Properties

Label 1805.2.b.m.1084.1
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1084,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1084");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.1
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.m.1084.40

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66900i q^{2} +1.76244i q^{3} -5.12357 q^{4} +(-0.705325 - 2.12191i) q^{5} +4.70394 q^{6} -2.20993i q^{7} +8.33681i q^{8} -0.106178 q^{9} +(-5.66339 + 1.88251i) q^{10} +2.86854 q^{11} -9.02996i q^{12} +4.83675i q^{13} -5.89830 q^{14} +(3.73974 - 1.24309i) q^{15} +12.0038 q^{16} +2.06280i q^{17} +0.283389i q^{18} +(3.61378 + 10.8718i) q^{20} +3.89485 q^{21} -7.65613i q^{22} +4.40865i q^{23} -14.6931 q^{24} +(-4.00503 + 2.99328i) q^{25} +12.9093 q^{26} +5.10017i q^{27} +11.3227i q^{28} +8.08729 q^{29} +(-3.31781 - 9.98136i) q^{30} -3.97776 q^{31} -15.3646i q^{32} +5.05561i q^{33} +5.50563 q^{34} +(-4.68927 + 1.55872i) q^{35} +0.544010 q^{36} +9.05780i q^{37} -8.52446 q^{39} +(17.6900 - 5.88015i) q^{40} -1.21984 q^{41} -10.3954i q^{42} -5.13320i q^{43} -14.6972 q^{44} +(0.0748899 + 0.225300i) q^{45} +11.7667 q^{46} -2.50131i q^{47} +21.1559i q^{48} +2.11623 q^{49} +(7.98906 + 10.6894i) q^{50} -3.63556 q^{51} -24.7814i q^{52} -1.22600i q^{53} +13.6124 q^{54} +(-2.02325 - 6.08679i) q^{55} +18.4237 q^{56} -21.5850i q^{58} +0.244718 q^{59} +(-19.1608 + 6.36905i) q^{60} +0.498155 q^{61} +10.6166i q^{62} +0.234645i q^{63} -17.0004 q^{64} +(10.2632 - 3.41148i) q^{65} +13.4934 q^{66} -7.09797i q^{67} -10.5689i q^{68} -7.76996 q^{69} +(4.16021 + 12.5157i) q^{70} +9.59683 q^{71} -0.885185i q^{72} +0.287288i q^{73} +24.1753 q^{74} +(-5.27546 - 7.05861i) q^{75} -6.33926i q^{77} +22.7518i q^{78} +15.8865 q^{79} +(-8.46658 - 25.4710i) q^{80} -9.30726 q^{81} +3.25576i q^{82} +5.70094i q^{83} -19.9555 q^{84} +(4.37709 - 1.45495i) q^{85} -13.7005 q^{86} +14.2533i q^{87} +23.9144i q^{88} +16.6834 q^{89} +(0.601327 - 0.199881i) q^{90} +10.6889 q^{91} -22.5880i q^{92} -7.01055i q^{93} -6.67600 q^{94} +27.0791 q^{96} -0.202690i q^{97} -5.64821i q^{98} -0.304575 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 48 q^{4} + 6 q^{5} + 20 q^{6} - 52 q^{9} + 20 q^{11} + 40 q^{16} - 18 q^{20} - 92 q^{24} - 26 q^{25} + 76 q^{26} + 40 q^{30} + 4 q^{35} + 156 q^{36} - 80 q^{39} - 48 q^{44} - 22 q^{45} - 72 q^{49}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.66900i 1.88727i −0.330989 0.943634i \(-0.607382\pi\)
0.330989 0.943634i \(-0.392618\pi\)
\(3\) 1.76244i 1.01754i 0.860902 + 0.508771i \(0.169900\pi\)
−0.860902 + 0.508771i \(0.830100\pi\)
\(4\) −5.12357 −2.56178
\(5\) −0.705325 2.12191i −0.315431 0.948949i
\(6\) 4.70394 1.92038
\(7\) 2.20993i 0.835274i −0.908614 0.417637i \(-0.862858\pi\)
0.908614 0.417637i \(-0.137142\pi\)
\(8\) 8.33681i 2.94751i
\(9\) −0.106178 −0.0353926
\(10\) −5.66339 + 1.88251i −1.79092 + 0.595303i
\(11\) 2.86854 0.864897 0.432448 0.901659i \(-0.357650\pi\)
0.432448 + 0.901659i \(0.357650\pi\)
\(12\) 9.02996i 2.60672i
\(13\) 4.83675i 1.34147i 0.741696 + 0.670736i \(0.234022\pi\)
−0.741696 + 0.670736i \(0.765978\pi\)
\(14\) −5.89830 −1.57639
\(15\) 3.73974 1.24309i 0.965595 0.320964i
\(16\) 12.0038 3.00095
\(17\) 2.06280i 0.500304i 0.968207 + 0.250152i \(0.0804805\pi\)
−0.968207 + 0.250152i \(0.919519\pi\)
\(18\) 0.283389i 0.0667954i
\(19\) 0 0
\(20\) 3.61378 + 10.8718i 0.808065 + 2.43100i
\(21\) 3.89485 0.849926
\(22\) 7.65613i 1.63229i
\(23\) 4.40865i 0.919267i 0.888109 + 0.459634i \(0.152019\pi\)
−0.888109 + 0.459634i \(0.847981\pi\)
\(24\) −14.6931 −2.99921
\(25\) −4.00503 + 2.99328i −0.801007 + 0.598655i
\(26\) 12.9093 2.53172
\(27\) 5.10017i 0.981529i
\(28\) 11.3227i 2.13979i
\(29\) 8.08729 1.50177 0.750886 0.660432i \(-0.229627\pi\)
0.750886 + 0.660432i \(0.229627\pi\)
\(30\) −3.31781 9.98136i −0.605746 1.82234i
\(31\) −3.97776 −0.714427 −0.357213 0.934023i \(-0.616273\pi\)
−0.357213 + 0.934023i \(0.616273\pi\)
\(32\) 15.3646i 2.71610i
\(33\) 5.05561i 0.880069i
\(34\) 5.50563 0.944207
\(35\) −4.68927 + 1.55872i −0.792632 + 0.263471i
\(36\) 0.544010 0.0906683
\(37\) 9.05780i 1.48909i 0.667571 + 0.744546i \(0.267334\pi\)
−0.667571 + 0.744546i \(0.732666\pi\)
\(38\) 0 0
\(39\) −8.52446 −1.36501
\(40\) 17.6900 5.88015i 2.79703 0.929734i
\(41\) −1.21984 −0.190507 −0.0952537 0.995453i \(-0.530366\pi\)
−0.0952537 + 0.995453i \(0.530366\pi\)
\(42\) 10.3954i 1.60404i
\(43\) 5.13320i 0.782806i −0.920219 0.391403i \(-0.871990\pi\)
0.920219 0.391403i \(-0.128010\pi\)
\(44\) −14.6972 −2.21568
\(45\) 0.0748899 + 0.225300i 0.0111639 + 0.0335858i
\(46\) 11.7667 1.73490
\(47\) 2.50131i 0.364854i −0.983219 0.182427i \(-0.941605\pi\)
0.983219 0.182427i \(-0.0583953\pi\)
\(48\) 21.1559i 3.05360i
\(49\) 2.11623 0.302318
\(50\) 7.98906 + 10.6894i 1.12982 + 1.51172i
\(51\) −3.63556 −0.509080
\(52\) 24.7814i 3.43656i
\(53\) 1.22600i 0.168404i −0.996449 0.0842018i \(-0.973166\pi\)
0.996449 0.0842018i \(-0.0268340\pi\)
\(54\) 13.6124 1.85241
\(55\) −2.02325 6.08679i −0.272815 0.820743i
\(56\) 18.4237 2.46197
\(57\) 0 0
\(58\) 21.5850i 2.83425i
\(59\) 0.244718 0.0318596 0.0159298 0.999873i \(-0.494929\pi\)
0.0159298 + 0.999873i \(0.494929\pi\)
\(60\) −19.1608 + 6.36905i −2.47365 + 0.822241i
\(61\) 0.498155 0.0637823 0.0318911 0.999491i \(-0.489847\pi\)
0.0318911 + 0.999491i \(0.489847\pi\)
\(62\) 10.6166i 1.34832i
\(63\) 0.234645i 0.0295625i
\(64\) −17.0004 −2.12506
\(65\) 10.2632 3.41148i 1.27299 0.423142i
\(66\) 13.4934 1.66093
\(67\) 7.09797i 0.867155i −0.901116 0.433578i \(-0.857251\pi\)
0.901116 0.433578i \(-0.142749\pi\)
\(68\) 10.5689i 1.28167i
\(69\) −7.76996 −0.935393
\(70\) 4.16021 + 12.5157i 0.497241 + 1.49591i
\(71\) 9.59683 1.13893 0.569467 0.822014i \(-0.307150\pi\)
0.569467 + 0.822014i \(0.307150\pi\)
\(72\) 0.885185i 0.104320i
\(73\) 0.287288i 0.0336245i 0.999859 + 0.0168122i \(0.00535175\pi\)
−0.999859 + 0.0168122i \(0.994648\pi\)
\(74\) 24.1753 2.81032
\(75\) −5.27546 7.05861i −0.609157 0.815058i
\(76\) 0 0
\(77\) 6.33926i 0.722425i
\(78\) 22.7518i 2.57613i
\(79\) 15.8865 1.78737 0.893687 0.448691i \(-0.148110\pi\)
0.893687 + 0.448691i \(0.148110\pi\)
\(80\) −8.46658 25.4710i −0.946593 2.84775i
\(81\) −9.30726 −1.03414
\(82\) 3.25576i 0.359539i
\(83\) 5.70094i 0.625759i 0.949793 + 0.312879i \(0.101294\pi\)
−0.949793 + 0.312879i \(0.898706\pi\)
\(84\) −19.9555 −2.17733
\(85\) 4.37709 1.45495i 0.474762 0.157811i
\(86\) −13.7005 −1.47737
\(87\) 14.2533i 1.52812i
\(88\) 23.9144i 2.54929i
\(89\) 16.6834 1.76844 0.884220 0.467072i \(-0.154691\pi\)
0.884220 + 0.467072i \(0.154691\pi\)
\(90\) 0.601327 0.199881i 0.0633854 0.0210693i
\(91\) 10.6889 1.12050
\(92\) 22.5880i 2.35496i
\(93\) 7.01055i 0.726960i
\(94\) −6.67600 −0.688577
\(95\) 0 0
\(96\) 27.0791 2.76375
\(97\) 0.202690i 0.0205801i −0.999947 0.0102900i \(-0.996725\pi\)
0.999947 0.0102900i \(-0.00327548\pi\)
\(98\) 5.64821i 0.570556i
\(99\) −0.304575 −0.0306110
\(100\) 20.5201 15.3363i 2.05201 1.53363i
\(101\) 2.36522 0.235349 0.117674 0.993052i \(-0.462456\pi\)
0.117674 + 0.993052i \(0.462456\pi\)
\(102\) 9.70331i 0.960771i
\(103\) 1.07422i 0.105846i 0.998599 + 0.0529231i \(0.0168538\pi\)
−0.998599 + 0.0529231i \(0.983146\pi\)
\(104\) −40.3230 −3.95400
\(105\) −2.74713 8.26454i −0.268093 0.806536i
\(106\) −3.27219 −0.317823
\(107\) 0.186188i 0.0179994i 0.999960 + 0.00899972i \(0.00286474\pi\)
−0.999960 + 0.00899972i \(0.997135\pi\)
\(108\) 26.1311i 2.51446i
\(109\) −13.1387 −1.25846 −0.629229 0.777220i \(-0.716629\pi\)
−0.629229 + 0.777220i \(0.716629\pi\)
\(110\) −16.2457 + 5.40006i −1.54896 + 0.514875i
\(111\) −15.9638 −1.51522
\(112\) 26.5275i 2.50662i
\(113\) 4.36458i 0.410586i 0.978701 + 0.205293i \(0.0658147\pi\)
−0.978701 + 0.205293i \(0.934185\pi\)
\(114\) 0 0
\(115\) 9.35478 3.10953i 0.872337 0.289965i
\(116\) −41.4358 −3.84721
\(117\) 0.513556i 0.0474783i
\(118\) 0.653154i 0.0601277i
\(119\) 4.55864 0.417890
\(120\) 10.3634 + 31.1774i 0.946044 + 2.84610i
\(121\) −2.77149 −0.251953
\(122\) 1.32958i 0.120374i
\(123\) 2.14989i 0.193849i
\(124\) 20.3803 1.83021
\(125\) 9.17632 + 6.38710i 0.820755 + 0.571280i
\(126\) 0.626269 0.0557925
\(127\) 3.40581i 0.302217i −0.988517 0.151108i \(-0.951716\pi\)
0.988517 0.151108i \(-0.0482843\pi\)
\(128\) 14.6451i 1.29445i
\(129\) 9.04694 0.796538
\(130\) −9.10524 27.3924i −0.798582 2.40247i
\(131\) 0.573140 0.0500755 0.0250378 0.999687i \(-0.492029\pi\)
0.0250378 + 0.999687i \(0.492029\pi\)
\(132\) 25.9028i 2.25455i
\(133\) 0 0
\(134\) −18.9445 −1.63655
\(135\) 10.8221 3.59728i 0.931420 0.309604i
\(136\) −17.1972 −1.47465
\(137\) 4.82207i 0.411977i −0.978554 0.205988i \(-0.933959\pi\)
0.978554 0.205988i \(-0.0660409\pi\)
\(138\) 20.7380i 1.76534i
\(139\) 14.9925 1.27164 0.635822 0.771836i \(-0.280661\pi\)
0.635822 + 0.771836i \(0.280661\pi\)
\(140\) 24.0258 7.98618i 2.03055 0.674956i
\(141\) 4.40840 0.371254
\(142\) 25.6139i 2.14947i
\(143\) 13.8744i 1.16024i
\(144\) −1.27454 −0.106212
\(145\) −5.70416 17.1605i −0.473705 1.42510i
\(146\) 0.766771 0.0634584
\(147\) 3.72971i 0.307622i
\(148\) 46.4082i 3.81473i
\(149\) −12.6439 −1.03583 −0.517914 0.855433i \(-0.673291\pi\)
−0.517914 + 0.855433i \(0.673291\pi\)
\(150\) −18.8394 + 14.0802i −1.53823 + 1.14964i
\(151\) −11.0266 −0.897328 −0.448664 0.893701i \(-0.648100\pi\)
−0.448664 + 0.893701i \(0.648100\pi\)
\(152\) 0 0
\(153\) 0.219024i 0.0177071i
\(154\) −16.9195 −1.36341
\(155\) 2.80561 + 8.44046i 0.225352 + 0.677954i
\(156\) 43.6756 3.49685
\(157\) 22.4216i 1.78944i −0.446632 0.894718i \(-0.647377\pi\)
0.446632 0.894718i \(-0.352623\pi\)
\(158\) 42.4011i 3.37325i
\(159\) 2.16074 0.171358
\(160\) −32.6023 + 10.8370i −2.57744 + 0.856741i
\(161\) 9.74279 0.767840
\(162\) 24.8411i 1.95170i
\(163\) 1.74791i 0.136907i 0.997654 + 0.0684535i \(0.0218065\pi\)
−0.997654 + 0.0684535i \(0.978194\pi\)
\(164\) 6.24994 0.488039
\(165\) 10.7276 3.56585i 0.835141 0.277601i
\(166\) 15.2158 1.18098
\(167\) 21.0484i 1.62877i 0.580324 + 0.814386i \(0.302926\pi\)
−0.580324 + 0.814386i \(0.697074\pi\)
\(168\) 32.4706i 2.50516i
\(169\) −10.3941 −0.799549
\(170\) −3.88325 11.6825i −0.297832 0.896004i
\(171\) 0 0
\(172\) 26.3003i 2.00538i
\(173\) 11.6088i 0.882602i −0.897359 0.441301i \(-0.854517\pi\)
0.897359 0.441301i \(-0.145483\pi\)
\(174\) 38.0421 2.88397
\(175\) 6.61492 + 8.85083i 0.500041 + 0.669060i
\(176\) 34.4334 2.59551
\(177\) 0.431300i 0.0324185i
\(178\) 44.5281i 3.33752i
\(179\) −3.98091 −0.297547 −0.148774 0.988871i \(-0.547533\pi\)
−0.148774 + 0.988871i \(0.547533\pi\)
\(180\) −0.383704 1.15434i −0.0285996 0.0860396i
\(181\) −2.81859 −0.209504 −0.104752 0.994498i \(-0.533405\pi\)
−0.104752 + 0.994498i \(0.533405\pi\)
\(182\) 28.5286i 2.11468i
\(183\) 0.877967i 0.0649012i
\(184\) −36.7541 −2.70955
\(185\) 19.2199 6.38869i 1.41307 0.469706i
\(186\) −18.7112 −1.37197
\(187\) 5.91723i 0.432711i
\(188\) 12.8156i 0.934676i
\(189\) 11.2710 0.819845
\(190\) 0 0
\(191\) −19.8105 −1.43344 −0.716719 0.697362i \(-0.754357\pi\)
−0.716719 + 0.697362i \(0.754357\pi\)
\(192\) 29.9622i 2.16233i
\(193\) 5.52399i 0.397626i 0.980037 + 0.198813i \(0.0637086\pi\)
−0.980037 + 0.198813i \(0.936291\pi\)
\(194\) −0.540981 −0.0388402
\(195\) 6.01251 + 18.0882i 0.430565 + 1.29532i
\(196\) −10.8426 −0.774474
\(197\) 20.4993i 1.46051i 0.683173 + 0.730257i \(0.260600\pi\)
−0.683173 + 0.730257i \(0.739400\pi\)
\(198\) 0.812912i 0.0577712i
\(199\) 17.2575 1.22335 0.611677 0.791107i \(-0.290495\pi\)
0.611677 + 0.791107i \(0.290495\pi\)
\(200\) −24.9544 33.3892i −1.76454 2.36097i
\(201\) 12.5097 0.882367
\(202\) 6.31279i 0.444166i
\(203\) 17.8723i 1.25439i
\(204\) 18.6270 1.30415
\(205\) 0.860385 + 2.58840i 0.0600919 + 0.180782i
\(206\) 2.86710 0.199760
\(207\) 0.468101i 0.0325353i
\(208\) 58.0594i 4.02570i
\(209\) 0 0
\(210\) −22.0581 + 7.33211i −1.52215 + 0.505963i
\(211\) 21.2379 1.46207 0.731037 0.682337i \(-0.239036\pi\)
0.731037 + 0.682337i \(0.239036\pi\)
\(212\) 6.28148i 0.431414i
\(213\) 16.9138i 1.15891i
\(214\) 0.496935 0.0339698
\(215\) −10.8922 + 3.62057i −0.742843 + 0.246921i
\(216\) −42.5192 −2.89306
\(217\) 8.79056i 0.596742i
\(218\) 35.0672i 2.37505i
\(219\) −0.506326 −0.0342143
\(220\) 10.3663 + 31.1861i 0.698893 + 2.10257i
\(221\) −9.97726 −0.671143
\(222\) 42.6074i 2.85962i
\(223\) 28.8555i 1.93231i 0.257967 + 0.966154i \(0.416947\pi\)
−0.257967 + 0.966154i \(0.583053\pi\)
\(224\) −33.9546 −2.26869
\(225\) 0.425246 0.317820i 0.0283497 0.0211880i
\(226\) 11.6491 0.774885
\(227\) 8.42533i 0.559209i −0.960115 0.279604i \(-0.909797\pi\)
0.960115 0.279604i \(-0.0902033\pi\)
\(228\) 0 0
\(229\) −24.6658 −1.62996 −0.814981 0.579487i \(-0.803253\pi\)
−0.814981 + 0.579487i \(0.803253\pi\)
\(230\) −8.29934 24.9679i −0.547242 1.64633i
\(231\) 11.1725 0.735099
\(232\) 67.4221i 4.42648i
\(233\) 20.7240i 1.35768i 0.734287 + 0.678839i \(0.237516\pi\)
−0.734287 + 0.678839i \(0.762484\pi\)
\(234\) −1.37068 −0.0896042
\(235\) −5.30757 + 1.76424i −0.346227 + 0.115086i
\(236\) −1.25383 −0.0816175
\(237\) 27.9990i 1.81873i
\(238\) 12.1670i 0.788671i
\(239\) −10.4341 −0.674924 −0.337462 0.941339i \(-0.609569\pi\)
−0.337462 + 0.941339i \(0.609569\pi\)
\(240\) 44.8911 14.9218i 2.89771 0.963198i
\(241\) 20.0493 1.29149 0.645744 0.763554i \(-0.276548\pi\)
0.645744 + 0.763554i \(0.276548\pi\)
\(242\) 7.39710i 0.475504i
\(243\) 1.10292i 0.0707524i
\(244\) −2.55233 −0.163396
\(245\) −1.49263 4.49045i −0.0953604 0.286884i
\(246\) −5.73807 −0.365846
\(247\) 0 0
\(248\) 33.1618i 2.10578i
\(249\) −10.0475 −0.636736
\(250\) 17.0472 24.4916i 1.07816 1.54899i
\(251\) −0.614289 −0.0387736 −0.0193868 0.999812i \(-0.506171\pi\)
−0.0193868 + 0.999812i \(0.506171\pi\)
\(252\) 1.20222i 0.0757328i
\(253\) 12.6464i 0.795071i
\(254\) −9.09012 −0.570365
\(255\) 2.56425 + 7.71434i 0.160580 + 0.483091i
\(256\) 5.08679 0.317924
\(257\) 10.1007i 0.630064i 0.949081 + 0.315032i \(0.102015\pi\)
−0.949081 + 0.315032i \(0.897985\pi\)
\(258\) 24.1463i 1.50328i
\(259\) 20.0171 1.24380
\(260\) −52.5840 + 17.4789i −3.26112 + 1.08400i
\(261\) −0.858691 −0.0531517
\(262\) 1.52971i 0.0945060i
\(263\) 6.14445i 0.378883i −0.981892 0.189441i \(-0.939332\pi\)
0.981892 0.189441i \(-0.0606677\pi\)
\(264\) −42.1477 −2.59401
\(265\) −2.60146 + 0.864726i −0.159806 + 0.0531197i
\(266\) 0 0
\(267\) 29.4034i 1.79946i
\(268\) 36.3669i 2.22146i
\(269\) −23.0791 −1.40716 −0.703579 0.710617i \(-0.748416\pi\)
−0.703579 + 0.710617i \(0.748416\pi\)
\(270\) −9.60114 28.8843i −0.584307 1.75784i
\(271\) 13.7769 0.836885 0.418443 0.908243i \(-0.362576\pi\)
0.418443 + 0.908243i \(0.362576\pi\)
\(272\) 24.7615i 1.50139i
\(273\) 18.8384i 1.14015i
\(274\) −12.8701 −0.777511
\(275\) −11.4886 + 8.58633i −0.692788 + 0.517775i
\(276\) 39.8099 2.39628
\(277\) 18.2471i 1.09636i −0.836360 0.548181i \(-0.815321\pi\)
0.836360 0.548181i \(-0.184679\pi\)
\(278\) 40.0149i 2.39993i
\(279\) 0.422350 0.0252855
\(280\) −12.9947 39.0936i −0.776582 2.33629i
\(281\) −20.3990 −1.21690 −0.608451 0.793591i \(-0.708209\pi\)
−0.608451 + 0.793591i \(0.708209\pi\)
\(282\) 11.7660i 0.700656i
\(283\) 19.5454i 1.16186i 0.813955 + 0.580928i \(0.197310\pi\)
−0.813955 + 0.580928i \(0.802690\pi\)
\(284\) −49.1700 −2.91770
\(285\) 0 0
\(286\) 37.0308 2.18968
\(287\) 2.69576i 0.159126i
\(288\) 1.63138i 0.0961299i
\(289\) 12.7448 0.749696
\(290\) −45.8015 + 15.2244i −2.68955 + 0.894009i
\(291\) 0.357229 0.0209411
\(292\) 1.47194i 0.0861386i
\(293\) 9.22402i 0.538873i −0.963018 0.269436i \(-0.913163\pi\)
0.963018 0.269436i \(-0.0868374\pi\)
\(294\) 9.95461 0.580565
\(295\) −0.172606 0.519271i −0.0100495 0.0302331i
\(296\) −75.5131 −4.38911
\(297\) 14.6300i 0.848921i
\(298\) 33.7466i 1.95489i
\(299\) −21.3235 −1.23317
\(300\) 27.0292 + 36.1653i 1.56053 + 2.08800i
\(301\) −11.3440 −0.653857
\(302\) 29.4299i 1.69350i
\(303\) 4.16855i 0.239477i
\(304\) 0 0
\(305\) −0.351361 1.05704i −0.0201189 0.0605261i
\(306\) −0.584576 −0.0334180
\(307\) 7.75219i 0.442441i 0.975224 + 0.221220i \(0.0710040\pi\)
−0.975224 + 0.221220i \(0.928996\pi\)
\(308\) 32.4796i 1.85070i
\(309\) −1.89325 −0.107703
\(310\) 22.5276 7.48818i 1.27948 0.425300i
\(311\) 24.8427 1.40870 0.704350 0.709853i \(-0.251239\pi\)
0.704350 + 0.709853i \(0.251239\pi\)
\(312\) 71.0667i 4.02336i
\(313\) 5.79256i 0.327415i 0.986509 + 0.163707i \(0.0523453\pi\)
−0.986509 + 0.163707i \(0.947655\pi\)
\(314\) −59.8432 −3.37715
\(315\) 0.497897 0.165501i 0.0280533 0.00932493i
\(316\) −81.3957 −4.57886
\(317\) 4.59924i 0.258319i −0.991624 0.129159i \(-0.958772\pi\)
0.991624 0.129159i \(-0.0412279\pi\)
\(318\) 5.76702i 0.323398i
\(319\) 23.1987 1.29888
\(320\) 11.9908 + 36.0735i 0.670308 + 2.01657i
\(321\) −0.328144 −0.0183152
\(322\) 26.0035i 1.44912i
\(323\) 0 0
\(324\) 47.6864 2.64924
\(325\) −14.4777 19.3713i −0.803080 1.07453i
\(326\) 4.66518 0.258380
\(327\) 23.1561i 1.28053i
\(328\) 10.1696i 0.561522i
\(329\) −5.52771 −0.304753
\(330\) −9.51725 28.6319i −0.523908 1.57613i
\(331\) 7.39548 0.406493 0.203246 0.979128i \(-0.434851\pi\)
0.203246 + 0.979128i \(0.434851\pi\)
\(332\) 29.2091i 1.60306i
\(333\) 0.961738i 0.0527029i
\(334\) 56.1781 3.07393
\(335\) −15.0613 + 5.00637i −0.822886 + 0.273527i
\(336\) 46.7531 2.55059
\(337\) 16.6765i 0.908425i −0.890893 0.454212i \(-0.849921\pi\)
0.890893 0.454212i \(-0.150079\pi\)
\(338\) 27.7420i 1.50896i
\(339\) −7.69230 −0.417788
\(340\) −22.4263 + 7.45452i −1.21624 + 0.404278i
\(341\) −11.4104 −0.617906
\(342\) 0 0
\(343\) 20.1462i 1.08779i
\(344\) 42.7945 2.30733
\(345\) 5.48035 + 16.4872i 0.295052 + 0.887640i
\(346\) −30.9840 −1.66571
\(347\) 36.0300i 1.93419i −0.254417 0.967095i \(-0.581884\pi\)
0.254417 0.967095i \(-0.418116\pi\)
\(348\) 73.0278i 3.91470i
\(349\) 23.6370 1.26526 0.632629 0.774455i \(-0.281976\pi\)
0.632629 + 0.774455i \(0.281976\pi\)
\(350\) 23.6229 17.6552i 1.26270 0.943712i
\(351\) −24.6683 −1.31669
\(352\) 44.0739i 2.34914i
\(353\) 33.9305i 1.80594i 0.429708 + 0.902968i \(0.358617\pi\)
−0.429708 + 0.902968i \(0.641383\pi\)
\(354\) 1.15114 0.0611825
\(355\) −6.76888 20.3636i −0.359255 1.08079i
\(356\) −85.4786 −4.53036
\(357\) 8.03432i 0.425221i
\(358\) 10.6251i 0.561551i
\(359\) 9.28731 0.490165 0.245083 0.969502i \(-0.421185\pi\)
0.245083 + 0.969502i \(0.421185\pi\)
\(360\) −1.87829 + 0.624343i −0.0989943 + 0.0329057i
\(361\) 0 0
\(362\) 7.52282i 0.395391i
\(363\) 4.88457i 0.256373i
\(364\) −54.7651 −2.87047
\(365\) 0.609600 0.202631i 0.0319079 0.0106062i
\(366\) 2.34329 0.122486
\(367\) 11.4283i 0.596555i 0.954479 + 0.298277i \(0.0964120\pi\)
−0.954479 + 0.298277i \(0.903588\pi\)
\(368\) 52.9206i 2.75868i
\(369\) 0.129520 0.00674256
\(370\) −17.0514 51.2978i −0.886461 2.66685i
\(371\) −2.70936 −0.140663
\(372\) 35.9190i 1.86231i
\(373\) 25.7467i 1.33312i 0.745454 + 0.666558i \(0.232233\pi\)
−0.745454 + 0.666558i \(0.767767\pi\)
\(374\) 15.7931 0.816642
\(375\) −11.2569 + 16.1727i −0.581302 + 0.835153i
\(376\) 20.8529 1.07541
\(377\) 39.1162i 2.01459i
\(378\) 30.0823i 1.54727i
\(379\) 20.3628 1.04597 0.522984 0.852343i \(-0.324819\pi\)
0.522984 + 0.852343i \(0.324819\pi\)
\(380\) 0 0
\(381\) 6.00252 0.307519
\(382\) 52.8742i 2.70528i
\(383\) 18.1004i 0.924886i 0.886649 + 0.462443i \(0.153027\pi\)
−0.886649 + 0.462443i \(0.846973\pi\)
\(384\) −25.8110 −1.31716
\(385\) −13.4514 + 4.47123i −0.685545 + 0.227875i
\(386\) 14.7435 0.750426
\(387\) 0.545033i 0.0277056i
\(388\) 1.03850i 0.0527217i
\(389\) 30.3016 1.53635 0.768175 0.640239i \(-0.221165\pi\)
0.768175 + 0.640239i \(0.221165\pi\)
\(390\) 48.2773 16.0474i 2.44462 0.812591i
\(391\) −9.09418 −0.459913
\(392\) 17.6426i 0.891084i
\(393\) 1.01012i 0.0509540i
\(394\) 54.7126 2.75638
\(395\) −11.2052 33.7098i −0.563793 1.69613i
\(396\) 1.56051 0.0784187
\(397\) 3.57059i 0.179203i 0.995978 + 0.0896015i \(0.0285593\pi\)
−0.995978 + 0.0896015i \(0.971441\pi\)
\(398\) 46.0604i 2.30880i
\(399\) 0 0
\(400\) −48.0757 + 35.9307i −2.40378 + 1.79654i
\(401\) −0.553079 −0.0276194 −0.0138097 0.999905i \(-0.504396\pi\)
−0.0138097 + 0.999905i \(0.504396\pi\)
\(402\) 33.3884i 1.66526i
\(403\) 19.2394i 0.958384i
\(404\) −12.1184 −0.602912
\(405\) 6.56464 + 19.7492i 0.326200 + 0.981346i
\(406\) −47.7012 −2.36737
\(407\) 25.9826i 1.28791i
\(408\) 30.3089i 1.50052i
\(409\) 2.56270 0.126718 0.0633588 0.997991i \(-0.479819\pi\)
0.0633588 + 0.997991i \(0.479819\pi\)
\(410\) 6.90844 2.29637i 0.341184 0.113410i
\(411\) 8.49858 0.419204
\(412\) 5.50385i 0.271155i
\(413\) 0.540810i 0.0266115i
\(414\) −1.24936 −0.0614028
\(415\) 12.0969 4.02101i 0.593813 0.197384i
\(416\) 74.3146 3.64357
\(417\) 26.4232i 1.29395i
\(418\) 0 0
\(419\) 9.01138 0.440235 0.220117 0.975473i \(-0.429356\pi\)
0.220117 + 0.975473i \(0.429356\pi\)
\(420\) 14.0751 + 42.3439i 0.686796 + 2.06617i
\(421\) −8.61610 −0.419923 −0.209962 0.977710i \(-0.567334\pi\)
−0.209962 + 0.977710i \(0.567334\pi\)
\(422\) 56.6839i 2.75933i
\(423\) 0.265584i 0.0129131i
\(424\) 10.2209 0.496371
\(425\) −6.17454 8.26160i −0.299509 0.400747i
\(426\) 45.1429 2.18718
\(427\) 1.10089i 0.0532756i
\(428\) 0.953945i 0.0461107i
\(429\) −24.4527 −1.18059
\(430\) 9.66332 + 29.0713i 0.466007 + 1.40194i
\(431\) 5.21526 0.251210 0.125605 0.992080i \(-0.459913\pi\)
0.125605 + 0.992080i \(0.459913\pi\)
\(432\) 61.2215i 2.94552i
\(433\) 5.17272i 0.248585i −0.992246 0.124293i \(-0.960334\pi\)
0.992246 0.124293i \(-0.0396661\pi\)
\(434\) 23.4620 1.12621
\(435\) 30.2443 10.0532i 1.45010 0.482015i
\(436\) 67.3170 3.22390
\(437\) 0 0
\(438\) 1.35138i 0.0645716i
\(439\) 16.1031 0.768560 0.384280 0.923217i \(-0.374450\pi\)
0.384280 + 0.923217i \(0.374450\pi\)
\(440\) 50.7444 16.8675i 2.41914 0.804124i
\(441\) −0.224697 −0.0106998
\(442\) 26.6293i 1.26663i
\(443\) 12.1169i 0.575693i −0.957677 0.287846i \(-0.907061\pi\)
0.957677 0.287846i \(-0.0929393\pi\)
\(444\) 81.7915 3.88165
\(445\) −11.7672 35.4008i −0.557820 1.67816i
\(446\) 77.0154 3.64678
\(447\) 22.2841i 1.05400i
\(448\) 37.5697i 1.77500i
\(449\) 7.07384 0.333835 0.166918 0.985971i \(-0.446619\pi\)
0.166918 + 0.985971i \(0.446619\pi\)
\(450\) −0.848262 1.13498i −0.0399874 0.0535036i
\(451\) −3.49916 −0.164769
\(452\) 22.3622i 1.05183i
\(453\) 19.4336i 0.913069i
\(454\) −22.4872 −1.05538
\(455\) −7.53911 22.6808i −0.353439 1.06329i
\(456\) 0 0
\(457\) 26.3810i 1.23405i −0.786942 0.617027i \(-0.788337\pi\)
0.786942 0.617027i \(-0.211663\pi\)
\(458\) 65.8331i 3.07618i
\(459\) −10.5207 −0.491062
\(460\) −47.9298 + 15.9319i −2.23474 + 0.742828i
\(461\) −9.59005 −0.446653 −0.223327 0.974744i \(-0.571692\pi\)
−0.223327 + 0.974744i \(0.571692\pi\)
\(462\) 29.8195i 1.38733i
\(463\) 6.50235i 0.302190i −0.988519 0.151095i \(-0.951720\pi\)
0.988519 0.151095i \(-0.0482799\pi\)
\(464\) 97.0783 4.50674
\(465\) −14.8758 + 4.94471i −0.689847 + 0.229305i
\(466\) 55.3125 2.56230
\(467\) 8.71364i 0.403219i 0.979466 + 0.201610i \(0.0646172\pi\)
−0.979466 + 0.201610i \(0.935383\pi\)
\(468\) 2.63124i 0.121629i
\(469\) −15.6860 −0.724312
\(470\) 4.70875 + 14.1659i 0.217198 + 0.653424i
\(471\) 39.5165 1.82083
\(472\) 2.04017i 0.0939064i
\(473\) 14.7248i 0.677047i
\(474\) 74.7293 3.43243
\(475\) 0 0
\(476\) −23.3565 −1.07054
\(477\) 0.130174i 0.00596025i
\(478\) 27.8486i 1.27376i
\(479\) −27.3003 −1.24738 −0.623692 0.781670i \(-0.714368\pi\)
−0.623692 + 0.781670i \(0.714368\pi\)
\(480\) −19.0995 57.4594i −0.871770 2.62265i
\(481\) −43.8103 −1.99758
\(482\) 53.5115i 2.43738i
\(483\) 17.1710i 0.781309i
\(484\) 14.1999 0.645450
\(485\) −0.430092 + 0.142963i −0.0195294 + 0.00649159i
\(486\) −2.94370 −0.133529
\(487\) 35.5582i 1.61129i −0.592395 0.805647i \(-0.701818\pi\)
0.592395 0.805647i \(-0.298182\pi\)
\(488\) 4.15302i 0.187999i
\(489\) −3.08058 −0.139309
\(490\) −11.9850 + 3.98382i −0.541428 + 0.179971i
\(491\) 41.5813 1.87654 0.938269 0.345906i \(-0.112428\pi\)
0.938269 + 0.345906i \(0.112428\pi\)
\(492\) 11.0151i 0.496600i
\(493\) 16.6825i 0.751342i
\(494\) 0 0
\(495\) 0.214825 + 0.646283i 0.00965565 + 0.0290483i
\(496\) −47.7483 −2.14396
\(497\) 21.2083i 0.951321i
\(498\) 26.8169i 1.20169i
\(499\) 27.1248 1.21427 0.607136 0.794598i \(-0.292318\pi\)
0.607136 + 0.794598i \(0.292318\pi\)
\(500\) −47.0155 32.7248i −2.10260 1.46350i
\(501\) −37.0964 −1.65734
\(502\) 1.63954i 0.0731762i
\(503\) 34.8198i 1.55254i −0.630401 0.776269i \(-0.717110\pi\)
0.630401 0.776269i \(-0.282890\pi\)
\(504\) −1.95619 −0.0871358
\(505\) −1.66825 5.01880i −0.0742362 0.223334i
\(506\) 33.7532 1.50051
\(507\) 18.3190i 0.813575i
\(508\) 17.4499i 0.774215i
\(509\) −41.2656 −1.82907 −0.914533 0.404512i \(-0.867441\pi\)
−0.914533 + 0.404512i \(0.867441\pi\)
\(510\) 20.5896 6.84398i 0.911722 0.303057i
\(511\) 0.634884 0.0280856
\(512\) 15.7135i 0.694443i
\(513\) 0 0
\(514\) 26.9588 1.18910
\(515\) 2.27941 0.757675i 0.100443 0.0333871i
\(516\) −46.3526 −2.04056
\(517\) 7.17511i 0.315561i
\(518\) 53.4256i 2.34738i
\(519\) 20.4598 0.898085
\(520\) 28.4408 + 85.5620i 1.24721 + 3.75214i
\(521\) −33.5554 −1.47009 −0.735045 0.678018i \(-0.762839\pi\)
−0.735045 + 0.678018i \(0.762839\pi\)
\(522\) 2.29185i 0.100311i
\(523\) 2.43983i 0.106687i 0.998576 + 0.0533433i \(0.0169877\pi\)
−0.998576 + 0.0533433i \(0.983012\pi\)
\(524\) −2.93652 −0.128283
\(525\) −15.5990 + 11.6584i −0.680797 + 0.508813i
\(526\) −16.3995 −0.715054
\(527\) 8.20534i 0.357430i
\(528\) 60.6866i 2.64105i
\(529\) 3.56380 0.154948
\(530\) 2.30795 + 6.94330i 0.100251 + 0.301598i
\(531\) −0.0259837 −0.00112760
\(532\) 0 0
\(533\) 5.90007i 0.255560i
\(534\) 78.4778 3.39607
\(535\) 0.395074 0.131323i 0.0170805 0.00567758i
\(536\) 59.1744 2.55594
\(537\) 7.01609i 0.302767i
\(538\) 61.5981i 2.65568i
\(539\) 6.07048 0.261474
\(540\) −55.4479 + 18.4309i −2.38610 + 0.793140i
\(541\) −27.7635 −1.19365 −0.596823 0.802373i \(-0.703571\pi\)
−0.596823 + 0.802373i \(0.703571\pi\)
\(542\) 36.7705i 1.57943i
\(543\) 4.96758i 0.213179i
\(544\) 31.6941 1.35887
\(545\) 9.26704 + 27.8792i 0.396957 + 1.19421i
\(546\) 50.2798 2.15177
\(547\) 25.2149i 1.07811i 0.842270 + 0.539056i \(0.181219\pi\)
−0.842270 + 0.539056i \(0.818781\pi\)
\(548\) 24.7062i 1.05540i
\(549\) −0.0528931 −0.00225742
\(550\) 22.9169 + 30.6631i 0.977181 + 1.30748i
\(551\) 0 0
\(552\) 64.7767i 2.75708i
\(553\) 35.1080i 1.49295i
\(554\) −48.7015 −2.06913
\(555\) 11.2597 + 33.8738i 0.477946 + 1.43786i
\(556\) −76.8148 −3.25767
\(557\) 18.0110i 0.763151i −0.924338 0.381576i \(-0.875382\pi\)
0.924338 0.381576i \(-0.124618\pi\)
\(558\) 1.12725i 0.0477205i
\(559\) 24.8280 1.05011
\(560\) −56.2891 + 18.7105i −2.37865 + 0.790664i
\(561\) −10.4287 −0.440302
\(562\) 54.4450i 2.29662i
\(563\) 8.99696i 0.379177i −0.981864 0.189588i \(-0.939285\pi\)
0.981864 0.189588i \(-0.0607154\pi\)
\(564\) −22.5867 −0.951073
\(565\) 9.26127 3.07845i 0.389625 0.129511i
\(566\) 52.1668 2.19273
\(567\) 20.5684i 0.863790i
\(568\) 80.0069i 3.35701i
\(569\) −25.4166 −1.06552 −0.532759 0.846267i \(-0.678845\pi\)
−0.532759 + 0.846267i \(0.678845\pi\)
\(570\) 0 0
\(571\) 16.9476 0.709233 0.354617 0.935012i \(-0.384611\pi\)
0.354617 + 0.935012i \(0.384611\pi\)
\(572\) 71.0864i 2.97227i
\(573\) 34.9147i 1.45858i
\(574\) 7.19499 0.300313
\(575\) −13.1963 17.6568i −0.550324 0.736339i
\(576\) 1.80507 0.0752113
\(577\) 25.1670i 1.04772i 0.851805 + 0.523859i \(0.175508\pi\)
−0.851805 + 0.523859i \(0.824492\pi\)
\(578\) 34.0160i 1.41488i
\(579\) −9.73568 −0.404601
\(580\) 29.2257 + 87.9231i 1.21353 + 3.65081i
\(581\) 12.5986 0.522680
\(582\) 0.953444i 0.0395215i
\(583\) 3.51682i 0.145652i
\(584\) −2.39506 −0.0991083
\(585\) −1.08972 + 0.362224i −0.0450544 + 0.0149761i
\(586\) −24.6189 −1.01700
\(587\) 1.13849i 0.0469903i −0.999724 0.0234952i \(-0.992521\pi\)
0.999724 0.0234952i \(-0.00747943\pi\)
\(588\) 19.1094i 0.788060i
\(589\) 0 0
\(590\) −1.38594 + 0.460685i −0.0570581 + 0.0189661i
\(591\) −36.1287 −1.48613
\(592\) 108.728i 4.46870i
\(593\) 5.56477i 0.228518i 0.993451 + 0.114259i \(0.0364494\pi\)
−0.993451 + 0.114259i \(0.963551\pi\)
\(594\) 39.0476 1.60214
\(595\) −3.21532 9.67305i −0.131815 0.396556i
\(596\) 64.7819 2.65357
\(597\) 30.4153i 1.24482i
\(598\) 56.9125i 2.32733i
\(599\) 10.5181 0.429758 0.214879 0.976641i \(-0.431064\pi\)
0.214879 + 0.976641i \(0.431064\pi\)
\(600\) 58.8463 43.9804i 2.40239 1.79549i
\(601\) 36.9336 1.50655 0.753277 0.657703i \(-0.228472\pi\)
0.753277 + 0.657703i \(0.228472\pi\)
\(602\) 30.2771i 1.23400i
\(603\) 0.753648i 0.0306909i
\(604\) 56.4953 2.29876
\(605\) 1.95480 + 5.88086i 0.0794739 + 0.239091i
\(606\) 11.1259 0.451958
\(607\) 31.6955i 1.28648i 0.765665 + 0.643240i \(0.222410\pi\)
−0.765665 + 0.643240i \(0.777590\pi\)
\(608\) 0 0
\(609\) 31.4988 1.27640
\(610\) −2.82125 + 0.937784i −0.114229 + 0.0379697i
\(611\) 12.0982 0.489441
\(612\) 1.12219i 0.0453617i
\(613\) 24.7004i 0.997641i 0.866705 + 0.498820i \(0.166233\pi\)
−0.866705 + 0.498820i \(0.833767\pi\)
\(614\) 20.6906 0.835004
\(615\) −4.56189 + 1.51637i −0.183953 + 0.0611460i
\(616\) 52.8492 2.12935
\(617\) 17.9984i 0.724589i −0.932064 0.362294i \(-0.881994\pi\)
0.932064 0.362294i \(-0.118006\pi\)
\(618\) 5.05308i 0.203265i
\(619\) −32.0927 −1.28991 −0.644957 0.764219i \(-0.723125\pi\)
−0.644957 + 0.764219i \(0.723125\pi\)
\(620\) −14.3747 43.2453i −0.577304 1.73677i
\(621\) −22.4849 −0.902287
\(622\) 66.3052i 2.65860i
\(623\) 36.8691i 1.47713i
\(624\) −102.326 −4.09632
\(625\) 7.08060 23.9763i 0.283224 0.959054i
\(626\) 15.4603 0.617920
\(627\) 0 0
\(628\) 114.878i 4.58415i
\(629\) −18.6845 −0.744998
\(630\) −0.441723 1.32889i −0.0175987 0.0529442i
\(631\) −6.97644 −0.277728 −0.138864 0.990311i \(-0.544345\pi\)
−0.138864 + 0.990311i \(0.544345\pi\)
\(632\) 132.443i 5.26829i
\(633\) 37.4304i 1.48772i
\(634\) −12.2754 −0.487517
\(635\) −7.22684 + 2.40220i −0.286788 + 0.0953285i
\(636\) −11.0707 −0.438982
\(637\) 10.2357i 0.405551i
\(638\) 61.9173i 2.45133i
\(639\) −1.01897 −0.0403099
\(640\) 31.0755 10.3295i 1.22837 0.408310i
\(641\) −27.8888 −1.10154 −0.550770 0.834657i \(-0.685666\pi\)
−0.550770 + 0.834657i \(0.685666\pi\)
\(642\) 0.875816i 0.0345657i
\(643\) 6.24974i 0.246466i −0.992378 0.123233i \(-0.960674\pi\)
0.992378 0.123233i \(-0.0393262\pi\)
\(644\) −49.9179 −1.96704
\(645\) −6.38103 19.1968i −0.251253 0.755874i
\(646\) 0 0
\(647\) 22.1840i 0.872142i 0.899912 + 0.436071i \(0.143630\pi\)
−0.899912 + 0.436071i \(0.856370\pi\)
\(648\) 77.5928i 3.04813i
\(649\) 0.701984 0.0275553
\(650\) −51.7021 + 38.6411i −2.02792 + 1.51563i
\(651\) −15.4928 −0.607210
\(652\) 8.95554i 0.350726i
\(653\) 11.3373i 0.443664i −0.975085 0.221832i \(-0.928796\pi\)
0.975085 0.221832i \(-0.0712036\pi\)
\(654\) −61.8036 −2.41671
\(655\) −0.404250 1.21615i −0.0157954 0.0475191i
\(656\) −14.6428 −0.571704
\(657\) 0.0305036i 0.00119006i
\(658\) 14.7535i 0.575150i
\(659\) −26.6149 −1.03677 −0.518385 0.855147i \(-0.673467\pi\)
−0.518385 + 0.855147i \(0.673467\pi\)
\(660\) −54.9635 + 18.2699i −2.13945 + 0.711154i
\(661\) −45.7240 −1.77846 −0.889228 0.457465i \(-0.848758\pi\)
−0.889228 + 0.457465i \(0.848758\pi\)
\(662\) 19.7386i 0.767161i
\(663\) 17.5843i 0.682917i
\(664\) −47.5276 −1.84443
\(665\) 0 0
\(666\) −2.56688 −0.0994646
\(667\) 35.6540i 1.38053i
\(668\) 107.843i 4.17256i
\(669\) −50.8560 −1.96620
\(670\) 13.3620 + 40.1986i 0.516220 + 1.55301i
\(671\) 1.42898 0.0551651
\(672\) 59.8427i 2.30848i
\(673\) 25.6435i 0.988484i −0.869324 0.494242i \(-0.835446\pi\)
0.869324 0.494242i \(-0.164554\pi\)
\(674\) −44.5095 −1.71444
\(675\) −15.2662 20.4264i −0.587597 0.786211i
\(676\) 53.2550 2.04827
\(677\) 7.17287i 0.275676i 0.990455 + 0.137838i \(0.0440153\pi\)
−0.990455 + 0.137838i \(0.955985\pi\)
\(678\) 20.5307i 0.788479i
\(679\) −0.447931 −0.0171900
\(680\) 12.1296 + 36.4910i 0.465149 + 1.39936i
\(681\) 14.8491 0.569019
\(682\) 30.4543i 1.16615i
\(683\) 6.25807i 0.239458i 0.992807 + 0.119729i \(0.0382026\pi\)
−0.992807 + 0.119729i \(0.961797\pi\)
\(684\) 0 0
\(685\) −10.2320 + 3.40112i −0.390945 + 0.129950i
\(686\) −53.7702 −2.05296
\(687\) 43.4719i 1.65856i
\(688\) 61.6180i 2.34916i
\(689\) 5.92984 0.225909
\(690\) 44.0043 14.6270i 1.67522 0.556842i
\(691\) −19.4240 −0.738925 −0.369463 0.929246i \(-0.620458\pi\)
−0.369463 + 0.929246i \(0.620458\pi\)
\(692\) 59.4786i 2.26104i
\(693\) 0.673089i 0.0255685i
\(694\) −96.1640 −3.65034
\(695\) −10.5745 31.8127i −0.401115 1.20672i
\(696\) −118.827 −4.50413
\(697\) 2.51630i 0.0953115i
\(698\) 63.0872i 2.38788i
\(699\) −36.5248 −1.38149
\(700\) −33.8920 45.3478i −1.28100 1.71399i
\(701\) 9.49134 0.358483 0.179241 0.983805i \(-0.442636\pi\)
0.179241 + 0.983805i \(0.442636\pi\)
\(702\) 65.8396i 2.48496i
\(703\) 0 0
\(704\) −48.7664 −1.83795
\(705\) −3.10935 9.35424i −0.117105 0.352301i
\(706\) 90.5604 3.40829
\(707\) 5.22697i 0.196580i
\(708\) 2.20980i 0.0830492i
\(709\) 21.9473 0.824246 0.412123 0.911128i \(-0.364787\pi\)
0.412123 + 0.911128i \(0.364787\pi\)
\(710\) −54.3506 + 18.0661i −2.03974 + 0.678011i
\(711\) −1.68680 −0.0632599
\(712\) 139.086i 5.21248i
\(713\) 17.5366i 0.656749i
\(714\) 21.4436 0.802507
\(715\) 29.4403 9.78596i 1.10100 0.365974i
\(716\) 20.3965 0.762251
\(717\) 18.3894i 0.686764i
\(718\) 24.7878i 0.925074i
\(719\) 3.61331 0.134754 0.0673768 0.997728i \(-0.478537\pi\)
0.0673768 + 0.997728i \(0.478537\pi\)
\(720\) 0.898964 + 2.70446i 0.0335024 + 0.100789i
\(721\) 2.37395 0.0884105
\(722\) 0 0
\(723\) 35.3355i 1.31414i
\(724\) 14.4412 0.536704
\(725\) −32.3899 + 24.2075i −1.20293 + 0.899043i
\(726\) −13.0369 −0.483845
\(727\) 41.1295i 1.52541i −0.646747 0.762705i \(-0.723871\pi\)
0.646747 0.762705i \(-0.276129\pi\)
\(728\) 89.1109i 3.30267i
\(729\) −25.9780 −0.962146
\(730\) −0.540823 1.62702i −0.0200167 0.0602188i
\(731\) 10.5888 0.391641
\(732\) 4.49832i 0.166263i
\(733\) 26.4052i 0.975297i −0.873040 0.487648i \(-0.837855\pi\)
0.873040 0.487648i \(-0.162145\pi\)
\(734\) 30.5023 1.12586
\(735\) 7.91413 2.63066i 0.291917 0.0970333i
\(736\) 67.7370 2.49682
\(737\) 20.3608i 0.750000i
\(738\) 0.345690i 0.0127250i
\(739\) 16.0961 0.592106 0.296053 0.955172i \(-0.404330\pi\)
0.296053 + 0.955172i \(0.404330\pi\)
\(740\) −98.4743 + 32.7329i −3.61999 + 1.20328i
\(741\) 0 0
\(742\) 7.23129i 0.265469i
\(743\) 51.0206i 1.87176i −0.352315 0.935882i \(-0.614605\pi\)
0.352315 0.935882i \(-0.385395\pi\)
\(744\) 58.4456 2.14272
\(745\) 8.91805 + 26.8293i 0.326732 + 0.982948i
\(746\) 68.7181 2.51595
\(747\) 0.605314i 0.0221473i
\(748\) 30.3173i 1.10851i
\(749\) 0.411461 0.0150345
\(750\) 43.1649 + 30.0446i 1.57616 + 1.09707i
\(751\) −7.88161 −0.287604 −0.143802 0.989606i \(-0.545933\pi\)
−0.143802 + 0.989606i \(0.545933\pi\)
\(752\) 30.0253i 1.09491i
\(753\) 1.08264i 0.0394538i
\(754\) 104.401 3.80206
\(755\) 7.77730 + 23.3974i 0.283045 + 0.851518i
\(756\) −57.7478 −2.10027
\(757\) 31.9261i 1.16037i 0.814484 + 0.580186i \(0.197020\pi\)
−0.814484 + 0.580186i \(0.802980\pi\)
\(758\) 54.3484i 1.97402i
\(759\) −22.2884 −0.809019
\(760\) 0 0
\(761\) 21.6563 0.785039 0.392519 0.919744i \(-0.371604\pi\)
0.392519 + 0.919744i \(0.371604\pi\)
\(762\) 16.0207i 0.580370i
\(763\) 29.0355i 1.05116i
\(764\) 101.500 3.67216
\(765\) −0.464751 + 0.154483i −0.0168031 + 0.00558535i
\(766\) 48.3099 1.74551
\(767\) 1.18364i 0.0427388i
\(768\) 8.96514i 0.323502i
\(769\) −14.8767 −0.536467 −0.268233 0.963354i \(-0.586440\pi\)
−0.268233 + 0.963354i \(0.586440\pi\)
\(770\) 11.9337 + 35.9017i 0.430062 + 1.29381i
\(771\) −17.8018 −0.641117
\(772\) 28.3025i 1.01863i
\(773\) 1.66685i 0.0599524i −0.999551 0.0299762i \(-0.990457\pi\)
0.999551 0.0299762i \(-0.00954314\pi\)
\(774\) 1.45469 0.0522879
\(775\) 15.9311 11.9065i 0.572261 0.427695i
\(776\) 1.68979 0.0606599
\(777\) 35.2788i 1.26562i
\(778\) 80.8749i 2.89951i
\(779\) 0 0
\(780\) −30.8055 92.6759i −1.10301 3.31833i
\(781\) 27.5289 0.985060
\(782\) 24.2724i 0.867979i
\(783\) 41.2466i 1.47403i
\(784\) 25.4028 0.907242
\(785\) −47.5766 + 15.8145i −1.69808 + 0.564443i
\(786\) 2.69602 0.0961638
\(787\) 4.38273i 0.156228i 0.996944 + 0.0781138i \(0.0248898\pi\)
−0.996944 + 0.0781138i \(0.975110\pi\)
\(788\) 105.029i 3.74152i
\(789\) 10.8292 0.385530
\(790\) −89.9716 + 29.9066i −3.20104 + 1.06403i
\(791\) 9.64541 0.342951
\(792\) 2.53919i 0.0902261i
\(793\) 2.40945i 0.0855621i
\(794\) 9.52992 0.338204
\(795\) −1.52402 4.58490i −0.0540515 0.162610i
\(796\) −88.4202 −3.13397
\(797\) 9.86857i 0.349563i 0.984607 + 0.174781i \(0.0559218\pi\)
−0.984607 + 0.174781i \(0.944078\pi\)
\(798\) 0 0
\(799\) 5.15972 0.182538
\(800\) 45.9904 + 61.5356i 1.62601 + 2.17561i
\(801\) −1.77141 −0.0625897
\(802\) 1.47617i 0.0521253i
\(803\) 0.824096i 0.0290817i
\(804\) −64.0944 −2.26043
\(805\) −6.87183 20.6734i −0.242200 0.728640i
\(806\) −51.3501 −1.80873
\(807\) 40.6754i 1.43184i
\(808\) 19.7184i 0.693691i
\(809\) 40.4522 1.42222 0.711112 0.703079i \(-0.248192\pi\)
0.711112 + 0.703079i \(0.248192\pi\)
\(810\) 52.7106 17.5210i 1.85206 0.615626i
\(811\) −28.9125 −1.01526 −0.507628 0.861576i \(-0.669478\pi\)
−0.507628 + 0.861576i \(0.669478\pi\)
\(812\) 91.5700i 3.21348i
\(813\) 24.2808i 0.851566i
\(814\) 69.3477 2.43064
\(815\) 3.70892 1.23285i 0.129918 0.0431847i
\(816\) −43.6406 −1.52773
\(817\) 0 0
\(818\) 6.83986i 0.239150i
\(819\) −1.13492 −0.0396573
\(820\) −4.40824 13.2618i −0.153942 0.463124i
\(821\) −13.2912 −0.463866 −0.231933 0.972732i \(-0.574505\pi\)
−0.231933 + 0.972732i \(0.574505\pi\)
\(822\) 22.6827i 0.791151i
\(823\) 47.8247i 1.66706i −0.552471 0.833532i \(-0.686315\pi\)
0.552471 0.833532i \(-0.313685\pi\)
\(824\) −8.95558 −0.311982
\(825\) −15.1328 20.2479i −0.526858 0.704942i
\(826\) −1.44342 −0.0502230
\(827\) 51.7917i 1.80098i 0.434882 + 0.900488i \(0.356790\pi\)
−0.434882 + 0.900488i \(0.643210\pi\)
\(828\) 2.39835i 0.0833484i
\(829\) −8.42434 −0.292589 −0.146295 0.989241i \(-0.546735\pi\)
−0.146295 + 0.989241i \(0.546735\pi\)
\(830\) −10.7321 32.2866i −0.372516 1.12068i
\(831\) 32.1593 1.11559
\(832\) 82.2269i 2.85070i
\(833\) 4.36536i 0.151251i
\(834\) 70.5236 2.44203
\(835\) 44.6628 14.8459i 1.54562 0.513765i
\(836\) 0 0
\(837\) 20.2873i 0.701231i
\(838\) 24.0514i 0.830841i
\(839\) −23.7821 −0.821051 −0.410525 0.911849i \(-0.634655\pi\)
−0.410525 + 0.911849i \(0.634655\pi\)
\(840\) 68.8999 22.9023i 2.37727 0.790205i
\(841\) 36.4042 1.25532
\(842\) 22.9964i 0.792508i
\(843\) 35.9519i 1.23825i
\(844\) −108.814 −3.74552
\(845\) 7.33124 + 22.0555i 0.252202 + 0.758731i
\(846\) 0.708844 0.0243706
\(847\) 6.12478i 0.210450i
\(848\) 14.7166i 0.505371i
\(849\) −34.4476 −1.18224
\(850\) −22.0502 + 16.4799i −0.756316 + 0.565255i
\(851\) −39.9327 −1.36887
\(852\) 86.6589i 2.96889i
\(853\) 27.3430i 0.936205i 0.883674 + 0.468102i \(0.155062\pi\)
−0.883674 + 0.468102i \(0.844938\pi\)
\(854\) −2.93827 −0.100545
\(855\) 0 0
\(856\) −1.55221 −0.0530534
\(857\) 30.7007i 1.04872i 0.851498 + 0.524358i \(0.175695\pi\)
−0.851498 + 0.524358i \(0.824305\pi\)
\(858\) 65.2644i 2.22809i
\(859\) 36.8449 1.25713 0.628567 0.777756i \(-0.283642\pi\)
0.628567 + 0.777756i \(0.283642\pi\)
\(860\) 55.8070 18.5503i 1.90300 0.632559i
\(861\) −4.75110 −0.161917
\(862\) 13.9195i 0.474102i
\(863\) 4.42788i 0.150727i 0.997156 + 0.0753634i \(0.0240117\pi\)
−0.997156 + 0.0753634i \(0.975988\pi\)
\(864\) 78.3620 2.66593
\(865\) −24.6329 + 8.18799i −0.837544 + 0.278400i
\(866\) −13.8060 −0.469147
\(867\) 22.4620i 0.762848i
\(868\) 45.0390i 1.52872i
\(869\) 45.5711 1.54589
\(870\) −26.8321 80.7221i −0.909692 2.73674i
\(871\) 34.3311 1.16326
\(872\) 109.535i 3.70931i
\(873\) 0.0215212i 0.000728384i
\(874\) 0 0
\(875\) 14.1150 20.2790i 0.477175 0.685555i
\(876\) 2.59419 0.0876497
\(877\) 0.177859i 0.00600587i 0.999995 + 0.00300294i \(0.000955866\pi\)
−0.999995 + 0.00300294i \(0.999044\pi\)
\(878\) 42.9792i 1.45048i
\(879\) 16.2567 0.548326
\(880\) −24.2867 73.0647i −0.818705 2.46301i
\(881\) 35.4916 1.19574 0.597871 0.801593i \(-0.296014\pi\)
0.597871 + 0.801593i \(0.296014\pi\)
\(882\) 0.599715i 0.0201935i
\(883\) 44.6775i 1.50352i −0.659438 0.751759i \(-0.729206\pi\)
0.659438 0.751759i \(-0.270794\pi\)
\(884\) 51.1192 1.71932
\(885\) 0.915182 0.304207i 0.0307635 0.0102258i
\(886\) −32.3401 −1.08649
\(887\) 34.5396i 1.15973i 0.814714 + 0.579863i \(0.196894\pi\)
−0.814714 + 0.579863i \(0.803106\pi\)
\(888\) 133.087i 4.46611i
\(889\) −7.52659 −0.252434
\(890\) −94.4847 + 31.4067i −3.16713 + 1.05276i
\(891\) −26.6982 −0.894424
\(892\) 147.843i 4.95015i
\(893\) 0 0
\(894\) −59.4762 −1.98918
\(895\) 2.80783 + 8.44714i 0.0938555 + 0.282357i
\(896\) 32.3645 1.08122
\(897\) 37.5813i 1.25480i
\(898\) 18.8801i 0.630037i
\(899\) −32.1693 −1.07291
\(900\) −2.17878 + 1.62837i −0.0726259 + 0.0542790i
\(901\) 2.52899 0.0842529
\(902\) 9.33927i 0.310964i
\(903\) 19.9931i 0.665327i
\(904\) −36.3867 −1.21020
\(905\) 1.98802 + 5.98081i 0.0660841 + 0.198809i
\(906\) −51.8683 −1.72321
\(907\) 30.4093i 1.00972i 0.863200 + 0.504862i \(0.168457\pi\)
−0.863200 + 0.504862i \(0.831543\pi\)
\(908\) 43.1677i 1.43257i
\(909\) −0.251135 −0.00832961
\(910\) −60.5352 + 20.1219i −2.00672 + 0.667035i
\(911\) 48.5898 1.60985 0.804926 0.593375i \(-0.202205\pi\)
0.804926 + 0.593375i \(0.202205\pi\)
\(912\) 0 0
\(913\) 16.3534i 0.541217i
\(914\) −70.4110 −2.32899
\(915\) 1.86297 0.619251i 0.0615879 0.0204718i
\(916\) 126.377 4.17561
\(917\) 1.26660i 0.0418268i
\(918\) 28.0797i 0.926767i
\(919\) −46.0057 −1.51759 −0.758794 0.651331i \(-0.774211\pi\)
−0.758794 + 0.651331i \(0.774211\pi\)
\(920\) 25.9235 + 77.9889i 0.854674 + 2.57122i
\(921\) −13.6627 −0.450202
\(922\) 25.5958i 0.842954i
\(923\) 46.4174i 1.52785i
\(924\) −57.2432 −1.88316
\(925\) −27.1125 36.2768i −0.891453 1.19277i
\(926\) −17.3548 −0.570313
\(927\) 0.114059i 0.00374618i
\(928\) 124.258i 4.07896i
\(929\) −47.6797 −1.56432 −0.782161 0.623077i \(-0.785882\pi\)
−0.782161 + 0.623077i \(0.785882\pi\)
\(930\) 13.1974 + 39.7035i 0.432761 + 1.30193i
\(931\) 0 0
\(932\) 106.181i 3.47808i
\(933\) 43.7836i 1.43341i
\(934\) 23.2567 0.760983
\(935\) 12.5559 4.17357i 0.410620 0.136490i
\(936\) 4.28142 0.139942
\(937\) 32.4440i 1.05990i −0.848029 0.529950i \(-0.822211\pi\)
0.848029 0.529950i \(-0.177789\pi\)
\(938\) 41.8659i 1.36697i
\(939\) −10.2090 −0.333158
\(940\) 27.1937 9.03919i 0.886960 0.294826i
\(941\) 22.9865 0.749339 0.374669 0.927159i \(-0.377756\pi\)
0.374669 + 0.927159i \(0.377756\pi\)
\(942\) 105.470i 3.43639i
\(943\) 5.37786i 0.175127i
\(944\) 2.93755 0.0956092
\(945\) −7.94972 23.9161i −0.258604 0.777991i
\(946\) −39.3005 −1.27777
\(947\) 19.5969i 0.636814i −0.947954 0.318407i \(-0.896852\pi\)
0.947954 0.318407i \(-0.103148\pi\)
\(948\) 143.455i 4.65919i
\(949\) −1.38954 −0.0451063
\(950\) 0 0
\(951\) 8.10586 0.262850
\(952\) 38.0045i 1.23173i
\(953\) 21.8067i 0.706387i −0.935550 0.353194i \(-0.885096\pi\)
0.935550 0.353194i \(-0.114904\pi\)
\(954\) 0.347434 0.0112486
\(955\) 13.9728 + 42.0362i 0.452150 + 1.36026i
\(956\) 53.4597 1.72901
\(957\) 40.8862i 1.32166i
\(958\) 72.8646i 2.35415i
\(959\) −10.6564 −0.344113
\(960\) −63.5772 + 21.1331i −2.05194 + 0.682067i
\(961\) −15.1774 −0.489594
\(962\) 116.930i 3.76997i
\(963\) 0.0197690i 0.000637048i
\(964\) −102.724 −3.30851
\(965\) 11.7214 3.89621i 0.377326 0.125423i
\(966\) 45.8295 1.47454
\(967\) 30.6010i 0.984063i −0.870577 0.492031i \(-0.836255\pi\)
0.870577 0.492031i \(-0.163745\pi\)
\(968\) 23.1054i 0.742634i
\(969\) 0 0
\(970\) 0.381567 + 1.14791i 0.0122514 + 0.0368573i
\(971\) −24.6525 −0.791136 −0.395568 0.918437i \(-0.629452\pi\)
−0.395568 + 0.918437i \(0.629452\pi\)
\(972\) 5.65089i 0.181252i
\(973\) 33.1322i 1.06217i
\(974\) −94.9048 −3.04095
\(975\) 34.1407 25.5160i 1.09338 0.817168i
\(976\) 5.97976 0.191408
\(977\) 40.0301i 1.28067i −0.768094 0.640337i \(-0.778795\pi\)
0.768094 0.640337i \(-0.221205\pi\)
\(978\) 8.22207i 0.262913i
\(979\) 47.8570 1.52952
\(980\) 7.64758 + 23.0071i 0.244293 + 0.734936i
\(981\) 1.39504 0.0445402
\(982\) 110.981i 3.54153i
\(983\) 18.0067i 0.574323i 0.957882 + 0.287162i \(0.0927117\pi\)
−0.957882 + 0.287162i \(0.907288\pi\)
\(984\) 17.9232 0.571372
\(985\) 43.4977 14.4586i 1.38595 0.460691i
\(986\) 44.5256 1.41798
\(987\) 9.74224i 0.310099i
\(988\) 0 0
\(989\) 22.6305 0.719608
\(990\) 1.72493 0.573367i 0.0548219 0.0182228i
\(991\) −47.2626 −1.50135 −0.750674 0.660673i \(-0.770271\pi\)
−0.750674 + 0.660673i \(0.770271\pi\)
\(992\) 61.1166i 1.94045i
\(993\) 13.0341i 0.413623i
\(994\) −56.6049 −1.79540
\(995\) −12.1722 36.6190i −0.385884 1.16090i
\(996\) 51.4792 1.63118
\(997\) 30.7551i 0.974024i 0.873395 + 0.487012i \(0.161913\pi\)
−0.873395 + 0.487012i \(0.838087\pi\)
\(998\) 72.3961i 2.29166i
\(999\) −46.1964 −1.46159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.m.1084.1 40
5.2 odd 4 9025.2.a.cv.1.40 40
5.3 odd 4 9025.2.a.cv.1.1 40
5.4 even 2 inner 1805.2.b.m.1084.40 yes 40
19.18 odd 2 inner 1805.2.b.m.1084.39 yes 40
95.18 even 4 9025.2.a.cv.1.39 40
95.37 even 4 9025.2.a.cv.1.2 40
95.94 odd 2 inner 1805.2.b.m.1084.2 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.m.1084.1 40 1.1 even 1 trivial
1805.2.b.m.1084.2 yes 40 95.94 odd 2 inner
1805.2.b.m.1084.39 yes 40 19.18 odd 2 inner
1805.2.b.m.1084.40 yes 40 5.4 even 2 inner
9025.2.a.cv.1.1 40 5.3 odd 4
9025.2.a.cv.1.2 40 95.37 even 4
9025.2.a.cv.1.39 40 95.18 even 4
9025.2.a.cv.1.40 40 5.2 odd 4