Properties

Label 90.16.c.e
Level $90$
Weight $16$
Character orbit 90.c
Analytic conductor $128.424$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,16,Mod(19,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.19");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.424154590\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1960198978 x^{14} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{94}\cdot 3^{32}\cdot 5^{18} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 16384 q^{4} + ( - \beta_{3} - 190 \beta_1) q^{5} - \beta_{2} q^{7} + 16384 \beta_1 q^{8} + (\beta_{4} - 3108352) q^{10} + ( - \beta_{7} - 24 \beta_{3} - 7 \beta_1) q^{11} + (\beta_{5} + 29 \beta_{2}) q^{13}+ \cdots + ( - 2400 \beta_{15} + \cdots + 1078628964473 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 262144 q^{4} - 49733632 q^{10} + 4294967296 q^{16} - 9028552704 q^{19} + 42419563632 q^{25} - 40724611904 q^{31} - 885646311424 q^{34} + 814835826688 q^{40} - 654599782400 q^{46} - 17251393932048 q^{49}+ \cdots - 909200639590400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 1960198978 x^{14} + \cdots + 25\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 10\!\cdots\!99 \nu^{15} + \cdots + 11\!\cdots\!00 \nu ) / 70\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 13\!\cdots\!09 \nu^{15} + \cdots + 31\!\cdots\!00 \nu ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 38\!\cdots\!21 \nu^{15} + \cdots - 59\!\cdots\!00 ) / 92\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11\!\cdots\!54 \nu^{15} + \cdots - 12\!\cdots\!00 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 13\!\cdots\!89 \nu^{15} + \cdots - 34\!\cdots\!00 \nu ) / 34\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 53\!\cdots\!87 \nu^{15} + \cdots + 53\!\cdots\!00 ) / 76\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 34\!\cdots\!10 \nu^{15} + \cdots - 14\!\cdots\!00 ) / 34\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 25\!\cdots\!95 \nu^{15} + \cdots - 29\!\cdots\!00 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 16\!\cdots\!55 \nu^{15} + \cdots + 22\!\cdots\!00 ) / 69\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 95\!\cdots\!83 \nu^{15} + \cdots + 63\!\cdots\!00 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 52\!\cdots\!83 \nu^{15} + \cdots - 66\!\cdots\!00 ) / 92\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 23\!\cdots\!97 \nu^{15} + \cdots + 92\!\cdots\!00 ) / 38\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 51\!\cdots\!29 \nu^{15} + \cdots - 68\!\cdots\!00 ) / 57\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 80\!\cdots\!54 \nu^{15} + \cdots + 16\!\cdots\!00 ) / 69\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 39\!\cdots\!37 \nu^{15} + \cdots + 48\!\cdots\!00 ) / 27\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{13} + 40\beta_{12} + 680\beta_{5} + 1258\beta_{4} - 8520\beta_{2} - 81000\beta_1 ) / 10368000 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 348939 \beta_{13} - 20070 \beta_{12} + 1413 \beta_{11} + 228060 \beta_{10} + \cdots - 12\!\cdots\!00 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 271620 \beta_{15} + 41040 \beta_{14} + 2766996878 \beta_{13} - 5170730915 \beta_{12} + \cdots + 29767803508134 \beta_1 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 267089079320649 \beta_{13} + 6085761013170 \beta_{12} - 2028868411824 \beta_{11} + \cdots + 65\!\cdots\!00 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 265181323032900 \beta_{15} - 191288139166800 \beta_{14} + \cdots - 25\!\cdots\!30 \beta_1 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 18\!\cdots\!29 \beta_{13} + \cdots - 39\!\cdots\!00 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 22\!\cdots\!20 \beta_{15} + \cdots + 21\!\cdots\!54 \beta_1 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 12\!\cdots\!29 \beta_{13} + \cdots + 25\!\cdots\!00 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 19\!\cdots\!00 \beta_{15} + \cdots - 18\!\cdots\!70 \beta_1 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 81\!\cdots\!69 \beta_{13} + \cdots - 16\!\cdots\!00 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 15\!\cdots\!20 \beta_{15} + \cdots + 14\!\cdots\!74 \beta_1 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 54\!\cdots\!09 \beta_{13} + \cdots + 11\!\cdots\!00 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 11\!\cdots\!00 \beta_{15} + \cdots - 11\!\cdots\!10 \beta_1 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 36\!\cdots\!09 \beta_{13} + \cdots - 73\!\cdots\!00 ) / 5184000 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 91\!\cdots\!20 \beta_{15} + \cdots + 86\!\cdots\!94 \beta_1 ) / 5184000 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
4074.58i
7743.96i
25766.7i
15478.3i
15476.3i
25768.7i
7745.96i
4072.58i
4074.58i
7743.96i
25766.7i
15478.3i
15476.3i
25768.7i
7745.96i
4072.58i
128.000i 0 −16384.0 −173529. + 20129.2i 0 2.89271e6i 2.09715e6i 0 2.57653e6 + 2.22117e7i
19.2 128.000i 0 −16384.0 −142270. 101375.i 0 486402.i 2.09715e6i 0 −1.29760e7 + 1.82105e7i
19.3 128.000i 0 −16384.0 −101852. + 141929.i 0 859408.i 2.09715e6i 0 1.81669e7 + 1.30370e7i
19.4 128.000i 0 −16384.0 −74905.5 157819.i 0 3.73633e6i 2.09715e6i 0 −2.02008e7 + 9.58790e6i
19.5 128.000i 0 −16384.0 74905.5 157819.i 0 3.73633e6i 2.09715e6i 0 −2.02008e7 9.58790e6i
19.6 128.000i 0 −16384.0 101852. + 141929.i 0 859408.i 2.09715e6i 0 1.81669e7 1.30370e7i
19.7 128.000i 0 −16384.0 142270. 101375.i 0 486402.i 2.09715e6i 0 −1.29760e7 1.82105e7i
19.8 128.000i 0 −16384.0 173529. + 20129.2i 0 2.89271e6i 2.09715e6i 0 2.57653e6 2.22117e7i
19.9 128.000i 0 −16384.0 −173529. 20129.2i 0 2.89271e6i 2.09715e6i 0 2.57653e6 2.22117e7i
19.10 128.000i 0 −16384.0 −142270. + 101375.i 0 486402.i 2.09715e6i 0 −1.29760e7 1.82105e7i
19.11 128.000i 0 −16384.0 −101852. 141929.i 0 859408.i 2.09715e6i 0 1.81669e7 1.30370e7i
19.12 128.000i 0 −16384.0 −74905.5 + 157819.i 0 3.73633e6i 2.09715e6i 0 −2.02008e7 9.58790e6i
19.13 128.000i 0 −16384.0 74905.5 + 157819.i 0 3.73633e6i 2.09715e6i 0 −2.02008e7 + 9.58790e6i
19.14 128.000i 0 −16384.0 101852. 141929.i 0 859408.i 2.09715e6i 0 1.81669e7 + 1.30370e7i
19.15 128.000i 0 −16384.0 142270. + 101375.i 0 486402.i 2.09715e6i 0 −1.29760e7 + 1.82105e7i
19.16 128.000i 0 −16384.0 173529. 20129.2i 0 2.89271e6i 2.09715e6i 0 2.57653e6 + 2.22117e7i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.16.c.e 16
3.b odd 2 1 inner 90.16.c.e 16
5.b even 2 1 inner 90.16.c.e 16
15.d odd 2 1 inner 90.16.c.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.16.c.e 16 1.a even 1 1 trivial
90.16.c.e 16 3.b odd 2 1 inner
90.16.c.e 16 5.b even 2 1 inner
90.16.c.e 16 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{8} + 23303094522784 T_{7}^{6} + \cdots + 20\!\cdots\!56 \) acting on \(S_{16}^{\mathrm{new}}(90, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16384)^{8} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} + \cdots + 75\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( (T^{8} + \cdots + 20\!\cdots\!56)^{2} \) Copy content Toggle raw display
$11$ \( (T^{8} + \cdots + 32\!\cdots\!76)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} + \cdots + 25\!\cdots\!76)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + \cdots + 15\!\cdots\!96)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots - 12\!\cdots\!04)^{4} \) Copy content Toggle raw display
$23$ \( (T^{8} + \cdots + 74\!\cdots\!00)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + \cdots + 53\!\cdots\!36)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots - 12\!\cdots\!04)^{4} \) Copy content Toggle raw display
$37$ \( (T^{8} + \cdots + 84\!\cdots\!56)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots + 37\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots + 11\!\cdots\!16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + \cdots + 11\!\cdots\!00)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + \cdots + 14\!\cdots\!36)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + \cdots + 99\!\cdots\!56)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 16\!\cdots\!96)^{4} \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 19\!\cdots\!16)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + \cdots + 44\!\cdots\!16)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + \cdots + 11\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots - 11\!\cdots\!84)^{4} \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 72\!\cdots\!76)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots + 36\!\cdots\!56)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 93\!\cdots\!76)^{2} \) Copy content Toggle raw display
show more
show less