Properties

Label 3000.2.f.e.1249.5
Level $3000$
Weight $2$
Character 3000.1249
Analytic conductor $23.955$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3000,2,Mod(1249,3000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.9551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.43430560000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 25x^{6} + 208x^{4} + 705x^{2} + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.5
Root \(3.50578i\) of defining polynomial
Character \(\chi\) \(=\) 3000.1249
Dual form 3000.2.f.e.1249.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -4.05444i q^{7} -1.00000 q^{9} -1.33909 q^{11} +7.12382i q^{13} -3.15746i q^{17} -4.78473 q^{19} +4.05444 q^{21} -0.103022i q^{23} -1.00000i q^{27} +6.22113 q^{29} -0.402761 q^{31} -1.33909i q^{33} -0.327525i q^{37} -7.12382 q^{39} -7.62389 q^{41} -9.18749i q^{43} +10.8993i q^{47} -9.43849 q^{49} +3.15746 q^{51} +0.730286i q^{53} -4.78473i q^{57} -8.39353 q^{59} -3.65376 q^{61} +4.05444i q^{63} -3.90854i q^{67} +0.103022 q^{69} -7.08680 q^{71} +2.86904i q^{73} +5.42926i q^{77} -12.4480 q^{79} +1.00000 q^{81} +3.96869i q^{83} +6.22113i q^{87} -18.0624 q^{89} +28.8831 q^{91} -0.402761i q^{93} +14.6355i q^{97} +1.33909 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 2 q^{11} - 16 q^{19} + 2 q^{21} + 6 q^{29} + 28 q^{31} - 22 q^{39} + 14 q^{41} - 30 q^{49} - 24 q^{59} - 6 q^{61} + 6 q^{69} + 66 q^{71} - 26 q^{79} + 8 q^{81} - 24 q^{89} + 34 q^{91} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(1001\) \(1501\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.05444i − 1.53243i −0.642582 0.766217i \(-0.722137\pi\)
0.642582 0.766217i \(-0.277863\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.33909 −0.403751 −0.201875 0.979411i \(-0.564704\pi\)
−0.201875 + 0.979411i \(0.564704\pi\)
\(12\) 0 0
\(13\) 7.12382i 1.97579i 0.155120 + 0.987896i \(0.450423\pi\)
−0.155120 + 0.987896i \(0.549577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.15746i − 0.765797i −0.923790 0.382899i \(-0.874926\pi\)
0.923790 0.382899i \(-0.125074\pi\)
\(18\) 0 0
\(19\) −4.78473 −1.09769 −0.548846 0.835924i \(-0.684933\pi\)
−0.548846 + 0.835924i \(0.684933\pi\)
\(20\) 0 0
\(21\) 4.05444 0.884752
\(22\) 0 0
\(23\) − 0.103022i − 0.0214815i −0.999942 0.0107408i \(-0.996581\pi\)
0.999942 0.0107408i \(-0.00341895\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 6.22113 1.15524 0.577618 0.816307i \(-0.303982\pi\)
0.577618 + 0.816307i \(0.303982\pi\)
\(30\) 0 0
\(31\) −0.402761 −0.0723379 −0.0361690 0.999346i \(-0.511515\pi\)
−0.0361690 + 0.999346i \(0.511515\pi\)
\(32\) 0 0
\(33\) − 1.33909i − 0.233106i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 0.327525i − 0.0538448i −0.999638 0.0269224i \(-0.991429\pi\)
0.999638 0.0269224i \(-0.00857071\pi\)
\(38\) 0 0
\(39\) −7.12382 −1.14072
\(40\) 0 0
\(41\) −7.62389 −1.19065 −0.595326 0.803484i \(-0.702977\pi\)
−0.595326 + 0.803484i \(0.702977\pi\)
\(42\) 0 0
\(43\) − 9.18749i − 1.40108i −0.713614 0.700539i \(-0.752943\pi\)
0.713614 0.700539i \(-0.247057\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.8993i 1.58983i 0.606722 + 0.794914i \(0.292484\pi\)
−0.606722 + 0.794914i \(0.707516\pi\)
\(48\) 0 0
\(49\) −9.43849 −1.34836
\(50\) 0 0
\(51\) 3.15746 0.442133
\(52\) 0 0
\(53\) 0.730286i 0.100312i 0.998741 + 0.0501562i \(0.0159719\pi\)
−0.998741 + 0.0501562i \(0.984028\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 4.78473i − 0.633753i
\(58\) 0 0
\(59\) −8.39353 −1.09274 −0.546372 0.837542i \(-0.683992\pi\)
−0.546372 + 0.837542i \(0.683992\pi\)
\(60\) 0 0
\(61\) −3.65376 −0.467816 −0.233908 0.972259i \(-0.575152\pi\)
−0.233908 + 0.972259i \(0.575152\pi\)
\(62\) 0 0
\(63\) 4.05444i 0.510812i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 3.90854i − 0.477504i −0.971081 0.238752i \(-0.923262\pi\)
0.971081 0.238752i \(-0.0767384\pi\)
\(68\) 0 0
\(69\) 0.103022 0.0124024
\(70\) 0 0
\(71\) −7.08680 −0.841048 −0.420524 0.907281i \(-0.638154\pi\)
−0.420524 + 0.907281i \(0.638154\pi\)
\(72\) 0 0
\(73\) 2.86904i 0.335795i 0.985804 + 0.167898i \(0.0536978\pi\)
−0.985804 + 0.167898i \(0.946302\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.42926i 0.618722i
\(78\) 0 0
\(79\) −12.4480 −1.40051 −0.700253 0.713895i \(-0.746930\pi\)
−0.700253 + 0.713895i \(0.746930\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 3.96869i 0.435620i 0.975991 + 0.217810i \(0.0698913\pi\)
−0.975991 + 0.217810i \(0.930109\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.22113i 0.666975i
\(88\) 0 0
\(89\) −18.0624 −1.91461 −0.957304 0.289082i \(-0.906650\pi\)
−0.957304 + 0.289082i \(0.906650\pi\)
\(90\) 0 0
\(91\) 28.8831 3.02777
\(92\) 0 0
\(93\) − 0.402761i − 0.0417643i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.6355i 1.48601i 0.669288 + 0.743003i \(0.266599\pi\)
−0.669288 + 0.743003i \(0.733401\pi\)
\(98\) 0 0
\(99\) 1.33909 0.134584
\(100\) 0 0
\(101\) −7.35988 −0.732336 −0.366168 0.930549i \(-0.619330\pi\)
−0.366168 + 0.930549i \(0.619330\pi\)
\(102\) 0 0
\(103\) − 3.88060i − 0.382367i −0.981554 0.191183i \(-0.938767\pi\)
0.981554 0.191183i \(-0.0612326\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.39706i 0.908448i 0.890888 + 0.454224i \(0.150083\pi\)
−0.890888 + 0.454224i \(0.849917\pi\)
\(108\) 0 0
\(109\) 4.89361 0.468723 0.234361 0.972150i \(-0.424700\pi\)
0.234361 + 0.972150i \(0.424700\pi\)
\(110\) 0 0
\(111\) 0.327525 0.0310873
\(112\) 0 0
\(113\) 16.8436i 1.58451i 0.610189 + 0.792256i \(0.291093\pi\)
−0.610189 + 0.792256i \(0.708907\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 7.12382i − 0.658597i
\(118\) 0 0
\(119\) −12.8017 −1.17353
\(120\) 0 0
\(121\) −9.20684 −0.836985
\(122\) 0 0
\(123\) − 7.62389i − 0.687423i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 17.1711i − 1.52369i −0.647760 0.761845i \(-0.724294\pi\)
0.647760 0.761845i \(-0.275706\pi\)
\(128\) 0 0
\(129\) 9.18749 0.808913
\(130\) 0 0
\(131\) 6.34624 0.554473 0.277237 0.960802i \(-0.410581\pi\)
0.277237 + 0.960802i \(0.410581\pi\)
\(132\) 0 0
\(133\) 19.3994i 1.68214i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.9615i 1.61999i 0.586434 + 0.809997i \(0.300531\pi\)
−0.586434 + 0.809997i \(0.699469\pi\)
\(138\) 0 0
\(139\) 15.1412 1.28426 0.642132 0.766594i \(-0.278050\pi\)
0.642132 + 0.766594i \(0.278050\pi\)
\(140\) 0 0
\(141\) −10.8993 −0.917888
\(142\) 0 0
\(143\) − 9.53943i − 0.797727i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 9.43849i − 0.778474i
\(148\) 0 0
\(149\) −23.8194 −1.95136 −0.975681 0.219193i \(-0.929657\pi\)
−0.975681 + 0.219193i \(0.929657\pi\)
\(150\) 0 0
\(151\) −20.1469 −1.63954 −0.819768 0.572696i \(-0.805897\pi\)
−0.819768 + 0.572696i \(0.805897\pi\)
\(152\) 0 0
\(153\) 3.15746i 0.255266i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 6.15513i − 0.491233i −0.969367 0.245616i \(-0.921010\pi\)
0.969367 0.245616i \(-0.0789903\pi\)
\(158\) 0 0
\(159\) −0.730286 −0.0579154
\(160\) 0 0
\(161\) −0.417695 −0.0329190
\(162\) 0 0
\(163\) − 8.16525i − 0.639552i −0.947493 0.319776i \(-0.896392\pi\)
0.947493 0.319776i \(-0.103608\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.6401i 0.823357i 0.911329 + 0.411678i \(0.135057\pi\)
−0.911329 + 0.411678i \(0.864943\pi\)
\(168\) 0 0
\(169\) −37.7488 −2.90375
\(170\) 0 0
\(171\) 4.78473 0.365897
\(172\) 0 0
\(173\) − 6.66116i − 0.506439i −0.967409 0.253219i \(-0.918511\pi\)
0.967409 0.253219i \(-0.0814894\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 8.39353i − 0.630896i
\(178\) 0 0
\(179\) −1.77316 −0.132532 −0.0662662 0.997802i \(-0.521109\pi\)
−0.0662662 + 0.997802i \(0.521109\pi\)
\(180\) 0 0
\(181\) 16.9027 1.25637 0.628183 0.778065i \(-0.283799\pi\)
0.628183 + 0.778065i \(0.283799\pi\)
\(182\) 0 0
\(183\) − 3.65376i − 0.270094i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.22813i 0.309191i
\(188\) 0 0
\(189\) −4.05444 −0.294917
\(190\) 0 0
\(191\) 8.78473 0.635641 0.317820 0.948151i \(-0.397049\pi\)
0.317820 + 0.948151i \(0.397049\pi\)
\(192\) 0 0
\(193\) − 12.4745i − 0.897932i −0.893549 0.448966i \(-0.851792\pi\)
0.893549 0.448966i \(-0.148208\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 16.2500i − 1.15776i −0.815412 0.578881i \(-0.803490\pi\)
0.815412 0.578881i \(-0.196510\pi\)
\(198\) 0 0
\(199\) 15.6334 1.10822 0.554110 0.832443i \(-0.313059\pi\)
0.554110 + 0.832443i \(0.313059\pi\)
\(200\) 0 0
\(201\) 3.90854 0.275687
\(202\) 0 0
\(203\) − 25.2232i − 1.77032i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.103022i 0.00716050i
\(208\) 0 0
\(209\) 6.40718 0.443194
\(210\) 0 0
\(211\) −23.1389 −1.59295 −0.796474 0.604673i \(-0.793304\pi\)
−0.796474 + 0.604673i \(0.793304\pi\)
\(212\) 0 0
\(213\) − 7.08680i − 0.485580i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.63297i 0.110853i
\(218\) 0 0
\(219\) −2.86904 −0.193872
\(220\) 0 0
\(221\) 22.4932 1.51306
\(222\) 0 0
\(223\) − 16.9651i − 1.13606i −0.823006 0.568032i \(-0.807705\pi\)
0.823006 0.568032i \(-0.192295\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 10.7757i − 0.715205i −0.933874 0.357603i \(-0.883594\pi\)
0.933874 0.357603i \(-0.116406\pi\)
\(228\) 0 0
\(229\) −18.5696 −1.22711 −0.613557 0.789650i \(-0.710262\pi\)
−0.613557 + 0.789650i \(0.710262\pi\)
\(230\) 0 0
\(231\) −5.42926 −0.357219
\(232\) 0 0
\(233\) 1.65039i 0.108121i 0.998538 + 0.0540604i \(0.0172164\pi\)
−0.998538 + 0.0540604i \(0.982784\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 12.4480i − 0.808583i
\(238\) 0 0
\(239\) −19.0660 −1.23328 −0.616639 0.787246i \(-0.711506\pi\)
−0.616639 + 0.787246i \(0.711506\pi\)
\(240\) 0 0
\(241\) 15.5752 1.00328 0.501642 0.865075i \(-0.332729\pi\)
0.501642 + 0.865075i \(0.332729\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 34.0855i − 2.16881i
\(248\) 0 0
\(249\) −3.96869 −0.251505
\(250\) 0 0
\(251\) 18.2130 1.14959 0.574796 0.818297i \(-0.305082\pi\)
0.574796 + 0.818297i \(0.305082\pi\)
\(252\) 0 0
\(253\) 0.137955i 0.00867317i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.8505i 0.926348i 0.886267 + 0.463174i \(0.153289\pi\)
−0.886267 + 0.463174i \(0.846711\pi\)
\(258\) 0 0
\(259\) −1.32793 −0.0825137
\(260\) 0 0
\(261\) −6.22113 −0.385078
\(262\) 0 0
\(263\) − 28.2291i − 1.74068i −0.492452 0.870340i \(-0.663899\pi\)
0.492452 0.870340i \(-0.336101\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 18.0624i − 1.10540i
\(268\) 0 0
\(269\) 2.33130 0.142142 0.0710710 0.997471i \(-0.477358\pi\)
0.0710710 + 0.997471i \(0.477358\pi\)
\(270\) 0 0
\(271\) −9.84503 −0.598043 −0.299021 0.954246i \(-0.596660\pi\)
−0.299021 + 0.954246i \(0.596660\pi\)
\(272\) 0 0
\(273\) 28.8831i 1.74808i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 24.4616i − 1.46976i −0.678199 0.734878i \(-0.737239\pi\)
0.678199 0.734878i \(-0.262761\pi\)
\(278\) 0 0
\(279\) 0.402761 0.0241126
\(280\) 0 0
\(281\) 15.6447 0.933284 0.466642 0.884446i \(-0.345464\pi\)
0.466642 + 0.884446i \(0.345464\pi\)
\(282\) 0 0
\(283\) 9.82969i 0.584314i 0.956370 + 0.292157i \(0.0943730\pi\)
−0.956370 + 0.292157i \(0.905627\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.9106i 1.82460i
\(288\) 0 0
\(289\) 7.03043 0.413555
\(290\) 0 0
\(291\) −14.6355 −0.857946
\(292\) 0 0
\(293\) 17.3449i 1.01330i 0.862151 + 0.506651i \(0.169117\pi\)
−0.862151 + 0.506651i \(0.830883\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.33909i 0.0777019i
\(298\) 0 0
\(299\) 0.733907 0.0424430
\(300\) 0 0
\(301\) −37.2501 −2.14706
\(302\) 0 0
\(303\) − 7.35988i − 0.422814i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.1862i 1.26623i 0.774056 + 0.633117i \(0.218225\pi\)
−0.774056 + 0.633117i \(0.781775\pi\)
\(308\) 0 0
\(309\) 3.88060 0.220760
\(310\) 0 0
\(311\) −19.9407 −1.13073 −0.565365 0.824841i \(-0.691265\pi\)
−0.565365 + 0.824841i \(0.691265\pi\)
\(312\) 0 0
\(313\) − 10.9945i − 0.621449i −0.950500 0.310724i \(-0.899428\pi\)
0.950500 0.310724i \(-0.100572\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.6249i 1.38307i 0.722341 + 0.691537i \(0.243066\pi\)
−0.722341 + 0.691537i \(0.756934\pi\)
\(318\) 0 0
\(319\) −8.33066 −0.466427
\(320\) 0 0
\(321\) −9.39706 −0.524493
\(322\) 0 0
\(323\) 15.1076i 0.840609i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.89361i 0.270617i
\(328\) 0 0
\(329\) 44.1906 2.43631
\(330\) 0 0
\(331\) 5.98481 0.328955 0.164478 0.986381i \(-0.447406\pi\)
0.164478 + 0.986381i \(0.447406\pi\)
\(332\) 0 0
\(333\) 0.327525i 0.0179483i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 21.3564i − 1.16335i −0.813420 0.581677i \(-0.802397\pi\)
0.813420 0.581677i \(-0.197603\pi\)
\(338\) 0 0
\(339\) −16.8436 −0.914818
\(340\) 0 0
\(341\) 0.539332 0.0292065
\(342\) 0 0
\(343\) 9.88671i 0.533832i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.13096i 0.490176i 0.969501 + 0.245088i \(0.0788168\pi\)
−0.969501 + 0.245088i \(0.921183\pi\)
\(348\) 0 0
\(349\) −14.9106 −0.798147 −0.399074 0.916919i \(-0.630668\pi\)
−0.399074 + 0.916919i \(0.630668\pi\)
\(350\) 0 0
\(351\) 7.12382 0.380241
\(352\) 0 0
\(353\) 15.7519i 0.838388i 0.907897 + 0.419194i \(0.137687\pi\)
−0.907897 + 0.419194i \(0.862313\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 12.8017i − 0.677540i
\(358\) 0 0
\(359\) 17.4164 0.919203 0.459601 0.888125i \(-0.347992\pi\)
0.459601 + 0.888125i \(0.347992\pi\)
\(360\) 0 0
\(361\) 3.89361 0.204927
\(362\) 0 0
\(363\) − 9.20684i − 0.483234i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.5432i 0.550351i 0.961394 + 0.275175i \(0.0887359\pi\)
−0.961394 + 0.275175i \(0.911264\pi\)
\(368\) 0 0
\(369\) 7.62389 0.396884
\(370\) 0 0
\(371\) 2.96090 0.153722
\(372\) 0 0
\(373\) 36.8381i 1.90741i 0.300750 + 0.953703i \(0.402763\pi\)
−0.300750 + 0.953703i \(0.597237\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 44.3182i 2.28250i
\(378\) 0 0
\(379\) 32.4151 1.66505 0.832526 0.553985i \(-0.186894\pi\)
0.832526 + 0.553985i \(0.186894\pi\)
\(380\) 0 0
\(381\) 17.1711 0.879703
\(382\) 0 0
\(383\) − 13.0618i − 0.667429i −0.942674 0.333714i \(-0.891698\pi\)
0.942674 0.333714i \(-0.108302\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.18749i 0.467026i
\(388\) 0 0
\(389\) 8.43279 0.427559 0.213780 0.976882i \(-0.431423\pi\)
0.213780 + 0.976882i \(0.431423\pi\)
\(390\) 0 0
\(391\) −0.325287 −0.0164505
\(392\) 0 0
\(393\) 6.34624i 0.320125i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 6.21309i − 0.311826i −0.987771 0.155913i \(-0.950168\pi\)
0.987771 0.155913i \(-0.0498320\pi\)
\(398\) 0 0
\(399\) −19.3994 −0.971184
\(400\) 0 0
\(401\) 1.29845 0.0648416 0.0324208 0.999474i \(-0.489678\pi\)
0.0324208 + 0.999474i \(0.489678\pi\)
\(402\) 0 0
\(403\) − 2.86919i − 0.142925i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.438586i 0.0217399i
\(408\) 0 0
\(409\) 13.5402 0.669521 0.334760 0.942303i \(-0.391345\pi\)
0.334760 + 0.942303i \(0.391345\pi\)
\(410\) 0 0
\(411\) −18.9615 −0.935304
\(412\) 0 0
\(413\) 34.0311i 1.67456i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 15.1412i 0.741470i
\(418\) 0 0
\(419\) −0.547371 −0.0267408 −0.0133704 0.999911i \(-0.504256\pi\)
−0.0133704 + 0.999911i \(0.504256\pi\)
\(420\) 0 0
\(421\) −0.319091 −0.0155515 −0.00777577 0.999970i \(-0.502475\pi\)
−0.00777577 + 0.999970i \(0.502475\pi\)
\(422\) 0 0
\(423\) − 10.8993i − 0.529943i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 14.8140i 0.716898i
\(428\) 0 0
\(429\) 9.53943 0.460568
\(430\) 0 0
\(431\) 34.4929 1.66147 0.830733 0.556671i \(-0.187922\pi\)
0.830733 + 0.556671i \(0.187922\pi\)
\(432\) 0 0
\(433\) − 24.6600i − 1.18509i −0.805539 0.592543i \(-0.798124\pi\)
0.805539 0.592543i \(-0.201876\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.492930i 0.0235801i
\(438\) 0 0
\(439\) −27.1693 −1.29672 −0.648361 0.761333i \(-0.724545\pi\)
−0.648361 + 0.761333i \(0.724545\pi\)
\(440\) 0 0
\(441\) 9.43849 0.449452
\(442\) 0 0
\(443\) 7.75124i 0.368272i 0.982901 + 0.184136i \(0.0589487\pi\)
−0.982901 + 0.184136i \(0.941051\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 23.8194i − 1.12662i
\(448\) 0 0
\(449\) 34.4432 1.62547 0.812737 0.582631i \(-0.197977\pi\)
0.812737 + 0.582631i \(0.197977\pi\)
\(450\) 0 0
\(451\) 10.2091 0.480727
\(452\) 0 0
\(453\) − 20.1469i − 0.946586i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0286i 0.515895i 0.966159 + 0.257948i \(0.0830462\pi\)
−0.966159 + 0.257948i \(0.916954\pi\)
\(458\) 0 0
\(459\) −3.15746 −0.147378
\(460\) 0 0
\(461\) −9.38574 −0.437138 −0.218569 0.975822i \(-0.570139\pi\)
−0.218569 + 0.975822i \(0.570139\pi\)
\(462\) 0 0
\(463\) 2.63515i 0.122466i 0.998124 + 0.0612328i \(0.0195032\pi\)
−0.998124 + 0.0612328i \(0.980497\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.8923i 1.75345i 0.480994 + 0.876724i \(0.340276\pi\)
−0.480994 + 0.876724i \(0.659724\pi\)
\(468\) 0 0
\(469\) −15.8470 −0.731744
\(470\) 0 0
\(471\) 6.15513 0.283613
\(472\) 0 0
\(473\) 12.3029i 0.565687i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.730286i − 0.0334375i
\(478\) 0 0
\(479\) −6.31492 −0.288536 −0.144268 0.989539i \(-0.546083\pi\)
−0.144268 + 0.989539i \(0.546083\pi\)
\(480\) 0 0
\(481\) 2.33323 0.106386
\(482\) 0 0
\(483\) − 0.417695i − 0.0190058i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 14.0946i − 0.638687i −0.947639 0.319343i \(-0.896538\pi\)
0.947639 0.319343i \(-0.103462\pi\)
\(488\) 0 0
\(489\) 8.16525 0.369245
\(490\) 0 0
\(491\) −13.2922 −0.599869 −0.299934 0.953960i \(-0.596965\pi\)
−0.299934 + 0.953960i \(0.596965\pi\)
\(492\) 0 0
\(493\) − 19.6430i − 0.884676i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28.7330i 1.28885i
\(498\) 0 0
\(499\) 37.6503 1.68546 0.842729 0.538337i \(-0.180947\pi\)
0.842729 + 0.538337i \(0.180947\pi\)
\(500\) 0 0
\(501\) −10.6401 −0.475365
\(502\) 0 0
\(503\) − 0.913200i − 0.0407176i −0.999793 0.0203588i \(-0.993519\pi\)
0.999793 0.0203588i \(-0.00648085\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 37.7488i − 1.67648i
\(508\) 0 0
\(509\) 34.9232 1.54795 0.773973 0.633219i \(-0.218267\pi\)
0.773973 + 0.633219i \(0.218267\pi\)
\(510\) 0 0
\(511\) 11.6323 0.514584
\(512\) 0 0
\(513\) 4.78473i 0.211251i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 14.5952i − 0.641894i
\(518\) 0 0
\(519\) 6.66116 0.292393
\(520\) 0 0
\(521\) −28.4317 −1.24562 −0.622809 0.782374i \(-0.714009\pi\)
−0.622809 + 0.782374i \(0.714009\pi\)
\(522\) 0 0
\(523\) − 16.4521i − 0.719402i −0.933068 0.359701i \(-0.882879\pi\)
0.933068 0.359701i \(-0.117121\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.27170i 0.0553962i
\(528\) 0 0
\(529\) 22.9894 0.999539
\(530\) 0 0
\(531\) 8.39353 0.364248
\(532\) 0 0
\(533\) − 54.3112i − 2.35248i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 1.77316i − 0.0765176i
\(538\) 0 0
\(539\) 12.6390 0.544400
\(540\) 0 0
\(541\) 28.4455 1.22297 0.611484 0.791257i \(-0.290573\pi\)
0.611484 + 0.791257i \(0.290573\pi\)
\(542\) 0 0
\(543\) 16.9027i 0.725364i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 29.8588i − 1.27667i −0.769759 0.638334i \(-0.779624\pi\)
0.769759 0.638334i \(-0.220376\pi\)
\(548\) 0 0
\(549\) 3.65376 0.155939
\(550\) 0 0
\(551\) −29.7664 −1.26809
\(552\) 0 0
\(553\) 50.4696i 2.14618i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 38.0727i − 1.61319i −0.591104 0.806595i \(-0.701308\pi\)
0.591104 0.806595i \(-0.298692\pi\)
\(558\) 0 0
\(559\) 65.4500 2.76824
\(560\) 0 0
\(561\) −4.22813 −0.178512
\(562\) 0 0
\(563\) − 29.4249i − 1.24011i −0.784558 0.620055i \(-0.787110\pi\)
0.784558 0.620055i \(-0.212890\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 4.05444i − 0.170271i
\(568\) 0 0
\(569\) −26.8910 −1.12733 −0.563665 0.826003i \(-0.690609\pi\)
−0.563665 + 0.826003i \(0.690609\pi\)
\(570\) 0 0
\(571\) 23.4059 0.979506 0.489753 0.871861i \(-0.337087\pi\)
0.489753 + 0.871861i \(0.337087\pi\)
\(572\) 0 0
\(573\) 8.78473i 0.366987i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 14.8910i − 0.619922i −0.950749 0.309961i \(-0.899684\pi\)
0.950749 0.309961i \(-0.100316\pi\)
\(578\) 0 0
\(579\) 12.4745 0.518421
\(580\) 0 0
\(581\) 16.0908 0.667559
\(582\) 0 0
\(583\) − 0.977918i − 0.0405012i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 23.7896i − 0.981900i −0.871188 0.490950i \(-0.836650\pi\)
0.871188 0.490950i \(-0.163350\pi\)
\(588\) 0 0
\(589\) 1.92710 0.0794047
\(590\) 0 0
\(591\) 16.2500 0.668434
\(592\) 0 0
\(593\) 7.93152i 0.325708i 0.986650 + 0.162854i \(0.0520700\pi\)
−0.986650 + 0.162854i \(0.947930\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 15.6334i 0.639831i
\(598\) 0 0
\(599\) −46.7716 −1.91104 −0.955519 0.294931i \(-0.904703\pi\)
−0.955519 + 0.294931i \(0.904703\pi\)
\(600\) 0 0
\(601\) −2.18877 −0.0892820 −0.0446410 0.999003i \(-0.514214\pi\)
−0.0446410 + 0.999003i \(0.514214\pi\)
\(602\) 0 0
\(603\) 3.90854i 0.159168i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 20.6382i 0.837678i 0.908061 + 0.418839i \(0.137563\pi\)
−0.908061 + 0.418839i \(0.862437\pi\)
\(608\) 0 0
\(609\) 25.2232 1.02210
\(610\) 0 0
\(611\) −77.6447 −3.14117
\(612\) 0 0
\(613\) 45.4674i 1.83641i 0.396105 + 0.918205i \(0.370362\pi\)
−0.396105 + 0.918205i \(0.629638\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.97648i 0.280862i 0.990090 + 0.140431i \(0.0448489\pi\)
−0.990090 + 0.140431i \(0.955151\pi\)
\(618\) 0 0
\(619\) −11.1090 −0.446510 −0.223255 0.974760i \(-0.571668\pi\)
−0.223255 + 0.974760i \(0.571668\pi\)
\(620\) 0 0
\(621\) −0.103022 −0.00413412
\(622\) 0 0
\(623\) 73.2329i 2.93401i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6.40718i 0.255878i
\(628\) 0 0
\(629\) −1.03415 −0.0412342
\(630\) 0 0
\(631\) 0.589056 0.0234500 0.0117250 0.999931i \(-0.496268\pi\)
0.0117250 + 0.999931i \(0.496268\pi\)
\(632\) 0 0
\(633\) − 23.1389i − 0.919689i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 67.2381i − 2.66407i
\(638\) 0 0
\(639\) 7.08680 0.280349
\(640\) 0 0
\(641\) 30.0504 1.18692 0.593460 0.804863i \(-0.297761\pi\)
0.593460 + 0.804863i \(0.297761\pi\)
\(642\) 0 0
\(643\) − 9.47601i − 0.373697i −0.982389 0.186849i \(-0.940173\pi\)
0.982389 0.186849i \(-0.0598274\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.8150i 0.464496i 0.972657 + 0.232248i \(0.0746080\pi\)
−0.972657 + 0.232248i \(0.925392\pi\)
\(648\) 0 0
\(649\) 11.2397 0.441196
\(650\) 0 0
\(651\) −1.63297 −0.0640011
\(652\) 0 0
\(653\) 0.0672925i 0.00263336i 0.999999 + 0.00131668i \(0.000419112\pi\)
−0.999999 + 0.00131668i \(0.999581\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 2.86904i − 0.111932i
\(658\) 0 0
\(659\) 21.0565 0.820246 0.410123 0.912030i \(-0.365486\pi\)
0.410123 + 0.912030i \(0.365486\pi\)
\(660\) 0 0
\(661\) 10.7212 0.417007 0.208503 0.978022i \(-0.433141\pi\)
0.208503 + 0.978022i \(0.433141\pi\)
\(662\) 0 0
\(663\) 22.4932i 0.873563i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 0.640911i − 0.0248162i
\(668\) 0 0
\(669\) 16.9651 0.655907
\(670\) 0 0
\(671\) 4.89272 0.188881
\(672\) 0 0
\(673\) − 30.2822i − 1.16729i −0.812008 0.583646i \(-0.801626\pi\)
0.812008 0.583646i \(-0.198374\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.9028i 1.14926i 0.818414 + 0.574630i \(0.194854\pi\)
−0.818414 + 0.574630i \(0.805146\pi\)
\(678\) 0 0
\(679\) 59.3386 2.27721
\(680\) 0 0
\(681\) 10.7757 0.412924
\(682\) 0 0
\(683\) 8.49293i 0.324973i 0.986711 + 0.162486i \(0.0519514\pi\)
−0.986711 + 0.162486i \(0.948049\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 18.5696i − 0.708475i
\(688\) 0 0
\(689\) −5.20242 −0.198196
\(690\) 0 0
\(691\) −22.9983 −0.874897 −0.437449 0.899243i \(-0.644118\pi\)
−0.437449 + 0.899243i \(0.644118\pi\)
\(692\) 0 0
\(693\) − 5.42926i − 0.206241i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 24.0722i 0.911798i
\(698\) 0 0
\(699\) −1.65039 −0.0624236
\(700\) 0 0
\(701\) −10.5497 −0.398456 −0.199228 0.979953i \(-0.563844\pi\)
−0.199228 + 0.979953i \(0.563844\pi\)
\(702\) 0 0
\(703\) 1.56712i 0.0591050i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 29.8402i 1.12226i
\(708\) 0 0
\(709\) −38.7411 −1.45495 −0.727476 0.686134i \(-0.759307\pi\)
−0.727476 + 0.686134i \(0.759307\pi\)
\(710\) 0 0
\(711\) 12.4480 0.466835
\(712\) 0 0
\(713\) 0.0414931i 0.00155393i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 19.0660i − 0.712033i
\(718\) 0 0
\(719\) −19.9535 −0.744140 −0.372070 0.928205i \(-0.621352\pi\)
−0.372070 + 0.928205i \(0.621352\pi\)
\(720\) 0 0
\(721\) −15.7337 −0.585952
\(722\) 0 0
\(723\) 15.5752i 0.579246i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 4.98353i − 0.184829i −0.995721 0.0924144i \(-0.970542\pi\)
0.995721 0.0924144i \(-0.0294584\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −29.0091 −1.07294
\(732\) 0 0
\(733\) 24.6102i 0.909000i 0.890747 + 0.454500i \(0.150182\pi\)
−0.890747 + 0.454500i \(0.849818\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.23389i 0.192793i
\(738\) 0 0
\(739\) 28.1007 1.03370 0.516850 0.856076i \(-0.327104\pi\)
0.516850 + 0.856076i \(0.327104\pi\)
\(740\) 0 0
\(741\) 34.0855 1.25216
\(742\) 0 0
\(743\) 7.88253i 0.289182i 0.989492 + 0.144591i \(0.0461866\pi\)
−0.989492 + 0.144591i \(0.953813\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 3.96869i − 0.145207i
\(748\) 0 0
\(749\) 38.0998 1.39214
\(750\) 0 0
\(751\) −21.3763 −0.780031 −0.390015 0.920808i \(-0.627530\pi\)
−0.390015 + 0.920808i \(0.627530\pi\)
\(752\) 0 0
\(753\) 18.2130i 0.663717i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 17.6845i − 0.642755i −0.946951 0.321377i \(-0.895854\pi\)
0.946951 0.321377i \(-0.104146\pi\)
\(758\) 0 0
\(759\) −0.137955 −0.00500746
\(760\) 0 0
\(761\) −30.5834 −1.10865 −0.554323 0.832302i \(-0.687023\pi\)
−0.554323 + 0.832302i \(0.687023\pi\)
\(762\) 0 0
\(763\) − 19.8408i − 0.718287i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 59.7940i − 2.15904i
\(768\) 0 0
\(769\) −8.39447 −0.302712 −0.151356 0.988479i \(-0.548364\pi\)
−0.151356 + 0.988479i \(0.548364\pi\)
\(770\) 0 0
\(771\) −14.8505 −0.534827
\(772\) 0 0
\(773\) − 42.8082i − 1.53970i −0.638223 0.769851i \(-0.720330\pi\)
0.638223 0.769851i \(-0.279670\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1.32793i − 0.0476393i
\(778\) 0 0
\(779\) 36.4782 1.30697
\(780\) 0 0
\(781\) 9.48986 0.339574
\(782\) 0 0
\(783\) − 6.22113i − 0.222325i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 10.3286i 0.368174i 0.982910 + 0.184087i \(0.0589328\pi\)
−0.982910 + 0.184087i \(0.941067\pi\)
\(788\) 0 0
\(789\) 28.2291 1.00498
\(790\) 0 0
\(791\) 68.2913 2.42816
\(792\) 0 0
\(793\) − 26.0287i − 0.924308i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2.84333i − 0.100716i −0.998731 0.0503580i \(-0.983964\pi\)
0.998731 0.0503580i \(-0.0160362\pi\)
\(798\) 0 0
\(799\) 34.4142 1.21749
\(800\) 0 0
\(801\) 18.0624 0.638203
\(802\) 0 0
\(803\) − 3.84190i − 0.135578i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.33130i 0.0820657i
\(808\) 0 0
\(809\) −17.3440 −0.609783 −0.304891 0.952387i \(-0.598620\pi\)
−0.304891 + 0.952387i \(0.598620\pi\)
\(810\) 0 0
\(811\) −11.8281 −0.415341 −0.207670 0.978199i \(-0.566588\pi\)
−0.207670 + 0.978199i \(0.566588\pi\)
\(812\) 0 0
\(813\) − 9.84503i − 0.345280i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 43.9596i 1.53795i
\(818\) 0 0
\(819\) −28.8831 −1.00926
\(820\) 0 0
\(821\) −19.9201 −0.695217 −0.347608 0.937640i \(-0.613006\pi\)
−0.347608 + 0.937640i \(0.613006\pi\)
\(822\) 0 0
\(823\) − 37.0022i − 1.28982i −0.764260 0.644909i \(-0.776895\pi\)
0.764260 0.644909i \(-0.223105\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3.61973i − 0.125870i −0.998018 0.0629351i \(-0.979954\pi\)
0.998018 0.0629351i \(-0.0200461\pi\)
\(828\) 0 0
\(829\) 42.3796 1.47191 0.735953 0.677033i \(-0.236734\pi\)
0.735953 + 0.677033i \(0.236734\pi\)
\(830\) 0 0
\(831\) 24.4616 0.848564
\(832\) 0 0
\(833\) 29.8017i 1.03257i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.402761i 0.0139214i
\(838\) 0 0
\(839\) 31.6705 1.09339 0.546694 0.837332i \(-0.315886\pi\)
0.546694 + 0.837332i \(0.315886\pi\)
\(840\) 0 0
\(841\) 9.70250 0.334569
\(842\) 0 0
\(843\) 15.6447i 0.538832i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 37.3286i 1.28263i
\(848\) 0 0
\(849\) −9.82969 −0.337354
\(850\) 0 0
\(851\) −0.0337422 −0.00115667
\(852\) 0 0
\(853\) 10.7240i 0.367184i 0.983003 + 0.183592i \(0.0587725\pi\)
−0.983003 + 0.183592i \(0.941227\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.8384i 0.404391i 0.979345 + 0.202196i \(0.0648077\pi\)
−0.979345 + 0.202196i \(0.935192\pi\)
\(858\) 0 0
\(859\) 8.53452 0.291194 0.145597 0.989344i \(-0.453490\pi\)
0.145597 + 0.989344i \(0.453490\pi\)
\(860\) 0 0
\(861\) −30.9106 −1.05343
\(862\) 0 0
\(863\) − 38.1498i − 1.29864i −0.760517 0.649318i \(-0.775055\pi\)
0.760517 0.649318i \(-0.224945\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 7.03043i 0.238766i
\(868\) 0 0
\(869\) 16.6689 0.565455
\(870\) 0 0
\(871\) 27.8437 0.943449
\(872\) 0 0
\(873\) − 14.6355i − 0.495335i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 2.01003i − 0.0678737i −0.999424 0.0339369i \(-0.989195\pi\)
0.999424 0.0339369i \(-0.0108045\pi\)
\(878\) 0 0
\(879\) −17.3449 −0.585031
\(880\) 0 0
\(881\) 2.16862 0.0730627 0.0365313 0.999333i \(-0.488369\pi\)
0.0365313 + 0.999333i \(0.488369\pi\)
\(882\) 0 0
\(883\) 55.0263i 1.85178i 0.377792 + 0.925891i \(0.376683\pi\)
−0.377792 + 0.925891i \(0.623317\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 50.3100i 1.68925i 0.535362 + 0.844623i \(0.320175\pi\)
−0.535362 + 0.844623i \(0.679825\pi\)
\(888\) 0 0
\(889\) −69.6192 −2.33495
\(890\) 0 0
\(891\) −1.33909 −0.0448612
\(892\) 0 0
\(893\) − 52.1502i − 1.74514i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.733907i 0.0245045i
\(898\) 0 0
\(899\) −2.50563 −0.0835673
\(900\) 0 0
\(901\) 2.30585 0.0768190
\(902\) 0 0
\(903\) − 37.2501i − 1.23961i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 13.1238i 0.435769i 0.975975 + 0.217885i \(0.0699156\pi\)
−0.975975 + 0.217885i \(0.930084\pi\)
\(908\) 0 0
\(909\) 7.35988 0.244112
\(910\) 0 0
\(911\) 33.8534 1.12161 0.560806 0.827947i \(-0.310491\pi\)
0.560806 + 0.827947i \(0.310491\pi\)
\(912\) 0 0
\(913\) − 5.31443i − 0.175882i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 25.7304i − 0.849694i
\(918\) 0 0
\(919\) −0.0908103 −0.00299556 −0.00149778 0.999999i \(-0.500477\pi\)
−0.00149778 + 0.999999i \(0.500477\pi\)
\(920\) 0 0
\(921\) −22.1862 −0.731060
\(922\) 0 0
\(923\) − 50.4851i − 1.66174i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.88060i 0.127456i
\(928\) 0 0
\(929\) 22.6510 0.743156 0.371578 0.928402i \(-0.378817\pi\)
0.371578 + 0.928402i \(0.378817\pi\)
\(930\) 0 0
\(931\) 45.1606 1.48008
\(932\) 0 0
\(933\) − 19.9407i − 0.652828i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 9.99276i − 0.326449i −0.986589 0.163225i \(-0.947810\pi\)
0.986589 0.163225i \(-0.0521895\pi\)
\(938\) 0 0
\(939\) 10.9945 0.358793
\(940\) 0 0
\(941\) −28.6412 −0.933675 −0.466838 0.884343i \(-0.654607\pi\)
−0.466838 + 0.884343i \(0.654607\pi\)
\(942\) 0 0
\(943\) 0.785426i 0.0255770i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.22217i − 0.267185i −0.991036 0.133592i \(-0.957349\pi\)
0.991036 0.133592i \(-0.0426513\pi\)
\(948\) 0 0
\(949\) −20.4385 −0.663461
\(950\) 0 0
\(951\) −24.6249 −0.798518
\(952\) 0 0
\(953\) − 48.8140i − 1.58124i −0.612307 0.790620i \(-0.709759\pi\)
0.612307 0.790620i \(-0.290241\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 8.33066i − 0.269292i
\(958\) 0 0
\(959\) 76.8784 2.48253
\(960\) 0 0
\(961\) −30.8378 −0.994767
\(962\) 0 0
\(963\) − 9.39706i − 0.302816i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 17.4141i 0.559999i 0.960000 + 0.279999i \(0.0903343\pi\)
−0.960000 + 0.279999i \(0.909666\pi\)
\(968\) 0 0
\(969\) −15.1076 −0.485326
\(970\) 0 0
\(971\) 0.795340 0.0255237 0.0127618 0.999919i \(-0.495938\pi\)
0.0127618 + 0.999919i \(0.495938\pi\)
\(972\) 0 0
\(973\) − 61.3893i − 1.96805i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.2594i 1.51196i 0.654593 + 0.755982i \(0.272840\pi\)
−0.654593 + 0.755982i \(0.727160\pi\)
\(978\) 0 0
\(979\) 24.1872 0.773025
\(980\) 0 0
\(981\) −4.89361 −0.156241
\(982\) 0 0
\(983\) 18.3638i 0.585715i 0.956156 + 0.292857i \(0.0946061\pi\)
−0.956156 + 0.292857i \(0.905394\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 44.1906i 1.40660i
\(988\) 0 0
\(989\) −0.946510 −0.0300973
\(990\) 0 0
\(991\) −55.5141 −1.76346 −0.881732 0.471750i \(-0.843622\pi\)
−0.881732 + 0.471750i \(0.843622\pi\)
\(992\) 0 0
\(993\) 5.98481i 0.189922i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 13.2769i 0.420482i 0.977650 + 0.210241i \(0.0674249\pi\)
−0.977650 + 0.210241i \(0.932575\pi\)
\(998\) 0 0
\(999\) −0.327525 −0.0103624
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3000.2.f.e.1249.5 8
4.3 odd 2 6000.2.f.s.1249.4 8
5.2 odd 4 3000.2.a.n.1.4 yes 4
5.3 odd 4 3000.2.a.k.1.1 4
5.4 even 2 inner 3000.2.f.e.1249.4 8
15.2 even 4 9000.2.a.x.1.4 4
15.8 even 4 9000.2.a.u.1.1 4
20.3 even 4 6000.2.a.bi.1.4 4
20.7 even 4 6000.2.a.bf.1.1 4
20.19 odd 2 6000.2.f.s.1249.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3000.2.a.k.1.1 4 5.3 odd 4
3000.2.a.n.1.4 yes 4 5.2 odd 4
3000.2.f.e.1249.4 8 5.4 even 2 inner
3000.2.f.e.1249.5 8 1.1 even 1 trivial
6000.2.a.bf.1.1 4 20.7 even 4
6000.2.a.bi.1.4 4 20.3 even 4
6000.2.f.s.1249.4 8 4.3 odd 2
6000.2.f.s.1249.5 8 20.19 odd 2
9000.2.a.u.1.1 4 15.8 even 4
9000.2.a.x.1.4 4 15.2 even 4