Properties

Label 9025.2.a.ct.1.20
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.78468 q^{2} +2.38377 q^{3} +1.18508 q^{4} +4.25426 q^{6} -4.23911 q^{7} -1.45438 q^{8} +2.68235 q^{9} -0.490889 q^{11} +2.82495 q^{12} +4.16199 q^{13} -7.56544 q^{14} -4.96575 q^{16} +2.03619 q^{17} +4.78713 q^{18} -10.1050 q^{21} -0.876080 q^{22} -4.39525 q^{23} -3.46689 q^{24} +7.42782 q^{26} -0.757211 q^{27} -5.02367 q^{28} +3.26270 q^{29} -4.08833 q^{31} -5.95351 q^{32} -1.17017 q^{33} +3.63395 q^{34} +3.17879 q^{36} -2.14440 q^{37} +9.92123 q^{39} -4.36602 q^{41} -18.0343 q^{42} -10.6241 q^{43} -0.581742 q^{44} -7.84410 q^{46} -2.62142 q^{47} -11.8372 q^{48} +10.9700 q^{49} +4.85381 q^{51} +4.93228 q^{52} +11.4341 q^{53} -1.35138 q^{54} +6.16526 q^{56} +5.82287 q^{58} +0.542306 q^{59} -13.6423 q^{61} -7.29635 q^{62} -11.3708 q^{63} -0.693606 q^{64} -2.08837 q^{66} -7.15699 q^{67} +2.41305 q^{68} -10.4772 q^{69} -6.03858 q^{71} -3.90114 q^{72} -2.05419 q^{73} -3.82707 q^{74} +2.08093 q^{77} +17.7062 q^{78} -5.34029 q^{79} -9.85206 q^{81} -7.79193 q^{82} -8.11578 q^{83} -11.9753 q^{84} -18.9605 q^{86} +7.77752 q^{87} +0.713937 q^{88} +4.34099 q^{89} -17.6431 q^{91} -5.20871 q^{92} -9.74562 q^{93} -4.67839 q^{94} -14.1918 q^{96} +5.64669 q^{97} +19.5780 q^{98} -1.31674 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 18 q^{4} - 12 q^{6} + 12 q^{9} + 12 q^{11} - 24 q^{14} + 6 q^{16} - 6 q^{21} - 42 q^{24} - 12 q^{26} - 36 q^{29} - 42 q^{31} - 6 q^{34} - 6 q^{36} + 24 q^{39} - 60 q^{41} - 30 q^{44} - 6 q^{46} + 12 q^{49}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78468 1.26196 0.630979 0.775800i \(-0.282653\pi\)
0.630979 + 0.775800i \(0.282653\pi\)
\(3\) 2.38377 1.37627 0.688134 0.725583i \(-0.258430\pi\)
0.688134 + 0.725583i \(0.258430\pi\)
\(4\) 1.18508 0.592538
\(5\) 0 0
\(6\) 4.25426 1.73679
\(7\) −4.23911 −1.60223 −0.801116 0.598509i \(-0.795760\pi\)
−0.801116 + 0.598509i \(0.795760\pi\)
\(8\) −1.45438 −0.514199
\(9\) 2.68235 0.894116
\(10\) 0 0
\(11\) −0.490889 −0.148009 −0.0740043 0.997258i \(-0.523578\pi\)
−0.0740043 + 0.997258i \(0.523578\pi\)
\(12\) 2.82495 0.815492
\(13\) 4.16199 1.15433 0.577165 0.816628i \(-0.304159\pi\)
0.577165 + 0.816628i \(0.304159\pi\)
\(14\) −7.56544 −2.02195
\(15\) 0 0
\(16\) −4.96575 −1.24144
\(17\) 2.03619 0.493850 0.246925 0.969035i \(-0.420580\pi\)
0.246925 + 0.969035i \(0.420580\pi\)
\(18\) 4.78713 1.12834
\(19\) 0 0
\(20\) 0 0
\(21\) −10.1050 −2.20510
\(22\) −0.876080 −0.186781
\(23\) −4.39525 −0.916472 −0.458236 0.888830i \(-0.651519\pi\)
−0.458236 + 0.888830i \(0.651519\pi\)
\(24\) −3.46689 −0.707677
\(25\) 0 0
\(26\) 7.42782 1.45672
\(27\) −0.757211 −0.145725
\(28\) −5.02367 −0.949384
\(29\) 3.26270 0.605869 0.302934 0.953011i \(-0.402034\pi\)
0.302934 + 0.953011i \(0.402034\pi\)
\(30\) 0 0
\(31\) −4.08833 −0.734285 −0.367143 0.930165i \(-0.619664\pi\)
−0.367143 + 0.930165i \(0.619664\pi\)
\(32\) −5.95351 −1.05244
\(33\) −1.17017 −0.203700
\(34\) 3.63395 0.623218
\(35\) 0 0
\(36\) 3.17879 0.529798
\(37\) −2.14440 −0.352538 −0.176269 0.984342i \(-0.556403\pi\)
−0.176269 + 0.984342i \(0.556403\pi\)
\(38\) 0 0
\(39\) 9.92123 1.58867
\(40\) 0 0
\(41\) −4.36602 −0.681857 −0.340929 0.940089i \(-0.610741\pi\)
−0.340929 + 0.940089i \(0.610741\pi\)
\(42\) −18.0343 −2.78275
\(43\) −10.6241 −1.62015 −0.810077 0.586324i \(-0.800575\pi\)
−0.810077 + 0.586324i \(0.800575\pi\)
\(44\) −0.581742 −0.0877008
\(45\) 0 0
\(46\) −7.84410 −1.15655
\(47\) −2.62142 −0.382373 −0.191187 0.981554i \(-0.561234\pi\)
−0.191187 + 0.981554i \(0.561234\pi\)
\(48\) −11.8372 −1.70855
\(49\) 10.9700 1.56715
\(50\) 0 0
\(51\) 4.85381 0.679670
\(52\) 4.93228 0.683985
\(53\) 11.4341 1.57059 0.785296 0.619121i \(-0.212511\pi\)
0.785296 + 0.619121i \(0.212511\pi\)
\(54\) −1.35138 −0.183899
\(55\) 0 0
\(56\) 6.16526 0.823867
\(57\) 0 0
\(58\) 5.82287 0.764581
\(59\) 0.542306 0.0706022 0.0353011 0.999377i \(-0.488761\pi\)
0.0353011 + 0.999377i \(0.488761\pi\)
\(60\) 0 0
\(61\) −13.6423 −1.74671 −0.873356 0.487083i \(-0.838061\pi\)
−0.873356 + 0.487083i \(0.838061\pi\)
\(62\) −7.29635 −0.926637
\(63\) −11.3708 −1.43258
\(64\) −0.693606 −0.0867007
\(65\) 0 0
\(66\) −2.08837 −0.257061
\(67\) −7.15699 −0.874365 −0.437182 0.899373i \(-0.644024\pi\)
−0.437182 + 0.899373i \(0.644024\pi\)
\(68\) 2.41305 0.292625
\(69\) −10.4772 −1.26131
\(70\) 0 0
\(71\) −6.03858 −0.716647 −0.358324 0.933597i \(-0.616652\pi\)
−0.358324 + 0.933597i \(0.616652\pi\)
\(72\) −3.90114 −0.459754
\(73\) −2.05419 −0.240425 −0.120212 0.992748i \(-0.538358\pi\)
−0.120212 + 0.992748i \(0.538358\pi\)
\(74\) −3.82707 −0.444888
\(75\) 0 0
\(76\) 0 0
\(77\) 2.08093 0.237144
\(78\) 17.7062 2.00483
\(79\) −5.34029 −0.600830 −0.300415 0.953809i \(-0.597125\pi\)
−0.300415 + 0.953809i \(0.597125\pi\)
\(80\) 0 0
\(81\) −9.85206 −1.09467
\(82\) −7.79193 −0.860475
\(83\) −8.11578 −0.890823 −0.445411 0.895326i \(-0.646943\pi\)
−0.445411 + 0.895326i \(0.646943\pi\)
\(84\) −11.9753 −1.30661
\(85\) 0 0
\(86\) −18.9605 −2.04457
\(87\) 7.77752 0.833838
\(88\) 0.713937 0.0761060
\(89\) 4.34099 0.460144 0.230072 0.973174i \(-0.426104\pi\)
0.230072 + 0.973174i \(0.426104\pi\)
\(90\) 0 0
\(91\) −17.6431 −1.84950
\(92\) −5.20871 −0.543045
\(93\) −9.74562 −1.01057
\(94\) −4.67839 −0.482539
\(95\) 0 0
\(96\) −14.1918 −1.44844
\(97\) 5.64669 0.573335 0.286667 0.958030i \(-0.407453\pi\)
0.286667 + 0.958030i \(0.407453\pi\)
\(98\) 19.5780 1.97768
\(99\) −1.31674 −0.132337
\(100\) 0 0
\(101\) −3.30082 −0.328444 −0.164222 0.986423i \(-0.552511\pi\)
−0.164222 + 0.986423i \(0.552511\pi\)
\(102\) 8.66250 0.857715
\(103\) −3.41567 −0.336556 −0.168278 0.985740i \(-0.553821\pi\)
−0.168278 + 0.985740i \(0.553821\pi\)
\(104\) −6.05310 −0.593556
\(105\) 0 0
\(106\) 20.4062 1.98202
\(107\) −1.75252 −0.169422 −0.0847110 0.996406i \(-0.526997\pi\)
−0.0847110 + 0.996406i \(0.526997\pi\)
\(108\) −0.897354 −0.0863479
\(109\) 3.51923 0.337081 0.168541 0.985695i \(-0.446095\pi\)
0.168541 + 0.985695i \(0.446095\pi\)
\(110\) 0 0
\(111\) −5.11176 −0.485186
\(112\) 21.0503 1.98907
\(113\) 13.2583 1.24723 0.623616 0.781731i \(-0.285663\pi\)
0.623616 + 0.781731i \(0.285663\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.86655 0.359000
\(117\) 11.1639 1.03210
\(118\) 0.967842 0.0890971
\(119\) −8.63165 −0.791262
\(120\) 0 0
\(121\) −10.7590 −0.978093
\(122\) −24.3470 −2.20428
\(123\) −10.4076 −0.938419
\(124\) −4.84498 −0.435092
\(125\) 0 0
\(126\) −20.2931 −1.80786
\(127\) −19.8082 −1.75769 −0.878846 0.477105i \(-0.841686\pi\)
−0.878846 + 0.477105i \(0.841686\pi\)
\(128\) 10.6692 0.943029
\(129\) −25.3253 −2.22977
\(130\) 0 0
\(131\) −3.43004 −0.299684 −0.149842 0.988710i \(-0.547876\pi\)
−0.149842 + 0.988710i \(0.547876\pi\)
\(132\) −1.38674 −0.120700
\(133\) 0 0
\(134\) −12.7729 −1.10341
\(135\) 0 0
\(136\) −2.96139 −0.253937
\(137\) −0.608296 −0.0519702 −0.0259851 0.999662i \(-0.508272\pi\)
−0.0259851 + 0.999662i \(0.508272\pi\)
\(138\) −18.6985 −1.59172
\(139\) −8.45799 −0.717397 −0.358699 0.933453i \(-0.616779\pi\)
−0.358699 + 0.933453i \(0.616779\pi\)
\(140\) 0 0
\(141\) −6.24885 −0.526248
\(142\) −10.7769 −0.904379
\(143\) −2.04308 −0.170851
\(144\) −13.3199 −1.10999
\(145\) 0 0
\(146\) −3.66607 −0.303406
\(147\) 26.1500 2.15682
\(148\) −2.54128 −0.208892
\(149\) −4.63735 −0.379907 −0.189953 0.981793i \(-0.560834\pi\)
−0.189953 + 0.981793i \(0.560834\pi\)
\(150\) 0 0
\(151\) −14.2109 −1.15646 −0.578232 0.815872i \(-0.696257\pi\)
−0.578232 + 0.815872i \(0.696257\pi\)
\(152\) 0 0
\(153\) 5.46178 0.441559
\(154\) 3.71380 0.299266
\(155\) 0 0
\(156\) 11.7574 0.941347
\(157\) −10.7281 −0.856194 −0.428097 0.903733i \(-0.640816\pi\)
−0.428097 + 0.903733i \(0.640816\pi\)
\(158\) −9.53071 −0.758222
\(159\) 27.2562 2.16156
\(160\) 0 0
\(161\) 18.6319 1.46840
\(162\) −17.5828 −1.38143
\(163\) 16.9366 1.32658 0.663289 0.748363i \(-0.269160\pi\)
0.663289 + 0.748363i \(0.269160\pi\)
\(164\) −5.17406 −0.404027
\(165\) 0 0
\(166\) −14.4841 −1.12418
\(167\) 16.2567 1.25798 0.628991 0.777412i \(-0.283468\pi\)
0.628991 + 0.777412i \(0.283468\pi\)
\(168\) 14.6965 1.13386
\(169\) 4.32219 0.332476
\(170\) 0 0
\(171\) 0 0
\(172\) −12.5903 −0.960003
\(173\) 8.59112 0.653171 0.326585 0.945168i \(-0.394102\pi\)
0.326585 + 0.945168i \(0.394102\pi\)
\(174\) 13.8804 1.05227
\(175\) 0 0
\(176\) 2.43763 0.183743
\(177\) 1.29273 0.0971677
\(178\) 7.74728 0.580683
\(179\) 23.5276 1.75853 0.879267 0.476330i \(-0.158033\pi\)
0.879267 + 0.476330i \(0.158033\pi\)
\(180\) 0 0
\(181\) 16.6135 1.23487 0.617434 0.786623i \(-0.288172\pi\)
0.617434 + 0.786623i \(0.288172\pi\)
\(182\) −31.4873 −2.33400
\(183\) −32.5200 −2.40394
\(184\) 6.39234 0.471250
\(185\) 0 0
\(186\) −17.3928 −1.27530
\(187\) −0.999546 −0.0730941
\(188\) −3.10658 −0.226571
\(189\) 3.20990 0.233486
\(190\) 0 0
\(191\) −12.8109 −0.926965 −0.463482 0.886106i \(-0.653400\pi\)
−0.463482 + 0.886106i \(0.653400\pi\)
\(192\) −1.65339 −0.119323
\(193\) 9.63983 0.693890 0.346945 0.937885i \(-0.387219\pi\)
0.346945 + 0.937885i \(0.387219\pi\)
\(194\) 10.0775 0.723525
\(195\) 0 0
\(196\) 13.0003 0.928596
\(197\) −3.10241 −0.221038 −0.110519 0.993874i \(-0.535251\pi\)
−0.110519 + 0.993874i \(0.535251\pi\)
\(198\) −2.34995 −0.167004
\(199\) 0.524290 0.0371659 0.0185830 0.999827i \(-0.494085\pi\)
0.0185830 + 0.999827i \(0.494085\pi\)
\(200\) 0 0
\(201\) −17.0606 −1.20336
\(202\) −5.89091 −0.414483
\(203\) −13.8309 −0.970742
\(204\) 5.75214 0.402731
\(205\) 0 0
\(206\) −6.09586 −0.424719
\(207\) −11.7896 −0.819432
\(208\) −20.6674 −1.43303
\(209\) 0 0
\(210\) 0 0
\(211\) 19.0637 1.31240 0.656201 0.754586i \(-0.272162\pi\)
0.656201 + 0.754586i \(0.272162\pi\)
\(212\) 13.5503 0.930636
\(213\) −14.3946 −0.986299
\(214\) −3.12768 −0.213804
\(215\) 0 0
\(216\) 1.10127 0.0749319
\(217\) 17.3309 1.17650
\(218\) 6.28069 0.425382
\(219\) −4.89671 −0.330889
\(220\) 0 0
\(221\) 8.47463 0.570065
\(222\) −9.12284 −0.612285
\(223\) −3.16283 −0.211799 −0.105899 0.994377i \(-0.533772\pi\)
−0.105899 + 0.994377i \(0.533772\pi\)
\(224\) 25.2376 1.68626
\(225\) 0 0
\(226\) 23.6617 1.57395
\(227\) −9.04654 −0.600440 −0.300220 0.953870i \(-0.597060\pi\)
−0.300220 + 0.953870i \(0.597060\pi\)
\(228\) 0 0
\(229\) −17.8920 −1.18234 −0.591168 0.806549i \(-0.701333\pi\)
−0.591168 + 0.806549i \(0.701333\pi\)
\(230\) 0 0
\(231\) 4.96046 0.326374
\(232\) −4.74519 −0.311537
\(233\) −6.44330 −0.422114 −0.211057 0.977474i \(-0.567691\pi\)
−0.211057 + 0.977474i \(0.567691\pi\)
\(234\) 19.9240 1.30247
\(235\) 0 0
\(236\) 0.642674 0.0418345
\(237\) −12.7300 −0.826903
\(238\) −15.4047 −0.998539
\(239\) −13.4742 −0.871571 −0.435785 0.900051i \(-0.643529\pi\)
−0.435785 + 0.900051i \(0.643529\pi\)
\(240\) 0 0
\(241\) 17.6351 1.13598 0.567990 0.823036i \(-0.307721\pi\)
0.567990 + 0.823036i \(0.307721\pi\)
\(242\) −19.2014 −1.23431
\(243\) −21.2134 −1.36084
\(244\) −16.1671 −1.03499
\(245\) 0 0
\(246\) −18.5742 −1.18424
\(247\) 0 0
\(248\) 5.94596 0.377569
\(249\) −19.3461 −1.22601
\(250\) 0 0
\(251\) 17.7326 1.11927 0.559636 0.828738i \(-0.310941\pi\)
0.559636 + 0.828738i \(0.310941\pi\)
\(252\) −13.4752 −0.848859
\(253\) 2.15758 0.135646
\(254\) −35.3513 −2.21813
\(255\) 0 0
\(256\) 20.4282 1.27676
\(257\) 27.7475 1.73084 0.865421 0.501046i \(-0.167051\pi\)
0.865421 + 0.501046i \(0.167051\pi\)
\(258\) −45.1975 −2.81387
\(259\) 9.09035 0.564847
\(260\) 0 0
\(261\) 8.75170 0.541716
\(262\) −6.12152 −0.378189
\(263\) 5.56032 0.342864 0.171432 0.985196i \(-0.445161\pi\)
0.171432 + 0.985196i \(0.445161\pi\)
\(264\) 1.70186 0.104742
\(265\) 0 0
\(266\) 0 0
\(267\) 10.3479 0.633282
\(268\) −8.48158 −0.518095
\(269\) 4.62765 0.282153 0.141076 0.989999i \(-0.454944\pi\)
0.141076 + 0.989999i \(0.454944\pi\)
\(270\) 0 0
\(271\) −7.60838 −0.462176 −0.231088 0.972933i \(-0.574229\pi\)
−0.231088 + 0.972933i \(0.574229\pi\)
\(272\) −10.1112 −0.613083
\(273\) −42.0571 −2.54541
\(274\) −1.08561 −0.0655843
\(275\) 0 0
\(276\) −12.4163 −0.747376
\(277\) 7.53544 0.452761 0.226380 0.974039i \(-0.427311\pi\)
0.226380 + 0.974039i \(0.427311\pi\)
\(278\) −15.0948 −0.905325
\(279\) −10.9663 −0.656536
\(280\) 0 0
\(281\) 18.2549 1.08900 0.544499 0.838762i \(-0.316720\pi\)
0.544499 + 0.838762i \(0.316720\pi\)
\(282\) −11.1522 −0.664103
\(283\) −30.9333 −1.83880 −0.919398 0.393328i \(-0.871324\pi\)
−0.919398 + 0.393328i \(0.871324\pi\)
\(284\) −7.15618 −0.424641
\(285\) 0 0
\(286\) −3.64624 −0.215607
\(287\) 18.5080 1.09249
\(288\) −15.9694 −0.941004
\(289\) −12.8539 −0.756112
\(290\) 0 0
\(291\) 13.4604 0.789063
\(292\) −2.43437 −0.142461
\(293\) −21.8992 −1.27937 −0.639683 0.768639i \(-0.720934\pi\)
−0.639683 + 0.768639i \(0.720934\pi\)
\(294\) 46.6694 2.72181
\(295\) 0 0
\(296\) 3.11877 0.181275
\(297\) 0.371707 0.0215686
\(298\) −8.27618 −0.479426
\(299\) −18.2930 −1.05791
\(300\) 0 0
\(301\) 45.0365 2.59586
\(302\) −25.3618 −1.45941
\(303\) −7.86840 −0.452028
\(304\) 0 0
\(305\) 0 0
\(306\) 9.74752 0.557229
\(307\) 5.45543 0.311358 0.155679 0.987808i \(-0.450243\pi\)
0.155679 + 0.987808i \(0.450243\pi\)
\(308\) 2.46607 0.140517
\(309\) −8.14215 −0.463191
\(310\) 0 0
\(311\) 6.69721 0.379764 0.189882 0.981807i \(-0.439189\pi\)
0.189882 + 0.981807i \(0.439189\pi\)
\(312\) −14.4292 −0.816892
\(313\) 4.58279 0.259035 0.129517 0.991577i \(-0.458657\pi\)
0.129517 + 0.991577i \(0.458657\pi\)
\(314\) −19.1462 −1.08048
\(315\) 0 0
\(316\) −6.32866 −0.356015
\(317\) 27.6794 1.55463 0.777314 0.629113i \(-0.216582\pi\)
0.777314 + 0.629113i \(0.216582\pi\)
\(318\) 48.6435 2.72779
\(319\) −1.60163 −0.0896738
\(320\) 0 0
\(321\) −4.17759 −0.233170
\(322\) 33.2520 1.85306
\(323\) 0 0
\(324\) −11.6754 −0.648636
\(325\) 0 0
\(326\) 30.2264 1.67409
\(327\) 8.38903 0.463914
\(328\) 6.34983 0.350611
\(329\) 11.1125 0.612651
\(330\) 0 0
\(331\) 14.1302 0.776665 0.388332 0.921519i \(-0.373051\pi\)
0.388332 + 0.921519i \(0.373051\pi\)
\(332\) −9.61782 −0.527847
\(333\) −5.75203 −0.315209
\(334\) 29.0130 1.58752
\(335\) 0 0
\(336\) 50.1791 2.73749
\(337\) −14.9974 −0.816962 −0.408481 0.912767i \(-0.633941\pi\)
−0.408481 + 0.912767i \(0.633941\pi\)
\(338\) 7.71372 0.419571
\(339\) 31.6046 1.71653
\(340\) 0 0
\(341\) 2.00692 0.108681
\(342\) 0 0
\(343\) −16.8294 −0.908703
\(344\) 15.4514 0.833082
\(345\) 0 0
\(346\) 15.3324 0.824274
\(347\) −20.9133 −1.12268 −0.561342 0.827584i \(-0.689715\pi\)
−0.561342 + 0.827584i \(0.689715\pi\)
\(348\) 9.21696 0.494081
\(349\) −3.13055 −0.167574 −0.0837872 0.996484i \(-0.526702\pi\)
−0.0837872 + 0.996484i \(0.526702\pi\)
\(350\) 0 0
\(351\) −3.15151 −0.168215
\(352\) 2.92251 0.155771
\(353\) 8.04538 0.428212 0.214106 0.976810i \(-0.431316\pi\)
0.214106 + 0.976810i \(0.431316\pi\)
\(354\) 2.30711 0.122622
\(355\) 0 0
\(356\) 5.14441 0.272653
\(357\) −20.5758 −1.08899
\(358\) 41.9891 2.21920
\(359\) 30.5842 1.61417 0.807087 0.590432i \(-0.201043\pi\)
0.807087 + 0.590432i \(0.201043\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 29.6497 1.55835
\(363\) −25.6470 −1.34612
\(364\) −20.9085 −1.09590
\(365\) 0 0
\(366\) −58.0377 −3.03368
\(367\) −9.95175 −0.519477 −0.259739 0.965679i \(-0.583636\pi\)
−0.259739 + 0.965679i \(0.583636\pi\)
\(368\) 21.8257 1.13774
\(369\) −11.7112 −0.609659
\(370\) 0 0
\(371\) −48.4703 −2.51645
\(372\) −11.5493 −0.598804
\(373\) 9.27611 0.480299 0.240149 0.970736i \(-0.422804\pi\)
0.240149 + 0.970736i \(0.422804\pi\)
\(374\) −1.78387 −0.0922416
\(375\) 0 0
\(376\) 3.81253 0.196616
\(377\) 13.5793 0.699372
\(378\) 5.72864 0.294649
\(379\) 21.1472 1.08626 0.543129 0.839649i \(-0.317239\pi\)
0.543129 + 0.839649i \(0.317239\pi\)
\(380\) 0 0
\(381\) −47.2181 −2.41906
\(382\) −22.8634 −1.16979
\(383\) 15.1501 0.774136 0.387068 0.922051i \(-0.373488\pi\)
0.387068 + 0.922051i \(0.373488\pi\)
\(384\) 25.4328 1.29786
\(385\) 0 0
\(386\) 17.2040 0.875660
\(387\) −28.4974 −1.44860
\(388\) 6.69177 0.339723
\(389\) −31.4483 −1.59449 −0.797247 0.603653i \(-0.793711\pi\)
−0.797247 + 0.603653i \(0.793711\pi\)
\(390\) 0 0
\(391\) −8.94958 −0.452600
\(392\) −15.9546 −0.805827
\(393\) −8.17642 −0.412446
\(394\) −5.53681 −0.278940
\(395\) 0 0
\(396\) −1.56043 −0.0784147
\(397\) −9.38559 −0.471049 −0.235525 0.971868i \(-0.575681\pi\)
−0.235525 + 0.971868i \(0.575681\pi\)
\(398\) 0.935689 0.0469019
\(399\) 0 0
\(400\) 0 0
\(401\) −6.16049 −0.307640 −0.153820 0.988099i \(-0.549158\pi\)
−0.153820 + 0.988099i \(0.549158\pi\)
\(402\) −30.4477 −1.51859
\(403\) −17.0156 −0.847607
\(404\) −3.91173 −0.194616
\(405\) 0 0
\(406\) −24.6838 −1.22504
\(407\) 1.05266 0.0521786
\(408\) −7.05927 −0.349486
\(409\) −2.28482 −0.112977 −0.0564885 0.998403i \(-0.517990\pi\)
−0.0564885 + 0.998403i \(0.517990\pi\)
\(410\) 0 0
\(411\) −1.45004 −0.0715250
\(412\) −4.04783 −0.199422
\(413\) −2.29889 −0.113121
\(414\) −21.0406 −1.03409
\(415\) 0 0
\(416\) −24.7785 −1.21486
\(417\) −20.1619 −0.987332
\(418\) 0 0
\(419\) −22.6494 −1.10649 −0.553247 0.833017i \(-0.686611\pi\)
−0.553247 + 0.833017i \(0.686611\pi\)
\(420\) 0 0
\(421\) 22.9969 1.12080 0.560400 0.828222i \(-0.310647\pi\)
0.560400 + 0.828222i \(0.310647\pi\)
\(422\) 34.0226 1.65620
\(423\) −7.03155 −0.341886
\(424\) −16.6294 −0.807597
\(425\) 0 0
\(426\) −25.6897 −1.24467
\(427\) 57.8310 2.79864
\(428\) −2.07687 −0.100389
\(429\) −4.87022 −0.235137
\(430\) 0 0
\(431\) −25.6319 −1.23465 −0.617323 0.786710i \(-0.711783\pi\)
−0.617323 + 0.786710i \(0.711783\pi\)
\(432\) 3.76012 0.180909
\(433\) 2.36330 0.113573 0.0567864 0.998386i \(-0.481915\pi\)
0.0567864 + 0.998386i \(0.481915\pi\)
\(434\) 30.9300 1.48469
\(435\) 0 0
\(436\) 4.17056 0.199734
\(437\) 0 0
\(438\) −8.73906 −0.417568
\(439\) 6.31659 0.301474 0.150737 0.988574i \(-0.451835\pi\)
0.150737 + 0.988574i \(0.451835\pi\)
\(440\) 0 0
\(441\) 29.4254 1.40121
\(442\) 15.1245 0.719399
\(443\) −31.5246 −1.49778 −0.748890 0.662694i \(-0.769413\pi\)
−0.748890 + 0.662694i \(0.769413\pi\)
\(444\) −6.05782 −0.287492
\(445\) 0 0
\(446\) −5.64463 −0.267281
\(447\) −11.0544 −0.522854
\(448\) 2.94027 0.138915
\(449\) 15.0828 0.711803 0.355902 0.934523i \(-0.384174\pi\)
0.355902 + 0.934523i \(0.384174\pi\)
\(450\) 0 0
\(451\) 2.14323 0.100921
\(452\) 15.7121 0.739033
\(453\) −33.8754 −1.59161
\(454\) −16.1452 −0.757730
\(455\) 0 0
\(456\) 0 0
\(457\) −20.1347 −0.941861 −0.470930 0.882170i \(-0.656082\pi\)
−0.470930 + 0.882170i \(0.656082\pi\)
\(458\) −31.9314 −1.49206
\(459\) −1.54183 −0.0719664
\(460\) 0 0
\(461\) −7.48489 −0.348606 −0.174303 0.984692i \(-0.555767\pi\)
−0.174303 + 0.984692i \(0.555767\pi\)
\(462\) 8.85283 0.411871
\(463\) 21.5973 1.00371 0.501855 0.864952i \(-0.332651\pi\)
0.501855 + 0.864952i \(0.332651\pi\)
\(464\) −16.2017 −0.752147
\(465\) 0 0
\(466\) −11.4992 −0.532691
\(467\) 27.0503 1.25174 0.625870 0.779927i \(-0.284744\pi\)
0.625870 + 0.779927i \(0.284744\pi\)
\(468\) 13.2301 0.611561
\(469\) 30.3392 1.40094
\(470\) 0 0
\(471\) −25.5732 −1.17835
\(472\) −0.788717 −0.0363036
\(473\) 5.21524 0.239797
\(474\) −22.7190 −1.04352
\(475\) 0 0
\(476\) −10.2292 −0.468853
\(477\) 30.6702 1.40429
\(478\) −24.0470 −1.09989
\(479\) −38.0534 −1.73870 −0.869352 0.494193i \(-0.835464\pi\)
−0.869352 + 0.494193i \(0.835464\pi\)
\(480\) 0 0
\(481\) −8.92499 −0.406944
\(482\) 31.4731 1.43356
\(483\) 44.4142 2.02092
\(484\) −12.7503 −0.579558
\(485\) 0 0
\(486\) −37.8591 −1.71732
\(487\) −18.3353 −0.830851 −0.415426 0.909627i \(-0.636367\pi\)
−0.415426 + 0.909627i \(0.636367\pi\)
\(488\) 19.8410 0.898158
\(489\) 40.3730 1.82573
\(490\) 0 0
\(491\) −15.0675 −0.679986 −0.339993 0.940428i \(-0.610425\pi\)
−0.339993 + 0.940428i \(0.610425\pi\)
\(492\) −12.3338 −0.556049
\(493\) 6.64350 0.299208
\(494\) 0 0
\(495\) 0 0
\(496\) 20.3016 0.911568
\(497\) 25.5982 1.14824
\(498\) −34.5266 −1.54717
\(499\) 34.5299 1.54577 0.772886 0.634545i \(-0.218812\pi\)
0.772886 + 0.634545i \(0.218812\pi\)
\(500\) 0 0
\(501\) 38.7522 1.73132
\(502\) 31.6470 1.41247
\(503\) 30.8704 1.37644 0.688221 0.725501i \(-0.258392\pi\)
0.688221 + 0.725501i \(0.258392\pi\)
\(504\) 16.5374 0.736632
\(505\) 0 0
\(506\) 3.85059 0.171179
\(507\) 10.3031 0.457577
\(508\) −23.4742 −1.04150
\(509\) −10.1777 −0.451118 −0.225559 0.974230i \(-0.572421\pi\)
−0.225559 + 0.974230i \(0.572421\pi\)
\(510\) 0 0
\(511\) 8.70794 0.385217
\(512\) 15.1195 0.668194
\(513\) 0 0
\(514\) 49.5204 2.18425
\(515\) 0 0
\(516\) −30.0124 −1.32122
\(517\) 1.28683 0.0565946
\(518\) 16.2234 0.712813
\(519\) 20.4792 0.898938
\(520\) 0 0
\(521\) −16.5423 −0.724732 −0.362366 0.932036i \(-0.618031\pi\)
−0.362366 + 0.932036i \(0.618031\pi\)
\(522\) 15.6190 0.683624
\(523\) −7.99801 −0.349729 −0.174864 0.984593i \(-0.555949\pi\)
−0.174864 + 0.984593i \(0.555949\pi\)
\(524\) −4.06486 −0.177574
\(525\) 0 0
\(526\) 9.92338 0.432680
\(527\) −8.32463 −0.362626
\(528\) 5.81075 0.252880
\(529\) −3.68180 −0.160078
\(530\) 0 0
\(531\) 1.45465 0.0631266
\(532\) 0 0
\(533\) −18.1713 −0.787088
\(534\) 18.4677 0.799176
\(535\) 0 0
\(536\) 10.4089 0.449598
\(537\) 56.0843 2.42021
\(538\) 8.25886 0.356065
\(539\) −5.38507 −0.231952
\(540\) 0 0
\(541\) 5.20048 0.223586 0.111793 0.993732i \(-0.464341\pi\)
0.111793 + 0.993732i \(0.464341\pi\)
\(542\) −13.5785 −0.583247
\(543\) 39.6026 1.69951
\(544\) −12.1225 −0.519748
\(545\) 0 0
\(546\) −75.0585 −3.21221
\(547\) 11.0339 0.471777 0.235889 0.971780i \(-0.424200\pi\)
0.235889 + 0.971780i \(0.424200\pi\)
\(548\) −0.720878 −0.0307944
\(549\) −36.5933 −1.56176
\(550\) 0 0
\(551\) 0 0
\(552\) 15.2379 0.648566
\(553\) 22.6381 0.962669
\(554\) 13.4483 0.571365
\(555\) 0 0
\(556\) −10.0234 −0.425086
\(557\) 21.2817 0.901735 0.450867 0.892591i \(-0.351115\pi\)
0.450867 + 0.892591i \(0.351115\pi\)
\(558\) −19.5713 −0.828521
\(559\) −44.2173 −1.87019
\(560\) 0 0
\(561\) −2.38269 −0.100597
\(562\) 32.5792 1.37427
\(563\) 14.7072 0.619833 0.309917 0.950764i \(-0.399699\pi\)
0.309917 + 0.950764i \(0.399699\pi\)
\(564\) −7.40537 −0.311822
\(565\) 0 0
\(566\) −55.2061 −2.32048
\(567\) 41.7639 1.75392
\(568\) 8.78236 0.368500
\(569\) −40.6551 −1.70435 −0.852174 0.523258i \(-0.824716\pi\)
−0.852174 + 0.523258i \(0.824716\pi\)
\(570\) 0 0
\(571\) −24.3240 −1.01793 −0.508964 0.860788i \(-0.669972\pi\)
−0.508964 + 0.860788i \(0.669972\pi\)
\(572\) −2.42120 −0.101236
\(573\) −30.5382 −1.27575
\(574\) 33.0308 1.37868
\(575\) 0 0
\(576\) −1.86049 −0.0775204
\(577\) −33.6876 −1.40243 −0.701216 0.712949i \(-0.747359\pi\)
−0.701216 + 0.712949i \(0.747359\pi\)
\(578\) −22.9401 −0.954182
\(579\) 22.9791 0.954979
\(580\) 0 0
\(581\) 34.4037 1.42730
\(582\) 24.0225 0.995764
\(583\) −5.61287 −0.232461
\(584\) 2.98757 0.123626
\(585\) 0 0
\(586\) −39.0830 −1.61451
\(587\) 2.24977 0.0928580 0.0464290 0.998922i \(-0.485216\pi\)
0.0464290 + 0.998922i \(0.485216\pi\)
\(588\) 30.9898 1.27800
\(589\) 0 0
\(590\) 0 0
\(591\) −7.39543 −0.304207
\(592\) 10.6486 0.437653
\(593\) 31.3871 1.28891 0.644457 0.764640i \(-0.277083\pi\)
0.644457 + 0.764640i \(0.277083\pi\)
\(594\) 0.663377 0.0272187
\(595\) 0 0
\(596\) −5.49562 −0.225109
\(597\) 1.24979 0.0511503
\(598\) −32.6471 −1.33504
\(599\) −10.4068 −0.425212 −0.212606 0.977138i \(-0.568195\pi\)
−0.212606 + 0.977138i \(0.568195\pi\)
\(600\) 0 0
\(601\) 1.29592 0.0528616 0.0264308 0.999651i \(-0.491586\pi\)
0.0264308 + 0.999651i \(0.491586\pi\)
\(602\) 80.3757 3.27587
\(603\) −19.1975 −0.781783
\(604\) −16.8410 −0.685249
\(605\) 0 0
\(606\) −14.0426 −0.570440
\(607\) 5.50902 0.223604 0.111802 0.993730i \(-0.464338\pi\)
0.111802 + 0.993730i \(0.464338\pi\)
\(608\) 0 0
\(609\) −32.9698 −1.33600
\(610\) 0 0
\(611\) −10.9103 −0.441385
\(612\) 6.47263 0.261641
\(613\) 40.6727 1.64275 0.821376 0.570386i \(-0.193207\pi\)
0.821376 + 0.570386i \(0.193207\pi\)
\(614\) 9.73619 0.392921
\(615\) 0 0
\(616\) −3.02646 −0.121939
\(617\) −30.5053 −1.22810 −0.614049 0.789268i \(-0.710460\pi\)
−0.614049 + 0.789268i \(0.710460\pi\)
\(618\) −14.5311 −0.584527
\(619\) 5.80411 0.233287 0.116643 0.993174i \(-0.462787\pi\)
0.116643 + 0.993174i \(0.462787\pi\)
\(620\) 0 0
\(621\) 3.32813 0.133553
\(622\) 11.9524 0.479246
\(623\) −18.4019 −0.737258
\(624\) −49.2663 −1.97223
\(625\) 0 0
\(626\) 8.17881 0.326891
\(627\) 0 0
\(628\) −12.7136 −0.507328
\(629\) −4.36642 −0.174101
\(630\) 0 0
\(631\) −23.3642 −0.930116 −0.465058 0.885280i \(-0.653967\pi\)
−0.465058 + 0.885280i \(0.653967\pi\)
\(632\) 7.76679 0.308946
\(633\) 45.4435 1.80622
\(634\) 49.3987 1.96187
\(635\) 0 0
\(636\) 32.3007 1.28080
\(637\) 45.6572 1.80901
\(638\) −2.85839 −0.113165
\(639\) −16.1976 −0.640766
\(640\) 0 0
\(641\) −18.3459 −0.724621 −0.362311 0.932057i \(-0.618012\pi\)
−0.362311 + 0.932057i \(0.618012\pi\)
\(642\) −7.45565 −0.294251
\(643\) −15.7630 −0.621633 −0.310817 0.950470i \(-0.600603\pi\)
−0.310817 + 0.950470i \(0.600603\pi\)
\(644\) 22.0803 0.870084
\(645\) 0 0
\(646\) 0 0
\(647\) 25.0443 0.984592 0.492296 0.870428i \(-0.336158\pi\)
0.492296 + 0.870428i \(0.336158\pi\)
\(648\) 14.3286 0.562880
\(649\) −0.266212 −0.0104497
\(650\) 0 0
\(651\) 41.3127 1.61917
\(652\) 20.0712 0.786049
\(653\) −2.98852 −0.116950 −0.0584749 0.998289i \(-0.518624\pi\)
−0.0584749 + 0.998289i \(0.518624\pi\)
\(654\) 14.9717 0.585440
\(655\) 0 0
\(656\) 21.6805 0.846482
\(657\) −5.51005 −0.214968
\(658\) 19.8322 0.773140
\(659\) 35.7695 1.39338 0.696691 0.717372i \(-0.254655\pi\)
0.696691 + 0.717372i \(0.254655\pi\)
\(660\) 0 0
\(661\) −3.22147 −0.125301 −0.0626503 0.998036i \(-0.519955\pi\)
−0.0626503 + 0.998036i \(0.519955\pi\)
\(662\) 25.2178 0.980118
\(663\) 20.2015 0.784563
\(664\) 11.8034 0.458061
\(665\) 0 0
\(666\) −10.2655 −0.397781
\(667\) −14.3404 −0.555262
\(668\) 19.2655 0.745403
\(669\) −7.53945 −0.291492
\(670\) 0 0
\(671\) 6.69684 0.258529
\(672\) 60.1605 2.32074
\(673\) −0.639706 −0.0246588 −0.0123294 0.999924i \(-0.503925\pi\)
−0.0123294 + 0.999924i \(0.503925\pi\)
\(674\) −26.7656 −1.03097
\(675\) 0 0
\(676\) 5.12213 0.197005
\(677\) 25.8005 0.991592 0.495796 0.868439i \(-0.334876\pi\)
0.495796 + 0.868439i \(0.334876\pi\)
\(678\) 56.4041 2.16618
\(679\) −23.9369 −0.918616
\(680\) 0 0
\(681\) −21.5648 −0.826366
\(682\) 3.58170 0.137150
\(683\) 5.33696 0.204213 0.102107 0.994773i \(-0.467442\pi\)
0.102107 + 0.994773i \(0.467442\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −30.0351 −1.14675
\(687\) −42.6503 −1.62721
\(688\) 52.7564 2.01132
\(689\) 47.5886 1.81298
\(690\) 0 0
\(691\) 13.2507 0.504079 0.252040 0.967717i \(-0.418899\pi\)
0.252040 + 0.967717i \(0.418899\pi\)
\(692\) 10.1811 0.387029
\(693\) 5.58178 0.212034
\(694\) −37.3235 −1.41678
\(695\) 0 0
\(696\) −11.3114 −0.428759
\(697\) −8.89006 −0.336735
\(698\) −5.58702 −0.211472
\(699\) −15.3593 −0.580943
\(700\) 0 0
\(701\) 40.8699 1.54363 0.771817 0.635845i \(-0.219348\pi\)
0.771817 + 0.635845i \(0.219348\pi\)
\(702\) −5.62443 −0.212280
\(703\) 0 0
\(704\) 0.340484 0.0128325
\(705\) 0 0
\(706\) 14.3584 0.540386
\(707\) 13.9925 0.526244
\(708\) 1.53199 0.0575756
\(709\) 7.35745 0.276315 0.138157 0.990410i \(-0.455882\pi\)
0.138157 + 0.990410i \(0.455882\pi\)
\(710\) 0 0
\(711\) −14.3245 −0.537211
\(712\) −6.31344 −0.236606
\(713\) 17.9692 0.672952
\(714\) −36.7213 −1.37426
\(715\) 0 0
\(716\) 27.8820 1.04200
\(717\) −32.1193 −1.19952
\(718\) 54.5830 2.03702
\(719\) −31.9597 −1.19190 −0.595948 0.803023i \(-0.703224\pi\)
−0.595948 + 0.803023i \(0.703224\pi\)
\(720\) 0 0
\(721\) 14.4794 0.539240
\(722\) 0 0
\(723\) 42.0381 1.56341
\(724\) 19.6882 0.731707
\(725\) 0 0
\(726\) −45.7717 −1.69875
\(727\) 29.3883 1.08995 0.544976 0.838452i \(-0.316539\pi\)
0.544976 + 0.838452i \(0.316539\pi\)
\(728\) 25.6598 0.951014
\(729\) −21.0116 −0.778207
\(730\) 0 0
\(731\) −21.6326 −0.800112
\(732\) −38.5387 −1.42443
\(733\) 50.8285 1.87739 0.938696 0.344745i \(-0.112035\pi\)
0.938696 + 0.344745i \(0.112035\pi\)
\(734\) −17.7607 −0.655559
\(735\) 0 0
\(736\) 26.1671 0.964534
\(737\) 3.51329 0.129414
\(738\) −20.9007 −0.769364
\(739\) 14.7245 0.541650 0.270825 0.962629i \(-0.412704\pi\)
0.270825 + 0.962629i \(0.412704\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −86.5039 −3.17566
\(743\) 34.6568 1.27144 0.635718 0.771922i \(-0.280704\pi\)
0.635718 + 0.771922i \(0.280704\pi\)
\(744\) 14.1738 0.519636
\(745\) 0 0
\(746\) 16.5549 0.606117
\(747\) −21.7693 −0.796498
\(748\) −1.18454 −0.0433110
\(749\) 7.42910 0.271453
\(750\) 0 0
\(751\) 8.35539 0.304893 0.152446 0.988312i \(-0.451285\pi\)
0.152446 + 0.988312i \(0.451285\pi\)
\(752\) 13.0173 0.474692
\(753\) 42.2704 1.54042
\(754\) 24.2348 0.882578
\(755\) 0 0
\(756\) 3.80398 0.138349
\(757\) −13.8709 −0.504146 −0.252073 0.967708i \(-0.581112\pi\)
−0.252073 + 0.967708i \(0.581112\pi\)
\(758\) 37.7410 1.37081
\(759\) 5.14317 0.186685
\(760\) 0 0
\(761\) 44.3970 1.60939 0.804696 0.593687i \(-0.202328\pi\)
0.804696 + 0.593687i \(0.202328\pi\)
\(762\) −84.2692 −3.05275
\(763\) −14.9184 −0.540082
\(764\) −15.1819 −0.549262
\(765\) 0 0
\(766\) 27.0381 0.976927
\(767\) 2.25707 0.0814983
\(768\) 48.6961 1.75717
\(769\) 19.0001 0.685160 0.342580 0.939489i \(-0.388699\pi\)
0.342580 + 0.939489i \(0.388699\pi\)
\(770\) 0 0
\(771\) 66.1436 2.38210
\(772\) 11.4239 0.411157
\(773\) −1.86738 −0.0671650 −0.0335825 0.999436i \(-0.510692\pi\)
−0.0335825 + 0.999436i \(0.510692\pi\)
\(774\) −50.8587 −1.82808
\(775\) 0 0
\(776\) −8.21241 −0.294808
\(777\) 21.6693 0.777381
\(778\) −56.1252 −2.01218
\(779\) 0 0
\(780\) 0 0
\(781\) 2.96427 0.106070
\(782\) −15.9721 −0.571162
\(783\) −2.47055 −0.0882904
\(784\) −54.4744 −1.94552
\(785\) 0 0
\(786\) −14.5923 −0.520489
\(787\) 12.9689 0.462291 0.231146 0.972919i \(-0.425753\pi\)
0.231146 + 0.972919i \(0.425753\pi\)
\(788\) −3.67660 −0.130973
\(789\) 13.2545 0.471873
\(790\) 0 0
\(791\) −56.2032 −1.99836
\(792\) 1.91503 0.0680476
\(793\) −56.7790 −2.01628
\(794\) −16.7503 −0.594444
\(795\) 0 0
\(796\) 0.621324 0.0220222
\(797\) −29.9226 −1.05991 −0.529956 0.848025i \(-0.677791\pi\)
−0.529956 + 0.848025i \(0.677791\pi\)
\(798\) 0 0
\(799\) −5.33772 −0.188835
\(800\) 0 0
\(801\) 11.6441 0.411422
\(802\) −10.9945 −0.388229
\(803\) 1.00838 0.0355850
\(804\) −20.2181 −0.713038
\(805\) 0 0
\(806\) −30.3674 −1.06964
\(807\) 11.0312 0.388318
\(808\) 4.80064 0.168886
\(809\) 42.4578 1.49274 0.746369 0.665532i \(-0.231795\pi\)
0.746369 + 0.665532i \(0.231795\pi\)
\(810\) 0 0
\(811\) 31.1514 1.09387 0.546936 0.837174i \(-0.315794\pi\)
0.546936 + 0.837174i \(0.315794\pi\)
\(812\) −16.3907 −0.575202
\(813\) −18.1366 −0.636079
\(814\) 1.87867 0.0658472
\(815\) 0 0
\(816\) −24.1028 −0.843767
\(817\) 0 0
\(818\) −4.07767 −0.142572
\(819\) −47.3250 −1.65367
\(820\) 0 0
\(821\) −6.20740 −0.216640 −0.108320 0.994116i \(-0.534547\pi\)
−0.108320 + 0.994116i \(0.534547\pi\)
\(822\) −2.58785 −0.0902616
\(823\) −35.9702 −1.25384 −0.626921 0.779083i \(-0.715685\pi\)
−0.626921 + 0.779083i \(0.715685\pi\)
\(824\) 4.96766 0.173057
\(825\) 0 0
\(826\) −4.10279 −0.142754
\(827\) −15.3837 −0.534945 −0.267473 0.963565i \(-0.586189\pi\)
−0.267473 + 0.963565i \(0.586189\pi\)
\(828\) −13.9716 −0.485545
\(829\) 24.1941 0.840295 0.420148 0.907456i \(-0.361978\pi\)
0.420148 + 0.907456i \(0.361978\pi\)
\(830\) 0 0
\(831\) 17.9627 0.623120
\(832\) −2.88678 −0.100081
\(833\) 22.3371 0.773936
\(834\) −35.9825 −1.24597
\(835\) 0 0
\(836\) 0 0
\(837\) 3.09573 0.107004
\(838\) −40.4218 −1.39635
\(839\) −12.4265 −0.429012 −0.214506 0.976723i \(-0.568814\pi\)
−0.214506 + 0.976723i \(0.568814\pi\)
\(840\) 0 0
\(841\) −18.3548 −0.632923
\(842\) 41.0420 1.41440
\(843\) 43.5155 1.49875
\(844\) 22.5920 0.777649
\(845\) 0 0
\(846\) −12.5491 −0.431446
\(847\) 45.6087 1.56713
\(848\) −56.7787 −1.94979
\(849\) −73.7379 −2.53068
\(850\) 0 0
\(851\) 9.42518 0.323091
\(852\) −17.0587 −0.584420
\(853\) 23.1527 0.792734 0.396367 0.918092i \(-0.370271\pi\)
0.396367 + 0.918092i \(0.370271\pi\)
\(854\) 103.210 3.53176
\(855\) 0 0
\(856\) 2.54882 0.0871167
\(857\) 2.84272 0.0971054 0.0485527 0.998821i \(-0.484539\pi\)
0.0485527 + 0.998821i \(0.484539\pi\)
\(858\) −8.69178 −0.296733
\(859\) −25.8715 −0.882725 −0.441363 0.897329i \(-0.645505\pi\)
−0.441363 + 0.897329i \(0.645505\pi\)
\(860\) 0 0
\(861\) 44.1188 1.50356
\(862\) −45.7447 −1.55807
\(863\) 38.0032 1.29365 0.646823 0.762641i \(-0.276097\pi\)
0.646823 + 0.762641i \(0.276097\pi\)
\(864\) 4.50806 0.153367
\(865\) 0 0
\(866\) 4.21773 0.143324
\(867\) −30.6407 −1.04061
\(868\) 20.5384 0.697119
\(869\) 2.62149 0.0889281
\(870\) 0 0
\(871\) −29.7873 −1.00931
\(872\) −5.11828 −0.173327
\(873\) 15.1464 0.512628
\(874\) 0 0
\(875\) 0 0
\(876\) −5.80298 −0.196065
\(877\) −49.0943 −1.65780 −0.828898 0.559400i \(-0.811032\pi\)
−0.828898 + 0.559400i \(0.811032\pi\)
\(878\) 11.2731 0.380448
\(879\) −52.2026 −1.76075
\(880\) 0 0
\(881\) −55.7494 −1.87825 −0.939123 0.343581i \(-0.888360\pi\)
−0.939123 + 0.343581i \(0.888360\pi\)
\(882\) 52.5150 1.76827
\(883\) −16.6355 −0.559828 −0.279914 0.960025i \(-0.590306\pi\)
−0.279914 + 0.960025i \(0.590306\pi\)
\(884\) 10.0431 0.337786
\(885\) 0 0
\(886\) −56.2613 −1.89014
\(887\) −43.3883 −1.45684 −0.728418 0.685133i \(-0.759744\pi\)
−0.728418 + 0.685133i \(0.759744\pi\)
\(888\) 7.43441 0.249483
\(889\) 83.9691 2.81623
\(890\) 0 0
\(891\) 4.83627 0.162021
\(892\) −3.74820 −0.125499
\(893\) 0 0
\(894\) −19.7285 −0.659819
\(895\) 0 0
\(896\) −45.2277 −1.51095
\(897\) −43.6062 −1.45597
\(898\) 26.9180 0.898266
\(899\) −13.3390 −0.444880
\(900\) 0 0
\(901\) 23.2820 0.775636
\(902\) 3.82498 0.127358
\(903\) 107.357 3.57260
\(904\) −19.2825 −0.641326
\(905\) 0 0
\(906\) −60.4567 −2.00854
\(907\) −19.8364 −0.658656 −0.329328 0.944216i \(-0.606822\pi\)
−0.329328 + 0.944216i \(0.606822\pi\)
\(908\) −10.7208 −0.355784
\(909\) −8.85395 −0.293667
\(910\) 0 0
\(911\) −15.4076 −0.510478 −0.255239 0.966878i \(-0.582154\pi\)
−0.255239 + 0.966878i \(0.582154\pi\)
\(912\) 0 0
\(913\) 3.98395 0.131849
\(914\) −35.9339 −1.18859
\(915\) 0 0
\(916\) −21.2034 −0.700579
\(917\) 14.5403 0.480163
\(918\) −2.75167 −0.0908186
\(919\) −13.2561 −0.437278 −0.218639 0.975806i \(-0.570162\pi\)
−0.218639 + 0.975806i \(0.570162\pi\)
\(920\) 0 0
\(921\) 13.0045 0.428512
\(922\) −13.3581 −0.439926
\(923\) −25.1325 −0.827247
\(924\) 5.87853 0.193389
\(925\) 0 0
\(926\) 38.5442 1.26664
\(927\) −9.16200 −0.300920
\(928\) −19.4245 −0.637641
\(929\) 31.2016 1.02369 0.511846 0.859077i \(-0.328962\pi\)
0.511846 + 0.859077i \(0.328962\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7.63580 −0.250119
\(933\) 15.9646 0.522658
\(934\) 48.2762 1.57964
\(935\) 0 0
\(936\) −16.2365 −0.530707
\(937\) −16.2187 −0.529840 −0.264920 0.964270i \(-0.585346\pi\)
−0.264920 + 0.964270i \(0.585346\pi\)
\(938\) 54.1458 1.76792
\(939\) 10.9243 0.356502
\(940\) 0 0
\(941\) −35.1748 −1.14666 −0.573332 0.819323i \(-0.694350\pi\)
−0.573332 + 0.819323i \(0.694350\pi\)
\(942\) −45.6400 −1.48703
\(943\) 19.1897 0.624903
\(944\) −2.69295 −0.0876482
\(945\) 0 0
\(946\) 9.30752 0.302614
\(947\) −22.2784 −0.723950 −0.361975 0.932188i \(-0.617897\pi\)
−0.361975 + 0.932188i \(0.617897\pi\)
\(948\) −15.0860 −0.489972
\(949\) −8.54953 −0.277530
\(950\) 0 0
\(951\) 65.9811 2.13958
\(952\) 12.5537 0.406866
\(953\) 4.25996 0.137994 0.0689968 0.997617i \(-0.478020\pi\)
0.0689968 + 0.997617i \(0.478020\pi\)
\(954\) 54.7364 1.77216
\(955\) 0 0
\(956\) −15.9679 −0.516439
\(957\) −3.81790 −0.123415
\(958\) −67.9131 −2.19417
\(959\) 2.57863 0.0832684
\(960\) 0 0
\(961\) −14.2856 −0.460825
\(962\) −15.9282 −0.513547
\(963\) −4.70085 −0.151483
\(964\) 20.8990 0.673111
\(965\) 0 0
\(966\) 79.2650 2.55031
\(967\) −1.21906 −0.0392023 −0.0196012 0.999808i \(-0.506240\pi\)
−0.0196012 + 0.999808i \(0.506240\pi\)
\(968\) 15.6477 0.502935
\(969\) 0 0
\(970\) 0 0
\(971\) 4.34003 0.139278 0.0696391 0.997572i \(-0.477815\pi\)
0.0696391 + 0.997572i \(0.477815\pi\)
\(972\) −25.1395 −0.806349
\(973\) 35.8543 1.14944
\(974\) −32.7226 −1.04850
\(975\) 0 0
\(976\) 67.7440 2.16843
\(977\) −21.5270 −0.688710 −0.344355 0.938840i \(-0.611902\pi\)
−0.344355 + 0.938840i \(0.611902\pi\)
\(978\) 72.0527 2.30399
\(979\) −2.13095 −0.0681054
\(980\) 0 0
\(981\) 9.43980 0.301389
\(982\) −26.8906 −0.858114
\(983\) −14.5998 −0.465661 −0.232830 0.972517i \(-0.574799\pi\)
−0.232830 + 0.972517i \(0.574799\pi\)
\(984\) 15.1365 0.482534
\(985\) 0 0
\(986\) 11.8565 0.377588
\(987\) 26.4896 0.843172
\(988\) 0 0
\(989\) 46.6954 1.48483
\(990\) 0 0
\(991\) −31.9286 −1.01425 −0.507123 0.861874i \(-0.669291\pi\)
−0.507123 + 0.861874i \(0.669291\pi\)
\(992\) 24.3399 0.772792
\(993\) 33.6831 1.06890
\(994\) 45.6845 1.44903
\(995\) 0 0
\(996\) −22.9267 −0.726459
\(997\) 55.1812 1.74761 0.873803 0.486280i \(-0.161647\pi\)
0.873803 + 0.486280i \(0.161647\pi\)
\(998\) 61.6248 1.95070
\(999\) 1.62377 0.0513737
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.ct.1.20 24
5.2 odd 4 1805.2.b.l.1084.20 24
5.3 odd 4 1805.2.b.l.1084.5 24
5.4 even 2 inner 9025.2.a.ct.1.5 24
19.14 odd 18 475.2.l.f.101.2 48
19.15 odd 18 475.2.l.f.301.2 48
19.18 odd 2 9025.2.a.cu.1.5 24
95.14 odd 18 475.2.l.f.101.7 48
95.18 even 4 1805.2.b.k.1084.20 24
95.33 even 36 95.2.p.a.44.7 yes 48
95.34 odd 18 475.2.l.f.301.7 48
95.37 even 4 1805.2.b.k.1084.5 24
95.52 even 36 95.2.p.a.44.2 48
95.53 even 36 95.2.p.a.54.2 yes 48
95.72 even 36 95.2.p.a.54.7 yes 48
95.94 odd 2 9025.2.a.cu.1.20 24
285.53 odd 36 855.2.da.b.244.7 48
285.128 odd 36 855.2.da.b.424.2 48
285.167 odd 36 855.2.da.b.244.2 48
285.242 odd 36 855.2.da.b.424.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.44.2 48 95.52 even 36
95.2.p.a.44.7 yes 48 95.33 even 36
95.2.p.a.54.2 yes 48 95.53 even 36
95.2.p.a.54.7 yes 48 95.72 even 36
475.2.l.f.101.2 48 19.14 odd 18
475.2.l.f.101.7 48 95.14 odd 18
475.2.l.f.301.2 48 19.15 odd 18
475.2.l.f.301.7 48 95.34 odd 18
855.2.da.b.244.2 48 285.167 odd 36
855.2.da.b.244.7 48 285.53 odd 36
855.2.da.b.424.2 48 285.128 odd 36
855.2.da.b.424.7 48 285.242 odd 36
1805.2.b.k.1084.5 24 95.37 even 4
1805.2.b.k.1084.20 24 95.18 even 4
1805.2.b.l.1084.5 24 5.3 odd 4
1805.2.b.l.1084.20 24 5.2 odd 4
9025.2.a.ct.1.5 24 5.4 even 2 inner
9025.2.a.ct.1.20 24 1.1 even 1 trivial
9025.2.a.cu.1.5 24 19.18 odd 2
9025.2.a.cu.1.20 24 95.94 odd 2