Properties

Label 9025.2.a.h
Level $9025$
Weight $2$
Character orbit 9025.a
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{4} + 2 q^{7} - 3 q^{8} - 3 q^{9} - 4 q^{11} + 2 q^{13} + 2 q^{14} - q^{16} + 4 q^{17} - 3 q^{18} - 4 q^{22} - 6 q^{23} + 2 q^{26} - 2 q^{28} + 6 q^{29} + 4 q^{31} + 5 q^{32} + 4 q^{34}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 0 0 2.00000 −3.00000 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9025.2.a.h 1
5.b even 2 1 9025.2.a.c 1
5.c odd 4 2 1805.2.b.c 2
19.b odd 2 1 475.2.a.a 1
57.d even 2 1 4275.2.a.p 1
76.d even 2 1 7600.2.a.i 1
95.d odd 2 1 475.2.a.c 1
95.g even 4 2 95.2.b.a 2
285.b even 2 1 4275.2.a.e 1
285.j odd 4 2 855.2.c.b 2
380.d even 2 1 7600.2.a.l 1
380.j odd 4 2 1520.2.d.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.b.a 2 95.g even 4 2
475.2.a.a 1 19.b odd 2 1
475.2.a.c 1 95.d odd 2 1
855.2.c.b 2 285.j odd 4 2
1520.2.d.b 2 380.j odd 4 2
1805.2.b.c 2 5.c odd 4 2
4275.2.a.e 1 285.b even 2 1
4275.2.a.p 1 57.d even 2 1
7600.2.a.i 1 76.d even 2 1
7600.2.a.l 1 380.d even 2 1
9025.2.a.c 1 5.b even 2 1
9025.2.a.h 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9025))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{29} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T - 4 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 10 \) Copy content Toggle raw display
$41$ \( T - 10 \) Copy content Toggle raw display
$43$ \( T - 2 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T + 10 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T + 4 \) Copy content Toggle raw display
$73$ \( T - 4 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T + 18 \) Copy content Toggle raw display
$89$ \( T - 2 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less