gp: [N,k,chi] = [900,2,Mod(251,900)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(900, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("900.251");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-4,0,0,0,0,0,0,0,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = − 2 \beta = \sqrt{-2} β = − 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 900 Z ) × \left(\mathbb{Z}/900\mathbb{Z}\right)^\times ( Z / 9 0 0 Z ) × .
n n n
101 101 1 0 1
451 451 4 5 1
577 577 5 7 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 900 , [ χ ] ) S_{2}^{\mathrm{new}}(900, [\chi]) S 2 n e w ( 9 0 0 , [ χ ] ) :
T 7 T_{7} T 7
T7
T 13 − 4 T_{13} - 4 T 1 3 − 4
T13 - 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 2 T^{2} + 2 T 2 + 2
T^2 + 2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
17 17 1 7
T 2 + 50 T^{2} + 50 T 2 + 5 0
T^2 + 50
19 19 1 9
T 2 T^{2} T 2
T^2
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 + 98 T^{2} + 98 T 2 + 9 8
T^2 + 98
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
41 41 4 1
T 2 + 2 T^{2} + 2 T 2 + 2
T^2 + 2
43 43 4 3
T 2 T^{2} T 2
T^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 + 50 T^{2} + 50 T 2 + 5 0
T^2 + 50
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
( T + 10 ) 2 (T + 10)^{2} ( T + 1 0 ) 2
(T + 10)^2
67 67 6 7
T 2 T^{2} T 2
T^2
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
( T − 16 ) 2 (T - 16)^{2} ( T − 1 6 ) 2
(T - 16)^2
79 79 7 9
T 2 T^{2} T 2
T^2
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 + 338 T^{2} + 338 T 2 + 3 3 8
T^2 + 338
97 97 9 7
( T + 8 ) 2 (T + 8)^{2} ( T + 8 ) 2
(T + 8)^2
show more
show less