Properties

Label 8967.2.a.bb
Level $8967$
Weight $2$
Character orbit 8967.a
Self dual yes
Analytic conductor $71.602$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8967,2,Mod(1,8967)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8967, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8967.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8967 = 3 \cdot 7^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8967.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.6018554925\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 13x^{8} - 2x^{7} + 54x^{6} + 14x^{5} - 81x^{4} - 26x^{3} + 30x^{2} + 12x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{2} + 1) q^{4} + \beta_{9} q^{5} - \beta_1 q^{6} + (\beta_{6} - \beta_{5} + \beta_{4} + \cdots - 1) q^{8} + q^{9} + ( - \beta_{8} + \beta_{5} - \beta_1) q^{10} + ( - \beta_{5} - \beta_{2} + \beta_1 - 1) q^{11}+ \cdots + ( - \beta_{5} - \beta_{2} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{3} + 6 q^{4} - 6 q^{8} + 10 q^{9} - 6 q^{10} - 4 q^{11} + 6 q^{12} - 8 q^{13} + 6 q^{16} + 8 q^{17} - 20 q^{19} + 12 q^{20} - 18 q^{22} - 14 q^{23} - 6 q^{24} - 6 q^{25} - 8 q^{26} + 10 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 13x^{8} - 2x^{7} + 54x^{6} + 14x^{5} - 81x^{4} - 26x^{3} + 30x^{2} + 12x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{9} - 13\nu^{7} - 2\nu^{6} + 54\nu^{5} + 14\nu^{4} - 81\nu^{3} - 26\nu^{2} + 30\nu + 11 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -2\nu^{8} + 4\nu^{7} + 19\nu^{6} - 36\nu^{5} - 45\nu^{4} + 80\nu^{3} + 20\nu^{2} - 29\nu - 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{9} - 4\nu^{8} - 6\nu^{7} + 38\nu^{6} - 9\nu^{5} - 94\nu^{4} + 62\nu^{3} + 53\nu^{2} - 31\nu - 6 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 2\nu^{9} - 2\nu^{8} - 23\nu^{7} + 17\nu^{6} + 81\nu^{5} - 35\nu^{4} - 100\nu^{3} + 8\nu^{2} + 33\nu + 6 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 2\nu^{9} - \nu^{8} - 25\nu^{7} + 8\nu^{6} + 99\nu^{5} - 17\nu^{4} - 141\nu^{3} + 7\nu^{2} + 51\nu + 6 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( -2\nu^{9} + \nu^{8} + 25\nu^{7} - 7\nu^{6} - 100\nu^{5} + 8\nu^{4} + 148\nu^{3} + 11\nu^{2} - 61\nu - 9 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( 3\nu^{9} - 3\nu^{8} - 34\nu^{7} + 25\nu^{6} + 117\nu^{5} - 49\nu^{4} - 141\nu^{3} + 8\nu^{2} + 48\nu + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{9} + \beta_{7} - \beta_{6} + \beta_{5} + 2\beta_{3} + 8\beta_{2} + \beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{8} + \beta_{7} - 11\beta_{6} + 9\beta_{5} - 8\beta_{4} + 9\beta_{3} + 9\beta_{2} + 28\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -9\beta_{9} + 11\beta_{7} - 13\beta_{6} + 11\beta_{5} - \beta_{4} + 20\beta_{3} + 56\beta_{2} + 12\beta _1 + 86 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -9\beta_{8} + 13\beta_{7} - 90\beta_{6} + 67\beta_{5} - 55\beta_{4} + 69\beta_{3} + 71\beta_{2} + 170\beta _1 + 72 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 63 \beta_{9} + 90 \beta_{7} - 123 \beta_{6} + 94 \beta_{5} - 16 \beta_{4} + 161 \beta_{3} + \cdots + 530 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 4 \beta_{9} - 63 \beta_{8} + 123 \beta_{7} - 669 \beta_{6} + 474 \beta_{5} - 366 \beta_{4} + \cdots + 560 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66980
1.95335
1.49569
0.790167
−0.124881
−0.261602
−0.717127
−1.68282
−1.69584
−2.42674
−2.66980 1.00000 5.12786 1.20297 −2.66980 0 −8.35076 1.00000 −3.21169
1.2 −1.95335 1.00000 1.81556 −0.0503500 −1.95335 0 0.360269 1.00000 0.0983510
1.3 −1.49569 1.00000 0.237093 3.25737 −1.49569 0 2.63677 1.00000 −4.87202
1.4 −0.790167 1.00000 −1.37564 −3.25148 −0.790167 0 2.66732 1.00000 2.56921
1.5 0.124881 1.00000 −1.98440 1.38970 0.124881 0 −0.497578 1.00000 0.173548
1.6 0.261602 1.00000 −1.93156 −2.84716 0.261602 0 −1.02850 1.00000 −0.744821
1.7 0.717127 1.00000 −1.48573 −0.100922 0.717127 0 −2.49971 1.00000 −0.0723736
1.8 1.68282 1.00000 0.831883 −1.57046 1.68282 0 −1.96573 1.00000 −2.64280
1.9 1.69584 1.00000 0.875871 2.84428 1.69584 0 −1.90634 1.00000 4.82343
1.10 2.42674 1.00000 3.88907 −0.873946 2.42674 0 4.58428 1.00000 −2.12084
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(61\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8967.2.a.bb yes 10
7.b odd 2 1 8967.2.a.ba 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8967.2.a.ba 10 7.b odd 2 1
8967.2.a.bb yes 10 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8967))\):

\( T_{2}^{10} - 13T_{2}^{8} + 2T_{2}^{7} + 54T_{2}^{6} - 14T_{2}^{5} - 81T_{2}^{4} + 26T_{2}^{3} + 30T_{2}^{2} - 12T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{10} - 22T_{5}^{8} + 150T_{5}^{6} - 328T_{5}^{4} - 4T_{5}^{3} + 202T_{5}^{2} + 30T_{5} + 1 \) Copy content Toggle raw display
\( T_{11}^{10} + 4 T_{11}^{9} - 29 T_{11}^{8} - 108 T_{11}^{7} + 295 T_{11}^{6} + 966 T_{11}^{5} + \cdots - 1860 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 13 T^{8} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{10} \) Copy content Toggle raw display
$5$ \( T^{10} - 22 T^{8} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{10} \) Copy content Toggle raw display
$11$ \( T^{10} + 4 T^{9} + \cdots - 1860 \) Copy content Toggle raw display
$13$ \( T^{10} + 8 T^{9} + \cdots - 16500 \) Copy content Toggle raw display
$17$ \( T^{10} - 8 T^{9} + \cdots + 440 \) Copy content Toggle raw display
$19$ \( T^{10} + 20 T^{9} + \cdots - 15 \) Copy content Toggle raw display
$23$ \( T^{10} + 14 T^{9} + \cdots + 22036 \) Copy content Toggle raw display
$29$ \( T^{10} + 10 T^{9} + \cdots + 525 \) Copy content Toggle raw display
$31$ \( T^{10} + 8 T^{9} + \cdots - 109760 \) Copy content Toggle raw display
$37$ \( T^{10} - 80 T^{8} + \cdots - 100 \) Copy content Toggle raw display
$41$ \( T^{10} + 8 T^{9} + \cdots - 460536 \) Copy content Toggle raw display
$43$ \( T^{10} + 6 T^{9} + \cdots + 31495785 \) Copy content Toggle raw display
$47$ \( T^{10} - 6 T^{9} + \cdots - 212304 \) Copy content Toggle raw display
$53$ \( T^{10} + 24 T^{9} + \cdots - 2816863 \) Copy content Toggle raw display
$59$ \( T^{10} + 10 T^{9} + \cdots - 791451 \) Copy content Toggle raw display
$61$ \( (T + 1)^{10} \) Copy content Toggle raw display
$67$ \( T^{10} + 20 T^{9} + \cdots + 857 \) Copy content Toggle raw display
$71$ \( T^{10} + 24 T^{9} + \cdots - 4467652 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots - 139752992 \) Copy content Toggle raw display
$79$ \( T^{10} + 14 T^{9} + \cdots + 12681917 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots - 216202800 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 330685440 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots - 121387784 \) Copy content Toggle raw display
show more
show less