Properties

Label 90.16.c.a
Level 9090
Weight 1616
Character orbit 90.c
Analytic conductor 128.424128.424
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,16,Mod(19,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.19");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: N N == 90=2325 90 = 2 \cdot 3^{2} \cdot 5
Weight: k k == 16 16
Character orbit: [χ][\chi] == 90.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 128.424154590128.424154590
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q128iq216384q4+(171875i+31250)q5+511994iq7+2097152iq8+(4000000i22000000)q10+19947598q11+180100962iq13+65535232q14+268435456q16+574134227700096iq98+O(q100) q - 128 i q^{2} - 16384 q^{4} + ( - 171875 i + 31250) q^{5} + 511994 i q^{7} + 2097152 i q^{8} + ( - 4000000 i - 22000000) q^{10} + 19947598 q^{11} + 180100962 i q^{13} + 65535232 q^{14} + 268435456 q^{16} + \cdots - 574134227700096 i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q32768q4+62500q544000000q10+39895196q11+131070464q14+536870912q16+4338461040q191024000000q2057128906250q25+46105846272q26+117686723040q29++135576907500000q95+O(q100) 2 q - 32768 q^{4} + 62500 q^{5} - 44000000 q^{10} + 39895196 q^{11} + 131070464 q^{14} + 536870912 q^{16} + 4338461040 q^{19} - 1024000000 q^{20} - 57128906250 q^{25} + 46105846272 q^{26} + 117686723040 q^{29}+ \cdots + 135576907500000 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/90Z)×\left(\mathbb{Z}/90\mathbb{Z}\right)^\times.

nn 1111 3737
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
1.00000i
1.00000i
128.000i 0 −16384.0 31250.0 171875.i 0 511994.i 2.09715e6i 0 −2.20000e7 4.00000e6i
19.2 128.000i 0 −16384.0 31250.0 + 171875.i 0 511994.i 2.09715e6i 0 −2.20000e7 + 4.00000e6i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.16.c.a 2
3.b odd 2 1 30.16.c.a 2
5.b even 2 1 inner 90.16.c.a 2
15.d odd 2 1 30.16.c.a 2
15.e even 4 1 150.16.a.b 1
15.e even 4 1 150.16.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.16.c.a 2 3.b odd 2 1
30.16.c.a 2 15.d odd 2 1
90.16.c.a 2 1.a even 1 1 trivial
90.16.c.a 2 5.b even 2 1 inner
150.16.a.b 1 15.e even 4 1
150.16.a.i 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+262137856036 T_{7}^{2} + 262137856036 acting on S16new(90,[χ])S_{16}^{\mathrm{new}}(90, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+16384 T^{2} + 16384 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2++30517578125 T^{2} + \cdots + 30517578125 Copy content Toggle raw display
77 T2+262137856036 T^{2} + 262137856036 Copy content Toggle raw display
1111 (T19947598)2 (T - 19947598)^{2} Copy content Toggle raw display
1313 T2+32 ⁣ ⁣44 T^{2} + 32\!\cdots\!44 Copy content Toggle raw display
1717 T2+31 ⁣ ⁣96 T^{2} + 31\!\cdots\!96 Copy content Toggle raw display
1919 (T2169230520)2 (T - 2169230520)^{2} Copy content Toggle raw display
2323 T2+11 ⁣ ⁣84 T^{2} + 11\!\cdots\!84 Copy content Toggle raw display
2929 (T58843361520)2 (T - 58843361520)^{2} Copy content Toggle raw display
3131 (T+131248934648)2 (T + 131248934648)^{2} Copy content Toggle raw display
3737 T2+10 ⁣ ⁣16 T^{2} + 10\!\cdots\!16 Copy content Toggle raw display
4141 (T678311212798)2 (T - 678311212798)^{2} Copy content Toggle raw display
4343 T2+34 ⁣ ⁣64 T^{2} + 34\!\cdots\!64 Copy content Toggle raw display
4747 T2+70 ⁣ ⁣76 T^{2} + 70\!\cdots\!76 Copy content Toggle raw display
5353 T2+59 ⁣ ⁣04 T^{2} + 59\!\cdots\!04 Copy content Toggle raw display
5959 (T12384358030090)2 (T - 12384358030090)^{2} Copy content Toggle raw display
6161 (T+28742040118198)2 (T + 28742040118198)^{2} Copy content Toggle raw display
6767 T2+38 ⁣ ⁣96 T^{2} + 38\!\cdots\!96 Copy content Toggle raw display
7171 (T+17045715067452)2 (T + 17045715067452)^{2} Copy content Toggle raw display
7373 T2+89 ⁣ ⁣84 T^{2} + 89\!\cdots\!84 Copy content Toggle raw display
7979 (T+5162001412320)2 (T + 5162001412320)^{2} Copy content Toggle raw display
8383 T2+15 ⁣ ⁣24 T^{2} + 15\!\cdots\!24 Copy content Toggle raw display
8989 (T64970078898710)2 (T - 64970078898710)^{2} Copy content Toggle raw display
9797 T2+18 ⁣ ⁣76 T^{2} + 18\!\cdots\!76 Copy content Toggle raw display
show more
show less