Properties

Label 9025.2.a.cv.1.1
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 1805)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66900 q^{2} -1.76244 q^{3} +5.12357 q^{4} +4.70394 q^{6} -2.20993 q^{7} -8.33681 q^{8} +0.106178 q^{9} +2.86854 q^{11} -9.02996 q^{12} -4.83675 q^{13} +5.89830 q^{14} +12.0038 q^{16} +2.06280 q^{17} -0.283389 q^{18} +3.89485 q^{21} -7.65613 q^{22} -4.40865 q^{23} +14.6931 q^{24} +12.9093 q^{26} +5.10017 q^{27} -11.3227 q^{28} -8.08729 q^{29} -3.97776 q^{31} -15.3646 q^{32} -5.05561 q^{33} -5.50563 q^{34} +0.544010 q^{36} +9.05780 q^{37} +8.52446 q^{39} -1.21984 q^{41} -10.3954 q^{42} +5.13320 q^{43} +14.6972 q^{44} +11.7667 q^{46} -2.50131 q^{47} -21.1559 q^{48} -2.11623 q^{49} -3.63556 q^{51} -24.7814 q^{52} +1.22600 q^{53} -13.6124 q^{54} +18.4237 q^{56} +21.5850 q^{58} -0.244718 q^{59} +0.498155 q^{61} +10.6166 q^{62} -0.234645 q^{63} +17.0004 q^{64} +13.4934 q^{66} -7.09797 q^{67} +10.5689 q^{68} +7.76996 q^{69} +9.59683 q^{71} -0.885185 q^{72} -0.287288 q^{73} -24.1753 q^{74} -6.33926 q^{77} -22.7518 q^{78} -15.8865 q^{79} -9.30726 q^{81} +3.25576 q^{82} -5.70094 q^{83} +19.9555 q^{84} -13.7005 q^{86} +14.2533 q^{87} -23.9144 q^{88} -16.6834 q^{89} +10.6889 q^{91} -22.5880 q^{92} +7.01055 q^{93} +6.67600 q^{94} +27.0791 q^{96} -0.202690 q^{97} +5.64821 q^{98} +0.304575 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 48 q^{4} + 20 q^{6} + 52 q^{9} + 20 q^{11} + 40 q^{16} + 92 q^{24} + 76 q^{26} + 156 q^{36} + 80 q^{39} + 48 q^{44} + 72 q^{49} + 32 q^{54} + 80 q^{61} + 72 q^{64} + 16 q^{66} + 100 q^{74} + 40 q^{81}+ \cdots + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66900 −1.88727 −0.943634 0.330989i \(-0.892618\pi\)
−0.943634 + 0.330989i \(0.892618\pi\)
\(3\) −1.76244 −1.01754 −0.508771 0.860902i \(-0.669900\pi\)
−0.508771 + 0.860902i \(0.669900\pi\)
\(4\) 5.12357 2.56178
\(5\) 0 0
\(6\) 4.70394 1.92038
\(7\) −2.20993 −0.835274 −0.417637 0.908614i \(-0.637142\pi\)
−0.417637 + 0.908614i \(0.637142\pi\)
\(8\) −8.33681 −2.94751
\(9\) 0.106178 0.0353926
\(10\) 0 0
\(11\) 2.86854 0.864897 0.432448 0.901659i \(-0.357650\pi\)
0.432448 + 0.901659i \(0.357650\pi\)
\(12\) −9.02996 −2.60672
\(13\) −4.83675 −1.34147 −0.670736 0.741696i \(-0.734022\pi\)
−0.670736 + 0.741696i \(0.734022\pi\)
\(14\) 5.89830 1.57639
\(15\) 0 0
\(16\) 12.0038 3.00095
\(17\) 2.06280 0.500304 0.250152 0.968207i \(-0.419519\pi\)
0.250152 + 0.968207i \(0.419519\pi\)
\(18\) −0.283389 −0.0667954
\(19\) 0 0
\(20\) 0 0
\(21\) 3.89485 0.849926
\(22\) −7.65613 −1.63229
\(23\) −4.40865 −0.919267 −0.459634 0.888109i \(-0.652019\pi\)
−0.459634 + 0.888109i \(0.652019\pi\)
\(24\) 14.6931 2.99921
\(25\) 0 0
\(26\) 12.9093 2.53172
\(27\) 5.10017 0.981529
\(28\) −11.3227 −2.13979
\(29\) −8.08729 −1.50177 −0.750886 0.660432i \(-0.770373\pi\)
−0.750886 + 0.660432i \(0.770373\pi\)
\(30\) 0 0
\(31\) −3.97776 −0.714427 −0.357213 0.934023i \(-0.616273\pi\)
−0.357213 + 0.934023i \(0.616273\pi\)
\(32\) −15.3646 −2.71610
\(33\) −5.05561 −0.880069
\(34\) −5.50563 −0.944207
\(35\) 0 0
\(36\) 0.544010 0.0906683
\(37\) 9.05780 1.48909 0.744546 0.667571i \(-0.232666\pi\)
0.744546 + 0.667571i \(0.232666\pi\)
\(38\) 0 0
\(39\) 8.52446 1.36501
\(40\) 0 0
\(41\) −1.21984 −0.190507 −0.0952537 0.995453i \(-0.530366\pi\)
−0.0952537 + 0.995453i \(0.530366\pi\)
\(42\) −10.3954 −1.60404
\(43\) 5.13320 0.782806 0.391403 0.920219i \(-0.371990\pi\)
0.391403 + 0.920219i \(0.371990\pi\)
\(44\) 14.6972 2.21568
\(45\) 0 0
\(46\) 11.7667 1.73490
\(47\) −2.50131 −0.364854 −0.182427 0.983219i \(-0.558395\pi\)
−0.182427 + 0.983219i \(0.558395\pi\)
\(48\) −21.1559 −3.05360
\(49\) −2.11623 −0.302318
\(50\) 0 0
\(51\) −3.63556 −0.509080
\(52\) −24.7814 −3.43656
\(53\) 1.22600 0.168404 0.0842018 0.996449i \(-0.473166\pi\)
0.0842018 + 0.996449i \(0.473166\pi\)
\(54\) −13.6124 −1.85241
\(55\) 0 0
\(56\) 18.4237 2.46197
\(57\) 0 0
\(58\) 21.5850 2.83425
\(59\) −0.244718 −0.0318596 −0.0159298 0.999873i \(-0.505071\pi\)
−0.0159298 + 0.999873i \(0.505071\pi\)
\(60\) 0 0
\(61\) 0.498155 0.0637823 0.0318911 0.999491i \(-0.489847\pi\)
0.0318911 + 0.999491i \(0.489847\pi\)
\(62\) 10.6166 1.34832
\(63\) −0.234645 −0.0295625
\(64\) 17.0004 2.12506
\(65\) 0 0
\(66\) 13.4934 1.66093
\(67\) −7.09797 −0.867155 −0.433578 0.901116i \(-0.642749\pi\)
−0.433578 + 0.901116i \(0.642749\pi\)
\(68\) 10.5689 1.28167
\(69\) 7.76996 0.935393
\(70\) 0 0
\(71\) 9.59683 1.13893 0.569467 0.822014i \(-0.307150\pi\)
0.569467 + 0.822014i \(0.307150\pi\)
\(72\) −0.885185 −0.104320
\(73\) −0.287288 −0.0336245 −0.0168122 0.999859i \(-0.505352\pi\)
−0.0168122 + 0.999859i \(0.505352\pi\)
\(74\) −24.1753 −2.81032
\(75\) 0 0
\(76\) 0 0
\(77\) −6.33926 −0.722425
\(78\) −22.7518 −2.57613
\(79\) −15.8865 −1.78737 −0.893687 0.448691i \(-0.851890\pi\)
−0.893687 + 0.448691i \(0.851890\pi\)
\(80\) 0 0
\(81\) −9.30726 −1.03414
\(82\) 3.25576 0.359539
\(83\) −5.70094 −0.625759 −0.312879 0.949793i \(-0.601294\pi\)
−0.312879 + 0.949793i \(0.601294\pi\)
\(84\) 19.9555 2.17733
\(85\) 0 0
\(86\) −13.7005 −1.47737
\(87\) 14.2533 1.52812
\(88\) −23.9144 −2.54929
\(89\) −16.6834 −1.76844 −0.884220 0.467072i \(-0.845309\pi\)
−0.884220 + 0.467072i \(0.845309\pi\)
\(90\) 0 0
\(91\) 10.6889 1.12050
\(92\) −22.5880 −2.35496
\(93\) 7.01055 0.726960
\(94\) 6.67600 0.688577
\(95\) 0 0
\(96\) 27.0791 2.76375
\(97\) −0.202690 −0.0205801 −0.0102900 0.999947i \(-0.503275\pi\)
−0.0102900 + 0.999947i \(0.503275\pi\)
\(98\) 5.64821 0.570556
\(99\) 0.304575 0.0306110
\(100\) 0 0
\(101\) 2.36522 0.235349 0.117674 0.993052i \(-0.462456\pi\)
0.117674 + 0.993052i \(0.462456\pi\)
\(102\) 9.70331 0.960771
\(103\) −1.07422 −0.105846 −0.0529231 0.998599i \(-0.516854\pi\)
−0.0529231 + 0.998599i \(0.516854\pi\)
\(104\) 40.3230 3.95400
\(105\) 0 0
\(106\) −3.27219 −0.317823
\(107\) 0.186188 0.0179994 0.00899972 0.999960i \(-0.497135\pi\)
0.00899972 + 0.999960i \(0.497135\pi\)
\(108\) 26.1311 2.51446
\(109\) 13.1387 1.25846 0.629229 0.777220i \(-0.283371\pi\)
0.629229 + 0.777220i \(0.283371\pi\)
\(110\) 0 0
\(111\) −15.9638 −1.51522
\(112\) −26.5275 −2.50662
\(113\) −4.36458 −0.410586 −0.205293 0.978701i \(-0.565815\pi\)
−0.205293 + 0.978701i \(0.565815\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −41.4358 −3.84721
\(117\) −0.513556 −0.0474783
\(118\) 0.653154 0.0601277
\(119\) −4.55864 −0.417890
\(120\) 0 0
\(121\) −2.77149 −0.251953
\(122\) −1.32958 −0.120374
\(123\) 2.14989 0.193849
\(124\) −20.3803 −1.83021
\(125\) 0 0
\(126\) 0.626269 0.0557925
\(127\) −3.40581 −0.302217 −0.151108 0.988517i \(-0.548284\pi\)
−0.151108 + 0.988517i \(0.548284\pi\)
\(128\) −14.6451 −1.29445
\(129\) −9.04694 −0.796538
\(130\) 0 0
\(131\) 0.573140 0.0500755 0.0250378 0.999687i \(-0.492029\pi\)
0.0250378 + 0.999687i \(0.492029\pi\)
\(132\) −25.9028 −2.25455
\(133\) 0 0
\(134\) 18.9445 1.63655
\(135\) 0 0
\(136\) −17.1972 −1.47465
\(137\) −4.82207 −0.411977 −0.205988 0.978554i \(-0.566041\pi\)
−0.205988 + 0.978554i \(0.566041\pi\)
\(138\) −20.7380 −1.76534
\(139\) −14.9925 −1.27164 −0.635822 0.771836i \(-0.719339\pi\)
−0.635822 + 0.771836i \(0.719339\pi\)
\(140\) 0 0
\(141\) 4.40840 0.371254
\(142\) −25.6139 −2.14947
\(143\) −13.8744 −1.16024
\(144\) 1.27454 0.106212
\(145\) 0 0
\(146\) 0.766771 0.0634584
\(147\) 3.72971 0.307622
\(148\) 46.4082 3.81473
\(149\) 12.6439 1.03583 0.517914 0.855433i \(-0.326709\pi\)
0.517914 + 0.855433i \(0.326709\pi\)
\(150\) 0 0
\(151\) −11.0266 −0.897328 −0.448664 0.893701i \(-0.648100\pi\)
−0.448664 + 0.893701i \(0.648100\pi\)
\(152\) 0 0
\(153\) 0.219024 0.0177071
\(154\) 16.9195 1.36341
\(155\) 0 0
\(156\) 43.6756 3.49685
\(157\) −22.4216 −1.78944 −0.894718 0.446632i \(-0.852623\pi\)
−0.894718 + 0.446632i \(0.852623\pi\)
\(158\) 42.4011 3.37325
\(159\) −2.16074 −0.171358
\(160\) 0 0
\(161\) 9.74279 0.767840
\(162\) 24.8411 1.95170
\(163\) −1.74791 −0.136907 −0.0684535 0.997654i \(-0.521806\pi\)
−0.0684535 + 0.997654i \(0.521806\pi\)
\(164\) −6.24994 −0.488039
\(165\) 0 0
\(166\) 15.2158 1.18098
\(167\) 21.0484 1.62877 0.814386 0.580324i \(-0.197074\pi\)
0.814386 + 0.580324i \(0.197074\pi\)
\(168\) −32.4706 −2.50516
\(169\) 10.3941 0.799549
\(170\) 0 0
\(171\) 0 0
\(172\) 26.3003 2.00538
\(173\) 11.6088 0.882602 0.441301 0.897359i \(-0.354517\pi\)
0.441301 + 0.897359i \(0.354517\pi\)
\(174\) −38.0421 −2.88397
\(175\) 0 0
\(176\) 34.4334 2.59551
\(177\) 0.431300 0.0324185
\(178\) 44.5281 3.33752
\(179\) 3.98091 0.297547 0.148774 0.988871i \(-0.452467\pi\)
0.148774 + 0.988871i \(0.452467\pi\)
\(180\) 0 0
\(181\) −2.81859 −0.209504 −0.104752 0.994498i \(-0.533405\pi\)
−0.104752 + 0.994498i \(0.533405\pi\)
\(182\) −28.5286 −2.11468
\(183\) −0.877967 −0.0649012
\(184\) 36.7541 2.70955
\(185\) 0 0
\(186\) −18.7112 −1.37197
\(187\) 5.91723 0.432711
\(188\) −12.8156 −0.934676
\(189\) −11.2710 −0.819845
\(190\) 0 0
\(191\) −19.8105 −1.43344 −0.716719 0.697362i \(-0.754357\pi\)
−0.716719 + 0.697362i \(0.754357\pi\)
\(192\) −29.9622 −2.16233
\(193\) −5.52399 −0.397626 −0.198813 0.980037i \(-0.563709\pi\)
−0.198813 + 0.980037i \(0.563709\pi\)
\(194\) 0.540981 0.0388402
\(195\) 0 0
\(196\) −10.8426 −0.774474
\(197\) 20.4993 1.46051 0.730257 0.683173i \(-0.239400\pi\)
0.730257 + 0.683173i \(0.239400\pi\)
\(198\) −0.812912 −0.0577712
\(199\) −17.2575 −1.22335 −0.611677 0.791107i \(-0.709505\pi\)
−0.611677 + 0.791107i \(0.709505\pi\)
\(200\) 0 0
\(201\) 12.5097 0.882367
\(202\) −6.31279 −0.444166
\(203\) 17.8723 1.25439
\(204\) −18.6270 −1.30415
\(205\) 0 0
\(206\) 2.86710 0.199760
\(207\) −0.468101 −0.0325353
\(208\) −58.0594 −4.02570
\(209\) 0 0
\(210\) 0 0
\(211\) 21.2379 1.46207 0.731037 0.682337i \(-0.239036\pi\)
0.731037 + 0.682337i \(0.239036\pi\)
\(212\) 6.28148 0.431414
\(213\) −16.9138 −1.15891
\(214\) −0.496935 −0.0339698
\(215\) 0 0
\(216\) −42.5192 −2.89306
\(217\) 8.79056 0.596742
\(218\) −35.0672 −2.37505
\(219\) 0.506326 0.0342143
\(220\) 0 0
\(221\) −9.97726 −0.671143
\(222\) 42.6074 2.85962
\(223\) −28.8555 −1.93231 −0.966154 0.257967i \(-0.916947\pi\)
−0.966154 + 0.257967i \(0.916947\pi\)
\(224\) 33.9546 2.26869
\(225\) 0 0
\(226\) 11.6491 0.774885
\(227\) −8.42533 −0.559209 −0.279604 0.960115i \(-0.590203\pi\)
−0.279604 + 0.960115i \(0.590203\pi\)
\(228\) 0 0
\(229\) 24.6658 1.62996 0.814981 0.579487i \(-0.196747\pi\)
0.814981 + 0.579487i \(0.196747\pi\)
\(230\) 0 0
\(231\) 11.1725 0.735099
\(232\) 67.4221 4.42648
\(233\) −20.7240 −1.35768 −0.678839 0.734287i \(-0.737516\pi\)
−0.678839 + 0.734287i \(0.737516\pi\)
\(234\) 1.37068 0.0896042
\(235\) 0 0
\(236\) −1.25383 −0.0816175
\(237\) 27.9990 1.81873
\(238\) 12.1670 0.788671
\(239\) 10.4341 0.674924 0.337462 0.941339i \(-0.390431\pi\)
0.337462 + 0.941339i \(0.390431\pi\)
\(240\) 0 0
\(241\) 20.0493 1.29149 0.645744 0.763554i \(-0.276548\pi\)
0.645744 + 0.763554i \(0.276548\pi\)
\(242\) 7.39710 0.475504
\(243\) 1.10292 0.0707524
\(244\) 2.55233 0.163396
\(245\) 0 0
\(246\) −5.73807 −0.365846
\(247\) 0 0
\(248\) 33.1618 2.10578
\(249\) 10.0475 0.636736
\(250\) 0 0
\(251\) −0.614289 −0.0387736 −0.0193868 0.999812i \(-0.506171\pi\)
−0.0193868 + 0.999812i \(0.506171\pi\)
\(252\) −1.20222 −0.0757328
\(253\) −12.6464 −0.795071
\(254\) 9.09012 0.570365
\(255\) 0 0
\(256\) 5.08679 0.317924
\(257\) 10.1007 0.630064 0.315032 0.949081i \(-0.397985\pi\)
0.315032 + 0.949081i \(0.397985\pi\)
\(258\) 24.1463 1.50328
\(259\) −20.0171 −1.24380
\(260\) 0 0
\(261\) −0.858691 −0.0531517
\(262\) −1.52971 −0.0945060
\(263\) 6.14445 0.378883 0.189441 0.981892i \(-0.439332\pi\)
0.189441 + 0.981892i \(0.439332\pi\)
\(264\) 42.1477 2.59401
\(265\) 0 0
\(266\) 0 0
\(267\) 29.4034 1.79946
\(268\) −36.3669 −2.22146
\(269\) 23.0791 1.40716 0.703579 0.710617i \(-0.251584\pi\)
0.703579 + 0.710617i \(0.251584\pi\)
\(270\) 0 0
\(271\) 13.7769 0.836885 0.418443 0.908243i \(-0.362576\pi\)
0.418443 + 0.908243i \(0.362576\pi\)
\(272\) 24.7615 1.50139
\(273\) −18.8384 −1.14015
\(274\) 12.8701 0.777511
\(275\) 0 0
\(276\) 39.8099 2.39628
\(277\) −18.2471 −1.09636 −0.548181 0.836360i \(-0.684679\pi\)
−0.548181 + 0.836360i \(0.684679\pi\)
\(278\) 40.0149 2.39993
\(279\) −0.422350 −0.0252855
\(280\) 0 0
\(281\) −20.3990 −1.21690 −0.608451 0.793591i \(-0.708209\pi\)
−0.608451 + 0.793591i \(0.708209\pi\)
\(282\) −11.7660 −0.700656
\(283\) −19.5454 −1.16186 −0.580928 0.813955i \(-0.697310\pi\)
−0.580928 + 0.813955i \(0.697310\pi\)
\(284\) 49.1700 2.91770
\(285\) 0 0
\(286\) 37.0308 2.18968
\(287\) 2.69576 0.159126
\(288\) −1.63138 −0.0961299
\(289\) −12.7448 −0.749696
\(290\) 0 0
\(291\) 0.357229 0.0209411
\(292\) −1.47194 −0.0861386
\(293\) 9.22402 0.538873 0.269436 0.963018i \(-0.413163\pi\)
0.269436 + 0.963018i \(0.413163\pi\)
\(294\) −9.95461 −0.580565
\(295\) 0 0
\(296\) −75.5131 −4.38911
\(297\) 14.6300 0.848921
\(298\) −33.7466 −1.95489
\(299\) 21.3235 1.23317
\(300\) 0 0
\(301\) −11.3440 −0.653857
\(302\) 29.4299 1.69350
\(303\) −4.16855 −0.239477
\(304\) 0 0
\(305\) 0 0
\(306\) −0.584576 −0.0334180
\(307\) 7.75219 0.442441 0.221220 0.975224i \(-0.428996\pi\)
0.221220 + 0.975224i \(0.428996\pi\)
\(308\) −32.4796 −1.85070
\(309\) 1.89325 0.107703
\(310\) 0 0
\(311\) 24.8427 1.40870 0.704350 0.709853i \(-0.251239\pi\)
0.704350 + 0.709853i \(0.251239\pi\)
\(312\) −71.0667 −4.02336
\(313\) −5.79256 −0.327415 −0.163707 0.986509i \(-0.552345\pi\)
−0.163707 + 0.986509i \(0.552345\pi\)
\(314\) 59.8432 3.37715
\(315\) 0 0
\(316\) −81.3957 −4.57886
\(317\) −4.59924 −0.258319 −0.129159 0.991624i \(-0.541228\pi\)
−0.129159 + 0.991624i \(0.541228\pi\)
\(318\) 5.76702 0.323398
\(319\) −23.1987 −1.29888
\(320\) 0 0
\(321\) −0.328144 −0.0183152
\(322\) −26.0035 −1.44912
\(323\) 0 0
\(324\) −47.6864 −2.64924
\(325\) 0 0
\(326\) 4.66518 0.258380
\(327\) −23.1561 −1.28053
\(328\) 10.1696 0.561522
\(329\) 5.52771 0.304753
\(330\) 0 0
\(331\) 7.39548 0.406493 0.203246 0.979128i \(-0.434851\pi\)
0.203246 + 0.979128i \(0.434851\pi\)
\(332\) −29.2091 −1.60306
\(333\) 0.961738 0.0527029
\(334\) −56.1781 −3.07393
\(335\) 0 0
\(336\) 46.7531 2.55059
\(337\) −16.6765 −0.908425 −0.454212 0.890893i \(-0.650079\pi\)
−0.454212 + 0.890893i \(0.650079\pi\)
\(338\) −27.7420 −1.50896
\(339\) 7.69230 0.417788
\(340\) 0 0
\(341\) −11.4104 −0.617906
\(342\) 0 0
\(343\) 20.1462 1.08779
\(344\) −42.7945 −2.30733
\(345\) 0 0
\(346\) −30.9840 −1.66571
\(347\) −36.0300 −1.93419 −0.967095 0.254417i \(-0.918116\pi\)
−0.967095 + 0.254417i \(0.918116\pi\)
\(348\) 73.0278 3.91470
\(349\) −23.6370 −1.26526 −0.632629 0.774455i \(-0.718024\pi\)
−0.632629 + 0.774455i \(0.718024\pi\)
\(350\) 0 0
\(351\) −24.6683 −1.31669
\(352\) −44.0739 −2.34914
\(353\) −33.9305 −1.80594 −0.902968 0.429708i \(-0.858617\pi\)
−0.902968 + 0.429708i \(0.858617\pi\)
\(354\) −1.15114 −0.0611825
\(355\) 0 0
\(356\) −85.4786 −4.53036
\(357\) 8.03432 0.425221
\(358\) −10.6251 −0.561551
\(359\) −9.28731 −0.490165 −0.245083 0.969502i \(-0.578815\pi\)
−0.245083 + 0.969502i \(0.578815\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 7.52282 0.395391
\(363\) 4.88457 0.256373
\(364\) 54.7651 2.87047
\(365\) 0 0
\(366\) 2.34329 0.122486
\(367\) 11.4283 0.596555 0.298277 0.954479i \(-0.403588\pi\)
0.298277 + 0.954479i \(0.403588\pi\)
\(368\) −52.9206 −2.75868
\(369\) −0.129520 −0.00674256
\(370\) 0 0
\(371\) −2.70936 −0.140663
\(372\) 35.9190 1.86231
\(373\) −25.7467 −1.33312 −0.666558 0.745454i \(-0.732233\pi\)
−0.666558 + 0.745454i \(0.732233\pi\)
\(374\) −15.7931 −0.816642
\(375\) 0 0
\(376\) 20.8529 1.07541
\(377\) 39.1162 2.01459
\(378\) 30.0823 1.54727
\(379\) −20.3628 −1.04597 −0.522984 0.852343i \(-0.675181\pi\)
−0.522984 + 0.852343i \(0.675181\pi\)
\(380\) 0 0
\(381\) 6.00252 0.307519
\(382\) 52.8742 2.70528
\(383\) −18.1004 −0.924886 −0.462443 0.886649i \(-0.653027\pi\)
−0.462443 + 0.886649i \(0.653027\pi\)
\(384\) 25.8110 1.31716
\(385\) 0 0
\(386\) 14.7435 0.750426
\(387\) 0.545033 0.0277056
\(388\) −1.03850 −0.0527217
\(389\) −30.3016 −1.53635 −0.768175 0.640239i \(-0.778835\pi\)
−0.768175 + 0.640239i \(0.778835\pi\)
\(390\) 0 0
\(391\) −9.09418 −0.459913
\(392\) 17.6426 0.891084
\(393\) −1.01012 −0.0509540
\(394\) −54.7126 −2.75638
\(395\) 0 0
\(396\) 1.56051 0.0784187
\(397\) 3.57059 0.179203 0.0896015 0.995978i \(-0.471441\pi\)
0.0896015 + 0.995978i \(0.471441\pi\)
\(398\) 46.0604 2.30880
\(399\) 0 0
\(400\) 0 0
\(401\) −0.553079 −0.0276194 −0.0138097 0.999905i \(-0.504396\pi\)
−0.0138097 + 0.999905i \(0.504396\pi\)
\(402\) −33.3884 −1.66526
\(403\) 19.2394 0.958384
\(404\) 12.1184 0.602912
\(405\) 0 0
\(406\) −47.7012 −2.36737
\(407\) 25.9826 1.28791
\(408\) 30.3089 1.50052
\(409\) −2.56270 −0.126718 −0.0633588 0.997991i \(-0.520181\pi\)
−0.0633588 + 0.997991i \(0.520181\pi\)
\(410\) 0 0
\(411\) 8.49858 0.419204
\(412\) −5.50385 −0.271155
\(413\) 0.540810 0.0266115
\(414\) 1.24936 0.0614028
\(415\) 0 0
\(416\) 74.3146 3.64357
\(417\) 26.4232 1.29395
\(418\) 0 0
\(419\) −9.01138 −0.440235 −0.220117 0.975473i \(-0.570644\pi\)
−0.220117 + 0.975473i \(0.570644\pi\)
\(420\) 0 0
\(421\) −8.61610 −0.419923 −0.209962 0.977710i \(-0.567334\pi\)
−0.209962 + 0.977710i \(0.567334\pi\)
\(422\) −56.6839 −2.75933
\(423\) −0.265584 −0.0129131
\(424\) −10.2209 −0.496371
\(425\) 0 0
\(426\) 45.1429 2.18718
\(427\) −1.10089 −0.0532756
\(428\) 0.953945 0.0461107
\(429\) 24.4527 1.18059
\(430\) 0 0
\(431\) 5.21526 0.251210 0.125605 0.992080i \(-0.459913\pi\)
0.125605 + 0.992080i \(0.459913\pi\)
\(432\) 61.2215 2.94552
\(433\) 5.17272 0.248585 0.124293 0.992246i \(-0.460334\pi\)
0.124293 + 0.992246i \(0.460334\pi\)
\(434\) −23.4620 −1.12621
\(435\) 0 0
\(436\) 67.3170 3.22390
\(437\) 0 0
\(438\) −1.35138 −0.0645716
\(439\) −16.1031 −0.768560 −0.384280 0.923217i \(-0.625550\pi\)
−0.384280 + 0.923217i \(0.625550\pi\)
\(440\) 0 0
\(441\) −0.224697 −0.0106998
\(442\) 26.6293 1.26663
\(443\) 12.1169 0.575693 0.287846 0.957677i \(-0.407061\pi\)
0.287846 + 0.957677i \(0.407061\pi\)
\(444\) −81.7915 −3.88165
\(445\) 0 0
\(446\) 77.0154 3.64678
\(447\) −22.2841 −1.05400
\(448\) −37.5697 −1.77500
\(449\) −7.07384 −0.333835 −0.166918 0.985971i \(-0.553381\pi\)
−0.166918 + 0.985971i \(0.553381\pi\)
\(450\) 0 0
\(451\) −3.49916 −0.164769
\(452\) −22.3622 −1.05183
\(453\) 19.4336 0.913069
\(454\) 22.4872 1.05538
\(455\) 0 0
\(456\) 0 0
\(457\) −26.3810 −1.23405 −0.617027 0.786942i \(-0.711663\pi\)
−0.617027 + 0.786942i \(0.711663\pi\)
\(458\) −65.8331 −3.07618
\(459\) 10.5207 0.491062
\(460\) 0 0
\(461\) −9.59005 −0.446653 −0.223327 0.974744i \(-0.571692\pi\)
−0.223327 + 0.974744i \(0.571692\pi\)
\(462\) −29.8195 −1.38733
\(463\) 6.50235 0.302190 0.151095 0.988519i \(-0.451720\pi\)
0.151095 + 0.988519i \(0.451720\pi\)
\(464\) −97.0783 −4.50674
\(465\) 0 0
\(466\) 55.3125 2.56230
\(467\) 8.71364 0.403219 0.201610 0.979466i \(-0.435383\pi\)
0.201610 + 0.979466i \(0.435383\pi\)
\(468\) −2.63124 −0.121629
\(469\) 15.6860 0.724312
\(470\) 0 0
\(471\) 39.5165 1.82083
\(472\) 2.04017 0.0939064
\(473\) 14.7248 0.677047
\(474\) −74.7293 −3.43243
\(475\) 0 0
\(476\) −23.3565 −1.07054
\(477\) 0.130174 0.00596025
\(478\) −27.8486 −1.27376
\(479\) 27.3003 1.24738 0.623692 0.781670i \(-0.285632\pi\)
0.623692 + 0.781670i \(0.285632\pi\)
\(480\) 0 0
\(481\) −43.8103 −1.99758
\(482\) −53.5115 −2.43738
\(483\) −17.1710 −0.781309
\(484\) −14.1999 −0.645450
\(485\) 0 0
\(486\) −2.94370 −0.133529
\(487\) −35.5582 −1.61129 −0.805647 0.592395i \(-0.798182\pi\)
−0.805647 + 0.592395i \(0.798182\pi\)
\(488\) −4.15302 −0.187999
\(489\) 3.08058 0.139309
\(490\) 0 0
\(491\) 41.5813 1.87654 0.938269 0.345906i \(-0.112428\pi\)
0.938269 + 0.345906i \(0.112428\pi\)
\(492\) 11.0151 0.496600
\(493\) −16.6825 −0.751342
\(494\) 0 0
\(495\) 0 0
\(496\) −47.7483 −2.14396
\(497\) −21.2083 −0.951321
\(498\) −26.8169 −1.20169
\(499\) −27.1248 −1.21427 −0.607136 0.794598i \(-0.707682\pi\)
−0.607136 + 0.794598i \(0.707682\pi\)
\(500\) 0 0
\(501\) −37.0964 −1.65734
\(502\) 1.63954 0.0731762
\(503\) 34.8198 1.55254 0.776269 0.630401i \(-0.217110\pi\)
0.776269 + 0.630401i \(0.217110\pi\)
\(504\) 1.95619 0.0871358
\(505\) 0 0
\(506\) 33.7532 1.50051
\(507\) −18.3190 −0.813575
\(508\) −17.4499 −0.774215
\(509\) 41.2656 1.82907 0.914533 0.404512i \(-0.132559\pi\)
0.914533 + 0.404512i \(0.132559\pi\)
\(510\) 0 0
\(511\) 0.634884 0.0280856
\(512\) 15.7135 0.694443
\(513\) 0 0
\(514\) −26.9588 −1.18910
\(515\) 0 0
\(516\) −46.3526 −2.04056
\(517\) −7.17511 −0.315561
\(518\) 53.4256 2.34738
\(519\) −20.4598 −0.898085
\(520\) 0 0
\(521\) −33.5554 −1.47009 −0.735045 0.678018i \(-0.762839\pi\)
−0.735045 + 0.678018i \(0.762839\pi\)
\(522\) 2.29185 0.100311
\(523\) −2.43983 −0.106687 −0.0533433 0.998576i \(-0.516988\pi\)
−0.0533433 + 0.998576i \(0.516988\pi\)
\(524\) 2.93652 0.128283
\(525\) 0 0
\(526\) −16.3995 −0.715054
\(527\) −8.20534 −0.357430
\(528\) −60.6866 −2.64105
\(529\) −3.56380 −0.154948
\(530\) 0 0
\(531\) −0.0259837 −0.00112760
\(532\) 0 0
\(533\) 5.90007 0.255560
\(534\) −78.4778 −3.39607
\(535\) 0 0
\(536\) 59.1744 2.55594
\(537\) −7.01609 −0.302767
\(538\) −61.5981 −2.65568
\(539\) −6.07048 −0.261474
\(540\) 0 0
\(541\) −27.7635 −1.19365 −0.596823 0.802373i \(-0.703571\pi\)
−0.596823 + 0.802373i \(0.703571\pi\)
\(542\) −36.7705 −1.57943
\(543\) 4.96758 0.213179
\(544\) −31.6941 −1.35887
\(545\) 0 0
\(546\) 50.2798 2.15177
\(547\) 25.2149 1.07811 0.539056 0.842270i \(-0.318781\pi\)
0.539056 + 0.842270i \(0.318781\pi\)
\(548\) −24.7062 −1.05540
\(549\) 0.0528931 0.00225742
\(550\) 0 0
\(551\) 0 0
\(552\) −64.7767 −2.75708
\(553\) 35.1080 1.49295
\(554\) 48.7015 2.06913
\(555\) 0 0
\(556\) −76.8148 −3.25767
\(557\) −18.0110 −0.763151 −0.381576 0.924338i \(-0.624618\pi\)
−0.381576 + 0.924338i \(0.624618\pi\)
\(558\) 1.12725 0.0477205
\(559\) −24.8280 −1.05011
\(560\) 0 0
\(561\) −10.4287 −0.440302
\(562\) 54.4450 2.29662
\(563\) 8.99696 0.379177 0.189588 0.981864i \(-0.439285\pi\)
0.189588 + 0.981864i \(0.439285\pi\)
\(564\) 22.5867 0.951073
\(565\) 0 0
\(566\) 52.1668 2.19273
\(567\) 20.5684 0.863790
\(568\) −80.0069 −3.35701
\(569\) 25.4166 1.06552 0.532759 0.846267i \(-0.321155\pi\)
0.532759 + 0.846267i \(0.321155\pi\)
\(570\) 0 0
\(571\) 16.9476 0.709233 0.354617 0.935012i \(-0.384611\pi\)
0.354617 + 0.935012i \(0.384611\pi\)
\(572\) −71.0864 −2.97227
\(573\) 34.9147 1.45858
\(574\) −7.19499 −0.300313
\(575\) 0 0
\(576\) 1.80507 0.0752113
\(577\) 25.1670 1.04772 0.523859 0.851805i \(-0.324492\pi\)
0.523859 + 0.851805i \(0.324492\pi\)
\(578\) 34.0160 1.41488
\(579\) 9.73568 0.404601
\(580\) 0 0
\(581\) 12.5986 0.522680
\(582\) −0.953444 −0.0395215
\(583\) 3.51682 0.145652
\(584\) 2.39506 0.0991083
\(585\) 0 0
\(586\) −24.6189 −1.01700
\(587\) −1.13849 −0.0469903 −0.0234952 0.999724i \(-0.507479\pi\)
−0.0234952 + 0.999724i \(0.507479\pi\)
\(588\) 19.1094 0.788060
\(589\) 0 0
\(590\) 0 0
\(591\) −36.1287 −1.48613
\(592\) 108.728 4.46870
\(593\) −5.56477 −0.228518 −0.114259 0.993451i \(-0.536449\pi\)
−0.114259 + 0.993451i \(0.536449\pi\)
\(594\) −39.0476 −1.60214
\(595\) 0 0
\(596\) 64.7819 2.65357
\(597\) 30.4153 1.24482
\(598\) −56.9125 −2.32733
\(599\) −10.5181 −0.429758 −0.214879 0.976641i \(-0.568936\pi\)
−0.214879 + 0.976641i \(0.568936\pi\)
\(600\) 0 0
\(601\) 36.9336 1.50655 0.753277 0.657703i \(-0.228472\pi\)
0.753277 + 0.657703i \(0.228472\pi\)
\(602\) 30.2771 1.23400
\(603\) −0.753648 −0.0306909
\(604\) −56.4953 −2.29876
\(605\) 0 0
\(606\) 11.1259 0.451958
\(607\) 31.6955 1.28648 0.643240 0.765665i \(-0.277590\pi\)
0.643240 + 0.765665i \(0.277590\pi\)
\(608\) 0 0
\(609\) −31.4988 −1.27640
\(610\) 0 0
\(611\) 12.0982 0.489441
\(612\) 1.12219 0.0453617
\(613\) −24.7004 −0.997641 −0.498820 0.866705i \(-0.666233\pi\)
−0.498820 + 0.866705i \(0.666233\pi\)
\(614\) −20.6906 −0.835004
\(615\) 0 0
\(616\) 52.8492 2.12935
\(617\) −17.9984 −0.724589 −0.362294 0.932064i \(-0.618006\pi\)
−0.362294 + 0.932064i \(0.618006\pi\)
\(618\) −5.05308 −0.203265
\(619\) 32.0927 1.28991 0.644957 0.764219i \(-0.276875\pi\)
0.644957 + 0.764219i \(0.276875\pi\)
\(620\) 0 0
\(621\) −22.4849 −0.902287
\(622\) −66.3052 −2.65860
\(623\) 36.8691 1.47713
\(624\) 102.326 4.09632
\(625\) 0 0
\(626\) 15.4603 0.617920
\(627\) 0 0
\(628\) −114.878 −4.58415
\(629\) 18.6845 0.744998
\(630\) 0 0
\(631\) −6.97644 −0.277728 −0.138864 0.990311i \(-0.544345\pi\)
−0.138864 + 0.990311i \(0.544345\pi\)
\(632\) 132.443 5.26829
\(633\) −37.4304 −1.48772
\(634\) 12.2754 0.487517
\(635\) 0 0
\(636\) −11.0707 −0.438982
\(637\) 10.2357 0.405551
\(638\) 61.9173 2.45133
\(639\) 1.01897 0.0403099
\(640\) 0 0
\(641\) −27.8888 −1.10154 −0.550770 0.834657i \(-0.685666\pi\)
−0.550770 + 0.834657i \(0.685666\pi\)
\(642\) 0.875816 0.0345657
\(643\) 6.24974 0.246466 0.123233 0.992378i \(-0.460674\pi\)
0.123233 + 0.992378i \(0.460674\pi\)
\(644\) 49.9179 1.96704
\(645\) 0 0
\(646\) 0 0
\(647\) 22.1840 0.872142 0.436071 0.899912i \(-0.356370\pi\)
0.436071 + 0.899912i \(0.356370\pi\)
\(648\) 77.5928 3.04813
\(649\) −0.701984 −0.0275553
\(650\) 0 0
\(651\) −15.4928 −0.607210
\(652\) −8.95554 −0.350726
\(653\) 11.3373 0.443664 0.221832 0.975085i \(-0.428796\pi\)
0.221832 + 0.975085i \(0.428796\pi\)
\(654\) 61.8036 2.41671
\(655\) 0 0
\(656\) −14.6428 −0.571704
\(657\) −0.0305036 −0.00119006
\(658\) −14.7535 −0.575150
\(659\) 26.6149 1.03677 0.518385 0.855147i \(-0.326533\pi\)
0.518385 + 0.855147i \(0.326533\pi\)
\(660\) 0 0
\(661\) −45.7240 −1.77846 −0.889228 0.457465i \(-0.848758\pi\)
−0.889228 + 0.457465i \(0.848758\pi\)
\(662\) −19.7386 −0.767161
\(663\) 17.5843 0.682917
\(664\) 47.5276 1.84443
\(665\) 0 0
\(666\) −2.56688 −0.0994646
\(667\) 35.6540 1.38053
\(668\) 107.843 4.17256
\(669\) 50.8560 1.96620
\(670\) 0 0
\(671\) 1.42898 0.0551651
\(672\) −59.8427 −2.30848
\(673\) 25.6435 0.988484 0.494242 0.869324i \(-0.335446\pi\)
0.494242 + 0.869324i \(0.335446\pi\)
\(674\) 44.5095 1.71444
\(675\) 0 0
\(676\) 53.2550 2.04827
\(677\) 7.17287 0.275676 0.137838 0.990455i \(-0.455985\pi\)
0.137838 + 0.990455i \(0.455985\pi\)
\(678\) −20.5307 −0.788479
\(679\) 0.447931 0.0171900
\(680\) 0 0
\(681\) 14.8491 0.569019
\(682\) 30.4543 1.16615
\(683\) −6.25807 −0.239458 −0.119729 0.992807i \(-0.538203\pi\)
−0.119729 + 0.992807i \(0.538203\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −53.7702 −2.05296
\(687\) −43.4719 −1.65856
\(688\) 61.6180 2.34916
\(689\) −5.92984 −0.225909
\(690\) 0 0
\(691\) −19.4240 −0.738925 −0.369463 0.929246i \(-0.620458\pi\)
−0.369463 + 0.929246i \(0.620458\pi\)
\(692\) 59.4786 2.26104
\(693\) −0.673089 −0.0255685
\(694\) 96.1640 3.65034
\(695\) 0 0
\(696\) −118.827 −4.50413
\(697\) −2.51630 −0.0953115
\(698\) 63.0872 2.38788
\(699\) 36.5248 1.38149
\(700\) 0 0
\(701\) 9.49134 0.358483 0.179241 0.983805i \(-0.442636\pi\)
0.179241 + 0.983805i \(0.442636\pi\)
\(702\) 65.8396 2.48496
\(703\) 0 0
\(704\) 48.7664 1.83795
\(705\) 0 0
\(706\) 90.5604 3.40829
\(707\) −5.22697 −0.196580
\(708\) 2.20980 0.0830492
\(709\) −21.9473 −0.824246 −0.412123 0.911128i \(-0.635213\pi\)
−0.412123 + 0.911128i \(0.635213\pi\)
\(710\) 0 0
\(711\) −1.68680 −0.0632599
\(712\) 139.086 5.21248
\(713\) 17.5366 0.656749
\(714\) −21.4436 −0.802507
\(715\) 0 0
\(716\) 20.3965 0.762251
\(717\) −18.3894 −0.686764
\(718\) 24.7878 0.925074
\(719\) −3.61331 −0.134754 −0.0673768 0.997728i \(-0.521463\pi\)
−0.0673768 + 0.997728i \(0.521463\pi\)
\(720\) 0 0
\(721\) 2.37395 0.0884105
\(722\) 0 0
\(723\) −35.3355 −1.31414
\(724\) −14.4412 −0.536704
\(725\) 0 0
\(726\) −13.0369 −0.483845
\(727\) −41.1295 −1.52541 −0.762705 0.646747i \(-0.776129\pi\)
−0.762705 + 0.646747i \(0.776129\pi\)
\(728\) −89.1109 −3.30267
\(729\) 25.9780 0.962146
\(730\) 0 0
\(731\) 10.5888 0.391641
\(732\) −4.49832 −0.166263
\(733\) 26.4052 0.975297 0.487648 0.873040i \(-0.337855\pi\)
0.487648 + 0.873040i \(0.337855\pi\)
\(734\) −30.5023 −1.12586
\(735\) 0 0
\(736\) 67.7370 2.49682
\(737\) −20.3608 −0.750000
\(738\) 0.345690 0.0127250
\(739\) −16.0961 −0.592106 −0.296053 0.955172i \(-0.595670\pi\)
−0.296053 + 0.955172i \(0.595670\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 7.23129 0.265469
\(743\) 51.0206 1.87176 0.935882 0.352315i \(-0.114605\pi\)
0.935882 + 0.352315i \(0.114605\pi\)
\(744\) −58.4456 −2.14272
\(745\) 0 0
\(746\) 68.7181 2.51595
\(747\) −0.605314 −0.0221473
\(748\) 30.3173 1.10851
\(749\) −0.411461 −0.0150345
\(750\) 0 0
\(751\) −7.88161 −0.287604 −0.143802 0.989606i \(-0.545933\pi\)
−0.143802 + 0.989606i \(0.545933\pi\)
\(752\) −30.0253 −1.09491
\(753\) 1.08264 0.0394538
\(754\) −104.401 −3.80206
\(755\) 0 0
\(756\) −57.7478 −2.10027
\(757\) 31.9261 1.16037 0.580186 0.814484i \(-0.302980\pi\)
0.580186 + 0.814484i \(0.302980\pi\)
\(758\) 54.3484 1.97402
\(759\) 22.2884 0.809019
\(760\) 0 0
\(761\) 21.6563 0.785039 0.392519 0.919744i \(-0.371604\pi\)
0.392519 + 0.919744i \(0.371604\pi\)
\(762\) −16.0207 −0.580370
\(763\) −29.0355 −1.05116
\(764\) −101.500 −3.67216
\(765\) 0 0
\(766\) 48.3099 1.74551
\(767\) 1.18364 0.0427388
\(768\) −8.96514 −0.323502
\(769\) 14.8767 0.536467 0.268233 0.963354i \(-0.413560\pi\)
0.268233 + 0.963354i \(0.413560\pi\)
\(770\) 0 0
\(771\) −17.8018 −0.641117
\(772\) −28.3025 −1.01863
\(773\) 1.66685 0.0599524 0.0299762 0.999551i \(-0.490457\pi\)
0.0299762 + 0.999551i \(0.490457\pi\)
\(774\) −1.45469 −0.0522879
\(775\) 0 0
\(776\) 1.68979 0.0606599
\(777\) 35.2788 1.26562
\(778\) 80.8749 2.89951
\(779\) 0 0
\(780\) 0 0
\(781\) 27.5289 0.985060
\(782\) 24.2724 0.867979
\(783\) −41.2466 −1.47403
\(784\) −25.4028 −0.907242
\(785\) 0 0
\(786\) 2.69602 0.0961638
\(787\) 4.38273 0.156228 0.0781138 0.996944i \(-0.475110\pi\)
0.0781138 + 0.996944i \(0.475110\pi\)
\(788\) 105.029 3.74152
\(789\) −10.8292 −0.385530
\(790\) 0 0
\(791\) 9.64541 0.342951
\(792\) −2.53919 −0.0902261
\(793\) −2.40945 −0.0855621
\(794\) −9.52992 −0.338204
\(795\) 0 0
\(796\) −88.4202 −3.13397
\(797\) 9.86857 0.349563 0.174781 0.984607i \(-0.444078\pi\)
0.174781 + 0.984607i \(0.444078\pi\)
\(798\) 0 0
\(799\) −5.15972 −0.182538
\(800\) 0 0
\(801\) −1.77141 −0.0625897
\(802\) 1.47617 0.0521253
\(803\) −0.824096 −0.0290817
\(804\) 64.0944 2.26043
\(805\) 0 0
\(806\) −51.3501 −1.80873
\(807\) −40.6754 −1.43184
\(808\) −19.7184 −0.693691
\(809\) −40.4522 −1.42222 −0.711112 0.703079i \(-0.751808\pi\)
−0.711112 + 0.703079i \(0.751808\pi\)
\(810\) 0 0
\(811\) −28.9125 −1.01526 −0.507628 0.861576i \(-0.669478\pi\)
−0.507628 + 0.861576i \(0.669478\pi\)
\(812\) 91.5700 3.21348
\(813\) −24.2808 −0.851566
\(814\) −69.3477 −2.43064
\(815\) 0 0
\(816\) −43.6406 −1.52773
\(817\) 0 0
\(818\) 6.83986 0.239150
\(819\) 1.13492 0.0396573
\(820\) 0 0
\(821\) −13.2912 −0.463866 −0.231933 0.972732i \(-0.574505\pi\)
−0.231933 + 0.972732i \(0.574505\pi\)
\(822\) −22.6827 −0.791151
\(823\) 47.8247 1.66706 0.833532 0.552471i \(-0.186315\pi\)
0.833532 + 0.552471i \(0.186315\pi\)
\(824\) 8.95558 0.311982
\(825\) 0 0
\(826\) −1.44342 −0.0502230
\(827\) 51.7917 1.80098 0.900488 0.434882i \(-0.143210\pi\)
0.900488 + 0.434882i \(0.143210\pi\)
\(828\) −2.39835 −0.0833484
\(829\) 8.42434 0.292589 0.146295 0.989241i \(-0.453265\pi\)
0.146295 + 0.989241i \(0.453265\pi\)
\(830\) 0 0
\(831\) 32.1593 1.11559
\(832\) −82.2269 −2.85070
\(833\) −4.36536 −0.151251
\(834\) −70.5236 −2.44203
\(835\) 0 0
\(836\) 0 0
\(837\) −20.2873 −0.701231
\(838\) 24.0514 0.830841
\(839\) 23.7821 0.821051 0.410525 0.911849i \(-0.365345\pi\)
0.410525 + 0.911849i \(0.365345\pi\)
\(840\) 0 0
\(841\) 36.4042 1.25532
\(842\) 22.9964 0.792508
\(843\) 35.9519 1.23825
\(844\) 108.814 3.74552
\(845\) 0 0
\(846\) 0.708844 0.0243706
\(847\) 6.12478 0.210450
\(848\) 14.7166 0.505371
\(849\) 34.4476 1.18224
\(850\) 0 0
\(851\) −39.9327 −1.36887
\(852\) −86.6589 −2.96889
\(853\) −27.3430 −0.936205 −0.468102 0.883674i \(-0.655062\pi\)
−0.468102 + 0.883674i \(0.655062\pi\)
\(854\) 2.93827 0.100545
\(855\) 0 0
\(856\) −1.55221 −0.0530534
\(857\) 30.7007 1.04872 0.524358 0.851498i \(-0.324305\pi\)
0.524358 + 0.851498i \(0.324305\pi\)
\(858\) −65.2644 −2.22809
\(859\) −36.8449 −1.25713 −0.628567 0.777756i \(-0.716358\pi\)
−0.628567 + 0.777756i \(0.716358\pi\)
\(860\) 0 0
\(861\) −4.75110 −0.161917
\(862\) −13.9195 −0.474102
\(863\) −4.42788 −0.150727 −0.0753634 0.997156i \(-0.524012\pi\)
−0.0753634 + 0.997156i \(0.524012\pi\)
\(864\) −78.3620 −2.66593
\(865\) 0 0
\(866\) −13.8060 −0.469147
\(867\) 22.4620 0.762848
\(868\) 45.0390 1.52872
\(869\) −45.5711 −1.54589
\(870\) 0 0
\(871\) 34.3311 1.16326
\(872\) −109.535 −3.70931
\(873\) −0.0215212 −0.000728384 0
\(874\) 0 0
\(875\) 0 0
\(876\) 2.59419 0.0876497
\(877\) 0.177859 0.00600587 0.00300294 0.999995i \(-0.499044\pi\)
0.00300294 + 0.999995i \(0.499044\pi\)
\(878\) 42.9792 1.45048
\(879\) −16.2567 −0.548326
\(880\) 0 0
\(881\) 35.4916 1.19574 0.597871 0.801593i \(-0.296014\pi\)
0.597871 + 0.801593i \(0.296014\pi\)
\(882\) 0.599715 0.0201935
\(883\) 44.6775 1.50352 0.751759 0.659438i \(-0.229206\pi\)
0.751759 + 0.659438i \(0.229206\pi\)
\(884\) −51.1192 −1.71932
\(885\) 0 0
\(886\) −32.3401 −1.08649
\(887\) 34.5396 1.15973 0.579863 0.814714i \(-0.303106\pi\)
0.579863 + 0.814714i \(0.303106\pi\)
\(888\) 133.087 4.46611
\(889\) 7.52659 0.252434
\(890\) 0 0
\(891\) −26.6982 −0.894424
\(892\) −147.843 −4.95015
\(893\) 0 0
\(894\) 59.4762 1.98918
\(895\) 0 0
\(896\) 32.3645 1.08122
\(897\) −37.5813 −1.25480
\(898\) 18.8801 0.630037
\(899\) 32.1693 1.07291
\(900\) 0 0
\(901\) 2.52899 0.0842529
\(902\) 9.33927 0.310964
\(903\) 19.9931 0.665327
\(904\) 36.3867 1.21020
\(905\) 0 0
\(906\) −51.8683 −1.72321
\(907\) 30.4093 1.00972 0.504862 0.863200i \(-0.331543\pi\)
0.504862 + 0.863200i \(0.331543\pi\)
\(908\) −43.1677 −1.43257
\(909\) 0.251135 0.00832961
\(910\) 0 0
\(911\) 48.5898 1.60985 0.804926 0.593375i \(-0.202205\pi\)
0.804926 + 0.593375i \(0.202205\pi\)
\(912\) 0 0
\(913\) −16.3534 −0.541217
\(914\) 70.4110 2.32899
\(915\) 0 0
\(916\) 126.377 4.17561
\(917\) −1.26660 −0.0418268
\(918\) −28.0797 −0.926767
\(919\) 46.0057 1.51759 0.758794 0.651331i \(-0.225789\pi\)
0.758794 + 0.651331i \(0.225789\pi\)
\(920\) 0 0
\(921\) −13.6627 −0.450202
\(922\) 25.5958 0.842954
\(923\) −46.4174 −1.52785
\(924\) 57.2432 1.88316
\(925\) 0 0
\(926\) −17.3548 −0.570313
\(927\) −0.114059 −0.00374618
\(928\) 124.258 4.07896
\(929\) 47.6797 1.56432 0.782161 0.623077i \(-0.214118\pi\)
0.782161 + 0.623077i \(0.214118\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −106.181 −3.47808
\(933\) −43.7836 −1.43341
\(934\) −23.2567 −0.760983
\(935\) 0 0
\(936\) 4.28142 0.139942
\(937\) −32.4440 −1.05990 −0.529950 0.848029i \(-0.677789\pi\)
−0.529950 + 0.848029i \(0.677789\pi\)
\(938\) −41.8659 −1.36697
\(939\) 10.2090 0.333158
\(940\) 0 0
\(941\) 22.9865 0.749339 0.374669 0.927159i \(-0.377756\pi\)
0.374669 + 0.927159i \(0.377756\pi\)
\(942\) −105.470 −3.43639
\(943\) 5.37786 0.175127
\(944\) −2.93755 −0.0956092
\(945\) 0 0
\(946\) −39.3005 −1.27777
\(947\) −19.5969 −0.636814 −0.318407 0.947954i \(-0.603148\pi\)
−0.318407 + 0.947954i \(0.603148\pi\)
\(948\) 143.455 4.65919
\(949\) 1.38954 0.0451063
\(950\) 0 0
\(951\) 8.10586 0.262850
\(952\) 38.0045 1.23173
\(953\) 21.8067 0.706387 0.353194 0.935550i \(-0.385096\pi\)
0.353194 + 0.935550i \(0.385096\pi\)
\(954\) −0.347434 −0.0112486
\(955\) 0 0
\(956\) 53.4597 1.72901
\(957\) 40.8862 1.32166
\(958\) −72.8646 −2.35415
\(959\) 10.6564 0.344113
\(960\) 0 0
\(961\) −15.1774 −0.489594
\(962\) 116.930 3.76997
\(963\) 0.0197690 0.000637048 0
\(964\) 102.724 3.30851
\(965\) 0 0
\(966\) 45.8295 1.47454
\(967\) −30.6010 −0.984063 −0.492031 0.870577i \(-0.663745\pi\)
−0.492031 + 0.870577i \(0.663745\pi\)
\(968\) 23.1054 0.742634
\(969\) 0 0
\(970\) 0 0
\(971\) −24.6525 −0.791136 −0.395568 0.918437i \(-0.629452\pi\)
−0.395568 + 0.918437i \(0.629452\pi\)
\(972\) 5.65089 0.181252
\(973\) 33.1322 1.06217
\(974\) 94.9048 3.04095
\(975\) 0 0
\(976\) 5.97976 0.191408
\(977\) −40.0301 −1.28067 −0.640337 0.768094i \(-0.721205\pi\)
−0.640337 + 0.768094i \(0.721205\pi\)
\(978\) −8.22207 −0.262913
\(979\) −47.8570 −1.52952
\(980\) 0 0
\(981\) 1.39504 0.0445402
\(982\) −110.981 −3.54153
\(983\) −18.0067 −0.574323 −0.287162 0.957882i \(-0.592712\pi\)
−0.287162 + 0.957882i \(0.592712\pi\)
\(984\) −17.9232 −0.571372
\(985\) 0 0
\(986\) 44.5256 1.41798
\(987\) −9.74224 −0.310099
\(988\) 0 0
\(989\) −22.6305 −0.719608
\(990\) 0 0
\(991\) −47.2626 −1.50135 −0.750674 0.660673i \(-0.770271\pi\)
−0.750674 + 0.660673i \(0.770271\pi\)
\(992\) 61.1166 1.94045
\(993\) −13.0341 −0.413623
\(994\) 56.6049 1.79540
\(995\) 0 0
\(996\) 51.4792 1.63118
\(997\) 30.7551 0.974024 0.487012 0.873395i \(-0.338087\pi\)
0.487012 + 0.873395i \(0.338087\pi\)
\(998\) 72.3961 2.29166
\(999\) 46.1964 1.46159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.cv.1.1 40
5.2 odd 4 1805.2.b.m.1084.1 40
5.3 odd 4 1805.2.b.m.1084.40 yes 40
5.4 even 2 inner 9025.2.a.cv.1.40 40
19.18 odd 2 inner 9025.2.a.cv.1.39 40
95.18 even 4 1805.2.b.m.1084.2 yes 40
95.37 even 4 1805.2.b.m.1084.39 yes 40
95.94 odd 2 inner 9025.2.a.cv.1.2 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.m.1084.1 40 5.2 odd 4
1805.2.b.m.1084.2 yes 40 95.18 even 4
1805.2.b.m.1084.39 yes 40 95.37 even 4
1805.2.b.m.1084.40 yes 40 5.3 odd 4
9025.2.a.cv.1.1 40 1.1 even 1 trivial
9025.2.a.cv.1.2 40 95.94 odd 2 inner
9025.2.a.cv.1.39 40 19.18 odd 2 inner
9025.2.a.cv.1.40 40 5.4 even 2 inner