Properties

Label 855.2.da.b.424.2
Level $855$
Weight $2$
Character 855.424
Analytic conductor $6.827$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(199,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.da (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 424.2
Character \(\chi\) \(=\) 855.424
Dual form 855.2.da.b.244.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14717 - 1.36714i) q^{2} +(-0.205786 + 1.16707i) q^{4} +(-1.67705 + 1.47903i) q^{5} +(-3.67118 - 2.11955i) q^{7} +(-1.25953 + 0.727188i) q^{8} +(3.94589 + 0.596068i) q^{10} +(-0.245445 - 0.425123i) q^{11} +(1.42349 + 3.91099i) q^{13} +(1.31373 + 7.45051i) q^{14} +(4.66628 + 1.69839i) q^{16} +(1.30884 + 1.55982i) q^{17} +(-1.86816 - 3.93827i) q^{19} +(-1.38102 - 2.26160i) q^{20} +(-0.299637 + 0.823245i) q^{22} +(4.32847 + 0.763227i) q^{23} +(0.624964 - 4.96079i) q^{25} +(3.71391 - 6.43268i) q^{26} +(3.22915 - 3.84835i) q^{28} +(-2.49937 - 2.09722i) q^{29} +(-2.04416 + 3.54059i) q^{31} +(-2.03622 - 5.59447i) q^{32} +(0.631029 - 3.57874i) q^{34} +(9.29160 - 1.87517i) q^{35} -2.14440i q^{37} +(-3.24108 + 7.07191i) q^{38} +(1.03675 - 3.08240i) q^{40} +(4.10271 + 1.49327i) q^{41} +(10.4627 - 1.84485i) q^{43} +(0.546658 - 0.198967i) q^{44} +(-3.92205 - 6.79319i) q^{46} +(1.68502 - 2.00812i) q^{47} +(5.48502 + 9.50033i) q^{49} +(-7.49905 + 4.83645i) q^{50} +(-4.85735 + 0.856482i) q^{52} +(11.2604 + 1.98551i) q^{53} +(1.04039 + 0.349931i) q^{55} +6.16526 q^{56} +5.82287i q^{58} +(-0.415431 + 0.348588i) q^{59} +(-2.36895 + 13.4350i) q^{61} +(7.18550 - 1.26700i) q^{62} +(-0.346803 + 0.600680i) q^{64} +(-8.17171 - 4.45354i) q^{65} +(4.60042 - 5.48257i) q^{67} +(-2.08976 + 1.20652i) q^{68} +(-13.2227 - 10.5518i) q^{70} +(-1.04859 - 5.94684i) q^{71} +(-0.702575 + 1.93031i) q^{73} +(-2.93170 + 2.45999i) q^{74} +(4.98069 - 1.36984i) q^{76} +2.08093i q^{77} +(5.01823 + 1.82649i) q^{79} +(-10.3375 + 4.05327i) q^{80} +(-2.66500 - 7.32202i) q^{82} +(-7.02847 - 4.05789i) q^{83} +(-4.50199 - 0.680073i) q^{85} +(-14.5246 - 12.1876i) q^{86} +(0.618288 + 0.356969i) q^{88} +(4.07920 - 1.48471i) q^{89} +(3.06370 - 17.3751i) q^{91} +(-1.78148 + 4.89458i) q^{92} -4.67839 q^{94} +(8.95780 + 3.84160i) q^{95} +(3.62962 + 4.32562i) q^{97} +(6.69607 - 18.3973i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 18 q^{4} + 6 q^{5} - 15 q^{10} + 12 q^{11} - 6 q^{14} - 42 q^{16} + 12 q^{19} - 42 q^{20} + 12 q^{25} - 12 q^{26} - 42 q^{31} - 36 q^{34} - 6 q^{35} + 66 q^{40} - 6 q^{41} + 6 q^{44} - 6 q^{46} + 12 q^{49}+ \cdots + 63 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14717 1.36714i −0.811171 0.966716i 0.188712 0.982033i \(-0.439569\pi\)
−0.999883 + 0.0153165i \(0.995124\pi\)
\(3\) 0 0
\(4\) −0.205786 + 1.16707i −0.102893 + 0.583536i
\(5\) −1.67705 + 1.47903i −0.749998 + 0.661441i
\(6\) 0 0
\(7\) −3.67118 2.11955i −1.38757 0.801116i −0.394532 0.918882i \(-0.629093\pi\)
−0.993041 + 0.117766i \(0.962427\pi\)
\(8\) −1.25953 + 0.727188i −0.445310 + 0.257100i
\(9\) 0 0
\(10\) 3.94589 + 0.596068i 1.24780 + 0.188493i
\(11\) −0.245445 0.425123i −0.0740043 0.128179i 0.826649 0.562719i \(-0.190245\pi\)
−0.900653 + 0.434539i \(0.856911\pi\)
\(12\) 0 0
\(13\) 1.42349 + 3.91099i 0.394804 + 1.08471i 0.964781 + 0.263054i \(0.0847298\pi\)
−0.569977 + 0.821661i \(0.693048\pi\)
\(14\) 1.31373 + 7.45051i 0.351108 + 1.99123i
\(15\) 0 0
\(16\) 4.66628 + 1.69839i 1.16657 + 0.424596i
\(17\) 1.30884 + 1.55982i 0.317440 + 0.378311i 0.901044 0.433728i \(-0.142802\pi\)
−0.583603 + 0.812039i \(0.698358\pi\)
\(18\) 0 0
\(19\) −1.86816 3.93827i −0.428586 0.903501i
\(20\) −1.38102 2.26160i −0.308805 0.505709i
\(21\) 0 0
\(22\) −0.299637 + 0.823245i −0.0638828 + 0.175517i
\(23\) 4.32847 + 0.763227i 0.902549 + 0.159144i 0.605618 0.795755i \(-0.292926\pi\)
0.296931 + 0.954899i \(0.404037\pi\)
\(24\) 0 0
\(25\) 0.624964 4.96079i 0.124993 0.992158i
\(26\) 3.71391 6.43268i 0.728358 1.26155i
\(27\) 0 0
\(28\) 3.22915 3.84835i 0.610252 0.727270i
\(29\) −2.49937 2.09722i −0.464122 0.389445i 0.380523 0.924772i \(-0.375744\pi\)
−0.844645 + 0.535327i \(0.820188\pi\)
\(30\) 0 0
\(31\) −2.04416 + 3.54059i −0.367143 + 0.635909i −0.989118 0.147128i \(-0.952997\pi\)
0.621975 + 0.783037i \(0.286331\pi\)
\(32\) −2.03622 5.59447i −0.359956 0.988972i
\(33\) 0 0
\(34\) 0.631029 3.57874i 0.108221 0.613750i
\(35\) 9.29160 1.87517i 1.57057 0.316962i
\(36\) 0 0
\(37\) 2.14440i 0.352538i −0.984342 0.176269i \(-0.943597\pi\)
0.984342 0.176269i \(-0.0564028\pi\)
\(38\) −3.24108 + 7.07191i −0.525772 + 1.14721i
\(39\) 0 0
\(40\) 1.03675 3.08240i 0.163925 0.487370i
\(41\) 4.10271 + 1.49327i 0.640736 + 0.233209i 0.641897 0.766790i \(-0.278147\pi\)
−0.00116142 + 0.999999i \(0.500370\pi\)
\(42\) 0 0
\(43\) 10.4627 1.84485i 1.59554 0.281337i 0.695956 0.718085i \(-0.254981\pi\)
0.899584 + 0.436748i \(0.143870\pi\)
\(44\) 0.546658 0.198967i 0.0824118 0.0299955i
\(45\) 0 0
\(46\) −3.92205 6.79319i −0.578275 1.00160i
\(47\) 1.68502 2.00812i 0.245785 0.292915i −0.629021 0.777388i \(-0.716544\pi\)
0.874806 + 0.484473i \(0.160989\pi\)
\(48\) 0 0
\(49\) 5.48502 + 9.50033i 0.783574 + 1.35719i
\(50\) −7.49905 + 4.83645i −1.06053 + 0.683977i
\(51\) 0 0
\(52\) −4.85735 + 0.856482i −0.673593 + 0.118773i
\(53\) 11.2604 + 1.98551i 1.54673 + 0.272730i 0.880874 0.473350i \(-0.156955\pi\)
0.665856 + 0.746080i \(0.268066\pi\)
\(54\) 0 0
\(55\) 1.04039 + 0.349931i 0.140286 + 0.0471847i
\(56\) 6.16526 0.823867
\(57\) 0 0
\(58\) 5.82287i 0.764581i
\(59\) −0.415431 + 0.348588i −0.0540845 + 0.0453823i −0.669429 0.742876i \(-0.733461\pi\)
0.615345 + 0.788258i \(0.289017\pi\)
\(60\) 0 0
\(61\) −2.36895 + 13.4350i −0.303313 + 1.72018i 0.328026 + 0.944669i \(0.393617\pi\)
−0.631339 + 0.775507i \(0.717494\pi\)
\(62\) 7.18550 1.26700i 0.912559 0.160909i
\(63\) 0 0
\(64\) −0.346803 + 0.600680i −0.0433503 + 0.0750850i
\(65\) −8.17171 4.45354i −1.01358 0.552394i
\(66\) 0 0
\(67\) 4.60042 5.48257i 0.562031 0.669802i −0.407944 0.913007i \(-0.633754\pi\)
0.969975 + 0.243205i \(0.0781986\pi\)
\(68\) −2.08976 + 1.20652i −0.253421 + 0.146312i
\(69\) 0 0
\(70\) −13.2227 10.5518i −1.58041 1.26118i
\(71\) −1.04859 5.94684i −0.124444 0.705760i −0.981636 0.190762i \(-0.938904\pi\)
0.857192 0.514997i \(-0.172207\pi\)
\(72\) 0 0
\(73\) −0.702575 + 1.93031i −0.0822302 + 0.225925i −0.973993 0.226577i \(-0.927246\pi\)
0.891763 + 0.452503i \(0.149469\pi\)
\(74\) −2.93170 + 2.45999i −0.340804 + 0.285968i
\(75\) 0 0
\(76\) 4.98069 1.36984i 0.571324 0.157131i
\(77\) 2.08093i 0.237144i
\(78\) 0 0
\(79\) 5.01823 + 1.82649i 0.564595 + 0.205496i 0.608519 0.793539i \(-0.291764\pi\)
−0.0439240 + 0.999035i \(0.513986\pi\)
\(80\) −10.3375 + 4.05327i −1.15577 + 0.453170i
\(81\) 0 0
\(82\) −2.66500 7.32202i −0.294300 0.808582i
\(83\) −7.02847 4.05789i −0.771475 0.445411i 0.0619255 0.998081i \(-0.480276\pi\)
−0.833401 + 0.552669i \(0.813609\pi\)
\(84\) 0 0
\(85\) −4.50199 0.680073i −0.488310 0.0737642i
\(86\) −14.5246 12.1876i −1.56623 1.31422i
\(87\) 0 0
\(88\) 0.618288 + 0.356969i 0.0659097 + 0.0380530i
\(89\) 4.07920 1.48471i 0.432394 0.157379i −0.116648 0.993173i \(-0.537215\pi\)
0.549042 + 0.835795i \(0.314993\pi\)
\(90\) 0 0
\(91\) 3.06370 17.3751i 0.321163 1.82141i
\(92\) −1.78148 + 4.89458i −0.185732 + 0.510296i
\(93\) 0 0
\(94\) −4.67839 −0.482539
\(95\) 8.95780 + 3.84160i 0.919051 + 0.394140i
\(96\) 0 0
\(97\) 3.62962 + 4.32562i 0.368533 + 0.439200i 0.918160 0.396210i \(-0.129675\pi\)
−0.549627 + 0.835410i \(0.685230\pi\)
\(98\) 6.69607 18.3973i 0.676405 1.85841i
\(99\) 0 0
\(100\) 5.66099 + 1.75024i 0.566099 + 0.175024i
\(101\) −3.10176 + 1.12895i −0.308637 + 0.112335i −0.491695 0.870767i \(-0.663622\pi\)
0.183058 + 0.983102i \(0.441400\pi\)
\(102\) 0 0
\(103\) 2.95805 1.70783i 0.291466 0.168278i −0.347137 0.937814i \(-0.612846\pi\)
0.638603 + 0.769537i \(0.279513\pi\)
\(104\) −4.63695 3.89086i −0.454690 0.381530i
\(105\) 0 0
\(106\) −10.2031 17.6722i −0.991010 1.71648i
\(107\) −1.51772 0.876258i −0.146724 0.0847110i 0.424841 0.905268i \(-0.360330\pi\)
−0.571565 + 0.820557i \(0.693663\pi\)
\(108\) 0 0
\(109\) 0.611108 + 3.46576i 0.0585335 + 0.331960i 0.999987 0.00518405i \(-0.00165014\pi\)
−0.941453 + 0.337144i \(0.890539\pi\)
\(110\) −0.715097 1.82379i −0.0681818 0.173892i
\(111\) 0 0
\(112\) −13.5309 16.1255i −1.27855 1.52372i
\(113\) 13.2583i 1.24723i 0.781731 + 0.623616i \(0.214337\pi\)
−0.781731 + 0.623616i \(0.785663\pi\)
\(114\) 0 0
\(115\) −8.38788 + 5.12196i −0.782174 + 0.477625i
\(116\) 2.96195 2.48537i 0.275010 0.230761i
\(117\) 0 0
\(118\) 0.953138 + 0.168064i 0.0877435 + 0.0154715i
\(119\) −1.49887 8.50051i −0.137401 0.779241i
\(120\) 0 0
\(121\) 5.37951 9.31759i 0.489047 0.847054i
\(122\) 21.0852 12.1735i 1.90896 1.10214i
\(123\) 0 0
\(124\) −3.71147 3.11429i −0.333300 0.279672i
\(125\) 6.28904 + 9.24381i 0.562509 + 0.826791i
\(126\) 0 0
\(127\) 6.77480 + 18.6136i 0.601166 + 1.65169i 0.748915 + 0.662666i \(0.230575\pi\)
−0.147749 + 0.989025i \(0.547203\pi\)
\(128\) −10.5071 + 1.85268i −0.928702 + 0.163755i
\(129\) 0 0
\(130\) 3.28571 + 16.2809i 0.288175 + 1.42793i
\(131\) 2.62756 2.20479i 0.229571 0.192633i −0.520745 0.853712i \(-0.674346\pi\)
0.750316 + 0.661079i \(0.229901\pi\)
\(132\) 0 0
\(133\) −1.48902 + 18.4178i −0.129115 + 1.59702i
\(134\) −12.7729 −1.10341
\(135\) 0 0
\(136\) −2.78280 1.01286i −0.238623 0.0868517i
\(137\) −0.599055 0.105629i −0.0511807 0.00902454i 0.147999 0.988987i \(-0.452717\pi\)
−0.199180 + 0.979963i \(0.563828\pi\)
\(138\) 0 0
\(139\) −7.94791 + 2.89280i −0.674133 + 0.245364i −0.656326 0.754477i \(-0.727891\pi\)
−0.0178066 + 0.999841i \(0.505668\pi\)
\(140\) 0.276379 + 11.2299i 0.0233583 + 0.949097i
\(141\) 0 0
\(142\) −6.92727 + 8.25560i −0.581324 + 0.692794i
\(143\) 1.31327 1.56509i 0.109821 0.130879i
\(144\) 0 0
\(145\) 7.29341 0.179499i 0.605685 0.0149066i
\(146\) 3.44498 1.25387i 0.285109 0.103771i
\(147\) 0 0
\(148\) 2.50267 + 0.441289i 0.205719 + 0.0362737i
\(149\) 4.35768 + 1.58607i 0.356995 + 0.129936i 0.514291 0.857616i \(-0.328055\pi\)
−0.157295 + 0.987552i \(0.550277\pi\)
\(150\) 0 0
\(151\) 14.2109 1.15646 0.578232 0.815872i \(-0.303743\pi\)
0.578232 + 0.815872i \(0.303743\pi\)
\(152\) 5.21686 + 3.60185i 0.423143 + 0.292149i
\(153\) 0 0
\(154\) 2.84493 2.38718i 0.229251 0.192365i
\(155\) −1.80848 8.96111i −0.145260 0.719774i
\(156\) 0 0
\(157\) −10.5651 + 1.86291i −0.843186 + 0.148676i −0.578525 0.815665i \(-0.696371\pi\)
−0.264662 + 0.964341i \(0.585260\pi\)
\(158\) −3.25969 8.95593i −0.259327 0.712496i
\(159\) 0 0
\(160\) 11.6892 + 6.37056i 0.924112 + 0.503637i
\(161\) −14.2729 11.9764i −1.12486 0.943870i
\(162\) 0 0
\(163\) 14.6675 8.46831i 1.14885 0.663289i 0.200244 0.979746i \(-0.435827\pi\)
0.948607 + 0.316457i \(0.102493\pi\)
\(164\) −2.58703 + 4.48087i −0.202013 + 0.349897i
\(165\) 0 0
\(166\) 2.51513 + 14.2640i 0.195212 + 1.10710i
\(167\) −16.0097 2.82295i −1.23887 0.218446i −0.484439 0.874825i \(-0.660976\pi\)
−0.754432 + 0.656379i \(0.772087\pi\)
\(168\) 0 0
\(169\) −3.31099 + 2.77825i −0.254692 + 0.213712i
\(170\) 4.23479 + 6.93503i 0.324794 + 0.531892i
\(171\) 0 0
\(172\) 12.5903i 0.960003i
\(173\) 5.52227 + 6.58118i 0.419850 + 0.500358i 0.933966 0.357363i \(-0.116324\pi\)
−0.514115 + 0.857721i \(0.671880\pi\)
\(174\) 0 0
\(175\) −12.8090 + 16.8873i −0.968270 + 1.27656i
\(176\) −0.423290 2.40060i −0.0319067 0.180952i
\(177\) 0 0
\(178\) −6.70934 3.87364i −0.502886 0.290342i
\(179\) 11.7638 + 20.3755i 0.879267 + 1.52293i 0.852147 + 0.523302i \(0.175300\pi\)
0.0271196 + 0.999632i \(0.491367\pi\)
\(180\) 0 0
\(181\) −12.7266 10.6789i −0.945964 0.793758i 0.0326493 0.999467i \(-0.489606\pi\)
−0.978613 + 0.205709i \(0.934050\pi\)
\(182\) −27.2688 + 15.7437i −2.02130 + 1.16700i
\(183\) 0 0
\(184\) −6.00684 + 2.18631i −0.442830 + 0.161177i
\(185\) 3.17163 + 3.59626i 0.233183 + 0.264402i
\(186\) 0 0
\(187\) 0.341865 0.939266i 0.0249996 0.0686859i
\(188\) 1.99687 + 2.37978i 0.145637 + 0.173563i
\(189\) 0 0
\(190\) −5.02410 16.6536i −0.364486 1.20818i
\(191\) 12.8109 0.926965 0.463482 0.886106i \(-0.346600\pi\)
0.463482 + 0.886106i \(0.346600\pi\)
\(192\) 0 0
\(193\) −3.29702 + 9.05848i −0.237324 + 0.652043i 0.762662 + 0.646797i \(0.223892\pi\)
−0.999986 + 0.00524597i \(0.998330\pi\)
\(194\) 1.74994 9.92443i 0.125639 0.712533i
\(195\) 0 0
\(196\) −12.2163 + 4.44638i −0.872594 + 0.317598i
\(197\) 2.68677 + 1.55121i 0.191424 + 0.110519i 0.592649 0.805461i \(-0.298082\pi\)
−0.401225 + 0.915980i \(0.631415\pi\)
\(198\) 0 0
\(199\) −0.401629 0.337007i −0.0284708 0.0238898i 0.628441 0.777857i \(-0.283693\pi\)
−0.656912 + 0.753967i \(0.728138\pi\)
\(200\) 2.82027 + 6.70271i 0.199423 + 0.473953i
\(201\) 0 0
\(202\) 5.10168 + 2.94545i 0.358953 + 0.207241i
\(203\) 4.73046 + 12.9968i 0.332013 + 0.912199i
\(204\) 0 0
\(205\) −9.08901 + 3.56374i −0.634804 + 0.248903i
\(206\) −5.72824 2.08491i −0.399105 0.145262i
\(207\) 0 0
\(208\) 20.6674i 1.43303i
\(209\) −1.21572 + 1.76083i −0.0840929 + 0.121799i
\(210\) 0 0
\(211\) −14.6037 + 12.2539i −1.00536 + 0.843596i −0.987718 0.156249i \(-0.950060\pi\)
−0.0176404 + 0.999844i \(0.505615\pi\)
\(212\) −4.63446 + 12.7331i −0.318296 + 0.874512i
\(213\) 0 0
\(214\) 0.543115 + 3.08016i 0.0371266 + 0.210555i
\(215\) −14.8178 + 18.5684i −1.01056 + 1.26636i
\(216\) 0 0
\(217\) 15.0090 8.66543i 1.01887 0.588248i
\(218\) 4.03715 4.81129i 0.273430 0.325862i
\(219\) 0 0
\(220\) −0.622493 + 1.14220i −0.0419685 + 0.0770070i
\(221\) −4.23731 + 7.33924i −0.285033 + 0.493691i
\(222\) 0 0
\(223\) −3.11478 + 0.549220i −0.208581 + 0.0367785i −0.276962 0.960881i \(-0.589328\pi\)
0.0683812 + 0.997659i \(0.478217\pi\)
\(224\) −4.38246 + 24.8542i −0.292815 + 1.66064i
\(225\) 0 0
\(226\) 18.1259 15.2095i 1.20572 1.01172i
\(227\) 9.04654i 0.600440i 0.953870 + 0.300220i \(0.0970600\pi\)
−0.953870 + 0.300220i \(0.902940\pi\)
\(228\) 0 0
\(229\) 17.8920 1.18234 0.591168 0.806549i \(-0.298667\pi\)
0.591168 + 0.806549i \(0.298667\pi\)
\(230\) 16.6248 + 5.59168i 1.09620 + 0.368704i
\(231\) 0 0
\(232\) 4.67310 + 0.823994i 0.306804 + 0.0540979i
\(233\) −6.34541 + 1.11887i −0.415701 + 0.0732994i −0.377587 0.925974i \(-0.623246\pi\)
−0.0381142 + 0.999273i \(0.512135\pi\)
\(234\) 0 0
\(235\) 0.144219 + 5.85990i 0.00940778 + 0.382257i
\(236\) −0.321337 0.556572i −0.0209173 0.0362298i
\(237\) 0 0
\(238\) −9.90196 + 11.8007i −0.641849 + 0.764926i
\(239\) 6.73708 + 11.6690i 0.435785 + 0.754802i 0.997359 0.0726241i \(-0.0231374\pi\)
−0.561574 + 0.827426i \(0.689804\pi\)
\(240\) 0 0
\(241\) 16.5716 6.03157i 1.06747 0.388528i 0.252241 0.967664i \(-0.418832\pi\)
0.815231 + 0.579137i \(0.196610\pi\)
\(242\) −18.9097 + 3.33429i −1.21556 + 0.214336i
\(243\) 0 0
\(244\) −15.1921 5.52948i −0.972576 0.353989i
\(245\) −23.2499 7.82000i −1.48538 0.499602i
\(246\) 0 0
\(247\) 12.7433 12.9124i 0.810834 0.821599i
\(248\) 5.94596i 0.377569i
\(249\) 0 0
\(250\) 5.42301 19.2022i 0.342981 1.21446i
\(251\) −3.07923 + 17.4632i −0.194360 + 1.10227i 0.718968 + 0.695043i \(0.244615\pi\)
−0.913328 + 0.407225i \(0.866496\pi\)
\(252\) 0 0
\(253\) −0.737936 2.02746i −0.0463936 0.127465i
\(254\) 17.6756 30.6151i 1.10907 1.92096i
\(255\) 0 0
\(256\) 15.6489 + 13.1310i 0.978058 + 0.820688i
\(257\) 17.8358 21.2558i 1.11256 1.32590i 0.172459 0.985017i \(-0.444829\pi\)
0.940105 0.340885i \(-0.110727\pi\)
\(258\) 0 0
\(259\) −4.54518 + 7.87248i −0.282424 + 0.489172i
\(260\) 6.87924 8.62051i 0.426632 0.534621i
\(261\) 0 0
\(262\) −6.02852 1.06299i −0.372443 0.0656718i
\(263\) −1.90174 + 5.22499i −0.117266 + 0.322187i −0.984415 0.175864i \(-0.943728\pi\)
0.867148 + 0.498050i \(0.165950\pi\)
\(264\) 0 0
\(265\) −21.8208 + 13.3246i −1.34044 + 0.818523i
\(266\) 26.8879 19.0926i 1.64860 1.17064i
\(267\) 0 0
\(268\) 5.45185 + 6.49727i 0.333025 + 0.396884i
\(269\) 4.34856 + 1.58275i 0.265137 + 0.0965019i 0.471168 0.882044i \(-0.343833\pi\)
−0.206031 + 0.978545i \(0.566055\pi\)
\(270\) 0 0
\(271\) −1.32118 7.49279i −0.0802561 0.455155i −0.998280 0.0586294i \(-0.981327\pi\)
0.918024 0.396525i \(-0.129784\pi\)
\(272\) 3.45824 + 9.50144i 0.209687 + 0.576110i
\(273\) 0 0
\(274\) 0.542806 + 0.940168i 0.0327921 + 0.0567976i
\(275\) −2.26234 + 0.951912i −0.136424 + 0.0574025i
\(276\) 0 0
\(277\) −6.52588 + 3.76772i −0.392102 + 0.226380i −0.683071 0.730352i \(-0.739356\pi\)
0.290968 + 0.956733i \(0.406023\pi\)
\(278\) 13.0725 + 7.54740i 0.784035 + 0.452663i
\(279\) 0 0
\(280\) −10.3394 + 9.11857i −0.617898 + 0.544939i
\(281\) 3.16993 17.9776i 0.189102 1.07245i −0.731468 0.681876i \(-0.761164\pi\)
0.920570 0.390577i \(-0.127724\pi\)
\(282\) 0 0
\(283\) −19.8836 23.6963i −1.18196 1.40860i −0.892284 0.451474i \(-0.850898\pi\)
−0.289671 0.957126i \(-0.593546\pi\)
\(284\) 7.15618 0.424641
\(285\) 0 0
\(286\) −3.64624 −0.215607
\(287\) −11.8967 14.1780i −0.702241 0.836898i
\(288\) 0 0
\(289\) 2.23206 12.6586i 0.131298 0.744625i
\(290\) −8.61218 9.76522i −0.505725 0.573434i
\(291\) 0 0
\(292\) −2.10823 1.21719i −0.123375 0.0712305i
\(293\) −18.9653 + 10.9496i −1.10796 + 0.639683i −0.938301 0.345820i \(-0.887601\pi\)
−0.169662 + 0.985502i \(0.554268\pi\)
\(294\) 0 0
\(295\) 0.181126 1.19903i 0.0105456 0.0698102i
\(296\) 1.55938 + 2.70093i 0.0906373 + 0.156988i
\(297\) 0 0
\(298\) −2.83062 7.77706i −0.163973 0.450513i
\(299\) 3.17654 + 18.0151i 0.183704 + 1.04184i
\(300\) 0 0
\(301\) −42.3205 15.4034i −2.43931 0.887837i
\(302\) −16.3023 19.4283i −0.938090 1.11797i
\(303\) 0 0
\(304\) −2.02866 21.5499i −0.116352 1.23597i
\(305\) −15.8979 26.0349i −0.910309 1.49075i
\(306\) 0 0
\(307\) 1.86587 5.12643i 0.106491 0.292581i −0.874990 0.484141i \(-0.839132\pi\)
0.981481 + 0.191560i \(0.0613546\pi\)
\(308\) −2.42860 0.428228i −0.138382 0.0244005i
\(309\) 0 0
\(310\) −10.1765 + 12.7524i −0.577986 + 0.724285i
\(311\) 3.34861 5.79996i 0.189882 0.328885i −0.755329 0.655346i \(-0.772523\pi\)
0.945211 + 0.326461i \(0.105856\pi\)
\(312\) 0 0
\(313\) −2.94576 + 3.51062i −0.166504 + 0.198432i −0.842844 0.538157i \(-0.819121\pi\)
0.676340 + 0.736590i \(0.263565\pi\)
\(314\) 14.6668 + 12.3069i 0.827696 + 0.694520i
\(315\) 0 0
\(316\) −3.16433 + 5.48078i −0.178007 + 0.308318i
\(317\) 9.46690 + 26.0101i 0.531714 + 1.46087i 0.857030 + 0.515267i \(0.172307\pi\)
−0.325316 + 0.945605i \(0.605471\pi\)
\(318\) 0 0
\(319\) −0.278119 + 1.57729i −0.0155717 + 0.0883115i
\(320\) −0.306817 1.52030i −0.0171516 0.0849872i
\(321\) 0 0
\(322\) 33.2520i 1.85306i
\(323\) 3.69785 8.06856i 0.205754 0.448946i
\(324\) 0 0
\(325\) 20.2912 4.61738i 1.12556 0.256126i
\(326\) −28.4035 10.3380i −1.57313 0.572571i
\(327\) 0 0
\(328\) −6.25336 + 1.10264i −0.345284 + 0.0608829i
\(329\) −10.4423 + 3.80069i −0.575703 + 0.209539i
\(330\) 0 0
\(331\) 7.06509 + 12.2371i 0.388332 + 0.672611i 0.992225 0.124454i \(-0.0397179\pi\)
−0.603893 + 0.797065i \(0.706385\pi\)
\(332\) 6.18222 7.36768i 0.339293 0.404354i
\(333\) 0 0
\(334\) 14.5065 + 25.1260i 0.793761 + 1.37483i
\(335\) 0.393745 + 15.9987i 0.0215126 + 0.874100i
\(336\) 0 0
\(337\) 14.7696 2.60428i 0.804550 0.141864i 0.243775 0.969832i \(-0.421614\pi\)
0.560775 + 0.827968i \(0.310503\pi\)
\(338\) 7.59654 + 1.33947i 0.413197 + 0.0728578i
\(339\) 0 0
\(340\) 1.72014 5.11420i 0.0932879 0.277357i
\(341\) 2.00692 0.108681
\(342\) 0 0
\(343\) 16.8294i 0.908703i
\(344\) −11.8364 + 9.93195i −0.638178 + 0.535495i
\(345\) 0 0
\(346\) 2.66244 15.0995i 0.143134 0.811752i
\(347\) 20.5956 3.63155i 1.10563 0.194952i 0.409106 0.912487i \(-0.365841\pi\)
0.696522 + 0.717535i \(0.254730\pi\)
\(348\) 0 0
\(349\) −1.56527 + 2.71113i −0.0837872 + 0.145124i −0.904874 0.425680i \(-0.860035\pi\)
0.821087 + 0.570804i \(0.193368\pi\)
\(350\) 37.7814 1.86081i 2.01950 0.0994646i
\(351\) 0 0
\(352\) −1.87856 + 2.23878i −0.100127 + 0.119327i
\(353\) −6.96750 + 4.02269i −0.370843 + 0.214106i −0.673827 0.738890i \(-0.735350\pi\)
0.302984 + 0.952996i \(0.402017\pi\)
\(354\) 0 0
\(355\) 10.5541 + 8.42223i 0.560151 + 0.447006i
\(356\) 0.893318 + 5.06626i 0.0473457 + 0.268511i
\(357\) 0 0
\(358\) 14.3611 39.4569i 0.759010 2.08536i
\(359\) 23.4289 19.6592i 1.23653 1.03757i 0.238742 0.971083i \(-0.423265\pi\)
0.997787 0.0664886i \(-0.0211796\pi\)
\(360\) 0 0
\(361\) −12.0199 + 14.7147i −0.632628 + 0.774456i
\(362\) 29.6497i 1.55835i
\(363\) 0 0
\(364\) 19.6475 + 7.15112i 1.02981 + 0.374821i
\(365\) −1.67673 4.27634i −0.0877639 0.223834i
\(366\) 0 0
\(367\) −3.40370 9.35159i −0.177672 0.488149i 0.818606 0.574356i \(-0.194748\pi\)
−0.996277 + 0.0862072i \(0.972525\pi\)
\(368\) 18.9016 + 10.9128i 0.985314 + 0.568871i
\(369\) 0 0
\(370\) 1.27821 8.46159i 0.0664510 0.439897i
\(371\) −37.1304 31.1561i −1.92771 1.61754i
\(372\) 0 0
\(373\) 8.03335 + 4.63806i 0.415951 + 0.240149i 0.693343 0.720607i \(-0.256137\pi\)
−0.277392 + 0.960757i \(0.589470\pi\)
\(374\) −1.67629 + 0.610119i −0.0866788 + 0.0315485i
\(375\) 0 0
\(376\) −0.662039 + 3.75461i −0.0341420 + 0.193629i
\(377\) 4.64441 12.7604i 0.239199 0.657195i
\(378\) 0 0
\(379\) 21.1472 1.08626 0.543129 0.839649i \(-0.317239\pi\)
0.543129 + 0.839649i \(0.317239\pi\)
\(380\) −6.32682 + 9.66385i −0.324559 + 0.495745i
\(381\) 0 0
\(382\) −14.6963 17.5143i −0.751927 0.896112i
\(383\) 5.18165 14.2365i 0.264770 0.727450i −0.734060 0.679085i \(-0.762377\pi\)
0.998830 0.0483649i \(-0.0154010\pi\)
\(384\) 0 0
\(385\) −3.07775 3.48982i −0.156857 0.177858i
\(386\) 16.1665 5.88411i 0.822851 0.299493i
\(387\) 0 0
\(388\) −5.79524 + 3.34588i −0.294209 + 0.169861i
\(389\) −24.0908 20.2146i −1.22145 1.02492i −0.998747 0.0500353i \(-0.984067\pi\)
−0.222706 0.974886i \(-0.571489\pi\)
\(390\) 0 0
\(391\) 4.47479 + 7.75056i 0.226300 + 0.391963i
\(392\) −13.8171 7.97728i −0.697866 0.402913i
\(393\) 0 0
\(394\) −0.961457 5.45269i −0.0484375 0.274703i
\(395\) −11.1172 + 4.35900i −0.559369 + 0.219325i
\(396\) 0 0
\(397\) 6.03294 + 7.18978i 0.302784 + 0.360844i 0.895887 0.444283i \(-0.146541\pi\)
−0.593102 + 0.805127i \(0.702097\pi\)
\(398\) 0.935689i 0.0469019i
\(399\) 0 0
\(400\) 11.3416 22.0870i 0.567079 1.10435i
\(401\) −4.71921 + 3.95989i −0.235666 + 0.197747i −0.752971 0.658054i \(-0.771380\pi\)
0.517305 + 0.855801i \(0.326935\pi\)
\(402\) 0 0
\(403\) −16.7571 2.95473i −0.834730 0.147185i
\(404\) −0.679265 3.85230i −0.0337947 0.191659i
\(405\) 0 0
\(406\) 12.3419 21.3768i 0.612518 1.06091i
\(407\) −0.911634 + 0.526332i −0.0451880 + 0.0260893i
\(408\) 0 0
\(409\) −1.75027 1.46865i −0.0865454 0.0726202i 0.598489 0.801131i \(-0.295768\pi\)
−0.685034 + 0.728511i \(0.740213\pi\)
\(410\) 15.2988 + 8.33776i 0.755553 + 0.411773i
\(411\) 0 0
\(412\) 1.38444 + 3.80371i 0.0682064 + 0.187395i
\(413\) 2.26397 0.399199i 0.111403 0.0196433i
\(414\) 0 0
\(415\) 17.7888 3.59003i 0.873218 0.176227i
\(416\) 18.9814 15.9273i 0.930640 0.780900i
\(417\) 0 0
\(418\) 3.80193 0.357906i 0.185959 0.0175057i
\(419\) −22.6494 −1.10649 −0.553247 0.833017i \(-0.686611\pi\)
−0.553247 + 0.833017i \(0.686611\pi\)
\(420\) 0 0
\(421\) 21.6100 + 7.86540i 1.05321 + 0.383336i 0.809872 0.586606i \(-0.199536\pi\)
0.243335 + 0.969942i \(0.421759\pi\)
\(422\) 33.5058 + 5.90797i 1.63103 + 0.287595i
\(423\) 0 0
\(424\) −15.6266 + 5.68761i −0.758893 + 0.276215i
\(425\) 8.55589 5.51805i 0.415022 0.267665i
\(426\) 0 0
\(427\) 37.1730 44.3011i 1.79893 2.14388i
\(428\) 1.33498 1.59097i 0.0645289 0.0769025i
\(429\) 0 0
\(430\) 42.3842 1.04312i 2.04395 0.0503038i
\(431\) 24.0861 8.76663i 1.16019 0.422274i 0.311023 0.950402i \(-0.399328\pi\)
0.849164 + 0.528129i \(0.177106\pi\)
\(432\) 0 0
\(433\) −2.32740 0.410383i −0.111847 0.0197217i 0.117444 0.993079i \(-0.462530\pi\)
−0.229292 + 0.973358i \(0.573641\pi\)
\(434\) −29.0647 10.5787i −1.39515 0.507793i
\(435\) 0 0
\(436\) −4.17056 −0.199734
\(437\) −5.08050 18.4725i −0.243033 0.883661i
\(438\) 0 0
\(439\) 4.83879 4.06022i 0.230943 0.193784i −0.519972 0.854183i \(-0.674058\pi\)
0.750914 + 0.660400i \(0.229613\pi\)
\(440\) −1.56486 + 0.315811i −0.0746019 + 0.0150557i
\(441\) 0 0
\(442\) 14.8947 2.62634i 0.708469 0.124922i
\(443\) −10.7821 29.6234i −0.512271 1.40745i −0.878865 0.477071i \(-0.841698\pi\)
0.366594 0.930381i \(-0.380524\pi\)
\(444\) 0 0
\(445\) −4.64508 + 8.52317i −0.220198 + 0.404037i
\(446\) 4.32404 + 3.62830i 0.204749 + 0.171805i
\(447\) 0 0
\(448\) 2.54635 1.47013i 0.120304 0.0694573i
\(449\) 7.54142 13.0621i 0.355902 0.616440i −0.631370 0.775482i \(-0.717507\pi\)
0.987272 + 0.159042i \(0.0508405\pi\)
\(450\) 0 0
\(451\) −0.372168 2.11067i −0.0175247 0.0993876i
\(452\) −15.4734 2.72837i −0.727805 0.128332i
\(453\) 0 0
\(454\) 12.3679 10.3779i 0.580455 0.487059i
\(455\) 20.5603 + 33.6701i 0.963880 + 1.57848i
\(456\) 0 0
\(457\) 20.1347i 0.941861i 0.882170 + 0.470930i \(0.156082\pi\)
−0.882170 + 0.470930i \(0.843918\pi\)
\(458\) −20.5251 24.4609i −0.959076 1.14298i
\(459\) 0 0
\(460\) −4.25159 10.8433i −0.198231 0.505571i
\(461\) 1.29974 + 7.37118i 0.0605348 + 0.343310i 1.00000 0.000665051i \(0.000211692\pi\)
−0.939465 + 0.342645i \(0.888677\pi\)
\(462\) 0 0
\(463\) −18.7038 10.7986i −0.869239 0.501855i −0.00214362 0.999998i \(-0.500682\pi\)
−0.867095 + 0.498142i \(0.834016\pi\)
\(464\) −8.10087 14.0311i −0.376074 0.651379i
\(465\) 0 0
\(466\) 8.80891 + 7.39155i 0.408065 + 0.342407i
\(467\) 23.4263 13.5252i 1.08404 0.625870i 0.152056 0.988372i \(-0.451411\pi\)
0.931983 + 0.362501i \(0.118077\pi\)
\(468\) 0 0
\(469\) −28.5096 + 10.3766i −1.31645 + 0.479148i
\(470\) 7.84587 6.91946i 0.361903 0.319171i
\(471\) 0 0
\(472\) 0.269757 0.741151i 0.0124166 0.0341143i
\(473\) −3.35229 3.99510i −0.154138 0.183695i
\(474\) 0 0
\(475\) −20.7045 + 6.80628i −0.949986 + 0.312294i
\(476\) 10.2292 0.468853
\(477\) 0 0
\(478\) 8.22457 22.5968i 0.376183 1.03355i
\(479\) −6.60791 + 37.4753i −0.301923 + 1.71229i 0.335723 + 0.941961i \(0.391019\pi\)
−0.637646 + 0.770329i \(0.720092\pi\)
\(480\) 0 0
\(481\) 8.38675 3.05253i 0.382403 0.139183i
\(482\) −27.2565 15.7365i −1.24150 0.716779i
\(483\) 0 0
\(484\) 9.76728 + 8.19572i 0.443967 + 0.372533i
\(485\) −12.4847 1.88595i −0.566903 0.0856366i
\(486\) 0 0
\(487\) 15.8788 + 9.16764i 0.719538 + 0.415426i 0.814583 0.580047i \(-0.196966\pi\)
−0.0950445 + 0.995473i \(0.530299\pi\)
\(488\) −6.78601 18.6444i −0.307188 0.843993i
\(489\) 0 0
\(490\) 15.9805 + 40.7568i 0.721924 + 1.84120i
\(491\) −14.1588 5.15338i −0.638978 0.232569i 0.00215650 0.999998i \(-0.499314\pi\)
−0.641134 + 0.767429i \(0.721536\pi\)
\(492\) 0 0
\(493\) 6.64350i 0.299208i
\(494\) −32.2718 2.60909i −1.45198 0.117388i
\(495\) 0 0
\(496\) −15.5519 + 13.0496i −0.698302 + 0.585945i
\(497\) −8.75509 + 24.0544i −0.392720 + 1.07899i
\(498\) 0 0
\(499\) −5.99606 34.0053i −0.268420 1.52229i −0.759115 0.650956i \(-0.774368\pi\)
0.490695 0.871332i \(-0.336743\pi\)
\(500\) −12.0824 + 5.43752i −0.540341 + 0.243173i
\(501\) 0 0
\(502\) 27.4071 15.8235i 1.22324 0.706237i
\(503\) 19.8431 23.6481i 0.884760 1.05442i −0.113386 0.993551i \(-0.536170\pi\)
0.998146 0.0608649i \(-0.0193859\pi\)
\(504\) 0 0
\(505\) 3.53205 6.48088i 0.157174 0.288395i
\(506\) −1.92529 + 3.33471i −0.0855897 + 0.148246i
\(507\) 0 0
\(508\) −23.1176 + 4.07626i −1.02568 + 0.180855i
\(509\) 1.76734 10.0231i 0.0783358 0.444264i −0.920261 0.391305i \(-0.872024\pi\)
0.998597 0.0529589i \(-0.0168652\pi\)
\(510\) 0 0
\(511\) 6.67067 5.59735i 0.295093 0.247612i
\(512\) 15.1195i 0.668194i
\(513\) 0 0
\(514\) −49.5204 −2.18425
\(515\) −2.43486 + 7.23915i −0.107293 + 0.318995i
\(516\) 0 0
\(517\) −1.26728 0.223455i −0.0557348 0.00982754i
\(518\) 15.9769 2.81716i 0.701984 0.123779i
\(519\) 0 0
\(520\) 13.5311 0.333014i 0.593376 0.0146036i
\(521\) 8.27116 + 14.3261i 0.362366 + 0.627636i 0.988350 0.152200i \(-0.0486357\pi\)
−0.625984 + 0.779836i \(0.715302\pi\)
\(522\) 0 0
\(523\) −5.14102 + 6.12683i −0.224801 + 0.267908i −0.866642 0.498930i \(-0.833726\pi\)
0.641841 + 0.766838i \(0.278171\pi\)
\(524\) 2.03243 + 3.52027i 0.0887871 + 0.153784i
\(525\) 0 0
\(526\) 9.32492 3.39399i 0.406586 0.147985i
\(527\) −8.19816 + 1.44556i −0.357117 + 0.0629694i
\(528\) 0 0
\(529\) −3.45976 1.25925i −0.150424 0.0547500i
\(530\) 43.2487 + 14.5465i 1.87860 + 0.631862i
\(531\) 0 0
\(532\) −21.1884 5.52792i −0.918635 0.239666i
\(533\) 18.1713i 0.787088i
\(534\) 0 0
\(535\) 3.84130 0.775227i 0.166074 0.0335160i
\(536\) −1.80749 + 10.2508i −0.0780719 + 0.442768i
\(537\) 0 0
\(538\) −2.82470 7.76079i −0.121781 0.334591i
\(539\) 2.69254 4.66361i 0.115976 0.200876i
\(540\) 0 0
\(541\) 3.98380 + 3.34280i 0.171277 + 0.143718i 0.724397 0.689383i \(-0.242118\pi\)
−0.553120 + 0.833102i \(0.686563\pi\)
\(542\) −8.72810 + 10.4017i −0.374904 + 0.446793i
\(543\) 0 0
\(544\) 6.06125 10.4984i 0.259874 0.450115i
\(545\) −6.15081 4.90840i −0.263472 0.210253i
\(546\) 0 0
\(547\) 10.8663 + 1.91602i 0.464610 + 0.0819233i 0.401053 0.916055i \(-0.368644\pi\)
0.0635572 + 0.997978i \(0.479755\pi\)
\(548\) 0.246555 0.677403i 0.0105323 0.0289372i
\(549\) 0 0
\(550\) 3.89668 + 2.00093i 0.166155 + 0.0853201i
\(551\) −3.59020 + 13.7612i −0.152948 + 0.586245i
\(552\) 0 0
\(553\) −14.5515 17.3418i −0.618792 0.737447i
\(554\) 12.6373 + 4.59960i 0.536907 + 0.195418i
\(555\) 0 0
\(556\) −1.74054 9.87109i −0.0738153 0.418628i
\(557\) −7.27877 19.9983i −0.308411 0.847353i −0.992967 0.118393i \(-0.962226\pi\)
0.684555 0.728961i \(-0.259996\pi\)
\(558\) 0 0
\(559\) 22.1086 + 38.2933i 0.935095 + 1.61963i
\(560\) 46.5420 + 7.03064i 1.96676 + 0.297099i
\(561\) 0 0
\(562\) −28.2144 + 16.2896i −1.19015 + 0.687134i
\(563\) −12.7368 7.35358i −0.536791 0.309917i 0.206986 0.978344i \(-0.433634\pi\)
−0.743778 + 0.668427i \(0.766968\pi\)
\(564\) 0 0
\(565\) −19.6093 22.2347i −0.824970 0.935421i
\(566\) −9.58644 + 54.3674i −0.402948 + 2.28523i
\(567\) 0 0
\(568\) 5.64519 + 6.72768i 0.236867 + 0.282287i
\(569\) 40.6551 1.70435 0.852174 0.523258i \(-0.175284\pi\)
0.852174 + 0.523258i \(0.175284\pi\)
\(570\) 0 0
\(571\) −24.3240 −1.01793 −0.508964 0.860788i \(-0.669972\pi\)
−0.508964 + 0.860788i \(0.669972\pi\)
\(572\) 1.55632 + 1.85475i 0.0650730 + 0.0775510i
\(573\) 0 0
\(574\) −5.73575 + 32.5290i −0.239405 + 1.35774i
\(575\) 6.49135 20.9957i 0.270708 0.875579i
\(576\) 0 0
\(577\) −29.1743 16.8438i −1.21454 0.701216i −0.250796 0.968040i \(-0.580692\pi\)
−0.963745 + 0.266824i \(0.914026\pi\)
\(578\) −19.8667 + 11.4700i −0.826346 + 0.477091i
\(579\) 0 0
\(580\) −1.29140 + 8.54888i −0.0536224 + 0.354973i
\(581\) 17.2018 + 29.7945i 0.713652 + 1.23608i
\(582\) 0 0
\(583\) −1.91971 5.27437i −0.0795064 0.218442i
\(584\) −0.518785 2.94218i −0.0214675 0.121748i
\(585\) 0 0
\(586\) 36.7261 + 13.3672i 1.51714 + 0.552194i
\(587\) 1.44613 + 1.72343i 0.0596880 + 0.0711334i 0.795062 0.606528i \(-0.207438\pi\)
−0.735374 + 0.677661i \(0.762994\pi\)
\(588\) 0 0
\(589\) 17.7626 + 1.43606i 0.731897 + 0.0591718i
\(590\) −1.84703 + 1.12787i −0.0760409 + 0.0464335i
\(591\) 0 0
\(592\) 3.64202 10.0064i 0.149686 0.411259i
\(593\) −30.9103 5.45032i −1.26933 0.223818i −0.501888 0.864932i \(-0.667361\pi\)
−0.767445 + 0.641115i \(0.778472\pi\)
\(594\) 0 0
\(595\) 15.0862 + 12.0389i 0.618472 + 0.493546i
\(596\) −2.74781 + 4.75934i −0.112555 + 0.194950i
\(597\) 0 0
\(598\) 20.9852 25.0091i 0.858147 1.02270i
\(599\) 7.97210 + 6.68939i 0.325731 + 0.273321i 0.790958 0.611871i \(-0.209583\pi\)
−0.465227 + 0.885192i \(0.654027\pi\)
\(600\) 0 0
\(601\) 0.647959 1.12230i 0.0264308 0.0457795i −0.852507 0.522715i \(-0.824919\pi\)
0.878938 + 0.476936i \(0.158253\pi\)
\(602\) 27.4901 + 75.5285i 1.12041 + 3.07831i
\(603\) 0 0
\(604\) −2.92440 + 16.5851i −0.118992 + 0.674839i
\(605\) 4.75927 + 23.5825i 0.193492 + 0.958764i
\(606\) 0 0
\(607\) 5.50902i 0.223604i 0.993730 + 0.111802i \(0.0356623\pi\)
−0.993730 + 0.111802i \(0.964338\pi\)
\(608\) −18.2285 + 18.4706i −0.739265 + 0.749080i
\(609\) 0 0
\(610\) −17.3558 + 51.6010i −0.702716 + 2.08927i
\(611\) 10.2524 + 3.73155i 0.414766 + 0.150962i
\(612\) 0 0
\(613\) −40.0547 + 7.06273i −1.61780 + 0.285261i −0.907945 0.419090i \(-0.862349\pi\)
−0.709851 + 0.704351i \(0.751238\pi\)
\(614\) −9.14903 + 3.32997i −0.369225 + 0.134387i
\(615\) 0 0
\(616\) −1.51323 2.62099i −0.0609697 0.105603i
\(617\) 19.6085 23.3684i 0.789407 0.940778i −0.209911 0.977721i \(-0.567317\pi\)
0.999317 + 0.0369423i \(0.0117618\pi\)
\(618\) 0 0
\(619\) 2.90205 + 5.02651i 0.116643 + 0.202032i 0.918436 0.395571i \(-0.129453\pi\)
−0.801792 + 0.597603i \(0.796120\pi\)
\(620\) 10.8304 0.266549i 0.434960 0.0107049i
\(621\) 0 0
\(622\) −11.7708 + 2.07551i −0.471966 + 0.0832203i
\(623\) −18.1224 3.19546i −0.726058 0.128024i
\(624\) 0 0
\(625\) −24.2188 6.20063i −0.968754 0.248025i
\(626\) 8.17881 0.326891
\(627\) 0 0
\(628\) 12.7136i 0.507328i
\(629\) 3.34487 2.80668i 0.133369 0.111910i
\(630\) 0 0
\(631\) −4.05716 + 23.0093i −0.161513 + 0.915985i 0.791074 + 0.611720i \(0.209522\pi\)
−0.952587 + 0.304265i \(0.901589\pi\)
\(632\) −7.64880 + 1.34869i −0.304253 + 0.0536480i
\(633\) 0 0
\(634\) 24.6994 42.7806i 0.980937 1.69903i
\(635\) −38.8917 21.1958i −1.54337 0.841129i
\(636\) 0 0
\(637\) −29.3479 + 34.9755i −1.16281 + 1.38578i
\(638\) 2.47544 1.42919i 0.0980034 0.0565823i
\(639\) 0 0
\(640\) 14.8807 18.6473i 0.588210 0.737097i
\(641\) −3.18574 18.0672i −0.125829 0.713612i −0.980812 0.194956i \(-0.937544\pi\)
0.854983 0.518656i \(-0.173568\pi\)
\(642\) 0 0
\(643\) −5.39128 + 14.8124i −0.212611 + 0.584144i −0.999455 0.0330077i \(-0.989491\pi\)
0.786844 + 0.617152i \(0.211714\pi\)
\(644\) 16.9145 14.1929i 0.666523 0.559279i
\(645\) 0 0
\(646\) −15.2729 + 4.20051i −0.600905 + 0.165267i
\(647\) 25.0443i 0.984592i 0.870428 + 0.492296i \(0.163842\pi\)
−0.870428 + 0.492296i \(0.836158\pi\)
\(648\) 0 0
\(649\) 0.250158 + 0.0910500i 0.00981955 + 0.00357402i
\(650\) −29.5901 22.4441i −1.16062 0.880331i
\(651\) 0 0
\(652\) 6.86475 + 18.8608i 0.268844 + 0.738644i
\(653\) −2.58813 1.49426i −0.101282 0.0584749i 0.448504 0.893781i \(-0.351957\pi\)
−0.549785 + 0.835306i \(0.685290\pi\)
\(654\) 0 0
\(655\) −1.14561 + 7.58376i −0.0447625 + 0.296322i
\(656\) 16.6082 + 13.9360i 0.648443 + 0.544108i
\(657\) 0 0
\(658\) 17.1752 + 9.91610i 0.669559 + 0.386570i
\(659\) 33.6123 12.2339i 1.30935 0.476564i 0.409320 0.912391i \(-0.365766\pi\)
0.900031 + 0.435827i \(0.143544\pi\)
\(660\) 0 0
\(661\) 0.559402 3.17253i 0.0217582 0.123397i −0.971994 0.235006i \(-0.924489\pi\)
0.993752 + 0.111609i \(0.0356003\pi\)
\(662\) 8.62500 23.6970i 0.335220 0.921010i
\(663\) 0 0
\(664\) 11.8034 0.458061
\(665\) −24.7432 33.0897i −0.959499 1.28316i
\(666\) 0 0
\(667\) −9.21782 10.9854i −0.356915 0.425355i
\(668\) 6.58918 18.1036i 0.254943 0.700450i
\(669\) 0 0
\(670\) 21.4208 18.8915i 0.827556 0.729841i
\(671\) 6.29297 2.29045i 0.242937 0.0884220i
\(672\) 0 0
\(673\) 0.554001 0.319853i 0.0213552 0.0123294i −0.489284 0.872124i \(-0.662742\pi\)
0.510640 + 0.859795i \(0.329409\pi\)
\(674\) −20.5036 17.2046i −0.789770 0.662696i
\(675\) 0 0
\(676\) −2.56107 4.43590i −0.0985025 0.170611i
\(677\) 22.3439 + 12.9002i 0.858744 + 0.495796i 0.863592 0.504192i \(-0.168210\pi\)
−0.00484733 + 0.999988i \(0.501543\pi\)
\(678\) 0 0
\(679\) −4.15661 23.5733i −0.159516 0.904660i
\(680\) 6.16492 2.41723i 0.236414 0.0926964i
\(681\) 0 0
\(682\) −2.30227 2.74374i −0.0881585 0.105063i
\(683\) 5.33696i 0.204213i 0.994773 + 0.102107i \(0.0325583\pi\)
−0.994773 + 0.102107i \(0.967442\pi\)
\(684\) 0 0
\(685\) 1.16087 0.708872i 0.0443546 0.0270846i
\(686\) −23.0082 + 19.3062i −0.878458 + 0.737114i
\(687\) 0 0
\(688\) 51.9549 + 9.16105i 1.98076 + 0.349262i
\(689\) 8.26367 + 46.8656i 0.314821 + 1.78544i
\(690\) 0 0
\(691\) −6.62534 + 11.4754i −0.252040 + 0.436545i −0.964087 0.265586i \(-0.914435\pi\)
0.712048 + 0.702131i \(0.247768\pi\)
\(692\) −8.81712 + 5.09057i −0.335177 + 0.193514i
\(693\) 0 0
\(694\) −28.5915 23.9911i −1.08532 0.910689i
\(695\) 9.05048 16.6065i 0.343304 0.629922i
\(696\) 0 0
\(697\) 3.04058 + 8.35392i 0.115170 + 0.316427i
\(698\) 5.50214 0.970176i 0.208259 0.0367217i
\(699\) 0 0
\(700\) −17.0728 18.4242i −0.645290 0.696370i
\(701\) −31.3081 + 26.2706i −1.18249 + 0.992228i −0.182533 + 0.983200i \(0.558429\pi\)
−0.999959 + 0.00902862i \(0.997126\pi\)
\(702\) 0 0
\(703\) −8.44523 + 4.00609i −0.318518 + 0.151093i
\(704\) 0.340484 0.0128325
\(705\) 0 0
\(706\) 13.4925 + 4.91087i 0.507797 + 0.184823i
\(707\) 13.7800 + 2.42978i 0.518249 + 0.0913813i
\(708\) 0 0
\(709\) 6.91375 2.51640i 0.259651 0.0945053i −0.208915 0.977934i \(-0.566993\pi\)
0.468566 + 0.883429i \(0.344771\pi\)
\(710\) −0.592897 24.0906i −0.0222510 0.904105i
\(711\) 0 0
\(712\) −4.05820 + 4.83637i −0.152087 + 0.181251i
\(713\) −11.5504 + 13.7652i −0.432565 + 0.515511i
\(714\) 0 0
\(715\) 0.112401 + 4.56708i 0.00420355 + 0.170799i
\(716\) −26.2005 + 9.53620i −0.979158 + 0.356384i
\(717\) 0 0
\(718\) −53.7538 9.47825i −2.00607 0.353725i
\(719\) 30.0323 + 10.9309i 1.12002 + 0.407653i 0.834658 0.550768i \(-0.185665\pi\)
0.285358 + 0.958421i \(0.407887\pi\)
\(720\) 0 0
\(721\) −14.4794 −0.539240
\(722\) 33.9059 0.447227i 1.26185 0.0166441i
\(723\) 0 0
\(724\) 15.0820 12.6553i 0.560520 0.470332i
\(725\) −11.9659 + 11.0882i −0.444403 + 0.411805i
\(726\) 0 0
\(727\) 28.9418 5.10323i 1.07339 0.189268i 0.391101 0.920348i \(-0.372094\pi\)
0.682292 + 0.731079i \(0.260983\pi\)
\(728\) 8.77615 + 24.1123i 0.325266 + 0.893661i
\(729\) 0 0
\(730\) −3.92288 + 7.19801i −0.145192 + 0.266410i
\(731\) 16.5716 + 13.9052i 0.612922 + 0.514302i
\(732\) 0 0
\(733\) 44.0187 25.4142i 1.62587 0.938696i 0.640562 0.767906i \(-0.278701\pi\)
0.985307 0.170790i \(-0.0546319\pi\)
\(734\) −8.88034 + 15.3812i −0.327779 + 0.567730i
\(735\) 0 0
\(736\) −4.54388 25.7696i −0.167490 0.949880i
\(737\) −3.45991 0.610076i −0.127448 0.0224724i
\(738\) 0 0
\(739\) −11.2796 + 9.46473i −0.414928 + 0.348166i −0.826230 0.563334i \(-0.809519\pi\)
0.411302 + 0.911499i \(0.365074\pi\)
\(740\) −4.84978 + 2.96146i −0.178281 + 0.108865i
\(741\) 0 0
\(742\) 86.5039i 3.17566i
\(743\) 22.2770 + 26.5487i 0.817263 + 0.973976i 0.999958 0.00919385i \(-0.00292653\pi\)
−0.182695 + 0.983170i \(0.558482\pi\)
\(744\) 0 0
\(745\) −9.65387 + 3.78522i −0.353690 + 0.138680i
\(746\) −2.87472 16.3034i −0.105251 0.596909i
\(747\) 0 0
\(748\) 1.02584 + 0.592270i 0.0375085 + 0.0216555i
\(749\) 3.71455 + 6.43379i 0.135727 + 0.235086i
\(750\) 0 0
\(751\) −6.40060 5.37074i −0.233561 0.195981i 0.518494 0.855081i \(-0.326493\pi\)
−0.752055 + 0.659100i \(0.770937\pi\)
\(752\) 11.2733 6.50865i 0.411095 0.237346i
\(753\) 0 0
\(754\) −22.7732 + 8.28878i −0.829352 + 0.301859i
\(755\) −23.8323 + 21.0182i −0.867345 + 0.764932i
\(756\) 0 0
\(757\) 4.74412 13.0344i 0.172428 0.473742i −0.823134 0.567847i \(-0.807777\pi\)
0.995562 + 0.0941046i \(0.0299988\pi\)
\(758\) −24.2594 28.9112i −0.881142 1.05010i
\(759\) 0 0
\(760\) −14.0761 + 1.67541i −0.510595 + 0.0607735i
\(761\) −44.3970 −1.60939 −0.804696 0.593687i \(-0.797672\pi\)
−0.804696 + 0.593687i \(0.797672\pi\)
\(762\) 0 0
\(763\) 5.10239 14.0187i 0.184719 0.507511i
\(764\) −2.63631 + 14.9513i −0.0953784 + 0.540918i
\(765\) 0 0
\(766\) −25.4075 + 9.24758i −0.918011 + 0.334129i
\(767\) −1.95468 1.12854i −0.0705796 0.0407491i
\(768\) 0 0
\(769\) −14.5549 12.2130i −0.524863 0.440412i 0.341460 0.939896i \(-0.389079\pi\)
−0.866323 + 0.499484i \(0.833523\pi\)
\(770\) −1.24038 + 8.21114i −0.0447001 + 0.295909i
\(771\) 0 0
\(772\) −9.89342 5.71197i −0.356072 0.205578i
\(773\) 0.638682 + 1.75476i 0.0229718 + 0.0631144i 0.950648 0.310270i \(-0.100419\pi\)
−0.927677 + 0.373384i \(0.878197\pi\)
\(774\) 0 0
\(775\) 16.2866 + 12.3534i 0.585032 + 0.443747i
\(776\) −7.71714 2.80881i −0.277029 0.100830i
\(777\) 0 0
\(778\) 56.1252i 2.01218i
\(779\) −1.78365 18.9473i −0.0639060 0.678856i
\(780\) 0 0
\(781\) −2.27077 + 1.90540i −0.0812544 + 0.0681805i
\(782\) 5.46279 15.0089i 0.195349 0.536717i
\(783\) 0 0
\(784\) 9.45938 + 53.6468i 0.337835 + 1.91596i
\(785\) 14.9629 18.7502i 0.534047 0.669225i
\(786\) 0 0
\(787\) 11.2314 6.48445i 0.400356 0.231146i −0.286282 0.958146i \(-0.592419\pi\)
0.686638 + 0.727000i \(0.259086\pi\)
\(788\) −2.36327 + 2.81644i −0.0841881 + 0.100331i
\(789\) 0 0
\(790\) 18.7127 + 10.1983i 0.665769 + 0.362841i
\(791\) 28.1016 48.6734i 0.999178 1.73063i
\(792\) 0 0
\(793\) −55.9164 + 9.85957i −1.98565 + 0.350124i
\(794\) 2.90865 16.4958i 0.103224 0.585413i
\(795\) 0 0
\(796\) 0.475962 0.399379i 0.0168700 0.0141556i
\(797\) 29.9226i 1.05991i 0.848025 + 0.529956i \(0.177791\pi\)
−0.848025 + 0.529956i \(0.822209\pi\)
\(798\) 0 0
\(799\) 5.33772 0.188835
\(800\) −29.0255 + 6.60491i −1.02621 + 0.233519i
\(801\) 0 0
\(802\) 10.8275 + 1.90918i 0.382331 + 0.0674153i
\(803\) 0.993061 0.175103i 0.0350444 0.00617927i
\(804\) 0 0
\(805\) 41.6496 1.02504i 1.46796 0.0361281i
\(806\) 15.1837 + 26.2989i 0.534822 + 0.926339i
\(807\) 0 0
\(808\) 3.08579 3.67750i 0.108558 0.129374i
\(809\) −21.2289 36.7696i −0.746369 1.29275i −0.949552 0.313608i \(-0.898462\pi\)
0.203183 0.979141i \(-0.434871\pi\)
\(810\) 0 0
\(811\) 29.2727 10.6544i 1.02790 0.374126i 0.227621 0.973750i \(-0.426905\pi\)
0.800282 + 0.599623i \(0.204683\pi\)
\(812\) −16.1417 + 2.84622i −0.566463 + 0.0998828i
\(813\) 0 0
\(814\) 1.76537 + 0.642542i 0.0618762 + 0.0225211i
\(815\) −12.0733 + 35.8954i −0.422909 + 1.25736i
\(816\) 0 0
\(817\) −26.8114 37.7583i −0.938014 1.32099i
\(818\) 4.07767i 0.142572i
\(819\) 0 0
\(820\) −2.28875 11.3409i −0.0799267 0.396042i
\(821\) 1.07790 6.11310i 0.0376191 0.213349i −0.960204 0.279301i \(-0.909897\pi\)
0.997823 + 0.0659521i \(0.0210085\pi\)
\(822\) 0 0
\(823\) 12.3025 + 33.8009i 0.428839 + 1.17823i 0.946518 + 0.322651i \(0.104574\pi\)
−0.517679 + 0.855575i \(0.673204\pi\)
\(824\) −2.48383 + 4.30212i −0.0865283 + 0.149871i
\(825\) 0 0
\(826\) −3.14292 2.63722i −0.109356 0.0917606i
\(827\) −9.88848 + 11.7846i −0.343856 + 0.409792i −0.910062 0.414472i \(-0.863966\pi\)
0.566206 + 0.824264i \(0.308411\pi\)
\(828\) 0 0
\(829\) −12.0970 + 20.9527i −0.420148 + 0.727717i −0.995954 0.0898693i \(-0.971355\pi\)
0.575806 + 0.817586i \(0.304688\pi\)
\(830\) −25.3148 20.2015i −0.878691 0.701203i
\(831\) 0 0
\(832\) −2.84293 0.501284i −0.0985607 0.0173789i
\(833\) −7.63975 + 20.9900i −0.264702 + 0.727262i
\(834\) 0 0
\(835\) 31.0243 18.9446i 1.07364 0.655605i
\(836\) −1.80483 1.78118i −0.0624215 0.0616035i
\(837\) 0 0
\(838\) 25.9827 + 30.9649i 0.897556 + 1.06967i
\(839\) −11.6771 4.25013i −0.403139 0.146731i 0.132489 0.991184i \(-0.457703\pi\)
−0.535628 + 0.844454i \(0.679925\pi\)
\(840\) 0 0
\(841\) −3.18727 18.0759i −0.109906 0.623308i
\(842\) −14.0372 38.5669i −0.483754 1.32910i
\(843\) 0 0
\(844\) −11.2960 19.5652i −0.388824 0.673463i
\(845\) 1.44358 9.55630i 0.0496606 0.328747i
\(846\) 0 0
\(847\) −39.4983 + 22.8043i −1.35718 + 0.783566i
\(848\) 49.1718 + 28.3894i 1.68857 + 0.974895i
\(849\) 0 0
\(850\) −17.3590 5.36699i −0.595410 0.184086i
\(851\) 1.63667 9.28199i 0.0561042 0.318182i
\(852\) 0 0
\(853\) 14.8823 + 17.7360i 0.509560 + 0.607270i 0.958079 0.286503i \(-0.0924930\pi\)
−0.448519 + 0.893773i \(0.648049\pi\)
\(854\) −103.210 −3.53176
\(855\) 0 0
\(856\) 2.54882 0.0871167
\(857\) −1.82726 2.17765i −0.0624181 0.0743870i 0.733932 0.679223i \(-0.237683\pi\)
−0.796350 + 0.604836i \(0.793239\pi\)
\(858\) 0 0
\(859\) 4.49254 25.4785i 0.153284 0.869314i −0.807055 0.590477i \(-0.798940\pi\)
0.960338 0.278838i \(-0.0899492\pi\)
\(860\) −18.6214 21.1145i −0.634985 0.720000i
\(861\) 0 0
\(862\) −39.6161 22.8724i −1.34933 0.779036i
\(863\) 32.9118 19.0016i 1.12033 0.646823i 0.178844 0.983877i \(-0.442764\pi\)
0.941485 + 0.337055i \(0.109431\pi\)
\(864\) 0 0
\(865\) −18.9948 2.86936i −0.645843 0.0975613i
\(866\) 2.10886 + 3.65266i 0.0716621 + 0.124122i
\(867\) 0 0
\(868\) 7.02455 + 19.2998i 0.238429 + 0.655077i
\(869\) −0.455217 2.58167i −0.0154422 0.0875770i
\(870\) 0 0
\(871\) 27.9909 + 10.1879i 0.948437 + 0.345203i
\(872\) −3.28997 3.92083i −0.111412 0.132776i
\(873\) 0 0
\(874\) −19.4264 + 28.1369i −0.657108 + 0.951744i
\(875\) −3.49542 47.2656i −0.118167 1.59787i
\(876\) 0 0
\(877\) −16.7912 + 46.1335i −0.567000 + 1.55782i 0.242164 + 0.970235i \(0.422143\pi\)
−0.809164 + 0.587583i \(0.800079\pi\)
\(878\) −11.1018 1.95755i −0.374668 0.0660641i
\(879\) 0 0
\(880\) 4.26043 + 3.39986i 0.143619 + 0.114609i
\(881\) −27.8747 + 48.2804i −0.939123 + 1.62661i −0.172011 + 0.985095i \(0.555027\pi\)
−0.767112 + 0.641514i \(0.778307\pi\)
\(882\) 0 0
\(883\) 10.6931 12.7435i 0.359851 0.428853i −0.555496 0.831519i \(-0.687472\pi\)
0.915347 + 0.402666i \(0.131916\pi\)
\(884\) −7.69345 6.45557i −0.258759 0.217124i
\(885\) 0 0
\(886\) −28.1307 + 48.7237i −0.945068 + 1.63691i
\(887\) −14.8397 40.7717i −0.498267 1.36898i −0.892948 0.450160i \(-0.851367\pi\)
0.394680 0.918818i \(-0.370855\pi\)
\(888\) 0 0
\(889\) 14.5811 82.6934i 0.489034 2.77345i
\(890\) 16.9811 3.42702i 0.569207 0.114874i
\(891\) 0 0
\(892\) 3.74820i 0.125499i
\(893\) −11.0564 2.88455i −0.369989 0.0965276i
\(894\) 0 0
\(895\) −49.8643 16.7717i −1.66678 0.560615i
\(896\) 42.5001 + 15.4688i 1.41983 + 0.516776i
\(897\) 0 0
\(898\) −26.5091 + 4.67426i −0.884619 + 0.155982i
\(899\) 12.5345 4.56220i 0.418051 0.152158i
\(900\) 0 0
\(901\) 11.6410 + 20.1628i 0.387818 + 0.671721i
\(902\) −2.45865 + 2.93010i −0.0818640 + 0.0975617i
\(903\) 0 0
\(904\) −9.64125 16.6991i −0.320663 0.555405i
\(905\) 37.1376 0.913997i 1.23449 0.0303823i
\(906\) 0 0
\(907\) 19.5350 3.44455i 0.648649 0.114374i 0.160363 0.987058i \(-0.448733\pi\)
0.488286 + 0.872684i \(0.337622\pi\)
\(908\) −10.5580 1.86165i −0.350378 0.0617812i
\(909\) 0 0
\(910\) 22.4458 66.7342i 0.744070 2.21222i
\(911\) −15.4076 −0.510478 −0.255239 0.966878i \(-0.582154\pi\)
−0.255239 + 0.966878i \(0.582154\pi\)
\(912\) 0 0
\(913\) 3.98395i 0.131849i
\(914\) 27.5270 23.0979i 0.910512 0.764010i
\(915\) 0 0
\(916\) −3.68193 + 20.8812i −0.121654 + 0.689936i
\(917\) −14.3194 + 2.52490i −0.472869 + 0.0833795i
\(918\) 0 0
\(919\) −6.62805 + 11.4801i −0.218639 + 0.378694i −0.954392 0.298556i \(-0.903495\pi\)
0.735753 + 0.677250i \(0.236828\pi\)
\(920\) 6.84013 12.5508i 0.225512 0.413788i
\(921\) 0 0
\(922\) 8.58644 10.2329i 0.282779 0.337003i
\(923\) 21.7654 12.5663i 0.716417 0.413624i
\(924\) 0 0
\(925\) −10.6379 1.34017i −0.349773 0.0440647i
\(926\) 6.69313 + 37.9586i 0.219950 + 1.24740i
\(927\) 0 0
\(928\) −6.64358 + 18.2531i −0.218086 + 0.599187i
\(929\) 23.9018 20.0560i 0.784193 0.658016i −0.160108 0.987100i \(-0.551184\pi\)
0.944301 + 0.329083i \(0.106740\pi\)
\(930\) 0 0
\(931\) 27.1680 39.3496i 0.890394 1.28963i
\(932\) 7.63580i 0.250119i
\(933\) 0 0
\(934\) −45.3648 16.5114i −1.48438 0.540270i
\(935\) 0.815876 + 2.08082i 0.0266820 + 0.0680501i
\(936\) 0 0
\(937\) −5.54711 15.2405i −0.181216 0.497887i 0.815510 0.578743i \(-0.196457\pi\)
−0.996726 + 0.0808564i \(0.974234\pi\)
\(938\) 46.8916 + 27.0729i 1.53107 + 0.883961i
\(939\) 0 0
\(940\) −6.86860 1.03757i −0.224029 0.0338419i
\(941\) −26.9454 22.6099i −0.878396 0.737062i 0.0874525 0.996169i \(-0.472127\pi\)
−0.965849 + 0.259107i \(0.916572\pi\)
\(942\) 0 0
\(943\) 16.6188 + 9.59486i 0.541182 + 0.312452i
\(944\) −2.53055 + 0.921045i −0.0823624 + 0.0299775i
\(945\) 0 0
\(946\) −1.61623 + 9.16612i −0.0525483 + 0.298016i
\(947\) −7.61965 + 20.9348i −0.247605 + 0.680290i 0.752167 + 0.658972i \(0.229009\pi\)
−0.999773 + 0.0213182i \(0.993214\pi\)
\(948\) 0 0
\(949\) −8.54953 −0.277530
\(950\) 33.0567 + 20.4980i 1.07250 + 0.665043i
\(951\) 0 0
\(952\) 8.06934 + 9.61666i 0.261529 + 0.311678i
\(953\) 1.45699 4.00305i 0.0471966 0.129672i −0.913855 0.406041i \(-0.866909\pi\)
0.961052 + 0.276369i \(0.0891313\pi\)
\(954\) 0 0
\(955\) −21.4845 + 18.9477i −0.695222 + 0.613132i
\(956\) −15.0049 + 5.46135i −0.485294 + 0.176633i
\(957\) 0 0
\(958\) 58.8145 33.9566i 1.90021 1.09709i
\(959\) 1.97535 + 1.65751i 0.0637873 + 0.0535239i
\(960\) 0 0
\(961\) 7.14280 + 12.3717i 0.230413 + 0.399087i
\(962\) −13.7943 7.96412i −0.444745 0.256773i
\(963\) 0 0
\(964\) 3.62907 + 20.5815i 0.116885 + 0.662885i
\(965\) −7.86848 20.0678i −0.253295 0.646007i
\(966\) 0 0
\(967\) 0.783596 + 0.933854i 0.0251988 + 0.0300307i 0.778497 0.627649i \(-0.215983\pi\)
−0.753298 + 0.657679i \(0.771538\pi\)
\(968\) 15.6477i 0.502935i
\(969\) 0 0
\(970\) 11.7438 + 19.2319i 0.377069 + 0.617500i
\(971\) 3.32466 2.78972i 0.106693 0.0895264i −0.587880 0.808948i \(-0.700037\pi\)
0.694574 + 0.719421i \(0.255593\pi\)
\(972\) 0 0
\(973\) 35.3096 + 6.22604i 1.13197 + 0.199598i
\(974\) −5.68222 32.2255i −0.182070 1.03257i
\(975\) 0 0
\(976\) −33.8720 + 58.6680i −1.08422 + 1.87792i
\(977\) 18.6429 10.7635i 0.596440 0.344355i −0.171200 0.985236i \(-0.554764\pi\)
0.767640 + 0.640882i \(0.221431\pi\)
\(978\) 0 0
\(979\) −1.63240 1.36975i −0.0521718 0.0437773i
\(980\) 13.9110 25.5250i 0.444371 0.815367i
\(981\) 0 0
\(982\) 9.19713 + 25.2689i 0.293492 + 0.806363i
\(983\) 14.3780 2.53522i 0.458586 0.0808611i 0.0604172 0.998173i \(-0.480757\pi\)
0.398169 + 0.917312i \(0.369646\pi\)
\(984\) 0 0
\(985\) −6.80011 + 1.37236i −0.216669 + 0.0437269i
\(986\) −9.08261 + 7.62121i −0.289249 + 0.242709i
\(987\) 0 0
\(988\) 12.4474 + 17.5295i 0.396004 + 0.557688i
\(989\) 46.6954 1.48483
\(990\) 0 0
\(991\) −30.0031 10.9202i −0.953080 0.346893i −0.181762 0.983343i \(-0.558180\pi\)
−0.771318 + 0.636450i \(0.780402\pi\)
\(992\) 23.9701 + 4.22658i 0.761052 + 0.134194i
\(993\) 0 0
\(994\) 42.9294 15.6250i 1.36164 0.495596i
\(995\) 1.17199 0.0288441i 0.0371547 0.000914418i
\(996\) 0 0
\(997\) 35.4698 42.2712i 1.12334 1.33874i 0.189157 0.981947i \(-0.439424\pi\)
0.934182 0.356797i \(-0.116131\pi\)
\(998\) −39.6117 + 47.2073i −1.25389 + 1.49432i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.da.b.424.2 48
3.2 odd 2 95.2.p.a.44.7 yes 48
5.4 even 2 inner 855.2.da.b.424.7 48
15.2 even 4 475.2.l.f.101.2 48
15.8 even 4 475.2.l.f.101.7 48
15.14 odd 2 95.2.p.a.44.2 48
19.16 even 9 inner 855.2.da.b.244.7 48
57.23 odd 18 1805.2.b.k.1084.20 24
57.35 odd 18 95.2.p.a.54.2 yes 48
57.53 even 18 1805.2.b.l.1084.5 24
95.54 even 18 inner 855.2.da.b.244.2 48
285.23 even 36 9025.2.a.cu.1.20 24
285.53 odd 36 9025.2.a.ct.1.5 24
285.92 even 36 475.2.l.f.301.2 48
285.137 even 36 9025.2.a.cu.1.5 24
285.149 odd 18 95.2.p.a.54.7 yes 48
285.167 odd 36 9025.2.a.ct.1.20 24
285.194 odd 18 1805.2.b.k.1084.5 24
285.224 even 18 1805.2.b.l.1084.20 24
285.263 even 36 475.2.l.f.301.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.44.2 48 15.14 odd 2
95.2.p.a.44.7 yes 48 3.2 odd 2
95.2.p.a.54.2 yes 48 57.35 odd 18
95.2.p.a.54.7 yes 48 285.149 odd 18
475.2.l.f.101.2 48 15.2 even 4
475.2.l.f.101.7 48 15.8 even 4
475.2.l.f.301.2 48 285.92 even 36
475.2.l.f.301.7 48 285.263 even 36
855.2.da.b.244.2 48 95.54 even 18 inner
855.2.da.b.244.7 48 19.16 even 9 inner
855.2.da.b.424.2 48 1.1 even 1 trivial
855.2.da.b.424.7 48 5.4 even 2 inner
1805.2.b.k.1084.5 24 285.194 odd 18
1805.2.b.k.1084.20 24 57.23 odd 18
1805.2.b.l.1084.5 24 57.53 even 18
1805.2.b.l.1084.20 24 285.224 even 18
9025.2.a.ct.1.5 24 285.53 odd 36
9025.2.a.ct.1.20 24 285.167 odd 36
9025.2.a.cu.1.5 24 285.137 even 36
9025.2.a.cu.1.20 24 285.23 even 36