 0.279310i \(-0.0901056\pi\)
\(128\) 0 0
\(129\) 1.26581 + 0.730815i 0.111448 + 0.0643447i
\(130\) 0 0
\(131\) −12.3878 + 16.1441i −1.08233 + 1.41052i −0.177820 + 0.984063i \(0.556905\pi\)
−0.904509 + 0.426455i \(0.859762\pi\)
\(132\) 0 0
\(133\) −16.0952 + 11.7021i −1.39563 + 1.01470i
\(134\) 0 0
\(135\) −11.9039 3.18964i −1.02453 0.274521i
\(136\) 0 0
\(137\) −5.66819 21.1540i −0.484266 1.80731i −0.583342 0.812226i \(-0.698255\pi\)
0.0990762 0.995080i \(-0.468411\pi\)
\(138\) 0 0
\(139\) 7.25213 17.5082i 0.615118 1.48503i −0.242194 0.970228i \(-0.577867\pi\)
0.857311 0.514798i \(-0.172133\pi\)
\(140\) 0 0
\(141\) 0.998634 0.413648i 0.0841002 0.0348354i
\(142\) 0 0
\(143\) −0.793654 0.458216i −0.0663687 0.0383180i
\(144\) 0 0
\(145\) −3.81883 6.61441i −0.317137 0.549297i
\(146\) 0 0
\(147\) −3.15216 2.68854i −0.259986 0.221747i
\(148\) 0 0
\(149\) −7.28989 + 0.959733i −0.597211 + 0.0786244i −0.423071 0.906096i \(-0.639048\pi\)
−0.174140 + 0.984721i \(0.555715\pi\)
\(150\) 0 0
\(151\) −20.4835 + 5.48853i −1.66692 + 0.446650i −0.964278 0.264892i \(-0.914664\pi\)
−0.702643 + 0.711542i \(0.747997\pi\)
\(152\) 0 0
\(153\) 6.10801 6.10801i 0.493804 0.493804i
\(154\) 0 0
\(155\) 5.22170 12.6063i 0.419417 1.01256i
\(156\) 0 0
\(157\) 0.482890 3.66792i 0.0385389 0.292732i −0.961312 0.275462i \(-0.911169\pi\)
0.999851 0.0172698i \(-0.00549743\pi\)
\(158\) 0 0
\(159\) −2.66831 4.62164i −0.211610 0.366520i
\(160\) 0 0
\(161\) −1.98435 1.21509i −0.156389 0.0957629i
\(162\) 0 0
\(163\) 11.4597 + 8.79335i 0.897595 + 0.688749i 0.950790 0.309836i \(-0.100274\pi\)
−0.0531956 + 0.998584i \(0.516941\pi\)
\(164\) 0 0
\(165\) −0.338028 + 0.259378i −0.0263154 + 0.0201925i
\(166\) 0 0
\(167\) −8.50231 8.50231i −0.657929 0.657929i 0.296961 0.954890i \(-0.404027\pi\)
−0.954890 + 0.296961i \(0.904027\pi\)
\(168\) 0 0
\(169\) −6.37280 + 6.37280i −0.490215 + 0.490215i
\(170\) 0 0
\(171\) −12.1322 15.8110i −0.927773 1.20910i
\(172\) 0 0
\(173\) 4.42510 5.76690i 0.336434 0.438449i −0.594246 0.804283i \(-0.702550\pi\)
0.930680 + 0.365834i \(0.119216\pi\)
\(174\) 0 0
\(175\) −0.586835 + 22.7020i −0.0443606 + 1.71611i
\(176\) 0 0
\(177\) −4.36959 + 2.52278i −0.328438 + 0.189624i
\(178\) 0 0
\(179\) −16.6721 2.19493i −1.24613 0.164056i −0.521536 0.853229i \(-0.674641\pi\)
−0.724597 + 0.689173i \(0.757974\pi\)
\(180\) 0 0
\(181\) 1.48033 + 0.613171i 0.110032 + 0.0455767i 0.437020 0.899452i \(-0.356034\pi\)
−0.326988 + 0.945028i \(0.606034\pi\)
\(182\) 0 0
\(183\) 2.65704 + 2.65704i 0.196414 + 0.196414i
\(184\) 0 0
\(185\) −9.85338 36.7733i −0.724435 2.70363i
\(186\) 0 0
\(187\) −0.0831152 0.631323i −0.00607799 0.0461669i
\(188\) 0 0
\(189\) 5.56522 6.87720i 0.404810 0.500242i
\(190\) 0 0
\(191\) 7.04481 4.06732i 0.509745 0.294301i −0.222984 0.974822i \(-0.571580\pi\)
0.732729 + 0.680521i \(0.238246\pi\)
\(192\) 0 0
\(193\) 1.59700 2.76608i 0.114954 0.199107i −0.802807 0.596239i \(-0.796661\pi\)
0.917761 + 0.397132i \(0.129995\pi\)
\(194\) 0 0
\(195\) 3.91647 + 9.45519i 0.280464 + 0.677100i
\(196\) 0 0
\(197\) −22.7704 9.43182i −1.62233 0.671989i −0.627985 0.778226i \(-0.716120\pi\)
−0.994341 + 0.106237i \(0.966120\pi\)
\(198\) 0 0
\(199\) 13.9754 3.74470i 0.990690 0.265455i 0.273150 0.961972i \(-0.411935\pi\)
0.717540 + 0.696517i \(0.245268\pi\)
\(200\) 0 0
\(201\) 1.83532 6.84951i 0.129454 0.483127i
\(202\) 0 0
\(203\) 5.45261 0.574945i 0.382698 0.0403533i
\(204\) 0 0
\(205\) 15.7788 + 12.1075i 1.10204 + 0.845624i
\(206\) 0 0
\(207\) 1.16515 2.01810i 0.0809836 0.140268i
\(208\) 0 0
\(209\) −1.46913 −0.101622
\(210\) 0 0
\(211\) −6.84963 16.5365i −0.471548 1.13842i −0.963479 0.267784i \(-0.913709\pi\)
0.491931 0.870634i \(-0.336291\pi\)
\(212\) 0 0
\(213\) 3.29299 2.52680i 0.225632 0.173134i
\(214\) 0 0
\(215\) 8.79164 + 2.35571i 0.599585 + 0.160658i
\(216\) 0 0
\(217\) 6.74501 + 7.10297i 0.457881 + 0.482181i
\(218\) 0 0
\(219\) 4.61876 0.608071i 0.312107 0.0410897i
\(220\) 0 0
\(221\) −15.1642 1.99641i −1.02006 0.134293i
\(222\) 0 0
\(223\) −2.20295 −0.147520 −0.0737601 0.997276i \(-0.523500\pi\)
−0.0737601 + 0.997276i \(0.523500\pi\)
\(224\) 0 0
\(225\) −22.7435 −1.51623
\(226\) 0 0
\(227\) −5.65874 0.744988i −0.375584 0.0494466i −0.0596286 0.998221i \(-0.518992\pi\)
−0.315955 + 0.948774i \(0.602325\pi\)
\(228\) 0 0
\(229\) 24.0045 3.16025i 1.58626 0.208835i 0.714811 0.699318i \(-0.246513\pi\)
0.871451 + 0.490482i \(0.163179\pi\)
\(230\) 0 0
\(231\) −0.0715029 0.297390i −0.00470454 0.0195669i
\(232\) 0 0
\(233\) 17.1439 + 4.59370i 1.12314 + 0.300944i 0.772152 0.635438i \(-0.219180\pi\)
0.350984 + 0.936381i \(0.385847\pi\)
\(234\) 0 0
\(235\) 5.34006 4.09757i 0.348347 0.267296i
\(236\) 0 0
\(237\) −1.08395 2.61689i −0.0704102 0.169985i
\(238\) 0 0
\(239\) −12.6706 −0.819591 −0.409796 0.912177i \(-0.634400\pi\)
−0.409796 + 0.912177i \(0.634400\pi\)
\(240\) 0 0
\(241\) −4.33725 + 7.51235i −0.279387 + 0.483913i −0.971233 0.238133i \(-0.923465\pi\)
0.691845 + 0.722046i \(0.256798\pi\)
\(242\) 0 0
\(243\) 10.7617 + 8.25776i 0.690365 + 0.529735i
\(244\) 0 0
\(245\) −23.2932 11.0911i −1.48815 0.708584i
\(246\) 0 0
\(247\) −9.13326 + 34.0858i −0.581135 + 2.16883i
\(248\) 0 0
\(249\) −3.10953 + 0.833197i −0.197059 + 0.0528017i
\(250\) 0 0
\(251\) 4.22400 + 1.74964i 0.266617 + 0.110436i 0.511987 0.858993i \(-0.328910\pi\)
−0.245370 + 0.969429i \(0.578910\pi\)
\(252\) 0 0
\(253\) −0.0657385 0.158707i −0.00413294 0.00997781i
\(254\) 0 0
\(255\) −3.55555 + 6.15840i −0.222657 + 0.385654i
\(256\) 0 0
\(257\) −0.0444799 + 0.0256805i −0.00277458 + 0.00160190i −0.501387 0.865223i \(-0.667177\pi\)
0.498612 + 0.866825i \(0.333843\pi\)
\(258\) 0 0
\(259\) 26.9946 + 4.26622i 1.67736 + 0.265090i
\(260\) 0 0
\(261\) 0.716723 + 5.44406i 0.0443641 + 0.336979i
\(262\) 0 0
\(263\) 0.444526 + 1.65899i 0.0274106 + 0.102298i 0.978276 0.207307i \(-0.0664699\pi\)
−0.950865 + 0.309605i \(0.899803\pi\)
\(264\) 0 0
\(265\) −23.4985 23.4985i −1.44350 1.44350i
\(266\) 0 0
\(267\) 0.0548392 + 0.0227151i 0.00335610 + 0.00139014i
\(268\) 0 0
\(269\) −2.18109 0.287147i −0.132984 0.0175076i 0.0637405 0.997967i \(-0.479697\pi\)
−0.196724 + 0.980459i \(0.563030\pi\)
\(270\) 0 0
\(271\) 3.98800 2.30247i 0.242254 0.139865i −0.373959 0.927445i \(-0.622000\pi\)
0.616212 + 0.787580i \(0.288666\pi\)
\(272\) 0 0
\(273\) −7.34437 0.189848i −0.444501 0.0114901i
\(274\) 0 0
\(275\) −1.02064 + 1.33012i −0.0615469 + 0.0802095i
\(276\) 0 0
\(277\) −3.21758 4.19323i −0.193326 0.251947i 0.686625 0.727012i \(-0.259091\pi\)
−0.879951 + 0.475065i \(0.842425\pi\)
\(278\) 0 0
\(279\) −6.93666 + 6.93666i −0.415287 + 0.415287i
\(280\) 0 0
\(281\) 6.51561 + 6.51561i 0.388689 + 0.388689i 0.874220 0.485531i \(-0.161374\pi\)
−0.485531 + 0.874220i \(0.661374\pi\)
\(282\) 0 0
\(283\) −9.70876 + 7.44979i −0.577126 + 0.442844i −0.855628 0.517592i \(-0.826829\pi\)
0.278502 + 0.960436i \(0.410162\pi\)
\(284\) 0 0
\(285\) 13.0161 + 9.98762i 0.771009 + 0.591616i
\(286\) 0 0
\(287\) −12.5450 + 6.81684i −0.740508 + 0.402385i
\(288\) 0 0
\(289\) 3.18621 + 5.51868i 0.187424 + 0.324628i
\(290\) 0 0
\(291\) −0.726086 + 5.51517i −0.0425639 + 0.323305i
\(292\) 0 0
\(293\) 9.68853 23.3902i 0.566010 1.36647i −0.338883 0.940829i \(-0.610049\pi\)
0.904892 0.425640i \(-0.139951\pi\)
\(294\) 0 0
\(295\) −22.2169 + 22.2169i −1.29352 + 1.29352i
\(296\) 0 0
\(297\) 0.630887 0.169046i 0.0366078 0.00980902i
\(298\) 0 0
\(299\) −4.09089 + 0.538575i −0.236582 + 0.0311466i
\(300\) 0 0
\(301\) −4.11019 + 5.07916i −0.236908 + 0.292758i
\(302\) 0 0
\(303\) 0.407751 + 0.706246i 0.0234247 + 0.0405728i
\(304\) 0 0
\(305\) 20.2644 + 11.6996i 1.16033 + 0.669919i
\(306\) 0 0
\(307\) −1.39053 + 0.575975i −0.0793616 + 0.0328727i −0.422011 0.906591i \(-0.638676\pi\)
0.342649 + 0.939463i \(0.388676\pi\)
\(308\) 0 0
\(309\) 2.61502 6.31322i 0.148763 0.359146i
\(310\) 0 0
\(311\) −7.83483 29.2400i −0.444273 1.65805i −0.717850 0.696198i \(-0.754874\pi\)
0.273577 0.961850i \(-0.411793\pi\)
\(312\) 0 0
\(313\) 2.76399 + 0.740609i 0.156230 + 0.0418617i 0.336086 0.941831i \(-0.390897\pi\)
−0.179856 + 0.983693i \(0.557563\pi\)
\(314\) 0 0
\(315\) 10.5011 23.6073i 0.591672 1.33012i
\(316\) 0 0
\(317\) −3.24812 + 4.23304i −0.182433 + 0.237751i −0.875613 0.483013i \(-0.839542\pi\)
0.693180 + 0.720764i \(0.256209\pi\)
\(318\) 0 0
\(319\) 0.350552 + 0.202391i 0.0196271 + 0.0113317i
\(320\) 0 0
\(321\) 3.80657i 0.212462i
\(322\) 0 0
\(323\) −22.6531 + 9.38321i −1.26045 + 0.522096i
\(324\) 0 0
\(325\) 24.5156 + 31.9493i 1.35988 + 1.77223i
\(326\) 0 0
\(327\) −1.07473 + 4.01094i −0.0594326 + 0.221805i
\(328\) 0 0
\(329\) 1.12958 + 4.69808i 0.0622758 + 0.259014i
\(330\) 0 0
\(331\) 2.09490 + 15.9123i 0.115146 + 0.874621i 0.947361 + 0.320168i \(0.103739\pi\)
−0.832215 + 0.554453i \(0.812927\pi\)
\(332\) 0 0
\(333\) −3.57256 + 27.1363i −0.195775 + 1.48706i
\(334\) 0 0
\(335\) 44.1575i 2.41258i
\(336\) 0 0
\(337\) 25.9961i 1.41610i −0.706163 0.708049i \(-0.749575\pi\)
0.706163 0.708049i \(-0.250425\pi\)
\(338\) 0 0
\(339\) 0.0981374 0.745428i 0.00533009 0.0404861i
\(340\) 0 0
\(341\) 0.0943911 + 0.716972i 0.00511157 + 0.0388262i
\(342\) 0 0
\(343\) 14.0708 12.0421i 0.759751 0.650215i
\(344\) 0 0
\(345\) −0.496513 + 1.85301i −0.0267314 + 0.0997628i
\(346\) 0 0
\(347\) −15.8204 20.6175i −0.849283 1.10681i −0.993108 0.117204i \(-0.962607\pi\)
0.143824 0.989603i \(-0.454060\pi\)
\(348\) 0 0
\(349\) −9.97430 + 4.13149i −0.533912 + 0.221154i −0.633316 0.773894i \(-0.718306\pi\)
0.0994037 + 0.995047i \(0.468306\pi\)
\(350\) 0 0
\(351\) 15.6883i 0.837380i
\(352\) 0 0
\(353\) −8.89552 5.13583i −0.473461 0.273353i 0.244226 0.969718i \(-0.421466\pi\)
−0.717687 + 0.696365i \(0.754799\pi\)
\(354\) 0 0
\(355\) 15.7347 20.5059i 0.835113 1.08834i
\(356\) 0 0
\(357\) −3.00194 4.12889i −0.158879 0.218524i
\(358\) 0 0
\(359\) 31.7210 + 8.49961i 1.67417 + 0.448592i 0.966230 0.257682i \(-0.0829587\pi\)
0.707939 + 0.706274i \(0.249625\pi\)
\(360\) 0 0
\(361\) 9.72395 + 36.2903i 0.511787 + 1.91001i
\(362\) 0 0
\(363\) −2.48279 + 5.99397i −0.130312 + 0.314602i
\(364\) 0 0
\(365\) 26.8016 11.1016i 1.40286 0.581084i
\(366\) 0 0
\(367\) 4.93261 + 2.84784i 0.257480 + 0.148656i 0.623185 0.782075i \(-0.285839\pi\)
−0.365704 + 0.930731i \(0.619172\pi\)
\(368\) 0 0
\(369\) −7.14941 12.3831i −0.372183 0.644641i
\(370\) 0 0
\(371\) 22.2687 8.55674i 1.15613 0.444244i
\(372\) 0 0
\(373\) 2.53961 0.334346i 0.131496 0.0173118i −0.0644909 0.997918i \(-0.520542\pi\)
0.195987 + 0.980607i \(0.437209\pi\)
\(374\) 0 0
\(375\) 7.55024 2.02308i 0.389893 0.104471i
\(376\) 0 0
\(377\) 6.87505 6.87505i 0.354083 0.354083i
\(378\) 0 0
\(379\) −7.46656 + 18.0259i −0.383531 + 0.925926i 0.607746 + 0.794132i \(0.292074\pi\)
−0.991277 + 0.131795i \(0.957926\pi\)
\(380\) 0 0
\(381\) 0.486330 3.69404i 0.0249154 0.189252i
\(382\) 0 0
\(383\) 9.29771 + 16.1041i 0.475091 + 0.822882i 0.999593 0.0285276i \(-0.00908184\pi\)
−0.524502 + 0.851409i \(0.675749\pi\)
\(384\) 0 0
\(385\) −0.909392 1.67355i −0.0463469 0.0852920i
\(386\) 0 0
\(387\) −5.19142 3.98352i −0.263895 0.202494i
\(388\) 0 0
\(389\) 2.85809 2.19309i 0.144911 0.111194i −0.533762 0.845635i \(-0.679222\pi\)
0.678673 + 0.734441i \(0.262556\pi\)
\(390\) 0 0
\(391\) −2.02729 2.02729i −0.102525 0.102525i
\(392\) 0 0
\(393\) −8.51625 + 8.51625i −0.429588 + 0.429588i
\(394\) 0 0
\(395\) −10.7376 13.9935i −0.540266 0.704088i
\(396\) 0 0
\(397\) −8.58035 + 11.1821i −0.430636 + 0.561215i −0.957388 0.288803i \(-0.906743\pi\)
0.526753 + 0.850018i \(0.323409\pi\)
\(398\) 0 0
\(399\) −10.3485 + 5.62330i −0.518075 + 0.281517i
\(400\) 0 0
\(401\) −9.96747 + 5.75472i −0.497752 + 0.287377i −0.727785 0.685806i \(-0.759450\pi\)
0.230033 + 0.973183i \(0.426117\pi\)
\(402\) 0 0
\(403\) 17.2215 + 2.26725i 0.857864 + 0.112940i
\(404\) 0 0
\(405\) 20.3282 + 8.42022i 1.01012 + 0.418404i
\(406\) 0 0
\(407\) 1.42671 + 1.42671i 0.0707193 + 0.0707193i
\(408\) 0 0
\(409\) −2.80860 10.4818i −0.138876 0.518294i −0.999952 0.00981657i \(-0.996875\pi\)
0.861075 0.508477i \(-0.169791\pi\)
\(410\) 0 0
\(411\) −1.69185 12.8509i −0.0834528 0.633887i
\(412\) 0 0
\(413\) −8.09007 21.0542i −0.398086 1.03601i
\(414\) 0 0
\(415\) −17.3608 + 10.0233i −0.852211 + 0.492024i
\(416\) 0 0
\(417\) 5.60805 9.71343i 0.274627 0.475669i
\(418\) 0 0
\(419\) −1.14858 2.77292i −0.0561119 0.135466i 0.893337 0.449387i \(-0.148357\pi\)
−0.949449 + 0.313920i \(0.898357\pi\)
\(420\) 0 0
\(421\) 18.6016 + 7.70504i 0.906587 + 0.375521i 0.786749 0.617273i \(-0.211762\pi\)
0.119838 + 0.992793i \(0.461762\pi\)
\(422\) 0 0
\(423\) −4.67430 + 1.25248i −0.227272 + 0.0608975i
\(424\) 0 0
\(425\) −7.24225 + 27.0284i −0.351301 + 1.31107i
\(426\) 0 0
\(427\) −13.5862 + 9.87795i −0.657483 + 0.478027i
\(428\) 0 0
\(429\) −0.430311 0.330190i −0.0207756 0.0159417i
\(430\) 0 0
\(431\) 0.410242 0.710561i 0.0197607 0.0342265i −0.855976 0.517016i \(-0.827043\pi\)
0.875737 + 0.482789i \(0.160376\pi\)
\(432\) 0 0
\(433\) −19.1887 −0.922148 −0.461074 0.887362i \(-0.652536\pi\)
−0.461074 + 0.887362i \(0.652536\pi\)
\(434\) 0 0
\(435\) −1.72988 4.17630i −0.0829414 0.200238i
\(436\) 0 0
\(437\) −5.24778 + 4.02676i −0.251035 + 0.192626i
\(438\) 0 0
\(439\) 29.9726 + 8.03114i 1.43051 + 0.383305i 0.889201 0.457516i \(-0.151261\pi\)
0.541313 + 0.840821i \(0.317927\pi\)
\(440\) 0 0
\(441\) 12.4203 + 13.7755i 0.591441 + 0.655974i
\(442\) 0 0
\(443\) 6.59091 0.867710i 0.313144 0.0412261i 0.0276835 0.999617i \(-0.491187\pi\)
0.285460 + 0.958391i \(0.407854\pi\)
\(444\) 0 0
\(445\) 0.366465 + 0.0482461i 0.0173721 + 0.00228708i
\(446\) 0 0
\(447\) −4.35179 −0.205833
\(448\) 0 0
\(449\) −21.8843 −1.03278 −0.516392 0.856352i \(-0.672725\pi\)
−0.516392 + 0.856352i \(0.672725\pi\)
\(450\) 0 0
\(451\) −1.04505 0.137583i −0.0492095 0.00647855i
\(452\) 0 0
\(453\) −12.4435 + 1.63822i −0.584649 + 0.0769705i
\(454\) 0 0
\(455\) −44.4820 + 10.6950i −2.08535 + 0.501390i
\(456\) 0 0
\(457\) −18.8375 5.04748i −0.881179 0.236111i −0.210263 0.977645i \(-0.567432\pi\)
−0.670916 + 0.741534i \(0.734099\pi\)
\(458\) 0 0
\(459\) 8.64819 6.63599i 0.403663 0.309742i
\(460\) 0 0
\(461\) −5.00740 12.0889i −0.233218 0.563038i 0.763335 0.646003i \(-0.223561\pi\)
−0.996552 + 0.0829658i \(0.973561\pi\)
\(462\) 0 0
\(463\) 37.5037 1.74294 0.871472 0.490445i \(-0.163166\pi\)
0.871472 + 0.490445i \(0.163166\pi\)
\(464\) 0 0
\(465\) 4.03792 6.99388i 0.187254 0.324334i
\(466\) 0 0
\(467\) 14.9728 + 11.4890i 0.692857 + 0.531648i 0.894086 0.447896i \(-0.147827\pi\)
−0.201228 + 0.979544i \(0.564493\pi\)
\(468\) 0 0
\(469\) 28.9630 + 12.8835i 1.33739 + 0.594905i
\(470\) 0 0
\(471\) 0.566713 2.11500i 0.0261127 0.0974541i
\(472\) 0 0
\(473\) −0.465942 + 0.124849i −0.0214240 + 0.00574055i
\(474\) 0 0
\(475\) 59.6445 + 24.7055i 2.73668 + 1.13357i
\(476\) 0 0
\(477\) 9.14297 + 22.0731i 0.418628 + 1.01066i
\(478\) 0 0
\(479\) −9.26849 + 16.0535i −0.423488 + 0.733503i −0.996278 0.0861993i \(-0.972528\pi\)
0.572790 + 0.819702i \(0.305861\pi\)
\(480\) 0 0
\(481\) 41.9710 24.2320i 1.91372 1.10488i
\(482\) 0 0
\(483\) −1.07053 0.866304i −0.0487109 0.0394182i
\(484\) 0 0
\(485\) 4.52144 + 34.3438i 0.205308 + 1.55947i
\(486\) 0 0
\(487\) −1.46021 5.44957i −0.0661684 0.246944i 0.924918 0.380168i \(-0.124134\pi\)
−0.991086 + 0.133224i \(0.957467\pi\)
\(488\) 0 0
\(489\) 6.04516 + 6.04516i 0.273372 + 0.273372i
\(490\) 0 0
\(491\) 27.2761 + 11.2981i 1.23095 + 0.509878i 0.900877 0.434075i \(-0.142925\pi\)
0.330078 + 0.943954i \(0.392925\pi\)
\(492\) 0 0
\(493\) 6.69795 + 0.881802i 0.301660 + 0.0397143i
\(494\) 0 0
\(495\) 1.65196 0.953758i 0.0742499 0.0428682i
\(496\) 0 0
\(497\) 8.85908 + 16.3033i 0.397384 + 0.731304i
\(498\) 0 0
\(499\) −6.88394 + 8.97132i −0.308167 + 0.401612i −0.921603 0.388133i \(-0.873120\pi\)
0.613436 + 0.789744i \(0.289787\pi\)
\(500\) 0 0
\(501\) −4.33226 5.64592i −0.193551 0.252241i
\(502\) 0 0
\(503\) −20.3957 + 20.3957i −0.909400 + 0.909400i −0.996224 0.0868238i \(-0.972328\pi\)
0.0868238 + 0.996224i \(0.472328\pi\)
\(504\) 0 0
\(505\) 3.59086 + 3.59086i 0.159791 + 0.159791i
\(506\) 0 0
\(507\) −4.23182 + 3.24719i −0.187942 + 0.144213i
\(508\) 0 0
\(509\) 20.4675 + 15.7053i 0.907205 + 0.696123i 0.953046 0.302826i \(-0.0979300\pi\)
−0.0458408 + 0.998949i \(0.514597\pi\)
\(510\) 0 0
\(511\) −0.538143 + 20.8183i −0.0238060 + 0.920947i
\(512\) 0 0
\(513\) −12.5750 21.7805i −0.555198 0.961631i
\(514\) 0 0
\(515\) 5.55420 42.1884i 0.244747 1.85904i
\(516\) 0 0
\(517\) −0.136515 + 0.329577i −0.00600393 + 0.0144948i
\(518\) 0 0
\(519\) 3.04212 3.04212i 0.133534 0.133534i
\(520\) 0 0
\(521\) −1.52994 + 0.409945i −0.0670277 + 0.0179600i −0.292177 0.956364i \(-0.594380\pi\)
0.225149 + 0.974324i \(0.427713\pi\)
\(522\) 0 0
\(523\) −20.2896 + 2.67118i −0.887203 + 0.116803i −0.560334 0.828267i \(-0.689327\pi\)
−0.326870 + 0.945069i \(0.605994\pi\)
\(524\) 0 0
\(525\) −2.09814 + 13.2760i −0.0915703 + 0.579413i
\(526\) 0 0
\(527\) 6.03469 + 10.4524i 0.262875 + 0.455313i
\(528\) 0 0
\(529\) 19.2488 + 11.1133i 0.836903 + 0.483186i
\(530\) 0 0
\(531\) 20.8693 8.64433i 0.905649 0.375132i
\(532\) 0 0
\(533\) −9.68895 + 23.3912i −0.419675 + 1.01319i
\(534\) 0 0
\(535\) 6.13506 + 22.8964i 0.265242 + 0.989896i
\(536\) 0 0
\(537\) −9.61351 2.57593i −0.414853 0.111160i
\(538\) 0 0
\(539\) 1.36301 0.108194i 0.0587091 0.00466023i
\(540\) 0 0
\(541\) −20.5201 + 26.7424i −0.882230 + 1.14974i 0.105632 + 0.994405i \(0.466314\pi\)
−0.987861 + 0.155339i \(0.950353\pi\)
\(542\) 0 0
\(543\) 0.821275 + 0.474163i 0.0352443 + 0.0203483i
\(544\) 0 0
\(545\) 25.8578i 1.10763i
\(546\) 0 0
\(547\) 1.87204 0.775425i 0.0800427 0.0331548i −0.342303 0.939590i \(-0.611207\pi\)
0.422346 + 0.906435i \(0.361207\pi\)
\(548\) 0 0
\(549\) −10.2410 13.3464i −0.437076 0.569608i
\(550\) 0 0
\(551\) 4.03410 15.0555i 0.171859 0.641385i
\(552\) 0 0
\(553\) 12.3112 2.96003i 0.523525 0.125873i
\(554\) 0 0
\(555\) −2.94105 22.3395i −0.124841 0.948259i
\(556\) 0 0
\(557\) 3.35390 25.4754i 0.142109 1.07943i −0.760613 0.649205i \(-0.775102\pi\)
0.902723 0.430223i \(-0.141565\pi\)
\(558\) 0 0
\(559\) 11.5866i 0.490062i
\(560\) 0 0
\(561\) 0.376876i 0.0159117i
\(562\) 0 0
\(563\) 1.66206 12.6246i 0.0700475 0.532064i −0.920063 0.391771i \(-0.871862\pi\)
0.990110 0.140292i \(-0.0448043\pi\)
\(564\) 0 0
\(565\) −0.611115 4.64188i −0.0257098 0.195285i
\(566\) 0 0
\(567\) −11.4539 + 10.8766i −0.481017 + 0.456775i
\(568\) 0 0
\(569\) 8.01362 29.9072i 0.335948 1.25378i −0.566889 0.823794i \(-0.691853\pi\)
0.902837 0.429982i \(-0.141480\pi\)
\(570\) 0 0
\(571\) 10.0924 + 13.1526i 0.422352 + 0.550419i 0.955265 0.295750i \(-0.0955696\pi\)
−0.532914 + 0.846170i \(0.678903\pi\)
\(572\) 0 0
\(573\) 4.44805 1.84244i 0.185820 0.0769692i
\(574\) 0 0
\(575\) 7.54873i 0.314804i
\(576\) 0 0
\(577\) −30.5815 17.6562i −1.27312 0.735038i −0.297549 0.954707i \(-0.596169\pi\)
−0.975575 + 0.219668i \(0.929502\pi\)
\(578\) 0 0
\(579\) 1.15079 1.49974i 0.0478252 0.0623271i
\(580\) 0 0
\(581\) −1.50906 14.3115i −0.0626063 0.593739i
\(582\) 0 0
\(583\) 1.70122 + 0.455840i 0.0704572 + 0.0188789i
\(584\) 0 0
\(585\) −11.8586 44.2569i −0.490292 1.82980i
\(586\) 0 0
\(587\) −5.67657 + 13.7044i −0.234297 + 0.565643i −0.996674 0.0814899i \(-0.974032\pi\)
0.762377 + 0.647133i \(0.224032\pi\)
\(588\) 0 0
\(589\) 25.7263 10.6562i 1.06003 0.439081i
\(590\) 0 0
\(591\) −12.6329 7.29359i −0.519647 0.300018i
\(592\) 0 0
\(593\) 19.0770 + 33.0424i 0.783400 + 1.35689i 0.929950 + 0.367685i \(0.119850\pi\)
−0.146550 + 0.989203i \(0.546817\pi\)
\(594\) 0 0
\(595\) −24.7111 19.9969i −1.01305 0.819792i
\(596\) 0 0
\(597\) 8.48994 1.11772i 0.347470 0.0457453i
\(598\) 0 0
\(599\) 19.9086 5.33450i 0.813444 0.217962i 0.171966 0.985103i \(-0.444988\pi\)
0.641478 + 0.767141i \(0.278321\pi\)
\(600\) 0 0
\(601\) −11.0600 + 11.0600i −0.451146 + 0.451146i −0.895735 0.444589i \(-0.853350\pi\)
0.444589 + 0.895735i \(0.353350\pi\)
\(602\) 0 0
\(603\) −12.1489 + 29.3301i −0.494742 + 1.19441i
\(604\) 0 0
\(605\) −5.27334 + 40.0550i −0.214392 + 1.62847i
\(606\) 0 0
\(607\) −5.10135 8.83580i −0.207057 0.358634i 0.743729 0.668481i \(-0.233055\pi\)
−0.950786 + 0.309847i \(0.899722\pi\)
\(608\) 0 0
\(609\) 3.24396 + 0.0838548i 0.131452 + 0.00339797i
\(610\) 0 0
\(611\) 6.79793 + 5.21623i 0.275015 + 0.211026i
\(612\) 0 0
\(613\) −16.6586 + 12.7826i −0.672833 + 0.516283i −0.887736 0.460352i \(-0.847723\pi\)
0.214903 + 0.976635i \(0.431056\pi\)
\(614\) 0 0
\(615\) 8.32353 + 8.32353i 0.335637 + 0.335637i
\(616\) 0 0
\(617\) 24.2795 24.2795i 0.977456 0.977456i −0.0222958 0.999751i \(-0.507098\pi\)
0.999751 + 0.0222958i \(0.00709757\pi\)
\(618\) 0 0
\(619\) 3.61807 + 4.71516i 0.145423 + 0.189518i 0.860385 0.509644i \(-0.170223\pi\)
−0.714963 + 0.699163i \(0.753556\pi\)
\(620\) 0 0
\(621\) 1.79021 2.33304i 0.0718385 0.0936218i
\(622\) 0 0
\(623\) −0.138566 + 0.226289i −0.00555152 + 0.00906609i
\(624\) 0 0
\(625\) 4.98648 2.87894i 0.199459 0.115158i
\(626\) 0 0
\(627\) −0.862075 0.113494i −0.0344280 0.00453253i
\(628\) 0 0
\(629\) 31.1112 + 12.8867i 1.24049 + 0.513826i
\(630\) 0 0
\(631\) 2.39818 + 2.39818i 0.0954700 + 0.0954700i 0.753229 0.657759i \(-0.228495\pi\)
−0.657759 + 0.753229i \(0.728495\pi\)
\(632\) 0 0
\(633\) −2.74182 10.2326i −0.108978 0.406711i
\(634\) 0 0
\(635\) −3.02845 23.0033i −0.120180 0.912859i
\(636\) 0 0
\(637\) 5.96331 32.2963i 0.236275 1.27963i
\(638\) 0 0
\(639\) −16.0930 + 9.29129i −0.636629 + 0.367558i
\(640\) 0 0
\(641\) 5.60572 9.70939i 0.221413 0.383498i −0.733825 0.679339i \(-0.762267\pi\)
0.955237 + 0.295841i \(0.0955999\pi\)
\(642\) 0 0
\(643\) 1.05264 + 2.54130i 0.0415121 + 0.100219i 0.943276 0.332011i \(-0.107727\pi\)
−0.901764 + 0.432230i \(0.857727\pi\)
\(644\) 0 0
\(645\) 4.97688 + 2.06149i 0.195965 + 0.0811712i
\(646\) 0 0
\(647\) 28.9642 7.76092i 1.13870 0.305113i 0.360271 0.932848i \(-0.382684\pi\)
0.778428 + 0.627734i \(0.216018\pi\)
\(648\) 0 0
\(649\) 0.430979 1.60844i 0.0169174 0.0631366i
\(650\) 0 0
\(651\) 3.40920 + 4.68904i 0.133617 + 0.183778i
\(652\) 0 0
\(653\) −7.67521 5.88940i −0.300354 0.230470i 0.447578 0.894245i \(-0.352287\pi\)
−0.747932 + 0.663775i \(0.768953\pi\)
\(654\) 0 0
\(655\) −37.4992 + 64.9505i −1.46522 + 2.53783i
\(656\) 0 0
\(657\) −20.8564 −0.813685
\(658\) 0 0
\(659\) −8.00070 19.3154i −0.311663 0.752421i −0.999644 0.0266921i \(-0.991503\pi\)
0.687981 0.725729i \(-0.258497\pi\)
\(660\) 0 0
\(661\) 10.9122 8.37320i 0.424434 0.325680i −0.374361 0.927283i \(-0.622138\pi\)
0.798795 + 0.601603i \(0.205471\pi\)
\(662\) 0 0
\(663\) −8.74402 2.34295i −0.339590 0.0909928i
\(664\) 0 0
\(665\) −53.1829 + 50.5027i −2.06234 + 1.95841i
\(666\) 0 0
\(667\) 1.80692 0.237886i 0.0699642 0.00921096i
\(668\) 0 0
\(669\) −1.29267 0.170184i −0.0499776 0.00657968i
\(670\) 0 0
\(671\) −1.24012 −0.0478743
\(672\) 0 0
\(673\) 28.1723 1.08596 0.542982 0.839744i \(-0.317295\pi\)
0.542982 + 0.839744i \(0.317295\pi\)
\(674\) 0 0
\(675\) −28.4558 3.74627i −1.09526 0.144194i
\(676\) 0 0
\(677\) −8.24681 + 1.08571i −0.316951 + 0.0417274i −0.287323 0.957834i \(-0.592765\pi\)
−0.0296274 + 0.999561i \(0.509432\pi\)
\(678\) 0 0
\(679\) −23.8454 7.05460i −0.915101 0.270731i
\(680\) 0 0
\(681\) −3.26295 0.874306i −0.125037 0.0335035i
\(682\) 0 0
\(683\) −12.2945 + 9.43387i −0.470434 + 0.360977i −0.816607 0.577194i \(-0.804148\pi\)
0.346173 + 0.938171i \(0.387481\pi\)
\(684\) 0 0
\(685\) −30.8882 74.5707i −1.18018 2.84920i
\(686\) 0 0
\(687\) 14.3298 0.546716
\(688\) 0 0
\(689\) 21.1522 36.6366i 0.805833 1.39574i
\(690\) 0 0
\(691\) −9.68571 7.43211i −0.368462 0.282731i 0.407889 0.913031i \(-0.366265\pi\)
−0.776351 + 0.630301i \(0.782932\pi\)
\(692\) 0 0
\(693\) 0.143593 + 1.36179i 0.00545466 + 0.0517303i
\(694\) 0 0
\(695\) 18.0770 67.4643i 0.685700 2.55907i
\(696\) 0 0
\(697\) −16.9927 + 4.55319i −0.643646 + 0.172464i
\(698\) 0 0
\(699\) 9.70505 + 4.01996i 0.367079 + 0.152049i
\(700\) 0 0
\(701\) −10.0224 24.1963i −0.378542 0.913881i −0.992240 0.124340i \(-0.960319\pi\)
0.613698 0.789541i \(-0.289681\pi\)
\(702\) 0 0
\(703\) 38.8463 67.2837i 1.46512 2.53765i
\(704\) 0 0
\(705\) 3.45006 1.99189i 0.129937 0.0750189i
\(706\) 0 0
\(707\) −3.40294 + 1.30758i −0.127981 + 0.0491766i
\(708\) 0 0
\(709\) −4.37598 33.2389i −0.164343 1.24831i −0.852491 0.522742i \(-0.824909\pi\)
0.688148 0.725571i \(-0.258424\pi\)
\(710\) 0 0
\(711\) 3.28207 + 12.2489i 0.123087 + 0.459368i
\(712\) 0 0
\(713\) 2.30233 + 2.30233i 0.0862228 + 0.0862228i
\(714\) 0 0
\(715\) −3.12047 1.29254i −0.116699 0.0483383i
\(716\) 0 0
\(717\) −7.43499 0.978836i −0.277665 0.0365553i
\(718\) 0 0
\(719\) −22.7929 + 13.1595i −0.850031 + 0.490766i −0.860661 0.509178i \(-0.829950\pi\)
0.0106300 + 0.999943i \(0.496616\pi\)
\(720\) 0 0
\(721\) 26.0510 + 15.9520i 0.970189 + 0.594084i
\(722\) 0 0
\(723\) −3.12542 + 4.07312i −0.116235 + 0.151481i
\(724\) 0 0
\(725\) −10.8284 14.1118i −0.402156 0.524099i
\(726\) 0 0
\(727\) 32.3640 32.3640i 1.20031 1.20031i 0.226244 0.974071i \(-0.427355\pi\)
0.974071 0.226244i \(-0.0726447\pi\)
\(728\) 0 0
\(729\) −6.98747 6.98747i −0.258795 0.258795i
\(730\) 0 0
\(731\) −6.38713 + 4.90102i −0.236237 + 0.181271i
\(732\) 0 0
\(733\) −34.7704 26.6803i −1.28428 0.985459i −0.999640 0.0268237i \(-0.991461\pi\)
−0.284636 0.958636i \(-0.591873\pi\)
\(734\) 0 0
\(735\) −12.8115 8.30763i −0.472558 0.306431i
\(736\) 0 0
\(737\) 1.17013 + 2.02673i 0.0431025 + 0.0746557i
\(738\) 0 0
\(739\) −2.55495 + 19.4067i −0.0939852 + 0.713889i 0.877969 + 0.478718i \(0.158898\pi\)
−0.971954 + 0.235171i \(0.924435\pi\)
\(740\) 0 0
\(741\) −7.99254 + 19.2957i −0.293613 + 0.708845i
\(742\) 0 0
\(743\) −6.32677 + 6.32677i −0.232107 + 0.232107i −0.813572 0.581465i \(-0.802480\pi\)
0.581465 + 0.813572i \(0.302480\pi\)
\(744\) 0 0
\(745\) −26.1759 + 7.01380i −0.959009 + 0.256966i
\(746\) 0 0
\(747\) 14.2890 1.88118i 0.522808 0.0688289i
\(748\) 0 0
\(749\) −16.8078 2.65630i −0.614143 0.0970590i
\(750\) 0 0
\(751\) −20.1360 34.8765i −0.734772 1.27266i −0.954823 0.297174i \(-0.903956\pi\)
0.220051 0.975488i \(-0.429377\pi\)
\(752\) 0 0
\(753\) 2.34345 + 1.35299i 0.0853999 + 0.0493057i
\(754\) 0 0
\(755\) −72.2070 + 29.9091i −2.62788 + 1.08850i
\(756\) 0 0
\(757\) −12.9976 + 31.3791i −0.472408 + 1.14049i 0.490688 + 0.871335i \(0.336745\pi\)
−0.963096 + 0.269158i \(0.913255\pi\)
\(758\) 0 0
\(759\) −0.0263143 0.0982064i −0.000955149 0.00356466i
\(760\) 0 0
\(761\) −4.50078 1.20598i −0.163153 0.0437167i 0.176318 0.984333i \(-0.443581\pi\)
−0.339471 + 0.940617i \(0.610248\pi\)
\(762\) 0 0
\(763\) −16.9602 7.54433i −0.614000 0.273123i
\(764\) 0 0
\(765\) 19.3806 25.2572i 0.700706 0.913178i
\(766\) 0 0
\(767\) −34.6385 19.9986i −1.25072 0.722106i
\(768\) 0 0
\(769\) 17.4876i 0.630619i 0.948989 + 0.315310i \(0.102108\pi\)
−0.948989 + 0.315310i \(0.897892\pi\)
\(770\) 0 0
\(771\) −0.0280843 + 0.0116329i −0.00101143 + 0.000418949i
\(772\) 0 0
\(773\) −17.5375 22.8553i −0.630779 0.822047i 0.363189 0.931715i \(-0.381688\pi\)
−0.993968 + 0.109668i \(0.965021\pi\)
\(774\) 0 0
\(775\) 8.22477 30.6953i 0.295442 1.10261i
\(776\) 0 0
\(777\) 15.5106 + 4.58879i 0.556441 + 0.164622i
\(778\) 0 0
\(779\) 5.29779 + 40.2407i 0.189813 + 1.44177i
\(780\) 0 0
\(781\) −0.178802 + 1.35813i −0.00639803 + 0.0485978i
\(782\) 0 0
\(783\) 6.92943i 0.247638i
\(784\) 0 0
\(785\) 13.6350i 0.486654i
\(786\) 0 0
\(787\) −5.28263 + 40.1255i −0.188305 + 1.43032i 0.592512 + 0.805561i \(0.298136\pi\)
−0.780818 + 0.624759i \(0.785197\pi\)
\(788\) 0 0
\(789\) 0.132683 + 1.00782i 0.00472363 + 0.0358795i
\(790\) 0 0
\(791\) 3.22293 + 0.953496i 0.114594 + 0.0339024i
\(792\) 0 0
\(793\) −7.70955 + 28.7724i −0.273774 + 1.02174i
\(794\) 0 0
\(795\) −11.9734 15.6040i −0.424652 0.553418i
\(796\) 0 0
\(797\) −30.2358 + 12.5241i −1.07101 + 0.443625i −0.847345 0.531042i \(-0.821801\pi\)
−0.223660 + 0.974667i \(0.571801\pi\)
\(798\) 0 0
\(799\) 5.95378i 0.210629i
\(800\) 0 0
\(801\) −0.230138 0.132870i −0.00813153 0.00469474i
\(802\) 0 0
\(803\) −0.935953 + 1.21976i −0.0330291 + 0.0430443i
\(804\) 0 0
\(805\) −7.83543 3.48540i −0.276163 0.122844i
\(806\) 0 0
\(807\) −1.25767 0.336991i −0.0442720 0.0118626i
\(808\) 0 0
\(809\) 5.81756 + 21.7114i 0.204535 + 0.763333i 0.989591 + 0.143909i \(0.0459673\pi\)
−0.785056 + 0.619424i \(0.787366\pi\)
\(810\) 0 0
\(811\) 0.866622 2.09221i 0.0304312 0.0734675i −0.907933 0.419115i \(-0.862341\pi\)
0.938365 + 0.345647i \(0.112341\pi\)
\(812\) 0 0
\(813\) 2.51800 1.04299i 0.0883100 0.0365792i
\(814\) 0 0
\(815\) 46.1044 + 26.6184i 1.61497 + 0.932402i
\(816\) 0 0
\(817\) 9.28724 + 16.0860i 0.324919 + 0.562777i
\(818\) 0 0
\(819\) 32.4881 + 5.13442i 1.13523 + 0.179411i
\(820\) 0 0
\(821\) 43.4115 5.71523i 1.51507 0.199463i 0.673329 0.739343i \(-0.264864\pi\)
0.841742 + 0.539880i \(0.181530\pi\)
\(822\) 0 0
\(823\) 34.8906 9.34890i 1.21621 0.325882i 0.407014 0.913422i \(-0.366570\pi\)
0.809195 + 0.587540i \(0.199903\pi\)
\(824\) 0 0
\(825\) −0.701660 + 0.701660i −0.0244287 + 0.0244287i
\(826\) 0 0
\(827\) −8.76859 + 21.1692i −0.304914 + 0.736127i 0.694941 + 0.719067i \(0.255431\pi\)
−0.999854 + 0.0170597i \(0.994569\pi\)
\(828\) 0 0
\(829\) −5.71739 + 43.4279i −0.198573 + 1.50831i 0.544305 + 0.838887i \(0.316793\pi\)
−0.742878 + 0.669426i \(0.766540\pi\)
\(830\) 0 0
\(831\) −1.56411 2.70912i −0.0542585 0.0939785i
\(832\) 0 0
\(833\) 20.3258 10.3737i 0.704246 0.359428i
\(834\) 0 0
\(835\) −35.1579 26.9776i −1.21669 0.933599i
\(836\) 0 0
\(837\) −9.82146 + 7.53627i −0.339479 + 0.260492i
\(838\) 0 0
\(839\) 37.8886 + 37.8886i 1.30806 + 1.30806i 0.922813 + 0.385248i \(0.125884\pi\)
0.385248 + 0.922813i \(0.374116\pi\)
\(840\) 0 0
\(841\) 17.4694 17.4694i 0.602394 0.602394i
\(842\) 0 0
\(843\) 3.31996 + 4.32666i 0.114346 + 0.149018i
\(844\) 0 0
\(845\) −20.2207 + 26.3521i −0.695614 + 0.906541i
\(846\) 0 0
\(847\) −24.7336 15.1454i −0.849858 0.520401i
\(848\) 0 0
\(849\) −6.27254 + 3.62145i −0.215273 + 0.124288i
\(850\) 0 0
\(851\) 9.00673 + 1.18576i 0.308747 + 0.0406473i
\(852\) 0 0
\(853\) 18.0841 + 7.49066i 0.619186 + 0.256475i 0.670151 0.742225i \(-0.266230\pi\)
−0.0509644 + 0.998700i \(0.516230\pi\)
\(854\) 0 0
\(855\) −51.9376 51.9376i −1.77623 1.77623i
\(856\) 0 0
\(857\) 5.95862 + 22.2379i 0.203543 + 0.759631i 0.989889 + 0.141845i \(0.0453036\pi\)
−0.786346 + 0.617786i \(0.788030\pi\)
\(858\) 0 0
\(859\) 0.117615 + 0.893376i 0.00401298 + 0.0304816i 0.993334 0.115270i \(-0.0367733\pi\)
−0.989321 + 0.145752i \(0.953440\pi\)
\(860\) 0 0
\(861\) −7.88793 + 3.03093i −0.268820 + 0.103294i
\(862\) 0 0
\(863\) 26.9099 15.5365i 0.916024 0.528867i 0.0336599 0.999433i \(-0.489284\pi\)
0.882365 + 0.470566i \(0.155950\pi\)
\(864\) 0 0
\(865\) 13.3952 23.2012i 0.455451 0.788865i
\(866\) 0 0
\(867\) 1.44331 + 3.48446i 0.0490174 + 0.118339i
\(868\) 0 0
\(869\) 0.863646 + 0.357734i 0.0292972 + 0.0121353i
\(870\) 0 0
\(871\) 54.2973 14.5489i 1.83979 0.492972i
\(872\) 0 0
\(873\) 6.44568 24.0556i 0.218153 0.814159i
\(874\) 0 0
\(875\) 3.66414 + 34.7495i 0.123870 + 1.17475i
\(876\) 0 0
\(877\) −27.2095 20.8786i −0.918801 0.705021i 0.0369128 0.999318i \(-0.488248\pi\)
−0.955714 + 0.294298i \(0.904914\pi\)
\(878\) 0 0
\(879\) 7.49211 12.9767i 0.252702 0.437694i
\(880\) 0 0
\(881\) 8.67844 0.292384 0.146192 0.989256i \(-0.453298\pi\)
0.146192 + 0.989256i \(0.453298\pi\)
\(882\) 0 0
\(883\) 3.72606 + 8.99549i 0.125392 + 0.302722i 0.974092 0.226151i \(-0.0726144\pi\)
−0.848700 + 0.528874i \(0.822614\pi\)
\(884\) 0 0
\(885\) −14.7530 + 11.3204i −0.495917 + 0.380531i
\(886\) 0 0
\(887\) −19.8501 5.31881i −0.666501 0.178588i −0.0903226 0.995913i \(-0.528790\pi\)
−0.576178 + 0.817324i \(0.695456\pi\)
\(888\) 0 0
\(889\) 15.9715 + 4.72515i 0.535668 + 0.158476i
\(890\) 0 0
\(891\) −1.15615 + 0.152210i −0.0387324 + 0.00509922i
\(892\) 0 0
\(893\) 13.6188 + 1.79295i 0.455736 + 0.0599987i
\(894\) 0 0
\(895\) −61.9765 −2.07164
\(896\) 0 0
\(897\) −2.44211 −0.0815396
\(898\) 0 0
\(899\) −7.60663 1.00143i −0.253695 0.0333996i
\(900\) 0 0
\(901\) 29.1431 3.83676i 0.970897 0.127821i
\(902\) 0 0
\(903\) −2.80421 + 2.66289i −0.0933182 + 0.0886153i
\(904\) 0 0
\(905\) 5.70414 + 1.52842i 0.189612 + 0.0508064i
\(906\) 0 0
\(907\) −11.1069 + 8.52263i −0.368799 + 0.282989i −0.776489 0.630131i \(-0.783001\pi\)
0.407690 + 0.913120i \(0.366334\pi\)
\(908\) 0 0
\(909\) −1.39716 3.37305i −0.0463410 0.111877i
\(910\) 0 0
\(911\) 29.8181 0.987917 0.493958 0.869486i \(-0.335550\pi\)
0.493958 + 0.869486i \(0.335550\pi\)
\(912\) 0 0
\(913\) 0.531217 0.920094i 0.0175807 0.0304507i
\(914\) 0 0
\(915\) 10.9871 + 8.43073i 0.363224 + 0.278711i
\(916\) 0 0
\(917\) −31.6604 43.5460i −1.04552 1.43802i
\(918\) 0 0
\(919\) −4.70223 + 17.5490i −0.155112 + 0.578887i 0.843983 + 0.536369i \(0.180205\pi\)
−0.999096 + 0.0425176i \(0.986462\pi\)
\(920\) 0 0
\(921\) −0.860446 + 0.230556i −0.0283527 + 0.00759708i
\(922\) 0 0
\(923\) 30.3989 + 12.5916i 1.00059 + 0.414459i
\(924\) 0 0
\(925\) −33.9300 81.9143i −1.11561 2.69333i
\(926\) 0 0
\(927\) −15.2963 + 26.4940i −0.502398 + 0.870178i
\(928\) 0 0
\(929\) −44.1260 + 25.4762i −1.44773 + 0.835846i −0.998346 0.0574938i \(-0.981689\pi\)
−0.449382 + 0.893340i \(0.648356\pi\)
\(930\) 0 0
\(931\) −17.6081 49.6176i −0.577081 1.62615i
\(932\) 0 0
\(933\) −2.33855 17.7631i −0.0765607 0.581537i
\(934\) 0 0
\(935\) −0.607412 2.26689i −0.0198645 0.0741354i
\(936\) 0 0
\(937\) 21.8870 + 21.8870i 0.715016 + 0.715016i 0.967580 0.252564i \(-0.0812739\pi\)
−0.252564 + 0.967580i \(0.581274\pi\)
\(938\) 0 0
\(939\) 1.56467 + 0.648109i 0.0510612 + 0.0211503i
\(940\) 0 0
\(941\) −25.3000 3.33081i −0.824756 0.108581i −0.293678 0.955904i \(-0.594879\pi\)
−0.531078 + 0.847323i \(0.678213\pi\)
\(942\) 0 0
\(943\) −4.11005 + 2.37294i −0.133842 + 0.0772735i
\(944\) 0 0
\(945\) 17.0271 27.8068i 0.553893 0.904554i
\(946\) 0 0
\(947\) 9.54325 12.4370i 0.310114 0.404148i −0.612130 0.790757i \(-0.709687\pi\)
0.922244 + 0.386609i \(0.126354\pi\)
\(948\) 0 0
\(949\) 22.4814 + 29.2983i 0.729776 + 0.951063i
\(950\) 0 0
\(951\) −2.23299 + 2.23299i −0.0724095 + 0.0724095i
\(952\) 0 0
\(953\) 35.1047 + 35.1047i 1.13715 + 1.13715i 0.988958 + 0.148196i \(0.0473467\pi\)
0.148196 + 0.988958i \(0.452653\pi\)
\(954\) 0 0
\(955\) 23.7854 18.2512i 0.769676 0.590593i
\(956\) 0 0
\(957\) 0.190066 + 0.145843i 0.00614396 + 0.00471443i
\(958\) 0 0
\(959\) 57.9232 + 1.49729i 1.87044 + 0.0483499i
\(960\) 0 0
\(961\) 8.64661 + 14.9764i 0.278923 + 0.483109i
\(962\) 0 0
\(963\) 2.22440 16.8960i 0.0716804 0.544467i
\(964\) 0 0
\(965\) 4.50482 10.8756i 0.145015 0.350098i
\(966\) 0 0
\(967\) −4.13197 + 4.13197i −0.132875 + 0.132875i −0.770416 0.637541i \(-0.779952\pi\)
0.637541 + 0.770416i \(0.279952\pi\)
\(968\) 0 0
\(969\) −14.0175 + 3.75599i −0.450308 + 0.120660i
\(970\) 0 0
\(971\) −38.8209 + 5.11086i −1.24582 + 0.164015i −0.724458 0.689319i \(-0.757910\pi\)
−0.521363 + 0.853335i \(0.674576\pi\)
\(972\) 0 0
\(973\) 38.9759 + 31.5404i 1.24951 + 1.01114i
\(974\) 0 0
\(975\) 11.9174 + 20.6415i 0.381661 + 0.661057i
\(976\) 0 0
\(977\) −26.3775 15.2291i −0.843892 0.487221i 0.0146935 0.999892i \(-0.495323\pi\)
−0.858585 + 0.512671i \(0.828656\pi\)
\(978\) 0 0
\(979\) −0.0180984 + 0.00749662i −0.000578429 + 0.000239593i
\(980\) 0 0
\(981\) 7.11417 17.1751i 0.227138 0.548359i
\(982\) 0 0
\(983\) 8.63630 + 32.2311i 0.275455 + 1.02801i 0.955536 + 0.294875i \(0.0952782\pi\)
−0.680080 + 0.733138i \(0.738055\pi\)
\(984\) 0 0
\(985\) −87.7413 23.5102i −2.79567 0.749097i
\(986\) 0 0
\(987\) 0.299890 + 2.84406i 0.00954559 + 0.0905275i
\(988\) 0 0
\(989\) −1.32216 + 1.72307i −0.0420422 + 0.0547904i
\(990\) 0 0
\(991\) −14.8667 8.58331i −0.472257 0.272658i 0.244927 0.969542i \(-0.421236\pi\)
−0.717184 + 0.696884i \(0.754569\pi\)
\(992\) 0 0
\(993\) 9.49907i 0.301444i
\(994\) 0 0
\(995\) 49.2652 20.4063i 1.56181 0.646924i
\(996\) 0 0
\(997\) 7.34440 + 9.57141i 0.232599 + 0.303129i 0.895041 0.445984i \(-0.147146\pi\)
−0.662441 + 0.749114i \(0.730480\pi\)
\(998\) 0 0
\(999\) −8.93969 + 33.3634i −0.282839 + 1.05557i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.bi.a.143.18 240
4.3 odd 2 224.2.be.a.59.24 yes 240
7.5 odd 6 inner 896.2.bi.a.271.18 240
28.19 even 6 224.2.be.a.187.17 yes 240
32.13 even 8 224.2.be.a.115.17 yes 240
32.19 odd 8 inner 896.2.bi.a.367.18 240
224.19 even 24 inner 896.2.bi.a.495.18 240
224.173 odd 24 224.2.be.a.19.24 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.2.be.a.19.24 240 224.173 odd 24
224.2.be.a.59.24 yes 240 4.3 odd 2
224.2.be.a.115.17 yes 240 32.13 even 8
224.2.be.a.187.17 yes 240 28.19 even 6
896.2.bi.a.143.18 240 1.1 even 1 trivial
896.2.bi.a.271.18 240 7.5 odd 6 inner
896.2.bi.a.367.18 240 32.19 odd 8 inner
896.2.bi.a.495.18 240 224.19 even 24 inner