Properties

Label 900.2.e.b
Level 900900
Weight 22
Character orbit 900.e
Analytic conductor 7.1877.187
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(251,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 900=223252 900 = 2^{2} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 900.e (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.186536181927.18653618192
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{-2})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+2 x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{-2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq22q42βq8+4q13+4q16+5βq17+4βq26+7βq29+4βq3210q342q37+βq41+7q498q52+5βq53++7βq98+O(q100) q + \beta q^{2} - 2 q^{4} - 2 \beta q^{8} + 4 q^{13} + 4 q^{16} + 5 \beta q^{17} + 4 \beta q^{26} + 7 \beta q^{29} + 4 \beta q^{32} - 10 q^{34} - 2 q^{37} + \beta q^{41} + 7 q^{49} - 8 q^{52} + 5 \beta q^{53} + \cdots + 7 \beta q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q4+8q13+8q1620q344q37+14q4916q5228q5820q6116q64+32q734q8216q97+O(q100) 2 q - 4 q^{4} + 8 q^{13} + 8 q^{16} - 20 q^{34} - 4 q^{37} + 14 q^{49} - 16 q^{52} - 28 q^{58} - 20 q^{61} - 16 q^{64} + 32 q^{73} - 4 q^{82} - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/900Z)×\left(\mathbb{Z}/900\mathbb{Z}\right)^\times.

nn 101101 451451 577577
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
251.1
1.41421i
1.41421i
1.41421i 0 −2.00000 0 0 0 2.82843i 0 0
251.2 1.41421i 0 −2.00000 0 0 0 2.82843i 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
3.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.2.e.b 2
3.b odd 2 1 inner 900.2.e.b 2
4.b odd 2 1 CM 900.2.e.b 2
5.b even 2 1 36.2.b.a 2
5.c odd 4 2 900.2.h.a 4
12.b even 2 1 inner 900.2.e.b 2
15.d odd 2 1 36.2.b.a 2
15.e even 4 2 900.2.h.a 4
20.d odd 2 1 36.2.b.a 2
20.e even 4 2 900.2.h.a 4
35.c odd 2 1 1764.2.e.b 2
40.e odd 2 1 576.2.c.b 2
40.f even 2 1 576.2.c.b 2
45.h odd 6 2 324.2.h.c 4
45.j even 6 2 324.2.h.c 4
60.h even 2 1 36.2.b.a 2
60.l odd 4 2 900.2.h.a 4
80.k odd 4 2 2304.2.f.d 4
80.q even 4 2 2304.2.f.d 4
105.g even 2 1 1764.2.e.b 2
120.i odd 2 1 576.2.c.b 2
120.m even 2 1 576.2.c.b 2
140.c even 2 1 1764.2.e.b 2
180.n even 6 2 324.2.h.c 4
180.p odd 6 2 324.2.h.c 4
240.t even 4 2 2304.2.f.d 4
240.bm odd 4 2 2304.2.f.d 4
420.o odd 2 1 1764.2.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.2.b.a 2 5.b even 2 1
36.2.b.a 2 15.d odd 2 1
36.2.b.a 2 20.d odd 2 1
36.2.b.a 2 60.h even 2 1
324.2.h.c 4 45.h odd 6 2
324.2.h.c 4 45.j even 6 2
324.2.h.c 4 180.n even 6 2
324.2.h.c 4 180.p odd 6 2
576.2.c.b 2 40.e odd 2 1
576.2.c.b 2 40.f even 2 1
576.2.c.b 2 120.i odd 2 1
576.2.c.b 2 120.m even 2 1
900.2.e.b 2 1.a even 1 1 trivial
900.2.e.b 2 3.b odd 2 1 inner
900.2.e.b 2 4.b odd 2 1 CM
900.2.e.b 2 12.b even 2 1 inner
900.2.h.a 4 5.c odd 4 2
900.2.h.a 4 15.e even 4 2
900.2.h.a 4 20.e even 4 2
900.2.h.a 4 60.l odd 4 2
1764.2.e.b 2 35.c odd 2 1
1764.2.e.b 2 105.g even 2 1
1764.2.e.b 2 140.c even 2 1
1764.2.e.b 2 420.o odd 2 1
2304.2.f.d 4 80.k odd 4 2
2304.2.f.d 4 80.q even 4 2
2304.2.f.d 4 240.t even 4 2
2304.2.f.d 4 240.bm odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(900,[χ])S_{2}^{\mathrm{new}}(900, [\chi]):

T7 T_{7} Copy content Toggle raw display
T134 T_{13} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2 T^{2} + 2 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1717 T2+50 T^{2} + 50 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+98 T^{2} + 98 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4141 T2+2 T^{2} + 2 Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+50 T^{2} + 50 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T16)2 (T - 16)^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2+338 T^{2} + 338 Copy content Toggle raw display
9797 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
show more
show less