Properties

Label 9075.2.a.ea.1.10
Level $9075$
Weight $2$
Character 9075.1
Self dual yes
Analytic conductor $72.464$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9075,2,Mod(1,9075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 18 x^{8} - 220 x^{7} + 61 x^{6} + 330 x^{5} - 145 x^{4} + \cdots - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(2.10651\) of defining polynomial
Character \(\chi\) \(=\) 9075.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.10651 q^{2} +1.00000 q^{3} +2.43738 q^{4} +2.10651 q^{6} -3.31633 q^{7} +0.921348 q^{8} +1.00000 q^{9} +2.43738 q^{12} +2.49889 q^{13} -6.98587 q^{14} -2.93393 q^{16} +6.81019 q^{17} +2.10651 q^{18} +1.14769 q^{19} -3.31633 q^{21} +5.89026 q^{23} +0.921348 q^{24} +5.26393 q^{26} +1.00000 q^{27} -8.08315 q^{28} +1.12257 q^{29} -1.09673 q^{31} -8.02306 q^{32} +14.3457 q^{34} +2.43738 q^{36} -11.5389 q^{37} +2.41763 q^{38} +2.49889 q^{39} +0.932568 q^{41} -6.98587 q^{42} -0.552188 q^{43} +12.4079 q^{46} -2.13427 q^{47} -2.93393 q^{48} +3.99802 q^{49} +6.81019 q^{51} +6.09074 q^{52} +11.6356 q^{53} +2.10651 q^{54} -3.05549 q^{56} +1.14769 q^{57} +2.36469 q^{58} +8.39837 q^{59} +8.21313 q^{61} -2.31027 q^{62} -3.31633 q^{63} -11.0328 q^{64} -4.15419 q^{67} +16.5990 q^{68} +5.89026 q^{69} +12.5340 q^{71} +0.921348 q^{72} +5.73761 q^{73} -24.3067 q^{74} +2.79736 q^{76} +5.26393 q^{78} +3.86754 q^{79} +1.00000 q^{81} +1.96446 q^{82} +6.08055 q^{83} -8.08315 q^{84} -1.16319 q^{86} +1.12257 q^{87} +12.5950 q^{89} -8.28712 q^{91} +14.3568 q^{92} -1.09673 q^{93} -4.49586 q^{94} -8.02306 q^{96} -2.86873 q^{97} +8.42187 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 12 q^{3} + 12 q^{4} + 4 q^{6} + 8 q^{7} + 12 q^{8} + 12 q^{9} + 12 q^{12} + 18 q^{13} + 6 q^{14} + 24 q^{16} + 18 q^{17} + 4 q^{18} + 16 q^{19} + 8 q^{21} + 12 q^{24} + 16 q^{26} + 12 q^{27}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.10651 1.48953 0.744764 0.667328i \(-0.232562\pi\)
0.744764 + 0.667328i \(0.232562\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.43738 1.21869
\(5\) 0 0
\(6\) 2.10651 0.859979
\(7\) −3.31633 −1.25345 −0.626727 0.779239i \(-0.715606\pi\)
−0.626727 + 0.779239i \(0.715606\pi\)
\(8\) 0.921348 0.325746
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 2.43738 0.703611
\(13\) 2.49889 0.693066 0.346533 0.938038i \(-0.387359\pi\)
0.346533 + 0.938038i \(0.387359\pi\)
\(14\) −6.98587 −1.86705
\(15\) 0 0
\(16\) −2.93393 −0.733484
\(17\) 6.81019 1.65171 0.825857 0.563880i \(-0.190692\pi\)
0.825857 + 0.563880i \(0.190692\pi\)
\(18\) 2.10651 0.496509
\(19\) 1.14769 0.263299 0.131649 0.991296i \(-0.457973\pi\)
0.131649 + 0.991296i \(0.457973\pi\)
\(20\) 0 0
\(21\) −3.31633 −0.723682
\(22\) 0 0
\(23\) 5.89026 1.22820 0.614102 0.789226i \(-0.289518\pi\)
0.614102 + 0.789226i \(0.289518\pi\)
\(24\) 0.921348 0.188069
\(25\) 0 0
\(26\) 5.26393 1.03234
\(27\) 1.00000 0.192450
\(28\) −8.08315 −1.52757
\(29\) 1.12257 0.208455 0.104228 0.994553i \(-0.466763\pi\)
0.104228 + 0.994553i \(0.466763\pi\)
\(30\) 0 0
\(31\) −1.09673 −0.196978 −0.0984892 0.995138i \(-0.531401\pi\)
−0.0984892 + 0.995138i \(0.531401\pi\)
\(32\) −8.02306 −1.41829
\(33\) 0 0
\(34\) 14.3457 2.46027
\(35\) 0 0
\(36\) 2.43738 0.406230
\(37\) −11.5389 −1.89698 −0.948489 0.316810i \(-0.897388\pi\)
−0.948489 + 0.316810i \(0.897388\pi\)
\(38\) 2.41763 0.392191
\(39\) 2.49889 0.400142
\(40\) 0 0
\(41\) 0.932568 0.145643 0.0728213 0.997345i \(-0.476800\pi\)
0.0728213 + 0.997345i \(0.476800\pi\)
\(42\) −6.98587 −1.07794
\(43\) −0.552188 −0.0842079 −0.0421040 0.999113i \(-0.513406\pi\)
−0.0421040 + 0.999113i \(0.513406\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 12.4079 1.82944
\(47\) −2.13427 −0.311316 −0.155658 0.987811i \(-0.549750\pi\)
−0.155658 + 0.987811i \(0.549750\pi\)
\(48\) −2.93393 −0.423477
\(49\) 3.99802 0.571146
\(50\) 0 0
\(51\) 6.81019 0.953617
\(52\) 6.09074 0.844633
\(53\) 11.6356 1.59827 0.799136 0.601150i \(-0.205291\pi\)
0.799136 + 0.601150i \(0.205291\pi\)
\(54\) 2.10651 0.286660
\(55\) 0 0
\(56\) −3.05549 −0.408307
\(57\) 1.14769 0.152016
\(58\) 2.36469 0.310500
\(59\) 8.39837 1.09337 0.546687 0.837337i \(-0.315889\pi\)
0.546687 + 0.837337i \(0.315889\pi\)
\(60\) 0 0
\(61\) 8.21313 1.05158 0.525792 0.850613i \(-0.323769\pi\)
0.525792 + 0.850613i \(0.323769\pi\)
\(62\) −2.31027 −0.293405
\(63\) −3.31633 −0.417818
\(64\) −11.0328 −1.37910
\(65\) 0 0
\(66\) 0 0
\(67\) −4.15419 −0.507515 −0.253757 0.967268i \(-0.581666\pi\)
−0.253757 + 0.967268i \(0.581666\pi\)
\(68\) 16.5990 2.01293
\(69\) 5.89026 0.709104
\(70\) 0 0
\(71\) 12.5340 1.48752 0.743759 0.668448i \(-0.233041\pi\)
0.743759 + 0.668448i \(0.233041\pi\)
\(72\) 0.921348 0.108582
\(73\) 5.73761 0.671537 0.335768 0.941945i \(-0.391004\pi\)
0.335768 + 0.941945i \(0.391004\pi\)
\(74\) −24.3067 −2.82560
\(75\) 0 0
\(76\) 2.79736 0.320880
\(77\) 0 0
\(78\) 5.26393 0.596022
\(79\) 3.86754 0.435132 0.217566 0.976046i \(-0.430188\pi\)
0.217566 + 0.976046i \(0.430188\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.96446 0.216939
\(83\) 6.08055 0.667427 0.333714 0.942675i \(-0.391698\pi\)
0.333714 + 0.942675i \(0.391698\pi\)
\(84\) −8.08315 −0.881944
\(85\) 0 0
\(86\) −1.16319 −0.125430
\(87\) 1.12257 0.120352
\(88\) 0 0
\(89\) 12.5950 1.33506 0.667531 0.744582i \(-0.267351\pi\)
0.667531 + 0.744582i \(0.267351\pi\)
\(90\) 0 0
\(91\) −8.28712 −0.868726
\(92\) 14.3568 1.49680
\(93\) −1.09673 −0.113726
\(94\) −4.49586 −0.463713
\(95\) 0 0
\(96\) −8.02306 −0.818850
\(97\) −2.86873 −0.291275 −0.145638 0.989338i \(-0.546523\pi\)
−0.145638 + 0.989338i \(0.546523\pi\)
\(98\) 8.42187 0.850737
\(99\) 0 0
\(100\) 0 0
\(101\) −9.87001 −0.982103 −0.491052 0.871131i \(-0.663387\pi\)
−0.491052 + 0.871131i \(0.663387\pi\)
\(102\) 14.3457 1.42044
\(103\) 7.71953 0.760628 0.380314 0.924857i \(-0.375816\pi\)
0.380314 + 0.924857i \(0.375816\pi\)
\(104\) 2.30234 0.225763
\(105\) 0 0
\(106\) 24.5105 2.38067
\(107\) 15.5114 1.49954 0.749771 0.661697i \(-0.230163\pi\)
0.749771 + 0.661697i \(0.230163\pi\)
\(108\) 2.43738 0.234537
\(109\) −6.79834 −0.651163 −0.325581 0.945514i \(-0.605560\pi\)
−0.325581 + 0.945514i \(0.605560\pi\)
\(110\) 0 0
\(111\) −11.5389 −1.09522
\(112\) 9.72988 0.919388
\(113\) −0.301489 −0.0283617 −0.0141808 0.999899i \(-0.504514\pi\)
−0.0141808 + 0.999899i \(0.504514\pi\)
\(114\) 2.41763 0.226431
\(115\) 0 0
\(116\) 2.73612 0.254042
\(117\) 2.49889 0.231022
\(118\) 17.6912 1.62861
\(119\) −22.5848 −2.07035
\(120\) 0 0
\(121\) 0 0
\(122\) 17.3010 1.56636
\(123\) 0.932568 0.0840868
\(124\) −2.67315 −0.240056
\(125\) 0 0
\(126\) −6.98587 −0.622351
\(127\) 6.70539 0.595007 0.297504 0.954721i \(-0.403846\pi\)
0.297504 + 0.954721i \(0.403846\pi\)
\(128\) −7.19453 −0.635913
\(129\) −0.552188 −0.0486175
\(130\) 0 0
\(131\) 8.07729 0.705716 0.352858 0.935677i \(-0.385210\pi\)
0.352858 + 0.935677i \(0.385210\pi\)
\(132\) 0 0
\(133\) −3.80612 −0.330033
\(134\) −8.75084 −0.755957
\(135\) 0 0
\(136\) 6.27456 0.538039
\(137\) −6.43781 −0.550020 −0.275010 0.961441i \(-0.588681\pi\)
−0.275010 + 0.961441i \(0.588681\pi\)
\(138\) 12.4079 1.05623
\(139\) −6.97567 −0.591669 −0.295834 0.955239i \(-0.595598\pi\)
−0.295834 + 0.955239i \(0.595598\pi\)
\(140\) 0 0
\(141\) −2.13427 −0.179738
\(142\) 26.4031 2.21570
\(143\) 0 0
\(144\) −2.93393 −0.244495
\(145\) 0 0
\(146\) 12.0863 1.00027
\(147\) 3.99802 0.329751
\(148\) −28.1246 −2.31183
\(149\) 19.0205 1.55822 0.779110 0.626887i \(-0.215671\pi\)
0.779110 + 0.626887i \(0.215671\pi\)
\(150\) 0 0
\(151\) −3.90081 −0.317444 −0.158722 0.987323i \(-0.550737\pi\)
−0.158722 + 0.987323i \(0.550737\pi\)
\(152\) 1.05742 0.0857685
\(153\) 6.81019 0.550571
\(154\) 0 0
\(155\) 0 0
\(156\) 6.09074 0.487649
\(157\) −18.3843 −1.46723 −0.733613 0.679568i \(-0.762167\pi\)
−0.733613 + 0.679568i \(0.762167\pi\)
\(158\) 8.14701 0.648141
\(159\) 11.6356 0.922763
\(160\) 0 0
\(161\) −19.5340 −1.53950
\(162\) 2.10651 0.165503
\(163\) −17.5720 −1.37635 −0.688173 0.725547i \(-0.741587\pi\)
−0.688173 + 0.725547i \(0.741587\pi\)
\(164\) 2.27302 0.177493
\(165\) 0 0
\(166\) 12.8087 0.994151
\(167\) 12.0777 0.934598 0.467299 0.884099i \(-0.345227\pi\)
0.467299 + 0.884099i \(0.345227\pi\)
\(168\) −3.05549 −0.235736
\(169\) −6.75557 −0.519659
\(170\) 0 0
\(171\) 1.14769 0.0877662
\(172\) −1.34589 −0.102623
\(173\) 24.2436 1.84321 0.921603 0.388133i \(-0.126880\pi\)
0.921603 + 0.388133i \(0.126880\pi\)
\(174\) 2.36469 0.179267
\(175\) 0 0
\(176\) 0 0
\(177\) 8.39837 0.631260
\(178\) 26.5314 1.98861
\(179\) −19.9390 −1.49031 −0.745155 0.666891i \(-0.767625\pi\)
−0.745155 + 0.666891i \(0.767625\pi\)
\(180\) 0 0
\(181\) −5.13290 −0.381525 −0.190763 0.981636i \(-0.561096\pi\)
−0.190763 + 0.981636i \(0.561096\pi\)
\(182\) −17.4569 −1.29399
\(183\) 8.21313 0.607132
\(184\) 5.42698 0.400082
\(185\) 0 0
\(186\) −2.31027 −0.169397
\(187\) 0 0
\(188\) −5.20204 −0.379397
\(189\) −3.31633 −0.241227
\(190\) 0 0
\(191\) −2.81336 −0.203568 −0.101784 0.994807i \(-0.532455\pi\)
−0.101784 + 0.994807i \(0.532455\pi\)
\(192\) −11.0328 −0.796222
\(193\) 19.3032 1.38948 0.694738 0.719263i \(-0.255520\pi\)
0.694738 + 0.719263i \(0.255520\pi\)
\(194\) −6.04300 −0.433862
\(195\) 0 0
\(196\) 9.74470 0.696050
\(197\) −3.57956 −0.255033 −0.127516 0.991836i \(-0.540701\pi\)
−0.127516 + 0.991836i \(0.540701\pi\)
\(198\) 0 0
\(199\) 12.7087 0.900893 0.450447 0.892803i \(-0.351265\pi\)
0.450447 + 0.892803i \(0.351265\pi\)
\(200\) 0 0
\(201\) −4.15419 −0.293014
\(202\) −20.7913 −1.46287
\(203\) −3.72279 −0.261289
\(204\) 16.5990 1.16216
\(205\) 0 0
\(206\) 16.2613 1.13298
\(207\) 5.89026 0.409401
\(208\) −7.33157 −0.508353
\(209\) 0 0
\(210\) 0 0
\(211\) 3.49518 0.240618 0.120309 0.992736i \(-0.461611\pi\)
0.120309 + 0.992736i \(0.461611\pi\)
\(212\) 28.3604 1.94780
\(213\) 12.5340 0.858819
\(214\) 32.6749 2.23361
\(215\) 0 0
\(216\) 0.921348 0.0626898
\(217\) 3.63711 0.246903
\(218\) −14.3208 −0.969925
\(219\) 5.73761 0.387712
\(220\) 0 0
\(221\) 17.0179 1.14475
\(222\) −24.3067 −1.63136
\(223\) −5.20558 −0.348591 −0.174296 0.984693i \(-0.555765\pi\)
−0.174296 + 0.984693i \(0.555765\pi\)
\(224\) 26.6071 1.77776
\(225\) 0 0
\(226\) −0.635089 −0.0422455
\(227\) 9.70244 0.643973 0.321987 0.946744i \(-0.395649\pi\)
0.321987 + 0.946744i \(0.395649\pi\)
\(228\) 2.79736 0.185260
\(229\) 18.5011 1.22259 0.611293 0.791404i \(-0.290650\pi\)
0.611293 + 0.791404i \(0.290650\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.03427 0.0679034
\(233\) −14.9543 −0.979692 −0.489846 0.871809i \(-0.662947\pi\)
−0.489846 + 0.871809i \(0.662947\pi\)
\(234\) 5.26393 0.344114
\(235\) 0 0
\(236\) 20.4700 1.33249
\(237\) 3.86754 0.251224
\(238\) −47.5751 −3.08384
\(239\) 1.50716 0.0974901 0.0487451 0.998811i \(-0.484478\pi\)
0.0487451 + 0.998811i \(0.484478\pi\)
\(240\) 0 0
\(241\) 7.09571 0.457075 0.228537 0.973535i \(-0.426606\pi\)
0.228537 + 0.973535i \(0.426606\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 20.0185 1.28156
\(245\) 0 0
\(246\) 1.96446 0.125250
\(247\) 2.86795 0.182483
\(248\) −1.01047 −0.0641649
\(249\) 6.08055 0.385339
\(250\) 0 0
\(251\) −13.6786 −0.863386 −0.431693 0.902021i \(-0.642084\pi\)
−0.431693 + 0.902021i \(0.642084\pi\)
\(252\) −8.08315 −0.509191
\(253\) 0 0
\(254\) 14.1250 0.886279
\(255\) 0 0
\(256\) 6.91021 0.431888
\(257\) 8.30411 0.517996 0.258998 0.965878i \(-0.416608\pi\)
0.258998 + 0.965878i \(0.416608\pi\)
\(258\) −1.16319 −0.0724171
\(259\) 38.2667 2.37777
\(260\) 0 0
\(261\) 1.12257 0.0694851
\(262\) 17.0149 1.05118
\(263\) 11.1345 0.686582 0.343291 0.939229i \(-0.388458\pi\)
0.343291 + 0.939229i \(0.388458\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.01763 −0.491593
\(267\) 12.5950 0.770799
\(268\) −10.1253 −0.618504
\(269\) 22.7563 1.38748 0.693739 0.720227i \(-0.255962\pi\)
0.693739 + 0.720227i \(0.255962\pi\)
\(270\) 0 0
\(271\) −7.79448 −0.473481 −0.236740 0.971573i \(-0.576079\pi\)
−0.236740 + 0.971573i \(0.576079\pi\)
\(272\) −19.9806 −1.21150
\(273\) −8.28712 −0.501559
\(274\) −13.5613 −0.819269
\(275\) 0 0
\(276\) 14.3568 0.864179
\(277\) 9.46719 0.568828 0.284414 0.958702i \(-0.408201\pi\)
0.284414 + 0.958702i \(0.408201\pi\)
\(278\) −14.6943 −0.881307
\(279\) −1.09673 −0.0656595
\(280\) 0 0
\(281\) −31.3016 −1.86729 −0.933647 0.358194i \(-0.883393\pi\)
−0.933647 + 0.358194i \(0.883393\pi\)
\(282\) −4.49586 −0.267725
\(283\) −24.4123 −1.45116 −0.725581 0.688136i \(-0.758429\pi\)
−0.725581 + 0.688136i \(0.758429\pi\)
\(284\) 30.5503 1.81282
\(285\) 0 0
\(286\) 0 0
\(287\) −3.09270 −0.182556
\(288\) −8.02306 −0.472763
\(289\) 29.3787 1.72816
\(290\) 0 0
\(291\) −2.86873 −0.168168
\(292\) 13.9847 0.818395
\(293\) 11.8197 0.690512 0.345256 0.938509i \(-0.387792\pi\)
0.345256 + 0.938509i \(0.387792\pi\)
\(294\) 8.42187 0.491173
\(295\) 0 0
\(296\) −10.6313 −0.617933
\(297\) 0 0
\(298\) 40.0669 2.32101
\(299\) 14.7191 0.851227
\(300\) 0 0
\(301\) 1.83124 0.105551
\(302\) −8.21710 −0.472841
\(303\) −9.87001 −0.567018
\(304\) −3.36725 −0.193125
\(305\) 0 0
\(306\) 14.3457 0.820091
\(307\) 22.3217 1.27396 0.636982 0.770878i \(-0.280182\pi\)
0.636982 + 0.770878i \(0.280182\pi\)
\(308\) 0 0
\(309\) 7.71953 0.439149
\(310\) 0 0
\(311\) −19.4834 −1.10480 −0.552401 0.833578i \(-0.686288\pi\)
−0.552401 + 0.833578i \(0.686288\pi\)
\(312\) 2.30234 0.130345
\(313\) −17.3527 −0.980833 −0.490416 0.871488i \(-0.663155\pi\)
−0.490416 + 0.871488i \(0.663155\pi\)
\(314\) −38.7267 −2.18547
\(315\) 0 0
\(316\) 9.42667 0.530292
\(317\) −0.830717 −0.0466577 −0.0233289 0.999728i \(-0.507426\pi\)
−0.0233289 + 0.999728i \(0.507426\pi\)
\(318\) 24.5105 1.37448
\(319\) 0 0
\(320\) 0 0
\(321\) 15.5114 0.865762
\(322\) −41.1486 −2.29312
\(323\) 7.81600 0.434894
\(324\) 2.43738 0.135410
\(325\) 0 0
\(326\) −37.0156 −2.05010
\(327\) −6.79834 −0.375949
\(328\) 0.859219 0.0474425
\(329\) 7.07794 0.390220
\(330\) 0 0
\(331\) −31.5311 −1.73311 −0.866554 0.499084i \(-0.833670\pi\)
−0.866554 + 0.499084i \(0.833670\pi\)
\(332\) 14.8206 0.813387
\(333\) −11.5389 −0.632326
\(334\) 25.4417 1.39211
\(335\) 0 0
\(336\) 9.72988 0.530809
\(337\) −16.2339 −0.884319 −0.442160 0.896936i \(-0.645788\pi\)
−0.442160 + 0.896936i \(0.645788\pi\)
\(338\) −14.2307 −0.774047
\(339\) −0.301489 −0.0163746
\(340\) 0 0
\(341\) 0 0
\(342\) 2.41763 0.130730
\(343\) 9.95555 0.537549
\(344\) −0.508758 −0.0274304
\(345\) 0 0
\(346\) 51.0694 2.74551
\(347\) −12.4500 −0.668350 −0.334175 0.942511i \(-0.608458\pi\)
−0.334175 + 0.942511i \(0.608458\pi\)
\(348\) 2.73612 0.146671
\(349\) −32.6297 −1.74663 −0.873314 0.487157i \(-0.838034\pi\)
−0.873314 + 0.487157i \(0.838034\pi\)
\(350\) 0 0
\(351\) 2.49889 0.133381
\(352\) 0 0
\(353\) 15.7921 0.840530 0.420265 0.907402i \(-0.361937\pi\)
0.420265 + 0.907402i \(0.361937\pi\)
\(354\) 17.6912 0.940279
\(355\) 0 0
\(356\) 30.6987 1.62703
\(357\) −22.5848 −1.19531
\(358\) −42.0017 −2.21986
\(359\) −18.1622 −0.958563 −0.479282 0.877661i \(-0.659103\pi\)
−0.479282 + 0.877661i \(0.659103\pi\)
\(360\) 0 0
\(361\) −17.6828 −0.930674
\(362\) −10.8125 −0.568292
\(363\) 0 0
\(364\) −20.1989 −1.05871
\(365\) 0 0
\(366\) 17.3010 0.904340
\(367\) 0.472046 0.0246406 0.0123203 0.999924i \(-0.496078\pi\)
0.0123203 + 0.999924i \(0.496078\pi\)
\(368\) −17.2816 −0.900868
\(369\) 0.932568 0.0485475
\(370\) 0 0
\(371\) −38.5874 −2.00336
\(372\) −2.67315 −0.138596
\(373\) 15.4102 0.797910 0.398955 0.916970i \(-0.369373\pi\)
0.398955 + 0.916970i \(0.369373\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.96641 −0.101410
\(377\) 2.80516 0.144473
\(378\) −6.98587 −0.359314
\(379\) −19.2746 −0.990068 −0.495034 0.868874i \(-0.664844\pi\)
−0.495034 + 0.868874i \(0.664844\pi\)
\(380\) 0 0
\(381\) 6.70539 0.343527
\(382\) −5.92637 −0.303220
\(383\) 7.44824 0.380587 0.190294 0.981727i \(-0.439056\pi\)
0.190294 + 0.981727i \(0.439056\pi\)
\(384\) −7.19453 −0.367144
\(385\) 0 0
\(386\) 40.6624 2.06966
\(387\) −0.552188 −0.0280693
\(388\) −6.99218 −0.354974
\(389\) −0.713819 −0.0361921 −0.0180960 0.999836i \(-0.505760\pi\)
−0.0180960 + 0.999836i \(0.505760\pi\)
\(390\) 0 0
\(391\) 40.1138 2.02864
\(392\) 3.68357 0.186048
\(393\) 8.07729 0.407446
\(394\) −7.54037 −0.379878
\(395\) 0 0
\(396\) 0 0
\(397\) 0.764171 0.0383526 0.0191763 0.999816i \(-0.493896\pi\)
0.0191763 + 0.999816i \(0.493896\pi\)
\(398\) 26.7709 1.34191
\(399\) −3.80612 −0.190544
\(400\) 0 0
\(401\) −15.7544 −0.786740 −0.393370 0.919380i \(-0.628691\pi\)
−0.393370 + 0.919380i \(0.628691\pi\)
\(402\) −8.75084 −0.436452
\(403\) −2.74060 −0.136519
\(404\) −24.0570 −1.19688
\(405\) 0 0
\(406\) −7.84210 −0.389197
\(407\) 0 0
\(408\) 6.27456 0.310637
\(409\) 2.62100 0.129600 0.0648001 0.997898i \(-0.479359\pi\)
0.0648001 + 0.997898i \(0.479359\pi\)
\(410\) 0 0
\(411\) −6.43781 −0.317554
\(412\) 18.8154 0.926970
\(413\) −27.8517 −1.37049
\(414\) 12.4079 0.609815
\(415\) 0 0
\(416\) −20.0487 −0.982968
\(417\) −6.97567 −0.341600
\(418\) 0 0
\(419\) −18.0078 −0.879737 −0.439868 0.898062i \(-0.644975\pi\)
−0.439868 + 0.898062i \(0.644975\pi\)
\(420\) 0 0
\(421\) 1.17117 0.0570792 0.0285396 0.999593i \(-0.490914\pi\)
0.0285396 + 0.999593i \(0.490914\pi\)
\(422\) 7.36264 0.358408
\(423\) −2.13427 −0.103772
\(424\) 10.7204 0.520630
\(425\) 0 0
\(426\) 26.4031 1.27923
\(427\) −27.2374 −1.31811
\(428\) 37.8072 1.82748
\(429\) 0 0
\(430\) 0 0
\(431\) −35.0921 −1.69033 −0.845163 0.534508i \(-0.820497\pi\)
−0.845163 + 0.534508i \(0.820497\pi\)
\(432\) −2.93393 −0.141159
\(433\) −18.2260 −0.875888 −0.437944 0.899002i \(-0.644293\pi\)
−0.437944 + 0.899002i \(0.644293\pi\)
\(434\) 7.66161 0.367769
\(435\) 0 0
\(436\) −16.5701 −0.793566
\(437\) 6.76021 0.323385
\(438\) 12.0863 0.577507
\(439\) 19.8155 0.945743 0.472871 0.881131i \(-0.343218\pi\)
0.472871 + 0.881131i \(0.343218\pi\)
\(440\) 0 0
\(441\) 3.99802 0.190382
\(442\) 35.8483 1.70513
\(443\) 16.6884 0.792892 0.396446 0.918058i \(-0.370243\pi\)
0.396446 + 0.918058i \(0.370243\pi\)
\(444\) −28.1246 −1.33474
\(445\) 0 0
\(446\) −10.9656 −0.519236
\(447\) 19.0205 0.899639
\(448\) 36.5883 1.72863
\(449\) −13.1971 −0.622808 −0.311404 0.950278i \(-0.600799\pi\)
−0.311404 + 0.950278i \(0.600799\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −0.734843 −0.0345641
\(453\) −3.90081 −0.183276
\(454\) 20.4383 0.959216
\(455\) 0 0
\(456\) 1.05742 0.0495184
\(457\) −21.2673 −0.994840 −0.497420 0.867510i \(-0.665719\pi\)
−0.497420 + 0.867510i \(0.665719\pi\)
\(458\) 38.9727 1.82107
\(459\) 6.81019 0.317872
\(460\) 0 0
\(461\) 20.0772 0.935086 0.467543 0.883970i \(-0.345139\pi\)
0.467543 + 0.883970i \(0.345139\pi\)
\(462\) 0 0
\(463\) −0.962526 −0.0447324 −0.0223662 0.999750i \(-0.507120\pi\)
−0.0223662 + 0.999750i \(0.507120\pi\)
\(464\) −3.29353 −0.152898
\(465\) 0 0
\(466\) −31.5015 −1.45928
\(467\) −14.9130 −0.690092 −0.345046 0.938586i \(-0.612137\pi\)
−0.345046 + 0.938586i \(0.612137\pi\)
\(468\) 6.09074 0.281544
\(469\) 13.7766 0.636146
\(470\) 0 0
\(471\) −18.3843 −0.847103
\(472\) 7.73783 0.356162
\(473\) 0 0
\(474\) 8.14701 0.374204
\(475\) 0 0
\(476\) −55.0478 −2.52311
\(477\) 11.6356 0.532757
\(478\) 3.17485 0.145214
\(479\) 0.475527 0.0217274 0.0108637 0.999941i \(-0.496542\pi\)
0.0108637 + 0.999941i \(0.496542\pi\)
\(480\) 0 0
\(481\) −28.8343 −1.31473
\(482\) 14.9472 0.680825
\(483\) −19.5340 −0.888829
\(484\) 0 0
\(485\) 0 0
\(486\) 2.10651 0.0955532
\(487\) −35.3529 −1.60199 −0.800997 0.598668i \(-0.795697\pi\)
−0.800997 + 0.598668i \(0.795697\pi\)
\(488\) 7.56716 0.342549
\(489\) −17.5720 −0.794634
\(490\) 0 0
\(491\) 30.1328 1.35987 0.679937 0.733271i \(-0.262007\pi\)
0.679937 + 0.733271i \(0.262007\pi\)
\(492\) 2.27302 0.102476
\(493\) 7.64488 0.344308
\(494\) 6.04137 0.271814
\(495\) 0 0
\(496\) 3.21773 0.144480
\(497\) −41.5670 −1.86453
\(498\) 12.8087 0.573973
\(499\) −36.4797 −1.63306 −0.816528 0.577305i \(-0.804104\pi\)
−0.816528 + 0.577305i \(0.804104\pi\)
\(500\) 0 0
\(501\) 12.0777 0.539590
\(502\) −28.8141 −1.28604
\(503\) −15.4251 −0.687772 −0.343886 0.939011i \(-0.611743\pi\)
−0.343886 + 0.939011i \(0.611743\pi\)
\(504\) −3.05549 −0.136102
\(505\) 0 0
\(506\) 0 0
\(507\) −6.75557 −0.300025
\(508\) 16.3436 0.725130
\(509\) 12.6374 0.560142 0.280071 0.959979i \(-0.409642\pi\)
0.280071 + 0.959979i \(0.409642\pi\)
\(510\) 0 0
\(511\) −19.0278 −0.841740
\(512\) 28.9455 1.27922
\(513\) 1.14769 0.0506719
\(514\) 17.4927 0.771570
\(515\) 0 0
\(516\) −1.34589 −0.0592497
\(517\) 0 0
\(518\) 80.6091 3.54176
\(519\) 24.2436 1.06418
\(520\) 0 0
\(521\) −9.18439 −0.402376 −0.201188 0.979553i \(-0.564480\pi\)
−0.201188 + 0.979553i \(0.564480\pi\)
\(522\) 2.36469 0.103500
\(523\) −33.5841 −1.46853 −0.734265 0.678863i \(-0.762473\pi\)
−0.734265 + 0.678863i \(0.762473\pi\)
\(524\) 19.6874 0.860050
\(525\) 0 0
\(526\) 23.4549 1.02268
\(527\) −7.46893 −0.325352
\(528\) 0 0
\(529\) 11.6952 0.508486
\(530\) 0 0
\(531\) 8.39837 0.364458
\(532\) −9.27697 −0.402208
\(533\) 2.33038 0.100940
\(534\) 26.5314 1.14813
\(535\) 0 0
\(536\) −3.82745 −0.165321
\(537\) −19.9390 −0.860431
\(538\) 47.9364 2.06669
\(539\) 0 0
\(540\) 0 0
\(541\) −44.6024 −1.91761 −0.958803 0.284072i \(-0.908315\pi\)
−0.958803 + 0.284072i \(0.908315\pi\)
\(542\) −16.4191 −0.705262
\(543\) −5.13290 −0.220274
\(544\) −54.6385 −2.34261
\(545\) 0 0
\(546\) −17.4569 −0.747086
\(547\) −19.2310 −0.822256 −0.411128 0.911578i \(-0.634865\pi\)
−0.411128 + 0.911578i \(0.634865\pi\)
\(548\) −15.6914 −0.670304
\(549\) 8.21313 0.350528
\(550\) 0 0
\(551\) 1.28836 0.0548860
\(552\) 5.42698 0.230988
\(553\) −12.8260 −0.545418
\(554\) 19.9427 0.847285
\(555\) 0 0
\(556\) −17.0024 −0.721061
\(557\) 33.3669 1.41380 0.706900 0.707314i \(-0.250093\pi\)
0.706900 + 0.707314i \(0.250093\pi\)
\(558\) −2.31027 −0.0978016
\(559\) −1.37986 −0.0583617
\(560\) 0 0
\(561\) 0 0
\(562\) −65.9370 −2.78139
\(563\) 2.09215 0.0881735 0.0440868 0.999028i \(-0.485962\pi\)
0.0440868 + 0.999028i \(0.485962\pi\)
\(564\) −5.20204 −0.219045
\(565\) 0 0
\(566\) −51.4248 −2.16155
\(567\) −3.31633 −0.139273
\(568\) 11.5482 0.484553
\(569\) 9.31615 0.390553 0.195277 0.980748i \(-0.437439\pi\)
0.195277 + 0.980748i \(0.437439\pi\)
\(570\) 0 0
\(571\) −2.32989 −0.0975029 −0.0487514 0.998811i \(-0.515524\pi\)
−0.0487514 + 0.998811i \(0.515524\pi\)
\(572\) 0 0
\(573\) −2.81336 −0.117530
\(574\) −6.51480 −0.271922
\(575\) 0 0
\(576\) −11.0328 −0.459699
\(577\) 29.4627 1.22655 0.613275 0.789869i \(-0.289852\pi\)
0.613275 + 0.789869i \(0.289852\pi\)
\(578\) 61.8864 2.57414
\(579\) 19.3032 0.802214
\(580\) 0 0
\(581\) −20.1651 −0.836589
\(582\) −6.04300 −0.250491
\(583\) 0 0
\(584\) 5.28634 0.218750
\(585\) 0 0
\(586\) 24.8982 1.02854
\(587\) 41.5167 1.71358 0.856789 0.515667i \(-0.172456\pi\)
0.856789 + 0.515667i \(0.172456\pi\)
\(588\) 9.74470 0.401865
\(589\) −1.25871 −0.0518642
\(590\) 0 0
\(591\) −3.57956 −0.147243
\(592\) 33.8543 1.39140
\(593\) −9.36964 −0.384765 −0.192383 0.981320i \(-0.561621\pi\)
−0.192383 + 0.981320i \(0.561621\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 46.3602 1.89899
\(597\) 12.7087 0.520131
\(598\) 31.0059 1.26793
\(599\) 1.31702 0.0538122 0.0269061 0.999638i \(-0.491434\pi\)
0.0269061 + 0.999638i \(0.491434\pi\)
\(600\) 0 0
\(601\) −15.6267 −0.637425 −0.318713 0.947851i \(-0.603250\pi\)
−0.318713 + 0.947851i \(0.603250\pi\)
\(602\) 3.85752 0.157221
\(603\) −4.15419 −0.169172
\(604\) −9.50777 −0.386866
\(605\) 0 0
\(606\) −20.7913 −0.844588
\(607\) 24.2123 0.982746 0.491373 0.870949i \(-0.336495\pi\)
0.491373 + 0.870949i \(0.336495\pi\)
\(608\) −9.20800 −0.373434
\(609\) −3.72279 −0.150855
\(610\) 0 0
\(611\) −5.33330 −0.215762
\(612\) 16.5990 0.670976
\(613\) 4.08630 0.165044 0.0825221 0.996589i \(-0.473702\pi\)
0.0825221 + 0.996589i \(0.473702\pi\)
\(614\) 47.0208 1.89760
\(615\) 0 0
\(616\) 0 0
\(617\) −16.9835 −0.683731 −0.341866 0.939749i \(-0.611059\pi\)
−0.341866 + 0.939749i \(0.611059\pi\)
\(618\) 16.2613 0.654124
\(619\) −32.1306 −1.29144 −0.645720 0.763575i \(-0.723442\pi\)
−0.645720 + 0.763575i \(0.723442\pi\)
\(620\) 0 0
\(621\) 5.89026 0.236368
\(622\) −41.0420 −1.64563
\(623\) −41.7690 −1.67344
\(624\) −7.33157 −0.293498
\(625\) 0 0
\(626\) −36.5536 −1.46098
\(627\) 0 0
\(628\) −44.8095 −1.78809
\(629\) −78.5819 −3.13326
\(630\) 0 0
\(631\) −6.31566 −0.251422 −0.125711 0.992067i \(-0.540121\pi\)
−0.125711 + 0.992067i \(0.540121\pi\)
\(632\) 3.56335 0.141742
\(633\) 3.49518 0.138921
\(634\) −1.74991 −0.0694980
\(635\) 0 0
\(636\) 28.3604 1.12456
\(637\) 9.99059 0.395842
\(638\) 0 0
\(639\) 12.5340 0.495839
\(640\) 0 0
\(641\) 14.6862 0.580072 0.290036 0.957016i \(-0.406333\pi\)
0.290036 + 0.957016i \(0.406333\pi\)
\(642\) 32.6749 1.28958
\(643\) 16.1510 0.636933 0.318467 0.947934i \(-0.396832\pi\)
0.318467 + 0.947934i \(0.396832\pi\)
\(644\) −47.6119 −1.87617
\(645\) 0 0
\(646\) 16.4645 0.647786
\(647\) −27.7874 −1.09243 −0.546217 0.837644i \(-0.683933\pi\)
−0.546217 + 0.837644i \(0.683933\pi\)
\(648\) 0.921348 0.0361940
\(649\) 0 0
\(650\) 0 0
\(651\) 3.63711 0.142550
\(652\) −42.8297 −1.67734
\(653\) 34.0655 1.33309 0.666543 0.745467i \(-0.267773\pi\)
0.666543 + 0.745467i \(0.267773\pi\)
\(654\) −14.3208 −0.559986
\(655\) 0 0
\(656\) −2.73609 −0.106826
\(657\) 5.73761 0.223846
\(658\) 14.9098 0.581243
\(659\) −14.4196 −0.561709 −0.280855 0.959750i \(-0.590618\pi\)
−0.280855 + 0.959750i \(0.590618\pi\)
\(660\) 0 0
\(661\) 26.4275 1.02791 0.513956 0.857817i \(-0.328179\pi\)
0.513956 + 0.857817i \(0.328179\pi\)
\(662\) −66.4206 −2.58151
\(663\) 17.0179 0.660920
\(664\) 5.60231 0.217412
\(665\) 0 0
\(666\) −24.3067 −0.941867
\(667\) 6.61220 0.256026
\(668\) 29.4379 1.13899
\(669\) −5.20558 −0.201259
\(670\) 0 0
\(671\) 0 0
\(672\) 26.6071 1.02639
\(673\) 36.3130 1.39976 0.699881 0.714260i \(-0.253236\pi\)
0.699881 + 0.714260i \(0.253236\pi\)
\(674\) −34.1970 −1.31722
\(675\) 0 0
\(676\) −16.4659 −0.633304
\(677\) 11.3442 0.435994 0.217997 0.975949i \(-0.430048\pi\)
0.217997 + 0.975949i \(0.430048\pi\)
\(678\) −0.635089 −0.0243904
\(679\) 9.51364 0.365100
\(680\) 0 0
\(681\) 9.70244 0.371798
\(682\) 0 0
\(683\) −39.4269 −1.50863 −0.754314 0.656514i \(-0.772030\pi\)
−0.754314 + 0.656514i \(0.772030\pi\)
\(684\) 2.79736 0.106960
\(685\) 0 0
\(686\) 20.9715 0.800694
\(687\) 18.5011 0.705860
\(688\) 1.62008 0.0617651
\(689\) 29.0760 1.10771
\(690\) 0 0
\(691\) 14.7763 0.562118 0.281059 0.959691i \(-0.409314\pi\)
0.281059 + 0.959691i \(0.409314\pi\)
\(692\) 59.0909 2.24630
\(693\) 0 0
\(694\) −26.2260 −0.995526
\(695\) 0 0
\(696\) 1.03427 0.0392040
\(697\) 6.35096 0.240560
\(698\) −68.7348 −2.60165
\(699\) −14.9543 −0.565625
\(700\) 0 0
\(701\) 7.12932 0.269271 0.134635 0.990895i \(-0.457014\pi\)
0.134635 + 0.990895i \(0.457014\pi\)
\(702\) 5.26393 0.198674
\(703\) −13.2431 −0.499472
\(704\) 0 0
\(705\) 0 0
\(706\) 33.2662 1.25199
\(707\) 32.7322 1.23102
\(708\) 20.4700 0.769311
\(709\) −5.35482 −0.201104 −0.100552 0.994932i \(-0.532061\pi\)
−0.100552 + 0.994932i \(0.532061\pi\)
\(710\) 0 0
\(711\) 3.86754 0.145044
\(712\) 11.6043 0.434891
\(713\) −6.46002 −0.241930
\(714\) −47.5751 −1.78045
\(715\) 0 0
\(716\) −48.5989 −1.81623
\(717\) 1.50716 0.0562860
\(718\) −38.2588 −1.42781
\(719\) −40.7829 −1.52095 −0.760473 0.649370i \(-0.775033\pi\)
−0.760473 + 0.649370i \(0.775033\pi\)
\(720\) 0 0
\(721\) −25.6005 −0.953412
\(722\) −37.2490 −1.38626
\(723\) 7.09571 0.263892
\(724\) −12.5108 −0.464961
\(725\) 0 0
\(726\) 0 0
\(727\) 28.6101 1.06109 0.530546 0.847656i \(-0.321987\pi\)
0.530546 + 0.847656i \(0.321987\pi\)
\(728\) −7.63532 −0.282984
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −3.76051 −0.139087
\(732\) 20.0185 0.739907
\(733\) 4.39612 0.162374 0.0811871 0.996699i \(-0.474129\pi\)
0.0811871 + 0.996699i \(0.474129\pi\)
\(734\) 0.994370 0.0367029
\(735\) 0 0
\(736\) −47.2579 −1.74195
\(737\) 0 0
\(738\) 1.96446 0.0723129
\(739\) 10.5172 0.386882 0.193441 0.981112i \(-0.438035\pi\)
0.193441 + 0.981112i \(0.438035\pi\)
\(740\) 0 0
\(741\) 2.86795 0.105357
\(742\) −81.2848 −2.98406
\(743\) −34.4901 −1.26532 −0.632659 0.774431i \(-0.718036\pi\)
−0.632659 + 0.774431i \(0.718036\pi\)
\(744\) −1.01047 −0.0370456
\(745\) 0 0
\(746\) 32.4617 1.18851
\(747\) 6.08055 0.222476
\(748\) 0 0
\(749\) −51.4408 −1.87961
\(750\) 0 0
\(751\) −2.38104 −0.0868854 −0.0434427 0.999056i \(-0.513833\pi\)
−0.0434427 + 0.999056i \(0.513833\pi\)
\(752\) 6.26181 0.228345
\(753\) −13.6786 −0.498476
\(754\) 5.90910 0.215197
\(755\) 0 0
\(756\) −8.08315 −0.293981
\(757\) 8.39549 0.305139 0.152570 0.988293i \(-0.451245\pi\)
0.152570 + 0.988293i \(0.451245\pi\)
\(758\) −40.6021 −1.47473
\(759\) 0 0
\(760\) 0 0
\(761\) −10.4681 −0.379467 −0.189734 0.981836i \(-0.560762\pi\)
−0.189734 + 0.981836i \(0.560762\pi\)
\(762\) 14.1250 0.511693
\(763\) 22.5455 0.816202
\(764\) −6.85724 −0.248086
\(765\) 0 0
\(766\) 15.6898 0.566895
\(767\) 20.9866 0.757781
\(768\) 6.91021 0.249351
\(769\) 9.70799 0.350079 0.175040 0.984561i \(-0.443995\pi\)
0.175040 + 0.984561i \(0.443995\pi\)
\(770\) 0 0
\(771\) 8.30411 0.299065
\(772\) 47.0493 1.69334
\(773\) −31.9598 −1.14952 −0.574758 0.818324i \(-0.694904\pi\)
−0.574758 + 0.818324i \(0.694904\pi\)
\(774\) −1.16319 −0.0418100
\(775\) 0 0
\(776\) −2.64310 −0.0948817
\(777\) 38.2667 1.37281
\(778\) −1.50367 −0.0539090
\(779\) 1.07030 0.0383475
\(780\) 0 0
\(781\) 0 0
\(782\) 84.5001 3.02172
\(783\) 1.12257 0.0401172
\(784\) −11.7299 −0.418926
\(785\) 0 0
\(786\) 17.0149 0.606901
\(787\) −46.4715 −1.65653 −0.828266 0.560336i \(-0.810672\pi\)
−0.828266 + 0.560336i \(0.810672\pi\)
\(788\) −8.72475 −0.310806
\(789\) 11.1345 0.396398
\(790\) 0 0
\(791\) 0.999835 0.0355500
\(792\) 0 0
\(793\) 20.5237 0.728817
\(794\) 1.60973 0.0571273
\(795\) 0 0
\(796\) 30.9759 1.09791
\(797\) 32.2353 1.14183 0.570917 0.821008i \(-0.306588\pi\)
0.570917 + 0.821008i \(0.306588\pi\)
\(798\) −8.01763 −0.283821
\(799\) −14.5348 −0.514204
\(800\) 0 0
\(801\) 12.5950 0.445021
\(802\) −33.1869 −1.17187
\(803\) 0 0
\(804\) −10.1253 −0.357093
\(805\) 0 0
\(806\) −5.77310 −0.203349
\(807\) 22.7563 0.801061
\(808\) −9.09372 −0.319916
\(809\) −21.1977 −0.745273 −0.372637 0.927977i \(-0.621546\pi\)
−0.372637 + 0.927977i \(0.621546\pi\)
\(810\) 0 0
\(811\) 23.6049 0.828879 0.414440 0.910077i \(-0.363978\pi\)
0.414440 + 0.910077i \(0.363978\pi\)
\(812\) −9.07387 −0.318430
\(813\) −7.79448 −0.273364
\(814\) 0 0
\(815\) 0 0
\(816\) −19.9806 −0.699463
\(817\) −0.633743 −0.0221718
\(818\) 5.52117 0.193043
\(819\) −8.28712 −0.289575
\(820\) 0 0
\(821\) 44.5174 1.55367 0.776834 0.629706i \(-0.216825\pi\)
0.776834 + 0.629706i \(0.216825\pi\)
\(822\) −13.5613 −0.473005
\(823\) 0.136429 0.00475560 0.00237780 0.999997i \(-0.499243\pi\)
0.00237780 + 0.999997i \(0.499243\pi\)
\(824\) 7.11238 0.247771
\(825\) 0 0
\(826\) −58.6700 −2.04139
\(827\) 11.7712 0.409325 0.204662 0.978833i \(-0.434390\pi\)
0.204662 + 0.978833i \(0.434390\pi\)
\(828\) 14.3568 0.498934
\(829\) 11.0290 0.383052 0.191526 0.981488i \(-0.438656\pi\)
0.191526 + 0.981488i \(0.438656\pi\)
\(830\) 0 0
\(831\) 9.46719 0.328413
\(832\) −27.5696 −0.955805
\(833\) 27.2273 0.943369
\(834\) −14.6943 −0.508823
\(835\) 0 0
\(836\) 0 0
\(837\) −1.09673 −0.0379085
\(838\) −37.9335 −1.31039
\(839\) −10.5903 −0.365616 −0.182808 0.983149i \(-0.558519\pi\)
−0.182808 + 0.983149i \(0.558519\pi\)
\(840\) 0 0
\(841\) −27.7398 −0.956546
\(842\) 2.46708 0.0850211
\(843\) −31.3016 −1.07808
\(844\) 8.51910 0.293239
\(845\) 0 0
\(846\) −4.49586 −0.154571
\(847\) 0 0
\(848\) −34.1381 −1.17231
\(849\) −24.4123 −0.837829
\(850\) 0 0
\(851\) −67.9670 −2.32988
\(852\) 30.5503 1.04663
\(853\) 44.5811 1.52643 0.763215 0.646145i \(-0.223620\pi\)
0.763215 + 0.646145i \(0.223620\pi\)
\(854\) −57.3759 −1.96336
\(855\) 0 0
\(856\) 14.2914 0.488470
\(857\) 24.3105 0.830430 0.415215 0.909723i \(-0.363706\pi\)
0.415215 + 0.909723i \(0.363706\pi\)
\(858\) 0 0
\(859\) −35.5045 −1.21140 −0.605699 0.795694i \(-0.707107\pi\)
−0.605699 + 0.795694i \(0.707107\pi\)
\(860\) 0 0
\(861\) −3.09270 −0.105399
\(862\) −73.9218 −2.51779
\(863\) 11.6720 0.397319 0.198659 0.980069i \(-0.436341\pi\)
0.198659 + 0.980069i \(0.436341\pi\)
\(864\) −8.02306 −0.272950
\(865\) 0 0
\(866\) −38.3933 −1.30466
\(867\) 29.3787 0.997752
\(868\) 8.86503 0.300899
\(869\) 0 0
\(870\) 0 0
\(871\) −10.3808 −0.351741
\(872\) −6.26364 −0.212114
\(873\) −2.86873 −0.0970917
\(874\) 14.2404 0.481690
\(875\) 0 0
\(876\) 13.9847 0.472501
\(877\) 26.4819 0.894230 0.447115 0.894476i \(-0.352451\pi\)
0.447115 + 0.894476i \(0.352451\pi\)
\(878\) 41.7416 1.40871
\(879\) 11.8197 0.398667
\(880\) 0 0
\(881\) 10.3488 0.348658 0.174329 0.984687i \(-0.444224\pi\)
0.174329 + 0.984687i \(0.444224\pi\)
\(882\) 8.42187 0.283579
\(883\) −2.71148 −0.0912487 −0.0456243 0.998959i \(-0.514528\pi\)
−0.0456243 + 0.998959i \(0.514528\pi\)
\(884\) 41.4791 1.39509
\(885\) 0 0
\(886\) 35.1543 1.18103
\(887\) −0.122673 −0.00411896 −0.00205948 0.999998i \(-0.500656\pi\)
−0.00205948 + 0.999998i \(0.500656\pi\)
\(888\) −10.6313 −0.356764
\(889\) −22.2373 −0.745814
\(890\) 0 0
\(891\) 0 0
\(892\) −12.6880 −0.424825
\(893\) −2.44949 −0.0819690
\(894\) 40.0669 1.34004
\(895\) 0 0
\(896\) 23.8594 0.797087
\(897\) 14.7191 0.491456
\(898\) −27.7997 −0.927689
\(899\) −1.23115 −0.0410612
\(900\) 0 0
\(901\) 79.2406 2.63989
\(902\) 0 0
\(903\) 1.83124 0.0609398
\(904\) −0.277776 −0.00923870
\(905\) 0 0
\(906\) −8.21710 −0.272995
\(907\) −13.8188 −0.458844 −0.229422 0.973327i \(-0.573684\pi\)
−0.229422 + 0.973327i \(0.573684\pi\)
\(908\) 23.6485 0.784804
\(909\) −9.87001 −0.327368
\(910\) 0 0
\(911\) 23.2558 0.770501 0.385250 0.922812i \(-0.374115\pi\)
0.385250 + 0.922812i \(0.374115\pi\)
\(912\) −3.36725 −0.111501
\(913\) 0 0
\(914\) −44.7997 −1.48184
\(915\) 0 0
\(916\) 45.0942 1.48995
\(917\) −26.7869 −0.884583
\(918\) 14.3457 0.473480
\(919\) −26.4278 −0.871772 −0.435886 0.900002i \(-0.643565\pi\)
−0.435886 + 0.900002i \(0.643565\pi\)
\(920\) 0 0
\(921\) 22.3217 0.735524
\(922\) 42.2927 1.39284
\(923\) 31.3212 1.03095
\(924\) 0 0
\(925\) 0 0
\(926\) −2.02757 −0.0666301
\(927\) 7.71953 0.253543
\(928\) −9.00641 −0.295650
\(929\) −8.03463 −0.263608 −0.131804 0.991276i \(-0.542077\pi\)
−0.131804 + 0.991276i \(0.542077\pi\)
\(930\) 0 0
\(931\) 4.58850 0.150382
\(932\) −36.4494 −1.19394
\(933\) −19.4834 −0.637858
\(934\) −31.4144 −1.02791
\(935\) 0 0
\(936\) 2.30234 0.0752545
\(937\) −13.4913 −0.440740 −0.220370 0.975416i \(-0.570726\pi\)
−0.220370 + 0.975416i \(0.570726\pi\)
\(938\) 29.0206 0.947557
\(939\) −17.3527 −0.566284
\(940\) 0 0
\(941\) 31.9040 1.04004 0.520021 0.854154i \(-0.325924\pi\)
0.520021 + 0.854154i \(0.325924\pi\)
\(942\) −38.7267 −1.26178
\(943\) 5.49307 0.178879
\(944\) −24.6403 −0.801973
\(945\) 0 0
\(946\) 0 0
\(947\) −10.2719 −0.333793 −0.166896 0.985974i \(-0.553375\pi\)
−0.166896 + 0.985974i \(0.553375\pi\)
\(948\) 9.42667 0.306164
\(949\) 14.3376 0.465419
\(950\) 0 0
\(951\) −0.830717 −0.0269379
\(952\) −20.8085 −0.674407
\(953\) 9.83426 0.318563 0.159281 0.987233i \(-0.449082\pi\)
0.159281 + 0.987233i \(0.449082\pi\)
\(954\) 24.5105 0.793557
\(955\) 0 0
\(956\) 3.67353 0.118810
\(957\) 0 0
\(958\) 1.00170 0.0323635
\(959\) 21.3499 0.689424
\(960\) 0 0
\(961\) −29.7972 −0.961199
\(962\) −60.7397 −1.95833
\(963\) 15.5114 0.499848
\(964\) 17.2949 0.557033
\(965\) 0 0
\(966\) −41.1486 −1.32393
\(967\) −3.85001 −0.123808 −0.0619041 0.998082i \(-0.519717\pi\)
−0.0619041 + 0.998082i \(0.519717\pi\)
\(968\) 0 0
\(969\) 7.81600 0.251086
\(970\) 0 0
\(971\) 21.3920 0.686502 0.343251 0.939244i \(-0.388472\pi\)
0.343251 + 0.939244i \(0.388472\pi\)
\(972\) 2.43738 0.0781790
\(973\) 23.1336 0.741630
\(974\) −74.4713 −2.38621
\(975\) 0 0
\(976\) −24.0968 −0.771320
\(977\) 16.6681 0.533258 0.266629 0.963799i \(-0.414090\pi\)
0.266629 + 0.963799i \(0.414090\pi\)
\(978\) −37.0156 −1.18363
\(979\) 0 0
\(980\) 0 0
\(981\) −6.79834 −0.217054
\(982\) 63.4750 2.02557
\(983\) −51.8570 −1.65398 −0.826991 0.562216i \(-0.809949\pi\)
−0.826991 + 0.562216i \(0.809949\pi\)
\(984\) 0.859219 0.0273909
\(985\) 0 0
\(986\) 16.1040 0.512856
\(987\) 7.07794 0.225293
\(988\) 6.99029 0.222391
\(989\) −3.25253 −0.103425
\(990\) 0 0
\(991\) 19.8195 0.629588 0.314794 0.949160i \(-0.398065\pi\)
0.314794 + 0.949160i \(0.398065\pi\)
\(992\) 8.79912 0.279372
\(993\) −31.5311 −1.00061
\(994\) −87.5613 −2.77727
\(995\) 0 0
\(996\) 14.8206 0.469609
\(997\) −51.6594 −1.63607 −0.818036 0.575168i \(-0.804937\pi\)
−0.818036 + 0.575168i \(0.804937\pi\)
\(998\) −76.8449 −2.43248
\(999\) −11.5389 −0.365074
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9075.2.a.ea.1.10 12
5.2 odd 4 1815.2.c.k.364.20 24
5.3 odd 4 1815.2.c.k.364.5 24
5.4 even 2 9075.2.a.dx.1.3 12
11.7 odd 10 825.2.n.p.676.2 24
11.8 odd 10 825.2.n.p.526.2 24
11.10 odd 2 9075.2.a.dy.1.3 12
55.7 even 20 165.2.s.a.49.10 yes 48
55.8 even 20 165.2.s.a.64.10 yes 48
55.18 even 20 165.2.s.a.49.3 48
55.19 odd 10 825.2.n.o.526.5 24
55.29 odd 10 825.2.n.o.676.5 24
55.32 even 4 1815.2.c.j.364.5 24
55.43 even 4 1815.2.c.j.364.20 24
55.52 even 20 165.2.s.a.64.3 yes 48
55.54 odd 2 9075.2.a.dz.1.10 12
165.8 odd 20 495.2.ba.c.64.3 48
165.62 odd 20 495.2.ba.c.379.3 48
165.107 odd 20 495.2.ba.c.64.10 48
165.128 odd 20 495.2.ba.c.379.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.s.a.49.3 48 55.18 even 20
165.2.s.a.49.10 yes 48 55.7 even 20
165.2.s.a.64.3 yes 48 55.52 even 20
165.2.s.a.64.10 yes 48 55.8 even 20
495.2.ba.c.64.3 48 165.8 odd 20
495.2.ba.c.64.10 48 165.107 odd 20
495.2.ba.c.379.3 48 165.62 odd 20
495.2.ba.c.379.10 48 165.128 odd 20
825.2.n.o.526.5 24 55.19 odd 10
825.2.n.o.676.5 24 55.29 odd 10
825.2.n.p.526.2 24 11.8 odd 10
825.2.n.p.676.2 24 11.7 odd 10
1815.2.c.j.364.5 24 55.32 even 4
1815.2.c.j.364.20 24 55.43 even 4
1815.2.c.k.364.5 24 5.3 odd 4
1815.2.c.k.364.20 24 5.2 odd 4
9075.2.a.dx.1.3 12 5.4 even 2
9075.2.a.dy.1.3 12 11.10 odd 2
9075.2.a.dz.1.10 12 55.54 odd 2
9075.2.a.ea.1.10 12 1.1 even 1 trivial