Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [9000,2,Mod(1,9000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9000.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9000.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(71.8653618192\) |
Analytic rank: | \(1\) |
Dimension: | \(4\) |
Coefficient field: | 4.4.13025.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - x^{3} - 12x^{2} + 3x + 29 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 3000) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Root | \(-1.88775\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 9000.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −4.05444 | −1.53243 | −0.766217 | − | 0.642582i | \(-0.777863\pi\) | ||||
−0.766217 | + | 0.642582i | \(0.777863\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 1.33909 | 0.403751 | 0.201875 | − | 0.979411i | \(-0.435296\pi\) | ||||
0.201875 | + | 0.979411i | \(0.435296\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −7.12382 | −1.97579 | −0.987896 | − | 0.155120i | \(-0.950423\pi\) | ||||
−0.987896 | + | 0.155120i | \(0.950423\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 3.15746 | 0.765797 | 0.382899 | − | 0.923790i | \(-0.374926\pi\) | ||||
0.382899 | + | 0.923790i | \(0.374926\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.78473 | 1.09769 | 0.548846 | − | 0.835924i | \(-0.315067\pi\) | ||||
0.548846 | + | 0.835924i | \(0.315067\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −0.103022 | −0.0214815 | −0.0107408 | − | 0.999942i | \(-0.503419\pi\) | ||||
−0.0107408 | + | 0.999942i | \(0.503419\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.22113 | 1.15524 | 0.577618 | − | 0.816307i | \(-0.303982\pi\) | ||||
0.577618 | + | 0.816307i | \(0.303982\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −0.402761 | −0.0723379 | −0.0361690 | − | 0.999346i | \(-0.511515\pi\) | ||||
−0.0361690 | + | 0.999346i | \(0.511515\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −0.327525 | −0.0538448 | −0.0269224 | − | 0.999638i | \(-0.508571\pi\) | ||||
−0.0269224 | + | 0.999638i | \(0.508571\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 7.62389 | 1.19065 | 0.595326 | − | 0.803484i | \(-0.297023\pi\) | ||||
0.595326 | + | 0.803484i | \(0.297023\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 9.18749 | 1.40108 | 0.700539 | − | 0.713614i | \(-0.252943\pi\) | ||||
0.700539 | + | 0.713614i | \(0.252943\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −10.8993 | −1.58983 | −0.794914 | − | 0.606722i | \(-0.792484\pi\) | ||||
−0.794914 | + | 0.606722i | \(0.792484\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 9.43849 | 1.34836 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0.730286 | 0.100312 | 0.0501562 | − | 0.998741i | \(-0.484028\pi\) | ||||
0.0501562 | + | 0.998741i | \(0.484028\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.39353 | −1.09274 | −0.546372 | − | 0.837542i | \(-0.683992\pi\) | ||||
−0.546372 | + | 0.837542i | \(0.683992\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −3.65376 | −0.467816 | −0.233908 | − | 0.972259i | \(-0.575152\pi\) | ||||
−0.233908 | + | 0.972259i | \(0.575152\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −3.90854 | −0.477504 | −0.238752 | − | 0.971081i | \(-0.576738\pi\) | ||||
−0.238752 | + | 0.971081i | \(0.576738\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 7.08680 | 0.841048 | 0.420524 | − | 0.907281i | \(-0.361846\pi\) | ||||
0.420524 | + | 0.907281i | \(0.361846\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −2.86904 | −0.335795 | −0.167898 | − | 0.985804i | \(-0.553698\pi\) | ||||
−0.167898 | + | 0.985804i | \(0.553698\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −5.42926 | −0.618722 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 12.4480 | 1.40051 | 0.700253 | − | 0.713895i | \(-0.253070\pi\) | ||||
0.700253 | + | 0.713895i | \(0.253070\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 3.96869 | 0.435620 | 0.217810 | − | 0.975991i | \(-0.430109\pi\) | ||||
0.217810 | + | 0.975991i | \(0.430109\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −18.0624 | −1.91461 | −0.957304 | − | 0.289082i | \(-0.906650\pi\) | ||||
−0.957304 | + | 0.289082i | \(0.906650\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 28.8831 | 3.02777 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 14.6355 | 1.48601 | 0.743003 | − | 0.669288i | \(-0.233401\pi\) | ||||
0.743003 | + | 0.669288i | \(0.233401\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 7.35988 | 0.732336 | 0.366168 | − | 0.930549i | \(-0.380670\pi\) | ||||
0.366168 | + | 0.930549i | \(0.380670\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 3.88060 | 0.382367 | 0.191183 | − | 0.981554i | \(-0.438767\pi\) | ||||
0.191183 | + | 0.981554i | \(0.438767\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −9.39706 | −0.908448 | −0.454224 | − | 0.890888i | \(-0.650083\pi\) | ||||
−0.454224 | + | 0.890888i | \(0.650083\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −4.89361 | −0.468723 | −0.234361 | − | 0.972150i | \(-0.575300\pi\) | ||||
−0.234361 | + | 0.972150i | \(0.575300\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 16.8436 | 1.58451 | 0.792256 | − | 0.610189i | \(-0.208907\pi\) | ||||
0.792256 | + | 0.610189i | \(0.208907\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −12.8017 | −1.17353 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −9.20684 | −0.836985 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −17.1711 | −1.52369 | −0.761845 | − | 0.647760i | \(-0.775706\pi\) | ||||
−0.761845 | + | 0.647760i | \(0.775706\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −6.34624 | −0.554473 | −0.277237 | − | 0.960802i | \(-0.589419\pi\) | ||||
−0.277237 | + | 0.960802i | \(0.589419\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −19.3994 | −1.68214 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −18.9615 | −1.61999 | −0.809997 | − | 0.586434i | \(-0.800531\pi\) | ||||
−0.809997 | + | 0.586434i | \(0.800531\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −15.1412 | −1.28426 | −0.642132 | − | 0.766594i | \(-0.721950\pi\) | ||||
−0.642132 | + | 0.766594i | \(0.721950\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −9.53943 | −0.797727 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −23.8194 | −1.95136 | −0.975681 | − | 0.219193i | \(-0.929657\pi\) | ||||
−0.975681 | + | 0.219193i | \(0.929657\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −20.1469 | −1.63954 | −0.819768 | − | 0.572696i | \(-0.805897\pi\) | ||||
−0.819768 | + | 0.572696i | \(0.805897\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −6.15513 | −0.491233 | −0.245616 | − | 0.969367i | \(-0.578990\pi\) | ||||
−0.245616 | + | 0.969367i | \(0.578990\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0.417695 | 0.0329190 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 8.16525 | 0.639552 | 0.319776 | − | 0.947493i | \(-0.396392\pi\) | ||||
0.319776 | + | 0.947493i | \(0.396392\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −10.6401 | −0.823357 | −0.411678 | − | 0.911329i | \(-0.635057\pi\) | ||||
−0.411678 | + | 0.911329i | \(0.635057\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 37.7488 | 2.90375 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −6.66116 | −0.506439 | −0.253219 | − | 0.967409i | \(-0.581489\pi\) | ||||
−0.253219 | + | 0.967409i | \(0.581489\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −1.77316 | −0.132532 | −0.0662662 | − | 0.997802i | \(-0.521109\pi\) | ||||
−0.0662662 | + | 0.997802i | \(0.521109\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 16.9027 | 1.25637 | 0.628183 | − | 0.778065i | \(-0.283799\pi\) | ||||
0.628183 | + | 0.778065i | \(0.283799\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 4.22813 | 0.309191 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −8.78473 | −0.635641 | −0.317820 | − | 0.948151i | \(-0.602951\pi\) | ||||
−0.317820 | + | 0.948151i | \(0.602951\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 12.4745 | 0.897932 | 0.448966 | − | 0.893549i | \(-0.351792\pi\) | ||||
0.448966 | + | 0.893549i | \(0.351792\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 16.2500 | 1.15776 | 0.578881 | − | 0.815412i | \(-0.303490\pi\) | ||||
0.578881 | + | 0.815412i | \(0.303490\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −15.6334 | −1.10822 | −0.554110 | − | 0.832443i | \(-0.686941\pi\) | ||||
−0.554110 | + | 0.832443i | \(0.686941\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −25.2232 | −1.77032 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 6.40718 | 0.443194 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −23.1389 | −1.59295 | −0.796474 | − | 0.604673i | \(-0.793304\pi\) | ||||
−0.796474 | + | 0.604673i | \(0.793304\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 1.63297 | 0.110853 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −22.4932 | −1.51306 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.9651 | 1.13606 | 0.568032 | − | 0.823006i | \(-0.307705\pi\) | ||||
0.568032 | + | 0.823006i | \(0.307705\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 10.7757 | 0.715205 | 0.357603 | − | 0.933874i | \(-0.383594\pi\) | ||||
0.357603 | + | 0.933874i | \(0.383594\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 18.5696 | 1.22711 | 0.613557 | − | 0.789650i | \(-0.289738\pi\) | ||||
0.613557 | + | 0.789650i | \(0.289738\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 1.65039 | 0.108121 | 0.0540604 | − | 0.998538i | \(-0.482784\pi\) | ||||
0.0540604 | + | 0.998538i | \(0.482784\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −19.0660 | −1.23328 | −0.616639 | − | 0.787246i | \(-0.711506\pi\) | ||||
−0.616639 | + | 0.787246i | \(0.711506\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 15.5752 | 1.00328 | 0.501642 | − | 0.865075i | \(-0.332729\pi\) | ||||
0.501642 | + | 0.865075i | \(0.332729\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −34.0855 | −2.16881 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −18.2130 | −1.14959 | −0.574796 | − | 0.818297i | \(-0.694918\pi\) | ||||
−0.574796 | + | 0.818297i | \(0.694918\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −0.137955 | −0.00867317 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −14.8505 | −0.926348 | −0.463174 | − | 0.886267i | \(-0.653289\pi\) | ||||
−0.463174 | + | 0.886267i | \(0.653289\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 1.32793 | 0.0825137 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −28.2291 | −1.74068 | −0.870340 | − | 0.492452i | \(-0.836101\pi\) | ||||
−0.870340 | + | 0.492452i | \(0.836101\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 2.33130 | 0.142142 | 0.0710710 | − | 0.997471i | \(-0.477358\pi\) | ||||
0.0710710 | + | 0.997471i | \(0.477358\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −9.84503 | −0.598043 | −0.299021 | − | 0.954246i | \(-0.596660\pi\) | ||||
−0.299021 | + | 0.954246i | \(0.596660\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −24.4616 | −1.46976 | −0.734878 | − | 0.678199i | \(-0.762761\pi\) | ||||
−0.734878 | + | 0.678199i | \(0.762761\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −15.6447 | −0.933284 | −0.466642 | − | 0.884446i | \(-0.654536\pi\) | ||||
−0.466642 | + | 0.884446i | \(0.654536\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −9.82969 | −0.584314 | −0.292157 | − | 0.956370i | \(-0.594373\pi\) | ||||
−0.292157 | + | 0.956370i | \(0.594373\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −30.9106 | −1.82460 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −7.03043 | −0.413555 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 17.3449 | 1.01330 | 0.506651 | − | 0.862151i | \(-0.330883\pi\) | ||||
0.506651 | + | 0.862151i | \(0.330883\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0.733907 | 0.0424430 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −37.2501 | −2.14706 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 22.1862 | 1.26623 | 0.633117 | − | 0.774056i | \(-0.281775\pi\) | ||||
0.633117 | + | 0.774056i | \(0.281775\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 19.9407 | 1.13073 | 0.565365 | − | 0.824841i | \(-0.308735\pi\) | ||||
0.565365 | + | 0.824841i | \(0.308735\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 10.9945 | 0.621449 | 0.310724 | − | 0.950500i | \(-0.399428\pi\) | ||||
0.310724 | + | 0.950500i | \(0.399428\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −24.6249 | −1.38307 | −0.691537 | − | 0.722341i | \(-0.743066\pi\) | ||||
−0.691537 | + | 0.722341i | \(0.743066\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 8.33066 | 0.466427 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 15.1076 | 0.840609 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 44.1906 | 2.43631 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 5.98481 | 0.328955 | 0.164478 | − | 0.986381i | \(-0.447406\pi\) | ||||
0.164478 | + | 0.986381i | \(0.447406\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −21.3564 | −1.16335 | −0.581677 | − | 0.813420i | \(-0.697603\pi\) | ||||
−0.581677 | + | 0.813420i | \(0.697603\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −0.539332 | −0.0292065 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −9.88671 | −0.533832 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −9.13096 | −0.490176 | −0.245088 | − | 0.969501i | \(-0.578817\pi\) | ||||
−0.245088 | + | 0.969501i | \(0.578817\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 14.9106 | 0.798147 | 0.399074 | − | 0.916919i | \(-0.369332\pi\) | ||||
0.399074 | + | 0.916919i | \(0.369332\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 15.7519 | 0.838388 | 0.419194 | − | 0.907897i | \(-0.362313\pi\) | ||||
0.419194 | + | 0.907897i | \(0.362313\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 17.4164 | 0.919203 | 0.459601 | − | 0.888125i | \(-0.347992\pi\) | ||||
0.459601 | + | 0.888125i | \(0.347992\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 3.89361 | 0.204927 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 10.5432 | 0.550351 | 0.275175 | − | 0.961394i | \(-0.411264\pi\) | ||||
0.275175 | + | 0.961394i | \(0.411264\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −2.96090 | −0.153722 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −36.8381 | −1.90741 | −0.953703 | − | 0.300750i | \(-0.902763\pi\) | ||||
−0.953703 | + | 0.300750i | \(0.902763\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −44.3182 | −2.28250 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −32.4151 | −1.66505 | −0.832526 | − | 0.553985i | \(-0.813106\pi\) | ||||
−0.832526 | + | 0.553985i | \(0.813106\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −13.0618 | −0.667429 | −0.333714 | − | 0.942674i | \(-0.608302\pi\) | ||||
−0.333714 | + | 0.942674i | \(0.608302\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 8.43279 | 0.427559 | 0.213780 | − | 0.976882i | \(-0.431423\pi\) | ||||
0.213780 | + | 0.976882i | \(0.431423\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −0.325287 | −0.0164505 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −6.21309 | −0.311826 | −0.155913 | − | 0.987771i | \(-0.549832\pi\) | ||||
−0.155913 | + | 0.987771i | \(0.549832\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −1.29845 | −0.0648416 | −0.0324208 | − | 0.999474i | \(-0.510322\pi\) | ||||
−0.0324208 | + | 0.999474i | \(0.510322\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 2.86919 | 0.142925 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −0.438586 | −0.0217399 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −13.5402 | −0.669521 | −0.334760 | − | 0.942303i | \(-0.608655\pi\) | ||||
−0.334760 | + | 0.942303i | \(0.608655\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 34.0311 | 1.67456 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −0.547371 | −0.0267408 | −0.0133704 | − | 0.999911i | \(-0.504256\pi\) | ||||
−0.0133704 | + | 0.999911i | \(0.504256\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −0.319091 | −0.0155515 | −0.00777577 | − | 0.999970i | \(-0.502475\pi\) | ||||
−0.00777577 | + | 0.999970i | \(0.502475\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 14.8140 | 0.716898 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −34.4929 | −1.66147 | −0.830733 | − | 0.556671i | \(-0.812078\pi\) | ||||
−0.830733 | + | 0.556671i | \(0.812078\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 24.6600 | 1.18509 | 0.592543 | − | 0.805539i | \(-0.298124\pi\) | ||||
0.592543 | + | 0.805539i | \(0.298124\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −0.492930 | −0.0235801 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 27.1693 | 1.29672 | 0.648361 | − | 0.761333i | \(-0.275455\pi\) | ||||
0.648361 | + | 0.761333i | \(0.275455\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 7.75124 | 0.368272 | 0.184136 | − | 0.982901i | \(-0.441051\pi\) | ||||
0.184136 | + | 0.982901i | \(0.441051\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 34.4432 | 1.62547 | 0.812737 | − | 0.582631i | \(-0.197977\pi\) | ||||
0.812737 | + | 0.582631i | \(0.197977\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 10.2091 | 0.480727 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 11.0286 | 0.515895 | 0.257948 | − | 0.966159i | \(-0.416954\pi\) | ||||
0.257948 | + | 0.966159i | \(0.416954\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 9.38574 | 0.437138 | 0.218569 | − | 0.975822i | \(-0.429861\pi\) | ||||
0.218569 | + | 0.975822i | \(0.429861\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −2.63515 | −0.122466 | −0.0612328 | − | 0.998124i | \(-0.519503\pi\) | ||||
−0.0612328 | + | 0.998124i | \(0.519503\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −37.8923 | −1.75345 | −0.876724 | − | 0.480994i | \(-0.840276\pi\) | ||||
−0.876724 | + | 0.480994i | \(0.840276\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 15.8470 | 0.731744 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 12.3029 | 0.565687 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −6.31492 | −0.288536 | −0.144268 | − | 0.989539i | \(-0.546083\pi\) | ||||
−0.144268 | + | 0.989539i | \(0.546083\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 2.33323 | 0.106386 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −14.0946 | −0.638687 | −0.319343 | − | 0.947639i | \(-0.603462\pi\) | ||||
−0.319343 | + | 0.947639i | \(0.603462\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 13.2922 | 0.599869 | 0.299934 | − | 0.953960i | \(-0.403035\pi\) | ||||
0.299934 | + | 0.953960i | \(0.403035\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 19.6430 | 0.884676 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −28.7330 | −1.28885 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −37.6503 | −1.68546 | −0.842729 | − | 0.538337i | \(-0.819053\pi\) | ||||
−0.842729 | + | 0.538337i | \(0.819053\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −0.913200 | −0.0407176 | −0.0203588 | − | 0.999793i | \(-0.506481\pi\) | ||||
−0.0203588 | + | 0.999793i | \(0.506481\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 34.9232 | 1.54795 | 0.773973 | − | 0.633219i | \(-0.218267\pi\) | ||||
0.773973 | + | 0.633219i | \(0.218267\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 11.6323 | 0.514584 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −14.5952 | −0.641894 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 28.4317 | 1.24562 | 0.622809 | − | 0.782374i | \(-0.285991\pi\) | ||||
0.622809 | + | 0.782374i | \(0.285991\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 16.4521 | 0.719402 | 0.359701 | − | 0.933068i | \(-0.382879\pi\) | ||||
0.359701 | + | 0.933068i | \(0.382879\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −1.27170 | −0.0553962 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −22.9894 | −0.999539 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −54.3112 | −2.35248 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 12.6390 | 0.544400 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 28.4455 | 1.22297 | 0.611484 | − | 0.791257i | \(-0.290573\pi\) | ||||
0.611484 | + | 0.791257i | \(0.290573\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −29.8588 | −1.27667 | −0.638334 | − | 0.769759i | \(-0.720376\pi\) | ||||
−0.638334 | + | 0.769759i | \(0.720376\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 29.7664 | 1.26809 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −50.4696 | −2.14618 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 38.0727 | 1.61319 | 0.806595 | − | 0.591104i | \(-0.201308\pi\) | ||||
0.806595 | + | 0.591104i | \(0.201308\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −65.4500 | −2.76824 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −29.4249 | −1.24011 | −0.620055 | − | 0.784558i | \(-0.712890\pi\) | ||||
−0.620055 | + | 0.784558i | \(0.712890\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −26.8910 | −1.12733 | −0.563665 | − | 0.826003i | \(-0.690609\pi\) | ||||
−0.563665 | + | 0.826003i | \(0.690609\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 23.4059 | 0.979506 | 0.489753 | − | 0.871861i | \(-0.337087\pi\) | ||||
0.489753 | + | 0.871861i | \(0.337087\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −14.8910 | −0.619922 | −0.309961 | − | 0.950749i | \(-0.600316\pi\) | ||||
−0.309961 | + | 0.950749i | \(0.600316\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −16.0908 | −0.667559 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0.977918 | 0.0405012 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 23.7896 | 0.981900 | 0.490950 | − | 0.871188i | \(-0.336650\pi\) | ||||
0.490950 | + | 0.871188i | \(0.336650\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −1.92710 | −0.0794047 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 7.93152 | 0.325708 | 0.162854 | − | 0.986650i | \(-0.447930\pi\) | ||||
0.162854 | + | 0.986650i | \(0.447930\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −46.7716 | −1.91104 | −0.955519 | − | 0.294931i | \(-0.904703\pi\) | ||||
−0.955519 | + | 0.294931i | \(0.904703\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −2.18877 | −0.0892820 | −0.0446410 | − | 0.999003i | \(-0.514214\pi\) | ||||
−0.0446410 | + | 0.999003i | \(0.514214\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 20.6382 | 0.837678 | 0.418839 | − | 0.908061i | \(-0.362437\pi\) | ||||
0.418839 | + | 0.908061i | \(0.362437\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 77.6447 | 3.14117 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −45.4674 | −1.83641 | −0.918205 | − | 0.396105i | \(-0.870362\pi\) | ||||
−0.918205 | + | 0.396105i | \(0.870362\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −6.97648 | −0.280862 | −0.140431 | − | 0.990090i | \(-0.544849\pi\) | ||||
−0.140431 | + | 0.990090i | \(0.544849\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 11.1090 | 0.446510 | 0.223255 | − | 0.974760i | \(-0.428332\pi\) | ||||
0.223255 | + | 0.974760i | \(0.428332\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 73.2329 | 2.93401 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −1.03415 | −0.0412342 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 0.589056 | 0.0234500 | 0.0117250 | − | 0.999931i | \(-0.496268\pi\) | ||||
0.0117250 | + | 0.999931i | \(0.496268\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −67.2381 | −2.66407 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0504 | −1.18692 | −0.593460 | − | 0.804863i | \(-0.702239\pi\) | ||||
−0.593460 | + | 0.804863i | \(0.702239\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 9.47601 | 0.373697 | 0.186849 | − | 0.982389i | \(-0.440173\pi\) | ||||
0.186849 | + | 0.982389i | \(0.440173\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −11.8150 | −0.464496 | −0.232248 | − | 0.972657i | \(-0.574608\pi\) | ||||
−0.232248 | + | 0.972657i | \(0.574608\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −11.2397 | −0.441196 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 0.0672925 | 0.00263336 | 0.00131668 | − | 0.999999i | \(-0.499581\pi\) | ||||
0.00131668 | + | 0.999999i | \(0.499581\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 21.0565 | 0.820246 | 0.410123 | − | 0.912030i | \(-0.365486\pi\) | ||||
0.410123 | + | 0.912030i | \(0.365486\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 10.7212 | 0.417007 | 0.208503 | − | 0.978022i | \(-0.433141\pi\) | ||||
0.208503 | + | 0.978022i | \(0.433141\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −0.640911 | −0.0248162 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −4.89272 | −0.188881 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 30.2822 | 1.16729 | 0.583646 | − | 0.812008i | \(-0.301626\pi\) | ||||
0.583646 | + | 0.812008i | \(0.301626\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −29.9028 | −1.14926 | −0.574630 | − | 0.818414i | \(-0.694854\pi\) | ||||
−0.574630 | + | 0.818414i | \(0.694854\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −59.3386 | −2.27721 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 8.49293 | 0.324973 | 0.162486 | − | 0.986711i | \(-0.448049\pi\) | ||||
0.162486 | + | 0.986711i | \(0.448049\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −5.20242 | −0.198196 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −22.9983 | −0.874897 | −0.437449 | − | 0.899243i | \(-0.644118\pi\) | ||||
−0.437449 | + | 0.899243i | \(0.644118\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 24.0722 | 0.911798 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 10.5497 | 0.398456 | 0.199228 | − | 0.979953i | \(-0.436156\pi\) | ||||
0.199228 | + | 0.979953i | \(0.436156\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −1.56712 | −0.0591050 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −29.8402 | −1.12226 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 38.7411 | 1.45495 | 0.727476 | − | 0.686134i | \(-0.240693\pi\) | ||||
0.727476 | + | 0.686134i | \(0.240693\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0.0414931 | 0.00155393 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −19.9535 | −0.744140 | −0.372070 | − | 0.928205i | \(-0.621352\pi\) | ||||
−0.372070 | + | 0.928205i | \(0.621352\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −15.7337 | −0.585952 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −4.98353 | −0.184829 | −0.0924144 | − | 0.995721i | \(-0.529458\pi\) | ||||
−0.0924144 | + | 0.995721i | \(0.529458\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 29.0091 | 1.07294 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −24.6102 | −0.909000 | −0.454500 | − | 0.890747i | \(-0.650182\pi\) | ||||
−0.454500 | + | 0.890747i | \(0.650182\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −5.23389 | −0.192793 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −28.1007 | −1.03370 | −0.516850 | − | 0.856076i | \(-0.672896\pi\) | ||||
−0.516850 | + | 0.856076i | \(0.672896\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 7.88253 | 0.289182 | 0.144591 | − | 0.989492i | \(-0.453813\pi\) | ||||
0.144591 | + | 0.989492i | \(0.453813\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 38.0998 | 1.39214 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −21.3763 | −0.780031 | −0.390015 | − | 0.920808i | \(-0.627530\pi\) | ||||
−0.390015 | + | 0.920808i | \(0.627530\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −17.6845 | −0.642755 | −0.321377 | − | 0.946951i | \(-0.604146\pi\) | ||||
−0.321377 | + | 0.946951i | \(0.604146\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 30.5834 | 1.10865 | 0.554323 | − | 0.832302i | \(-0.312977\pi\) | ||||
0.554323 | + | 0.832302i | \(0.312977\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 19.8408 | 0.718287 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 59.7940 | 2.15904 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 8.39447 | 0.302712 | 0.151356 | − | 0.988479i | \(-0.451636\pi\) | ||||
0.151356 | + | 0.988479i | \(0.451636\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −42.8082 | −1.53970 | −0.769851 | − | 0.638223i | \(-0.779670\pi\) | ||||
−0.769851 | + | 0.638223i | \(0.779670\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 36.4782 | 1.30697 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 9.48986 | 0.339574 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 10.3286 | 0.368174 | 0.184087 | − | 0.982910i | \(-0.441067\pi\) | ||||
0.184087 | + | 0.982910i | \(0.441067\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −68.2913 | −2.42816 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 26.0287 | 0.924308 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 2.84333 | 0.100716 | 0.0503580 | − | 0.998731i | \(-0.483964\pi\) | ||||
0.0503580 | + | 0.998731i | \(0.483964\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −34.4142 | −1.21749 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −3.84190 | −0.135578 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −17.3440 | −0.609783 | −0.304891 | − | 0.952387i | \(-0.598620\pi\) | ||||
−0.304891 | + | 0.952387i | \(0.598620\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −11.8281 | −0.415341 | −0.207670 | − | 0.978199i | \(-0.566588\pi\) | ||||
−0.207670 | + | 0.978199i | \(0.566588\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 43.9596 | 1.53795 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 19.9201 | 0.695217 | 0.347608 | − | 0.937640i | \(-0.386994\pi\) | ||||
0.347608 | + | 0.937640i | \(0.386994\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 37.0022 | 1.28982 | 0.644909 | − | 0.764260i | \(-0.276895\pi\) | ||||
0.644909 | + | 0.764260i | \(0.276895\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 3.61973 | 0.125870 | 0.0629351 | − | 0.998018i | \(-0.479954\pi\) | ||||
0.0629351 | + | 0.998018i | \(0.479954\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −42.3796 | −1.47191 | −0.735953 | − | 0.677033i | \(-0.763266\pi\) | ||||
−0.735953 | + | 0.677033i | \(0.763266\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 29.8017 | 1.03257 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 31.6705 | 1.09339 | 0.546694 | − | 0.837332i | \(-0.315886\pi\) | ||||
0.546694 | + | 0.837332i | \(0.315886\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 9.70250 | 0.334569 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 37.3286 | 1.28263 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0.0337422 | 0.00115667 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −10.7240 | −0.367184 | −0.183592 | − | 0.983003i | \(-0.558773\pi\) | ||||
−0.183592 | + | 0.983003i | \(0.558773\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −11.8384 | −0.404391 | −0.202196 | − | 0.979345i | \(-0.564808\pi\) | ||||
−0.202196 | + | 0.979345i | \(0.564808\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −8.53452 | −0.291194 | −0.145597 | − | 0.989344i | \(-0.546510\pi\) | ||||
−0.145597 | + | 0.989344i | \(0.546510\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −38.1498 | −1.29864 | −0.649318 | − | 0.760517i | \(-0.724945\pi\) | ||||
−0.649318 | + | 0.760517i | \(0.724945\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 16.6689 | 0.565455 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 27.8437 | 0.943449 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −2.01003 | −0.0678737 | −0.0339369 | − | 0.999424i | \(-0.510805\pi\) | ||||
−0.0339369 | + | 0.999424i | \(0.510805\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −2.16862 | −0.0730627 | −0.0365313 | − | 0.999333i | \(-0.511631\pi\) | ||||
−0.0365313 | + | 0.999333i | \(0.511631\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −55.0263 | −1.85178 | −0.925891 | − | 0.377792i | \(-0.876683\pi\) | ||||
−0.925891 | + | 0.377792i | \(0.876683\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −50.3100 | −1.68925 | −0.844623 | − | 0.535362i | \(-0.820175\pi\) | ||||
−0.844623 | + | 0.535362i | \(0.820175\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 69.6192 | 2.33495 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −52.1502 | −1.74514 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −2.50563 | −0.0835673 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 2.30585 | 0.0768190 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 13.1238 | 0.435769 | 0.217885 | − | 0.975975i | \(-0.430084\pi\) | ||||
0.217885 | + | 0.975975i | \(0.430084\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −33.8534 | −1.12161 | −0.560806 | − | 0.827947i | \(-0.689509\pi\) | ||||
−0.560806 | + | 0.827947i | \(0.689509\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 5.31443 | 0.175882 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 25.7304 | 0.849694 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0.0908103 | 0.00299556 | 0.00149778 | − | 0.999999i | \(-0.499523\pi\) | ||||
0.00149778 | + | 0.999999i | \(0.499523\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −50.4851 | −1.66174 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 22.6510 | 0.743156 | 0.371578 | − | 0.928402i | \(-0.378817\pi\) | ||||
0.371578 | + | 0.928402i | \(0.378817\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 45.1606 | 1.48008 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −9.99276 | −0.326449 | −0.163225 | − | 0.986589i | \(-0.552190\pi\) | ||||
−0.163225 | + | 0.986589i | \(0.552190\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 28.6412 | 0.933675 | 0.466838 | − | 0.884343i | \(-0.345393\pi\) | ||||
0.466838 | + | 0.884343i | \(0.345393\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −0.785426 | −0.0255770 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 8.22217 | 0.267185 | 0.133592 | − | 0.991036i | \(-0.457349\pi\) | ||||
0.133592 | + | 0.991036i | \(0.457349\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 20.4385 | 0.663461 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −48.8140 | −1.58124 | −0.790620 | − | 0.612307i | \(-0.790241\pi\) | ||||
−0.790620 | + | 0.612307i | \(0.790241\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 76.8784 | 2.48253 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.8378 | −0.994767 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 17.4141 | 0.559999 | 0.279999 | − | 0.960000i | \(-0.409666\pi\) | ||||
0.279999 | + | 0.960000i | \(0.409666\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −0.795340 | −0.0255237 | −0.0127618 | − | 0.999919i | \(-0.504062\pi\) | ||||
−0.0127618 | + | 0.999919i | \(0.504062\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 61.3893 | 1.96805 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −47.2594 | −1.51196 | −0.755982 | − | 0.654593i | \(-0.772840\pi\) | ||||
−0.755982 | + | 0.654593i | \(0.772840\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −24.1872 | −0.773025 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 18.3638 | 0.585715 | 0.292857 | − | 0.956156i | \(-0.405394\pi\) | ||||
0.292857 | + | 0.956156i | \(0.405394\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −0.946510 | −0.0300973 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −55.5141 | −1.76346 | −0.881732 | − | 0.471750i | \(-0.843622\pi\) | ||||
−0.881732 | + | 0.471750i | \(0.843622\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 13.2769 | 0.420482 | 0.210241 | − | 0.977650i | \(-0.432575\pi\) | ||||
0.210241 | + | 0.977650i | \(0.432575\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 9000.2.a.u.1.1 | 4 | ||
3.2 | odd | 2 | 3000.2.a.k.1.1 | ✓ | 4 | ||
5.4 | even | 2 | 9000.2.a.x.1.4 | 4 | |||
12.11 | even | 2 | 6000.2.a.bi.1.4 | 4 | |||
15.2 | even | 4 | 3000.2.f.e.1249.5 | 8 | |||
15.8 | even | 4 | 3000.2.f.e.1249.4 | 8 | |||
15.14 | odd | 2 | 3000.2.a.n.1.4 | yes | 4 | ||
60.23 | odd | 4 | 6000.2.f.s.1249.5 | 8 | |||
60.47 | odd | 4 | 6000.2.f.s.1249.4 | 8 | |||
60.59 | even | 2 | 6000.2.a.bf.1.1 | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
3000.2.a.k.1.1 | ✓ | 4 | 3.2 | odd | 2 | ||
3000.2.a.n.1.4 | yes | 4 | 15.14 | odd | 2 | ||
3000.2.f.e.1249.4 | 8 | 15.8 | even | 4 | |||
3000.2.f.e.1249.5 | 8 | 15.2 | even | 4 | |||
6000.2.a.bf.1.1 | 4 | 60.59 | even | 2 | |||
6000.2.a.bi.1.4 | 4 | 12.11 | even | 2 | |||
6000.2.f.s.1249.4 | 8 | 60.47 | odd | 4 | |||
6000.2.f.s.1249.5 | 8 | 60.23 | odd | 4 | |||
9000.2.a.u.1.1 | 4 | 1.1 | even | 1 | trivial | ||
9000.2.a.x.1.4 | 4 | 5.4 | even | 2 |