Properties

Label 95.2.b.a
Level $95$
Weight $2$
Character orbit 95.b
Analytic conductor $0.759$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,2,Mod(39,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.39");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 95.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.758578819202\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + q^{4} + (2 i - 1) q^{5} - 2 i q^{7} + 3 i q^{8} + 3 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} + q^{4} + (2 i - 1) q^{5} - 2 i q^{7} + 3 i q^{8} + 3 q^{9} + ( - i - 2) q^{10} - 4 q^{11} - 2 i q^{13} + 2 q^{14} - q^{16} - 4 i q^{17} + 3 i q^{18} - q^{19} + (2 i - 1) q^{20} - 4 i q^{22} - 6 i q^{23} + ( - 4 i - 3) q^{25} + 2 q^{26} - 2 i q^{28} + 6 q^{29} - 4 q^{31} + 5 i q^{32} + 4 q^{34} + (2 i + 4) q^{35} + 3 q^{36} + 10 i q^{37} - i q^{38} + ( - 3 i - 6) q^{40} - 10 q^{41} + 2 i q^{43} - 4 q^{44} + (6 i - 3) q^{45} + 6 q^{46} + 6 i q^{47} + 3 q^{49} + ( - 3 i + 4) q^{50} - 2 i q^{52} + 10 i q^{53} + ( - 8 i + 4) q^{55} + 6 q^{56} + 6 i q^{58} + 2 q^{61} - 4 i q^{62} - 6 i q^{63} - 7 q^{64} + (2 i + 4) q^{65} - 8 i q^{67} - 4 i q^{68} + (4 i - 2) q^{70} + 4 q^{71} + 9 i q^{72} + 4 i q^{73} - 10 q^{74} - q^{76} + 8 i q^{77} - 4 q^{79} + ( - 2 i + 1) q^{80} + 9 q^{81} - 10 i q^{82} - 18 i q^{83} + (4 i + 8) q^{85} - 2 q^{86} - 12 i q^{88} + 2 q^{89} + ( - 3 i - 6) q^{90} - 4 q^{91} - 6 i q^{92} - 6 q^{94} + ( - 2 i + 1) q^{95} - 6 i q^{97} + 3 i q^{98} - 12 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} - 2 q^{5} + 6 q^{9} - 4 q^{10} - 8 q^{11} + 4 q^{14} - 2 q^{16} - 2 q^{19} - 2 q^{20} - 6 q^{25} + 4 q^{26} + 12 q^{29} - 8 q^{31} + 8 q^{34} + 8 q^{35} + 6 q^{36} - 12 q^{40} - 20 q^{41} - 8 q^{44} - 6 q^{45} + 12 q^{46} + 6 q^{49} + 8 q^{50} + 8 q^{55} + 12 q^{56} + 4 q^{61} - 14 q^{64} + 8 q^{65} - 4 q^{70} + 8 q^{71} - 20 q^{74} - 2 q^{76} - 8 q^{79} + 2 q^{80} + 18 q^{81} + 16 q^{85} - 4 q^{86} + 4 q^{89} - 12 q^{90} - 8 q^{91} - 12 q^{94} + 2 q^{95} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
39.1
1.00000i
1.00000i
1.00000i 0 1.00000 −1.00000 2.00000i 0 2.00000i 3.00000i 3.00000 −2.00000 + 1.00000i
39.2 1.00000i 0 1.00000 −1.00000 + 2.00000i 0 2.00000i 3.00000i 3.00000 −2.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.2.b.a 2
3.b odd 2 1 855.2.c.b 2
4.b odd 2 1 1520.2.d.b 2
5.b even 2 1 inner 95.2.b.a 2
5.c odd 4 1 475.2.a.a 1
5.c odd 4 1 475.2.a.c 1
15.d odd 2 1 855.2.c.b 2
15.e even 4 1 4275.2.a.e 1
15.e even 4 1 4275.2.a.p 1
19.b odd 2 1 1805.2.b.c 2
20.d odd 2 1 1520.2.d.b 2
20.e even 4 1 7600.2.a.i 1
20.e even 4 1 7600.2.a.l 1
95.d odd 2 1 1805.2.b.c 2
95.g even 4 1 9025.2.a.c 1
95.g even 4 1 9025.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.b.a 2 1.a even 1 1 trivial
95.2.b.a 2 5.b even 2 1 inner
475.2.a.a 1 5.c odd 4 1
475.2.a.c 1 5.c odd 4 1
855.2.c.b 2 3.b odd 2 1
855.2.c.b 2 15.d odd 2 1
1520.2.d.b 2 4.b odd 2 1
1520.2.d.b 2 20.d odd 2 1
1805.2.b.c 2 19.b odd 2 1
1805.2.b.c 2 95.d odd 2 1
4275.2.a.e 1 15.e even 4 1
4275.2.a.p 1 15.e even 4 1
7600.2.a.i 1 20.e even 4 1
7600.2.a.l 1 20.e even 4 1
9025.2.a.c 1 95.g even 4 1
9025.2.a.h 1 95.g even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( (T + 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T - 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 324 \) Copy content Toggle raw display
$89$ \( (T - 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 36 \) Copy content Toggle raw display
show more
show less