Properties

Label 9000.2.a.u.1.1
Level $9000$
Weight $2$
Character 9000.1
Self dual yes
Analytic conductor $71.865$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9000,2,Mod(1,9000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8653618192\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 3x + 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3000)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.88775\) of defining polynomial
Character \(\chi\) \(=\) 9000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.05444 q^{7} +1.33909 q^{11} -7.12382 q^{13} +3.15746 q^{17} +4.78473 q^{19} -0.103022 q^{23} +6.22113 q^{29} -0.402761 q^{31} -0.327525 q^{37} +7.62389 q^{41} +9.18749 q^{43} -10.8993 q^{47} +9.43849 q^{49} +0.730286 q^{53} -8.39353 q^{59} -3.65376 q^{61} -3.90854 q^{67} +7.08680 q^{71} -2.86904 q^{73} -5.42926 q^{77} +12.4480 q^{79} +3.96869 q^{83} -18.0624 q^{89} +28.8831 q^{91} +14.6355 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{7} - q^{11} - 11 q^{13} + 8 q^{19} - 3 q^{23} + 3 q^{29} + 14 q^{31} - 21 q^{37} - 7 q^{41} + 10 q^{43} - 9 q^{47} + 15 q^{49} + 7 q^{53} - 12 q^{59} - 3 q^{61} + 13 q^{67} - 33 q^{71} - 11 q^{73}+ \cdots - 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.05444 −1.53243 −0.766217 0.642582i \(-0.777863\pi\)
−0.766217 + 0.642582i \(0.777863\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.33909 0.403751 0.201875 0.979411i \(-0.435296\pi\)
0.201875 + 0.979411i \(0.435296\pi\)
\(12\) 0 0
\(13\) −7.12382 −1.97579 −0.987896 0.155120i \(-0.950423\pi\)
−0.987896 + 0.155120i \(0.950423\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.15746 0.765797 0.382899 0.923790i \(-0.374926\pi\)
0.382899 + 0.923790i \(0.374926\pi\)
\(18\) 0 0
\(19\) 4.78473 1.09769 0.548846 0.835924i \(-0.315067\pi\)
0.548846 + 0.835924i \(0.315067\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.103022 −0.0214815 −0.0107408 0.999942i \(-0.503419\pi\)
−0.0107408 + 0.999942i \(0.503419\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.22113 1.15524 0.577618 0.816307i \(-0.303982\pi\)
0.577618 + 0.816307i \(0.303982\pi\)
\(30\) 0 0
\(31\) −0.402761 −0.0723379 −0.0361690 0.999346i \(-0.511515\pi\)
−0.0361690 + 0.999346i \(0.511515\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.327525 −0.0538448 −0.0269224 0.999638i \(-0.508571\pi\)
−0.0269224 + 0.999638i \(0.508571\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.62389 1.19065 0.595326 0.803484i \(-0.297023\pi\)
0.595326 + 0.803484i \(0.297023\pi\)
\(42\) 0 0
\(43\) 9.18749 1.40108 0.700539 0.713614i \(-0.252943\pi\)
0.700539 + 0.713614i \(0.252943\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.8993 −1.58983 −0.794914 0.606722i \(-0.792484\pi\)
−0.794914 + 0.606722i \(0.792484\pi\)
\(48\) 0 0
\(49\) 9.43849 1.34836
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.730286 0.100312 0.0501562 0.998741i \(-0.484028\pi\)
0.0501562 + 0.998741i \(0.484028\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.39353 −1.09274 −0.546372 0.837542i \(-0.683992\pi\)
−0.546372 + 0.837542i \(0.683992\pi\)
\(60\) 0 0
\(61\) −3.65376 −0.467816 −0.233908 0.972259i \(-0.575152\pi\)
−0.233908 + 0.972259i \(0.575152\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.90854 −0.477504 −0.238752 0.971081i \(-0.576738\pi\)
−0.238752 + 0.971081i \(0.576738\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.08680 0.841048 0.420524 0.907281i \(-0.361846\pi\)
0.420524 + 0.907281i \(0.361846\pi\)
\(72\) 0 0
\(73\) −2.86904 −0.335795 −0.167898 0.985804i \(-0.553698\pi\)
−0.167898 + 0.985804i \(0.553698\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.42926 −0.618722
\(78\) 0 0
\(79\) 12.4480 1.40051 0.700253 0.713895i \(-0.253070\pi\)
0.700253 + 0.713895i \(0.253070\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.96869 0.435620 0.217810 0.975991i \(-0.430109\pi\)
0.217810 + 0.975991i \(0.430109\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0624 −1.91461 −0.957304 0.289082i \(-0.906650\pi\)
−0.957304 + 0.289082i \(0.906650\pi\)
\(90\) 0 0
\(91\) 28.8831 3.02777
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.6355 1.48601 0.743003 0.669288i \(-0.233401\pi\)
0.743003 + 0.669288i \(0.233401\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.35988 0.732336 0.366168 0.930549i \(-0.380670\pi\)
0.366168 + 0.930549i \(0.380670\pi\)
\(102\) 0 0
\(103\) 3.88060 0.382367 0.191183 0.981554i \(-0.438767\pi\)
0.191183 + 0.981554i \(0.438767\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.39706 −0.908448 −0.454224 0.890888i \(-0.650083\pi\)
−0.454224 + 0.890888i \(0.650083\pi\)
\(108\) 0 0
\(109\) −4.89361 −0.468723 −0.234361 0.972150i \(-0.575300\pi\)
−0.234361 + 0.972150i \(0.575300\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.8436 1.58451 0.792256 0.610189i \(-0.208907\pi\)
0.792256 + 0.610189i \(0.208907\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.8017 −1.17353
\(120\) 0 0
\(121\) −9.20684 −0.836985
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −17.1711 −1.52369 −0.761845 0.647760i \(-0.775706\pi\)
−0.761845 + 0.647760i \(0.775706\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.34624 −0.554473 −0.277237 0.960802i \(-0.589419\pi\)
−0.277237 + 0.960802i \(0.589419\pi\)
\(132\) 0 0
\(133\) −19.3994 −1.68214
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.9615 −1.61999 −0.809997 0.586434i \(-0.800531\pi\)
−0.809997 + 0.586434i \(0.800531\pi\)
\(138\) 0 0
\(139\) −15.1412 −1.28426 −0.642132 0.766594i \(-0.721950\pi\)
−0.642132 + 0.766594i \(0.721950\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.53943 −0.797727
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −23.8194 −1.95136 −0.975681 0.219193i \(-0.929657\pi\)
−0.975681 + 0.219193i \(0.929657\pi\)
\(150\) 0 0
\(151\) −20.1469 −1.63954 −0.819768 0.572696i \(-0.805897\pi\)
−0.819768 + 0.572696i \(0.805897\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −6.15513 −0.491233 −0.245616 0.969367i \(-0.578990\pi\)
−0.245616 + 0.969367i \(0.578990\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.417695 0.0329190
\(162\) 0 0
\(163\) 8.16525 0.639552 0.319776 0.947493i \(-0.396392\pi\)
0.319776 + 0.947493i \(0.396392\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.6401 −0.823357 −0.411678 0.911329i \(-0.635057\pi\)
−0.411678 + 0.911329i \(0.635057\pi\)
\(168\) 0 0
\(169\) 37.7488 2.90375
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.66116 −0.506439 −0.253219 0.967409i \(-0.581489\pi\)
−0.253219 + 0.967409i \(0.581489\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.77316 −0.132532 −0.0662662 0.997802i \(-0.521109\pi\)
−0.0662662 + 0.997802i \(0.521109\pi\)
\(180\) 0 0
\(181\) 16.9027 1.25637 0.628183 0.778065i \(-0.283799\pi\)
0.628183 + 0.778065i \(0.283799\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.22813 0.309191
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.78473 −0.635641 −0.317820 0.948151i \(-0.602951\pi\)
−0.317820 + 0.948151i \(0.602951\pi\)
\(192\) 0 0
\(193\) 12.4745 0.897932 0.448966 0.893549i \(-0.351792\pi\)
0.448966 + 0.893549i \(0.351792\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.2500 1.15776 0.578881 0.815412i \(-0.303490\pi\)
0.578881 + 0.815412i \(0.303490\pi\)
\(198\) 0 0
\(199\) −15.6334 −1.10822 −0.554110 0.832443i \(-0.686941\pi\)
−0.554110 + 0.832443i \(0.686941\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −25.2232 −1.77032
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.40718 0.443194
\(210\) 0 0
\(211\) −23.1389 −1.59295 −0.796474 0.604673i \(-0.793304\pi\)
−0.796474 + 0.604673i \(0.793304\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.63297 0.110853
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.4932 −1.51306
\(222\) 0 0
\(223\) 16.9651 1.13606 0.568032 0.823006i \(-0.307705\pi\)
0.568032 + 0.823006i \(0.307705\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.7757 0.715205 0.357603 0.933874i \(-0.383594\pi\)
0.357603 + 0.933874i \(0.383594\pi\)
\(228\) 0 0
\(229\) 18.5696 1.22711 0.613557 0.789650i \(-0.289738\pi\)
0.613557 + 0.789650i \(0.289738\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.65039 0.108121 0.0540604 0.998538i \(-0.482784\pi\)
0.0540604 + 0.998538i \(0.482784\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −19.0660 −1.23328 −0.616639 0.787246i \(-0.711506\pi\)
−0.616639 + 0.787246i \(0.711506\pi\)
\(240\) 0 0
\(241\) 15.5752 1.00328 0.501642 0.865075i \(-0.332729\pi\)
0.501642 + 0.865075i \(0.332729\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −34.0855 −2.16881
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.2130 −1.14959 −0.574796 0.818297i \(-0.694918\pi\)
−0.574796 + 0.818297i \(0.694918\pi\)
\(252\) 0 0
\(253\) −0.137955 −0.00867317
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.8505 −0.926348 −0.463174 0.886267i \(-0.653289\pi\)
−0.463174 + 0.886267i \(0.653289\pi\)
\(258\) 0 0
\(259\) 1.32793 0.0825137
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −28.2291 −1.74068 −0.870340 0.492452i \(-0.836101\pi\)
−0.870340 + 0.492452i \(0.836101\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.33130 0.142142 0.0710710 0.997471i \(-0.477358\pi\)
0.0710710 + 0.997471i \(0.477358\pi\)
\(270\) 0 0
\(271\) −9.84503 −0.598043 −0.299021 0.954246i \(-0.596660\pi\)
−0.299021 + 0.954246i \(0.596660\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −24.4616 −1.46976 −0.734878 0.678199i \(-0.762761\pi\)
−0.734878 + 0.678199i \(0.762761\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.6447 −0.933284 −0.466642 0.884446i \(-0.654536\pi\)
−0.466642 + 0.884446i \(0.654536\pi\)
\(282\) 0 0
\(283\) −9.82969 −0.584314 −0.292157 0.956370i \(-0.594373\pi\)
−0.292157 + 0.956370i \(0.594373\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −30.9106 −1.82460
\(288\) 0 0
\(289\) −7.03043 −0.413555
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.3449 1.01330 0.506651 0.862151i \(-0.330883\pi\)
0.506651 + 0.862151i \(0.330883\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.733907 0.0424430
\(300\) 0 0
\(301\) −37.2501 −2.14706
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.1862 1.26623 0.633117 0.774056i \(-0.281775\pi\)
0.633117 + 0.774056i \(0.281775\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.9407 1.13073 0.565365 0.824841i \(-0.308735\pi\)
0.565365 + 0.824841i \(0.308735\pi\)
\(312\) 0 0
\(313\) 10.9945 0.621449 0.310724 0.950500i \(-0.399428\pi\)
0.310724 + 0.950500i \(0.399428\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −24.6249 −1.38307 −0.691537 0.722341i \(-0.743066\pi\)
−0.691537 + 0.722341i \(0.743066\pi\)
\(318\) 0 0
\(319\) 8.33066 0.466427
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.1076 0.840609
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 44.1906 2.43631
\(330\) 0 0
\(331\) 5.98481 0.328955 0.164478 0.986381i \(-0.447406\pi\)
0.164478 + 0.986381i \(0.447406\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −21.3564 −1.16335 −0.581677 0.813420i \(-0.697603\pi\)
−0.581677 + 0.813420i \(0.697603\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.539332 −0.0292065
\(342\) 0 0
\(343\) −9.88671 −0.533832
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.13096 −0.490176 −0.245088 0.969501i \(-0.578817\pi\)
−0.245088 + 0.969501i \(0.578817\pi\)
\(348\) 0 0
\(349\) 14.9106 0.798147 0.399074 0.916919i \(-0.369332\pi\)
0.399074 + 0.916919i \(0.369332\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.7519 0.838388 0.419194 0.907897i \(-0.362313\pi\)
0.419194 + 0.907897i \(0.362313\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.4164 0.919203 0.459601 0.888125i \(-0.347992\pi\)
0.459601 + 0.888125i \(0.347992\pi\)
\(360\) 0 0
\(361\) 3.89361 0.204927
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.5432 0.550351 0.275175 0.961394i \(-0.411264\pi\)
0.275175 + 0.961394i \(0.411264\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.96090 −0.153722
\(372\) 0 0
\(373\) −36.8381 −1.90741 −0.953703 0.300750i \(-0.902763\pi\)
−0.953703 + 0.300750i \(0.902763\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −44.3182 −2.28250
\(378\) 0 0
\(379\) −32.4151 −1.66505 −0.832526 0.553985i \(-0.813106\pi\)
−0.832526 + 0.553985i \(0.813106\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.0618 −0.667429 −0.333714 0.942674i \(-0.608302\pi\)
−0.333714 + 0.942674i \(0.608302\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.43279 0.427559 0.213780 0.976882i \(-0.431423\pi\)
0.213780 + 0.976882i \(0.431423\pi\)
\(390\) 0 0
\(391\) −0.325287 −0.0164505
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −6.21309 −0.311826 −0.155913 0.987771i \(-0.549832\pi\)
−0.155913 + 0.987771i \(0.549832\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.29845 −0.0648416 −0.0324208 0.999474i \(-0.510322\pi\)
−0.0324208 + 0.999474i \(0.510322\pi\)
\(402\) 0 0
\(403\) 2.86919 0.142925
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.438586 −0.0217399
\(408\) 0 0
\(409\) −13.5402 −0.669521 −0.334760 0.942303i \(-0.608655\pi\)
−0.334760 + 0.942303i \(0.608655\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 34.0311 1.67456
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.547371 −0.0267408 −0.0133704 0.999911i \(-0.504256\pi\)
−0.0133704 + 0.999911i \(0.504256\pi\)
\(420\) 0 0
\(421\) −0.319091 −0.0155515 −0.00777577 0.999970i \(-0.502475\pi\)
−0.00777577 + 0.999970i \(0.502475\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 14.8140 0.716898
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.4929 −1.66147 −0.830733 0.556671i \(-0.812078\pi\)
−0.830733 + 0.556671i \(0.812078\pi\)
\(432\) 0 0
\(433\) 24.6600 1.18509 0.592543 0.805539i \(-0.298124\pi\)
0.592543 + 0.805539i \(0.298124\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.492930 −0.0235801
\(438\) 0 0
\(439\) 27.1693 1.29672 0.648361 0.761333i \(-0.275455\pi\)
0.648361 + 0.761333i \(0.275455\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.75124 0.368272 0.184136 0.982901i \(-0.441051\pi\)
0.184136 + 0.982901i \(0.441051\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.4432 1.62547 0.812737 0.582631i \(-0.197977\pi\)
0.812737 + 0.582631i \(0.197977\pi\)
\(450\) 0 0
\(451\) 10.2091 0.480727
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0286 0.515895 0.257948 0.966159i \(-0.416954\pi\)
0.257948 + 0.966159i \(0.416954\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.38574 0.437138 0.218569 0.975822i \(-0.429861\pi\)
0.218569 + 0.975822i \(0.429861\pi\)
\(462\) 0 0
\(463\) −2.63515 −0.122466 −0.0612328 0.998124i \(-0.519503\pi\)
−0.0612328 + 0.998124i \(0.519503\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −37.8923 −1.75345 −0.876724 0.480994i \(-0.840276\pi\)
−0.876724 + 0.480994i \(0.840276\pi\)
\(468\) 0 0
\(469\) 15.8470 0.731744
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.3029 0.565687
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.31492 −0.288536 −0.144268 0.989539i \(-0.546083\pi\)
−0.144268 + 0.989539i \(0.546083\pi\)
\(480\) 0 0
\(481\) 2.33323 0.106386
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −14.0946 −0.638687 −0.319343 0.947639i \(-0.603462\pi\)
−0.319343 + 0.947639i \(0.603462\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.2922 0.599869 0.299934 0.953960i \(-0.403035\pi\)
0.299934 + 0.953960i \(0.403035\pi\)
\(492\) 0 0
\(493\) 19.6430 0.884676
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −28.7330 −1.28885
\(498\) 0 0
\(499\) −37.6503 −1.68546 −0.842729 0.538337i \(-0.819053\pi\)
−0.842729 + 0.538337i \(0.819053\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.913200 −0.0407176 −0.0203588 0.999793i \(-0.506481\pi\)
−0.0203588 + 0.999793i \(0.506481\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 34.9232 1.54795 0.773973 0.633219i \(-0.218267\pi\)
0.773973 + 0.633219i \(0.218267\pi\)
\(510\) 0 0
\(511\) 11.6323 0.514584
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −14.5952 −0.641894
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.4317 1.24562 0.622809 0.782374i \(-0.285991\pi\)
0.622809 + 0.782374i \(0.285991\pi\)
\(522\) 0 0
\(523\) 16.4521 0.719402 0.359701 0.933068i \(-0.382879\pi\)
0.359701 + 0.933068i \(0.382879\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.27170 −0.0553962
\(528\) 0 0
\(529\) −22.9894 −0.999539
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −54.3112 −2.35248
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.6390 0.544400
\(540\) 0 0
\(541\) 28.4455 1.22297 0.611484 0.791257i \(-0.290573\pi\)
0.611484 + 0.791257i \(0.290573\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −29.8588 −1.27667 −0.638334 0.769759i \(-0.720376\pi\)
−0.638334 + 0.769759i \(0.720376\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 29.7664 1.26809
\(552\) 0 0
\(553\) −50.4696 −2.14618
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.0727 1.61319 0.806595 0.591104i \(-0.201308\pi\)
0.806595 + 0.591104i \(0.201308\pi\)
\(558\) 0 0
\(559\) −65.4500 −2.76824
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.4249 −1.24011 −0.620055 0.784558i \(-0.712890\pi\)
−0.620055 + 0.784558i \(0.712890\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.8910 −1.12733 −0.563665 0.826003i \(-0.690609\pi\)
−0.563665 + 0.826003i \(0.690609\pi\)
\(570\) 0 0
\(571\) 23.4059 0.979506 0.489753 0.871861i \(-0.337087\pi\)
0.489753 + 0.871861i \(0.337087\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.8910 −0.619922 −0.309961 0.950749i \(-0.600316\pi\)
−0.309961 + 0.950749i \(0.600316\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.0908 −0.667559
\(582\) 0 0
\(583\) 0.977918 0.0405012
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.7896 0.981900 0.490950 0.871188i \(-0.336650\pi\)
0.490950 + 0.871188i \(0.336650\pi\)
\(588\) 0 0
\(589\) −1.92710 −0.0794047
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.93152 0.325708 0.162854 0.986650i \(-0.447930\pi\)
0.162854 + 0.986650i \(0.447930\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −46.7716 −1.91104 −0.955519 0.294931i \(-0.904703\pi\)
−0.955519 + 0.294931i \(0.904703\pi\)
\(600\) 0 0
\(601\) −2.18877 −0.0892820 −0.0446410 0.999003i \(-0.514214\pi\)
−0.0446410 + 0.999003i \(0.514214\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 20.6382 0.837678 0.418839 0.908061i \(-0.362437\pi\)
0.418839 + 0.908061i \(0.362437\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 77.6447 3.14117
\(612\) 0 0
\(613\) −45.4674 −1.83641 −0.918205 0.396105i \(-0.870362\pi\)
−0.918205 + 0.396105i \(0.870362\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.97648 −0.280862 −0.140431 0.990090i \(-0.544849\pi\)
−0.140431 + 0.990090i \(0.544849\pi\)
\(618\) 0 0
\(619\) 11.1090 0.446510 0.223255 0.974760i \(-0.428332\pi\)
0.223255 + 0.974760i \(0.428332\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 73.2329 2.93401
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.03415 −0.0412342
\(630\) 0 0
\(631\) 0.589056 0.0234500 0.0117250 0.999931i \(-0.496268\pi\)
0.0117250 + 0.999931i \(0.496268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −67.2381 −2.66407
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0504 −1.18692 −0.593460 0.804863i \(-0.702239\pi\)
−0.593460 + 0.804863i \(0.702239\pi\)
\(642\) 0 0
\(643\) 9.47601 0.373697 0.186849 0.982389i \(-0.440173\pi\)
0.186849 + 0.982389i \(0.440173\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.8150 −0.464496 −0.232248 0.972657i \(-0.574608\pi\)
−0.232248 + 0.972657i \(0.574608\pi\)
\(648\) 0 0
\(649\) −11.2397 −0.441196
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.0672925 0.00263336 0.00131668 0.999999i \(-0.499581\pi\)
0.00131668 + 0.999999i \(0.499581\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.0565 0.820246 0.410123 0.912030i \(-0.365486\pi\)
0.410123 + 0.912030i \(0.365486\pi\)
\(660\) 0 0
\(661\) 10.7212 0.417007 0.208503 0.978022i \(-0.433141\pi\)
0.208503 + 0.978022i \(0.433141\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.640911 −0.0248162
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.89272 −0.188881
\(672\) 0 0
\(673\) 30.2822 1.16729 0.583646 0.812008i \(-0.301626\pi\)
0.583646 + 0.812008i \(0.301626\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −29.9028 −1.14926 −0.574630 0.818414i \(-0.694854\pi\)
−0.574630 + 0.818414i \(0.694854\pi\)
\(678\) 0 0
\(679\) −59.3386 −2.27721
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.49293 0.324973 0.162486 0.986711i \(-0.448049\pi\)
0.162486 + 0.986711i \(0.448049\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.20242 −0.198196
\(690\) 0 0
\(691\) −22.9983 −0.874897 −0.437449 0.899243i \(-0.644118\pi\)
−0.437449 + 0.899243i \(0.644118\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 24.0722 0.911798
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.5497 0.398456 0.199228 0.979953i \(-0.436156\pi\)
0.199228 + 0.979953i \(0.436156\pi\)
\(702\) 0 0
\(703\) −1.56712 −0.0591050
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.8402 −1.12226
\(708\) 0 0
\(709\) 38.7411 1.45495 0.727476 0.686134i \(-0.240693\pi\)
0.727476 + 0.686134i \(0.240693\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.0414931 0.00155393
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.9535 −0.744140 −0.372070 0.928205i \(-0.621352\pi\)
−0.372070 + 0.928205i \(0.621352\pi\)
\(720\) 0 0
\(721\) −15.7337 −0.585952
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4.98353 −0.184829 −0.0924144 0.995721i \(-0.529458\pi\)
−0.0924144 + 0.995721i \(0.529458\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 29.0091 1.07294
\(732\) 0 0
\(733\) −24.6102 −0.909000 −0.454500 0.890747i \(-0.650182\pi\)
−0.454500 + 0.890747i \(0.650182\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.23389 −0.192793
\(738\) 0 0
\(739\) −28.1007 −1.03370 −0.516850 0.856076i \(-0.672896\pi\)
−0.516850 + 0.856076i \(0.672896\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.88253 0.289182 0.144591 0.989492i \(-0.453813\pi\)
0.144591 + 0.989492i \(0.453813\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 38.0998 1.39214
\(750\) 0 0
\(751\) −21.3763 −0.780031 −0.390015 0.920808i \(-0.627530\pi\)
−0.390015 + 0.920808i \(0.627530\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −17.6845 −0.642755 −0.321377 0.946951i \(-0.604146\pi\)
−0.321377 + 0.946951i \(0.604146\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.5834 1.10865 0.554323 0.832302i \(-0.312977\pi\)
0.554323 + 0.832302i \(0.312977\pi\)
\(762\) 0 0
\(763\) 19.8408 0.718287
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 59.7940 2.15904
\(768\) 0 0
\(769\) 8.39447 0.302712 0.151356 0.988479i \(-0.451636\pi\)
0.151356 + 0.988479i \(0.451636\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −42.8082 −1.53970 −0.769851 0.638223i \(-0.779670\pi\)
−0.769851 + 0.638223i \(0.779670\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 36.4782 1.30697
\(780\) 0 0
\(781\) 9.48986 0.339574
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 10.3286 0.368174 0.184087 0.982910i \(-0.441067\pi\)
0.184087 + 0.982910i \(0.441067\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −68.2913 −2.42816
\(792\) 0 0
\(793\) 26.0287 0.924308
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.84333 0.100716 0.0503580 0.998731i \(-0.483964\pi\)
0.0503580 + 0.998731i \(0.483964\pi\)
\(798\) 0 0
\(799\) −34.4142 −1.21749
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.84190 −0.135578
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −17.3440 −0.609783 −0.304891 0.952387i \(-0.598620\pi\)
−0.304891 + 0.952387i \(0.598620\pi\)
\(810\) 0 0
\(811\) −11.8281 −0.415341 −0.207670 0.978199i \(-0.566588\pi\)
−0.207670 + 0.978199i \(0.566588\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 43.9596 1.53795
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.9201 0.695217 0.347608 0.937640i \(-0.386994\pi\)
0.347608 + 0.937640i \(0.386994\pi\)
\(822\) 0 0
\(823\) 37.0022 1.28982 0.644909 0.764260i \(-0.276895\pi\)
0.644909 + 0.764260i \(0.276895\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.61973 0.125870 0.0629351 0.998018i \(-0.479954\pi\)
0.0629351 + 0.998018i \(0.479954\pi\)
\(828\) 0 0
\(829\) −42.3796 −1.47191 −0.735953 0.677033i \(-0.763266\pi\)
−0.735953 + 0.677033i \(0.763266\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 29.8017 1.03257
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.6705 1.09339 0.546694 0.837332i \(-0.315886\pi\)
0.546694 + 0.837332i \(0.315886\pi\)
\(840\) 0 0
\(841\) 9.70250 0.334569
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 37.3286 1.28263
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.0337422 0.00115667
\(852\) 0 0
\(853\) −10.7240 −0.367184 −0.183592 0.983003i \(-0.558773\pi\)
−0.183592 + 0.983003i \(0.558773\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.8384 −0.404391 −0.202196 0.979345i \(-0.564808\pi\)
−0.202196 + 0.979345i \(0.564808\pi\)
\(858\) 0 0
\(859\) −8.53452 −0.291194 −0.145597 0.989344i \(-0.546510\pi\)
−0.145597 + 0.989344i \(0.546510\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −38.1498 −1.29864 −0.649318 0.760517i \(-0.724945\pi\)
−0.649318 + 0.760517i \(0.724945\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.6689 0.565455
\(870\) 0 0
\(871\) 27.8437 0.943449
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.01003 −0.0678737 −0.0339369 0.999424i \(-0.510805\pi\)
−0.0339369 + 0.999424i \(0.510805\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.16862 −0.0730627 −0.0365313 0.999333i \(-0.511631\pi\)
−0.0365313 + 0.999333i \(0.511631\pi\)
\(882\) 0 0
\(883\) −55.0263 −1.85178 −0.925891 0.377792i \(-0.876683\pi\)
−0.925891 + 0.377792i \(0.876683\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −50.3100 −1.68925 −0.844623 0.535362i \(-0.820175\pi\)
−0.844623 + 0.535362i \(0.820175\pi\)
\(888\) 0 0
\(889\) 69.6192 2.33495
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −52.1502 −1.74514
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.50563 −0.0835673
\(900\) 0 0
\(901\) 2.30585 0.0768190
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 13.1238 0.435769 0.217885 0.975975i \(-0.430084\pi\)
0.217885 + 0.975975i \(0.430084\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −33.8534 −1.12161 −0.560806 0.827947i \(-0.689509\pi\)
−0.560806 + 0.827947i \(0.689509\pi\)
\(912\) 0 0
\(913\) 5.31443 0.175882
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 25.7304 0.849694
\(918\) 0 0
\(919\) 0.0908103 0.00299556 0.00149778 0.999999i \(-0.499523\pi\)
0.00149778 + 0.999999i \(0.499523\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −50.4851 −1.66174
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22.6510 0.743156 0.371578 0.928402i \(-0.378817\pi\)
0.371578 + 0.928402i \(0.378817\pi\)
\(930\) 0 0
\(931\) 45.1606 1.48008
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −9.99276 −0.326449 −0.163225 0.986589i \(-0.552190\pi\)
−0.163225 + 0.986589i \(0.552190\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 28.6412 0.933675 0.466838 0.884343i \(-0.345393\pi\)
0.466838 + 0.884343i \(0.345393\pi\)
\(942\) 0 0
\(943\) −0.785426 −0.0255770
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.22217 0.267185 0.133592 0.991036i \(-0.457349\pi\)
0.133592 + 0.991036i \(0.457349\pi\)
\(948\) 0 0
\(949\) 20.4385 0.663461
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −48.8140 −1.58124 −0.790620 0.612307i \(-0.790241\pi\)
−0.790620 + 0.612307i \(0.790241\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 76.8784 2.48253
\(960\) 0 0
\(961\) −30.8378 −0.994767
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 17.4141 0.559999 0.279999 0.960000i \(-0.409666\pi\)
0.279999 + 0.960000i \(0.409666\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.795340 −0.0255237 −0.0127618 0.999919i \(-0.504062\pi\)
−0.0127618 + 0.999919i \(0.504062\pi\)
\(972\) 0 0
\(973\) 61.3893 1.96805
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −47.2594 −1.51196 −0.755982 0.654593i \(-0.772840\pi\)
−0.755982 + 0.654593i \(0.772840\pi\)
\(978\) 0 0
\(979\) −24.1872 −0.773025
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.3638 0.585715 0.292857 0.956156i \(-0.405394\pi\)
0.292857 + 0.956156i \(0.405394\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.946510 −0.0300973
\(990\) 0 0
\(991\) −55.5141 −1.76346 −0.881732 0.471750i \(-0.843622\pi\)
−0.881732 + 0.471750i \(0.843622\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 13.2769 0.420482 0.210241 0.977650i \(-0.432575\pi\)
0.210241 + 0.977650i \(0.432575\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9000.2.a.u.1.1 4
3.2 odd 2 3000.2.a.k.1.1 4
5.4 even 2 9000.2.a.x.1.4 4
12.11 even 2 6000.2.a.bi.1.4 4
15.2 even 4 3000.2.f.e.1249.5 8
15.8 even 4 3000.2.f.e.1249.4 8
15.14 odd 2 3000.2.a.n.1.4 yes 4
60.23 odd 4 6000.2.f.s.1249.5 8
60.47 odd 4 6000.2.f.s.1249.4 8
60.59 even 2 6000.2.a.bf.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3000.2.a.k.1.1 4 3.2 odd 2
3000.2.a.n.1.4 yes 4 15.14 odd 2
3000.2.f.e.1249.4 8 15.8 even 4
3000.2.f.e.1249.5 8 15.2 even 4
6000.2.a.bf.1.1 4 60.59 even 2
6000.2.a.bi.1.4 4 12.11 even 2
6000.2.f.s.1249.4 8 60.47 odd 4
6000.2.f.s.1249.5 8 60.23 odd 4
9000.2.a.u.1.1 4 1.1 even 1 trivial
9000.2.a.x.1.4 4 5.4 even 2