Properties

Label 825.2.n.p.526.2
Level $825$
Weight $2$
Character 825.526
Analytic conductor $6.588$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(301,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 526.2
Character \(\chi\) \(=\) 825.526
Dual form 825.2.n.p.676.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.650947 + 2.00341i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-1.97188 - 1.43266i) q^{4} +(-0.650947 - 2.00341i) q^{6} +(-2.68296 - 1.94929i) q^{7} +(0.745386 - 0.541555i) q^{8} +(0.309017 - 0.951057i) q^{9} +(3.31267 - 0.162019i) q^{11} +2.43738 q^{12} +(-0.772198 + 2.37658i) q^{13} +(5.65169 - 4.10619i) q^{14} +(-0.906636 - 2.79034i) q^{16} +(-2.10446 - 6.47687i) q^{17} +(1.70420 + 1.23818i) q^{18} +(0.928503 - 0.674597i) q^{19} +3.31633 q^{21} +(-1.83178 + 6.74209i) q^{22} +5.89026 q^{23} +(-0.284712 + 0.876254i) q^{24} +(-4.25861 - 3.09406i) q^{26} +(0.309017 + 0.951057i) q^{27} +(2.49783 + 7.68753i) q^{28} +(0.908175 + 0.659827i) q^{29} +(-0.338908 + 1.04305i) q^{31} +8.02306 q^{32} +(-2.58477 + 2.07821i) q^{33} +14.3457 q^{34} +(-1.97188 + 1.43266i) q^{36} +(9.33514 + 6.78238i) q^{37} +(0.747087 + 2.29930i) q^{38} +(-0.772198 - 2.37658i) q^{39} +(0.754463 - 0.548149i) q^{41} +(-2.15875 + 6.64396i) q^{42} +0.552188 q^{43} +(-6.76431 - 4.42643i) q^{44} +(-3.83425 + 11.8006i) q^{46} +(1.72666 - 1.25449i) q^{47} +(2.37360 + 1.72452i) q^{48} +(1.23546 + 3.80234i) q^{49} +(5.50956 + 4.00293i) q^{51} +(4.92751 - 3.58005i) q^{52} +(3.59560 - 11.0661i) q^{53} -2.10651 q^{54} -3.05549 q^{56} +(-0.354657 + 1.09152i) q^{57} +(-1.91308 + 1.38993i) q^{58} +(-6.79443 - 4.93644i) q^{59} +(-2.53800 - 7.81115i) q^{61} +(-1.86905 - 1.35794i) q^{62} +(-2.68296 + 1.94929i) q^{63} +(-3.40931 + 10.4928i) q^{64} +(-2.48096 - 6.53116i) q^{66} -4.15419 q^{67} +(-5.12938 + 15.7866i) q^{68} +(-4.76532 + 3.46221i) q^{69} +(3.87323 + 11.9206i) q^{71} +(-0.284712 - 0.876254i) q^{72} +(4.64182 + 3.37248i) q^{73} +(-19.6646 + 14.2871i) q^{74} -2.79736 q^{76} +(-9.20358 - 6.02265i) q^{77} +5.26393 q^{78} +(-1.19514 + 3.67825i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(0.607052 + 1.86831i) q^{82} +(-1.87899 - 5.78295i) q^{83} +(-6.53941 - 4.75116i) q^{84} +(-0.359446 + 1.10626i) q^{86} -1.12257 q^{87} +(2.38147 - 1.91476i) q^{88} +12.5950 q^{89} +(6.70442 - 4.87105i) q^{91} +(-11.6149 - 8.43872i) q^{92} +(-0.338908 - 1.04305i) q^{93} +(1.38930 + 4.27582i) q^{94} +(-6.49079 + 4.71583i) q^{96} +(-0.886486 + 2.72832i) q^{97} -8.42187 q^{98} +(0.869581 - 3.20060i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} - 6 q^{3} - 6 q^{4} + 2 q^{6} + 4 q^{7} + 6 q^{8} - 6 q^{9} + 24 q^{12} + 4 q^{13} + 2 q^{14} - 22 q^{16} + 4 q^{17} + 2 q^{18} + 8 q^{19} - 16 q^{21} - 4 q^{22} + 6 q^{24} - 38 q^{26} - 6 q^{27}+ \cdots - 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.650947 + 2.00341i −0.460289 + 1.41662i 0.404523 + 0.914528i \(0.367438\pi\)
−0.864812 + 0.502096i \(0.832562\pi\)
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) −1.97188 1.43266i −0.985942 0.716328i
\(5\) 0 0
\(6\) −0.650947 2.00341i −0.265748 0.817888i
\(7\) −2.68296 1.94929i −1.01407 0.736761i −0.0490073 0.998798i \(-0.515606\pi\)
−0.965058 + 0.262037i \(0.915606\pi\)
\(8\) 0.745386 0.541555i 0.263534 0.191469i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) 3.31267 0.162019i 0.998806 0.0488505i
\(12\) 2.43738 0.703611
\(13\) −0.772198 + 2.37658i −0.214169 + 0.659145i 0.785042 + 0.619442i \(0.212641\pi\)
−0.999212 + 0.0397029i \(0.987359\pi\)
\(14\) 5.65169 4.10619i 1.51048 1.09743i
\(15\) 0 0
\(16\) −0.906636 2.79034i −0.226659 0.697584i
\(17\) −2.10446 6.47687i −0.510408 1.57087i −0.791486 0.611188i \(-0.790692\pi\)
0.281078 0.959685i \(-0.409308\pi\)
\(18\) 1.70420 + 1.23818i 0.401684 + 0.291841i
\(19\) 0.928503 0.674597i 0.213013 0.154763i −0.476163 0.879357i \(-0.657973\pi\)
0.689176 + 0.724594i \(0.257973\pi\)
\(20\) 0 0
\(21\) 3.31633 0.723682
\(22\) −1.83178 + 6.74209i −0.390537 + 1.43742i
\(23\) 5.89026 1.22820 0.614102 0.789226i \(-0.289518\pi\)
0.614102 + 0.789226i \(0.289518\pi\)
\(24\) −0.284712 + 0.876254i −0.0581167 + 0.178865i
\(25\) 0 0
\(26\) −4.25861 3.09406i −0.835181 0.606795i
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 2.49783 + 7.68753i 0.472046 + 1.45281i
\(29\) 0.908175 + 0.659827i 0.168644 + 0.122527i 0.668906 0.743347i \(-0.266763\pi\)
−0.500262 + 0.865874i \(0.666763\pi\)
\(30\) 0 0
\(31\) −0.338908 + 1.04305i −0.0608697 + 0.187338i −0.976867 0.213846i \(-0.931401\pi\)
0.915998 + 0.401183i \(0.131401\pi\)
\(32\) 8.02306 1.41829
\(33\) −2.58477 + 2.07821i −0.449951 + 0.361770i
\(34\) 14.3457 2.46027
\(35\) 0 0
\(36\) −1.97188 + 1.43266i −0.328647 + 0.238776i
\(37\) 9.33514 + 6.78238i 1.53469 + 1.11502i 0.953560 + 0.301203i \(0.0973883\pi\)
0.581128 + 0.813812i \(0.302612\pi\)
\(38\) 0.747087 + 2.29930i 0.121194 + 0.372995i
\(39\) −0.772198 2.37658i −0.123651 0.380558i
\(40\) 0 0
\(41\) 0.754463 0.548149i 0.117827 0.0856066i −0.527311 0.849672i \(-0.676800\pi\)
0.645138 + 0.764066i \(0.276800\pi\)
\(42\) −2.15875 + 6.64396i −0.333103 + 1.02519i
\(43\) 0.552188 0.0842079 0.0421040 0.999113i \(-0.486594\pi\)
0.0421040 + 0.999113i \(0.486594\pi\)
\(44\) −6.76431 4.42643i −1.01976 0.667309i
\(45\) 0 0
\(46\) −3.83425 + 11.8006i −0.565329 + 1.73990i
\(47\) 1.72666 1.25449i 0.251860 0.182987i −0.454691 0.890649i \(-0.650250\pi\)
0.706551 + 0.707663i \(0.250250\pi\)
\(48\) 2.37360 + 1.72452i 0.342600 + 0.248913i
\(49\) 1.23546 + 3.80234i 0.176494 + 0.543192i
\(50\) 0 0
\(51\) 5.50956 + 4.00293i 0.771493 + 0.560522i
\(52\) 4.92751 3.58005i 0.683323 0.496463i
\(53\) 3.59560 11.0661i 0.493893 1.52005i −0.324781 0.945789i \(-0.605291\pi\)
0.818674 0.574258i \(-0.194709\pi\)
\(54\) −2.10651 −0.286660
\(55\) 0 0
\(56\) −3.05549 −0.408307
\(57\) −0.354657 + 1.09152i −0.0469754 + 0.144575i
\(58\) −1.91308 + 1.38993i −0.251199 + 0.182507i
\(59\) −6.79443 4.93644i −0.884559 0.642670i 0.0498947 0.998754i \(-0.484111\pi\)
−0.934454 + 0.356085i \(0.884111\pi\)
\(60\) 0 0
\(61\) −2.53800 7.81115i −0.324957 1.00012i −0.971460 0.237204i \(-0.923769\pi\)
0.646503 0.762912i \(-0.276231\pi\)
\(62\) −1.86905 1.35794i −0.237369 0.172459i
\(63\) −2.68296 + 1.94929i −0.338022 + 0.245587i
\(64\) −3.40931 + 10.4928i −0.426164 + 1.31160i
\(65\) 0 0
\(66\) −2.48096 6.53116i −0.305385 0.803930i
\(67\) −4.15419 −0.507515 −0.253757 0.967268i \(-0.581666\pi\)
−0.253757 + 0.967268i \(0.581666\pi\)
\(68\) −5.12938 + 15.7866i −0.622029 + 1.91441i
\(69\) −4.76532 + 3.46221i −0.573677 + 0.416801i
\(70\) 0 0
\(71\) 3.87323 + 11.9206i 0.459668 + 1.41471i 0.865566 + 0.500795i \(0.166959\pi\)
−0.405897 + 0.913919i \(0.633041\pi\)
\(72\) −0.284712 0.876254i −0.0335537 0.103268i
\(73\) 4.64182 + 3.37248i 0.543284 + 0.394719i 0.825303 0.564690i \(-0.191004\pi\)
−0.282019 + 0.959409i \(0.591004\pi\)
\(74\) −19.6646 + 14.2871i −2.28596 + 1.66085i
\(75\) 0 0
\(76\) −2.79736 −0.320880
\(77\) −9.20358 6.02265i −1.04885 0.686344i
\(78\) 5.26393 0.596022
\(79\) −1.19514 + 3.67825i −0.134463 + 0.413835i −0.995506 0.0946970i \(-0.969812\pi\)
0.861043 + 0.508532i \(0.169812\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0.607052 + 1.86831i 0.0670377 + 0.206321i
\(83\) −1.87899 5.78295i −0.206246 0.634761i −0.999660 0.0260781i \(-0.991698\pi\)
0.793414 0.608683i \(-0.208302\pi\)
\(84\) −6.53941 4.75116i −0.713508 0.518394i
\(85\) 0 0
\(86\) −0.359446 + 1.10626i −0.0387600 + 0.119291i
\(87\) −1.12257 −0.120352
\(88\) 2.38147 1.91476i 0.253866 0.204114i
\(89\) 12.5950 1.33506 0.667531 0.744582i \(-0.267351\pi\)
0.667531 + 0.744582i \(0.267351\pi\)
\(90\) 0 0
\(91\) 6.70442 4.87105i 0.702814 0.510624i
\(92\) −11.6149 8.43872i −1.21094 0.879798i
\(93\) −0.338908 1.04305i −0.0351431 0.108159i
\(94\) 1.38930 + 4.27582i 0.143295 + 0.441017i
\(95\) 0 0
\(96\) −6.49079 + 4.71583i −0.662463 + 0.481308i
\(97\) −0.886486 + 2.72832i −0.0900090 + 0.277019i −0.985921 0.167213i \(-0.946523\pi\)
0.895912 + 0.444232i \(0.146523\pi\)
\(98\) −8.42187 −0.850737
\(99\) 0.869581 3.20060i 0.0873962 0.321672i
\(100\) 0 0
\(101\) 3.05000 9.38694i 0.303487 0.934036i −0.676751 0.736212i \(-0.736613\pi\)
0.980238 0.197824i \(-0.0633873\pi\)
\(102\) −11.6059 + 8.43221i −1.14916 + 0.834913i
\(103\) −6.24523 4.53743i −0.615361 0.447086i 0.235937 0.971768i \(-0.424184\pi\)
−0.851298 + 0.524682i \(0.824184\pi\)
\(104\) 0.711463 + 2.18966i 0.0697647 + 0.214714i
\(105\) 0 0
\(106\) 19.8294 + 14.4069i 1.92600 + 1.39932i
\(107\) 12.5490 9.11737i 1.21316 0.881409i 0.217642 0.976029i \(-0.430163\pi\)
0.995514 + 0.0946194i \(0.0301634\pi\)
\(108\) 0.753192 2.31809i 0.0724760 0.223058i
\(109\) 6.79834 0.651163 0.325581 0.945514i \(-0.394440\pi\)
0.325581 + 0.945514i \(0.394440\pi\)
\(110\) 0 0
\(111\) −11.5389 −1.09522
\(112\) −3.00670 + 9.25367i −0.284106 + 0.874390i
\(113\) 0.243910 0.177211i 0.0229451 0.0166706i −0.576254 0.817271i \(-0.695486\pi\)
0.599199 + 0.800600i \(0.295486\pi\)
\(114\) −1.95590 1.42104i −0.183187 0.133093i
\(115\) 0 0
\(116\) −0.845508 2.60221i −0.0785034 0.241609i
\(117\) 2.02164 + 1.46881i 0.186901 + 0.135791i
\(118\) 14.3125 10.3987i 1.31757 0.957274i
\(119\) −6.97909 + 21.4794i −0.639772 + 1.96902i
\(120\) 0 0
\(121\) 10.9475 1.07343i 0.995227 0.0975844i
\(122\) 17.3010 1.56636
\(123\) −0.288179 + 0.886924i −0.0259842 + 0.0799713i
\(124\) 2.16262 1.57124i 0.194209 0.141101i
\(125\) 0 0
\(126\) −2.15875 6.64396i −0.192317 0.591891i
\(127\) −2.07208 6.37720i −0.183867 0.565885i 0.816060 0.577968i \(-0.196154\pi\)
−0.999927 + 0.0120823i \(0.996154\pi\)
\(128\) −5.82050 4.22884i −0.514464 0.373780i
\(129\) −0.446730 + 0.324568i −0.0393324 + 0.0285766i
\(130\) 0 0
\(131\) −8.07729 −0.705716 −0.352858 0.935677i \(-0.614790\pi\)
−0.352858 + 0.935677i \(0.614790\pi\)
\(132\) 8.07423 0.394902i 0.702771 0.0343718i
\(133\) −3.80612 −0.330033
\(134\) 2.70416 8.32254i 0.233604 0.718958i
\(135\) 0 0
\(136\) −5.07622 3.68809i −0.435282 0.316251i
\(137\) −1.98939 6.12273i −0.169965 0.523100i 0.829402 0.558652i \(-0.188681\pi\)
−0.999368 + 0.0355519i \(0.988681\pi\)
\(138\) −3.83425 11.8006i −0.326393 1.00453i
\(139\) −5.64344 4.10020i −0.478670 0.347774i 0.322140 0.946692i \(-0.395598\pi\)
−0.800811 + 0.598918i \(0.795598\pi\)
\(140\) 0 0
\(141\) −0.659526 + 2.02981i −0.0555421 + 0.170941i
\(142\) −26.4031 −2.21570
\(143\) −2.17298 + 7.99793i −0.181714 + 0.668820i
\(144\) −2.93393 −0.244495
\(145\) 0 0
\(146\) −9.77805 + 7.10417i −0.809237 + 0.587945i
\(147\) −3.23447 2.34998i −0.266774 0.193823i
\(148\) −8.69099 26.7481i −0.714395 2.19868i
\(149\) −5.87766 18.0896i −0.481516 1.48196i −0.836963 0.547259i \(-0.815671\pi\)
0.355447 0.934696i \(-0.384329\pi\)
\(150\) 0 0
\(151\) −3.15582 + 2.29284i −0.256817 + 0.186589i −0.708743 0.705467i \(-0.750737\pi\)
0.451925 + 0.892056i \(0.350737\pi\)
\(152\) 0.326762 1.00567i 0.0265039 0.0815707i
\(153\) −6.81019 −0.550571
\(154\) 18.0569 14.5181i 1.45506 1.16990i
\(155\) 0 0
\(156\) −1.88214 + 5.79264i −0.150692 + 0.463782i
\(157\) 14.8732 10.8060i 1.18701 0.862413i 0.194065 0.980989i \(-0.437833\pi\)
0.992945 + 0.118575i \(0.0378327\pi\)
\(158\) −6.59107 4.78869i −0.524357 0.380968i
\(159\) 3.59560 + 11.0661i 0.285149 + 0.877600i
\(160\) 0 0
\(161\) −15.8034 11.4818i −1.24548 0.904894i
\(162\) 1.70420 1.23818i 0.133895 0.0972802i
\(163\) −5.43005 + 16.7120i −0.425314 + 1.30898i 0.477379 + 0.878698i \(0.341587\pi\)
−0.902693 + 0.430285i \(0.858413\pi\)
\(164\) −2.27302 −0.177493
\(165\) 0 0
\(166\) 12.8087 0.994151
\(167\) −3.73220 + 11.4865i −0.288807 + 0.888855i 0.696425 + 0.717629i \(0.254773\pi\)
−0.985232 + 0.171226i \(0.945227\pi\)
\(168\) 2.47194 1.79597i 0.190715 0.138562i
\(169\) 5.46537 + 3.97083i 0.420413 + 0.305448i
\(170\) 0 0
\(171\) −0.354657 1.09152i −0.0271213 0.0834707i
\(172\) −1.08885 0.791097i −0.0830241 0.0603206i
\(173\) 19.6135 14.2500i 1.49119 1.08341i 0.517454 0.855711i \(-0.326880\pi\)
0.973732 0.227698i \(-0.0731200\pi\)
\(174\) 0.730731 2.24896i 0.0553966 0.170493i
\(175\) 0 0
\(176\) −3.45547 9.09656i −0.260466 0.685679i
\(177\) 8.39837 0.631260
\(178\) −8.19865 + 25.2329i −0.614515 + 1.89128i
\(179\) 16.1310 11.7198i 1.20569 0.875982i 0.210854 0.977517i \(-0.432375\pi\)
0.994832 + 0.101535i \(0.0323754\pi\)
\(180\) 0 0
\(181\) −1.58615 4.88168i −0.117898 0.362852i 0.874643 0.484768i \(-0.161096\pi\)
−0.992540 + 0.121916i \(0.961096\pi\)
\(182\) 5.39448 + 16.6025i 0.399865 + 1.23066i
\(183\) 6.64456 + 4.82756i 0.491180 + 0.356863i
\(184\) 4.39052 3.18990i 0.323674 0.235163i
\(185\) 0 0
\(186\) 2.31027 0.169397
\(187\) −8.02076 21.1148i −0.586536 1.54406i
\(188\) −5.20204 −0.379397
\(189\) 1.02480 3.15401i 0.0745433 0.229421i
\(190\) 0 0
\(191\) 2.27606 + 1.65365i 0.164690 + 0.119654i 0.667078 0.744988i \(-0.267545\pi\)
−0.502388 + 0.864642i \(0.667545\pi\)
\(192\) −3.40931 10.4928i −0.246046 0.757252i
\(193\) −5.96502 18.3584i −0.429371 1.32147i −0.898746 0.438470i \(-0.855520\pi\)
0.469374 0.882999i \(-0.344480\pi\)
\(194\) −4.88889 3.55199i −0.351002 0.255018i
\(195\) 0 0
\(196\) 3.01128 9.26776i 0.215091 0.661983i
\(197\) 3.57956 0.255033 0.127516 0.991836i \(-0.459299\pi\)
0.127516 + 0.991836i \(0.459299\pi\)
\(198\) 5.84606 + 3.82555i 0.415461 + 0.271870i
\(199\) 12.7087 0.900893 0.450447 0.892803i \(-0.351265\pi\)
0.450447 + 0.892803i \(0.351265\pi\)
\(200\) 0 0
\(201\) 3.36081 2.44177i 0.237053 0.172229i
\(202\) 16.8205 + 12.2208i 1.18349 + 0.859853i
\(203\) −1.15041 3.54059i −0.0807427 0.248500i
\(204\) −5.12938 15.7866i −0.359129 1.10528i
\(205\) 0 0
\(206\) 13.1556 9.55813i 0.916597 0.665947i
\(207\) 1.82019 5.60197i 0.126512 0.389364i
\(208\) 7.33157 0.508353
\(209\) 2.96652 2.38515i 0.205199 0.164984i
\(210\) 0 0
\(211\) −1.08007 + 3.32412i −0.0743552 + 0.228842i −0.981326 0.192352i \(-0.938389\pi\)
0.906971 + 0.421193i \(0.138389\pi\)
\(212\) −22.9440 + 16.6698i −1.57580 + 1.14489i
\(213\) −10.1403 7.36733i −0.694799 0.504801i
\(214\) 10.0971 + 31.0757i 0.690223 + 2.12429i
\(215\) 0 0
\(216\) 0.745386 + 0.541555i 0.0507171 + 0.0368481i
\(217\) 2.94249 2.13784i 0.199749 0.145126i
\(218\) −4.42536 + 13.6199i −0.299723 + 0.922453i
\(219\) −5.73761 −0.387712
\(220\) 0 0
\(221\) 17.0179 1.14475
\(222\) 7.51119 23.1171i 0.504118 1.55152i
\(223\) 4.21140 3.05976i 0.282016 0.204897i −0.437780 0.899082i \(-0.644235\pi\)
0.719796 + 0.694185i \(0.244235\pi\)
\(224\) −21.5256 15.6392i −1.43824 1.04494i
\(225\) 0 0
\(226\) 0.196253 + 0.604005i 0.0130546 + 0.0401778i
\(227\) 7.84944 + 5.70295i 0.520985 + 0.378518i 0.816975 0.576673i \(-0.195649\pi\)
−0.295990 + 0.955191i \(0.595649\pi\)
\(228\) 2.26312 1.64425i 0.149878 0.108893i
\(229\) 5.71715 17.5956i 0.377800 1.16275i −0.563770 0.825932i \(-0.690650\pi\)
0.941570 0.336817i \(-0.109350\pi\)
\(230\) 0 0
\(231\) 10.9859 0.537307i 0.722818 0.0353522i
\(232\) 1.03427 0.0679034
\(233\) 4.62115 14.2224i 0.302741 0.931742i −0.677769 0.735275i \(-0.737053\pi\)
0.980510 0.196467i \(-0.0629469\pi\)
\(234\) −4.25861 + 3.09406i −0.278394 + 0.202265i
\(235\) 0 0
\(236\) 6.32559 + 19.4682i 0.411761 + 1.26727i
\(237\) −1.19514 3.67825i −0.0776324 0.238928i
\(238\) −38.4891 27.9639i −2.49488 1.81263i
\(239\) 1.21932 0.885887i 0.0788712 0.0573033i −0.547651 0.836707i \(-0.684478\pi\)
0.626522 + 0.779404i \(0.284478\pi\)
\(240\) 0 0
\(241\) −7.09571 −0.457075 −0.228537 0.973535i \(-0.573394\pi\)
−0.228537 + 0.973535i \(0.573394\pi\)
\(242\) −4.97573 + 22.6311i −0.319852 + 1.45478i
\(243\) 1.00000 0.0641500
\(244\) −6.18607 + 19.0388i −0.396022 + 1.21883i
\(245\) 0 0
\(246\) −1.58928 1.15468i −0.101329 0.0736198i
\(247\) 0.886246 + 2.72758i 0.0563905 + 0.173552i
\(248\) 0.312252 + 0.961014i 0.0198280 + 0.0610244i
\(249\) 4.91927 + 3.57406i 0.311746 + 0.226497i
\(250\) 0 0
\(251\) −4.22692 + 13.0091i −0.266801 + 0.821129i 0.724472 + 0.689304i \(0.242084\pi\)
−0.991273 + 0.131825i \(0.957916\pi\)
\(252\) 8.08315 0.509191
\(253\) 19.5125 0.954333i 1.22674 0.0599984i
\(254\) 14.1250 0.886279
\(255\) 0 0
\(256\) −5.59047 + 4.06172i −0.349405 + 0.253857i
\(257\) −6.71817 4.88104i −0.419068 0.304471i 0.358195 0.933647i \(-0.383392\pi\)
−0.777263 + 0.629176i \(0.783392\pi\)
\(258\) −0.359446 1.10626i −0.0223781 0.0688727i
\(259\) −11.8250 36.3937i −0.734773 2.26140i
\(260\) 0 0
\(261\) 0.908175 0.659827i 0.0562146 0.0408423i
\(262\) 5.25789 16.1821i 0.324834 0.999735i
\(263\) −11.1345 −0.686582 −0.343291 0.939229i \(-0.611542\pi\)
−0.343291 + 0.939229i \(0.611542\pi\)
\(264\) −0.801187 + 2.94887i −0.0493096 + 0.181490i
\(265\) 0 0
\(266\) 2.47759 7.62522i 0.151910 0.467532i
\(267\) −10.1895 + 7.40313i −0.623589 + 0.453064i
\(268\) 8.19157 + 5.95153i 0.500380 + 0.363547i
\(269\) 7.03209 + 21.6426i 0.428754 + 1.31957i 0.899353 + 0.437223i \(0.144038\pi\)
−0.470599 + 0.882347i \(0.655962\pi\)
\(270\) 0 0
\(271\) −6.30586 4.58148i −0.383054 0.278305i 0.379549 0.925172i \(-0.376079\pi\)
−0.762603 + 0.646867i \(0.776079\pi\)
\(272\) −16.1647 + 11.7443i −0.980128 + 0.712105i
\(273\) −2.56086 + 7.88152i −0.154990 + 0.477011i
\(274\) 13.5613 0.819269
\(275\) 0 0
\(276\) 14.3568 0.864179
\(277\) −2.92552 + 9.00383i −0.175778 + 0.540988i −0.999668 0.0257612i \(-0.991799\pi\)
0.823891 + 0.566749i \(0.191799\pi\)
\(278\) 11.8880 8.63711i 0.712992 0.518019i
\(279\) 0.887273 + 0.644641i 0.0531196 + 0.0385937i
\(280\) 0 0
\(281\) 9.67271 + 29.7696i 0.577026 + 1.77590i 0.629175 + 0.777263i \(0.283393\pi\)
−0.0521495 + 0.998639i \(0.516607\pi\)
\(282\) −3.63723 2.64260i −0.216594 0.157365i
\(283\) −19.7500 + 14.3492i −1.17402 + 0.852972i −0.991484 0.130228i \(-0.958429\pi\)
−0.182531 + 0.983200i \(0.558429\pi\)
\(284\) 9.44055 29.0550i 0.560194 1.72410i
\(285\) 0 0
\(286\) −14.6086 9.55960i −0.863826 0.565271i
\(287\) −3.09270 −0.182556
\(288\) 2.47926 7.63038i 0.146092 0.449624i
\(289\) −23.7678 + 17.2684i −1.39811 + 1.01579i
\(290\) 0 0
\(291\) −0.886486 2.72832i −0.0519667 0.159937i
\(292\) −4.32152 13.3003i −0.252898 0.778340i
\(293\) 9.56230 + 6.94742i 0.558636 + 0.405873i 0.830959 0.556333i \(-0.187792\pi\)
−0.272324 + 0.962206i \(0.587792\pi\)
\(294\) 6.81343 4.95025i 0.397367 0.288704i
\(295\) 0 0
\(296\) 10.6313 0.617933
\(297\) 1.17776 + 3.10047i 0.0683405 + 0.179907i
\(298\) 40.0669 2.32101
\(299\) −4.54845 + 13.9987i −0.263044 + 0.809565i
\(300\) 0 0
\(301\) −1.48150 1.07637i −0.0853923 0.0620412i
\(302\) −2.53922 7.81492i −0.146116 0.449698i
\(303\) 3.05000 + 9.38694i 0.175218 + 0.539266i
\(304\) −2.72417 1.97922i −0.156242 0.113516i
\(305\) 0 0
\(306\) 4.43307 13.6436i 0.253422 0.779952i
\(307\) −22.3217 −1.27396 −0.636982 0.770878i \(-0.719818\pi\)
−0.636982 + 0.770878i \(0.719818\pi\)
\(308\) 9.52000 + 25.0615i 0.542453 + 1.42801i
\(309\) 7.71953 0.439149
\(310\) 0 0
\(311\) 15.7624 11.4521i 0.893804 0.649386i −0.0430633 0.999072i \(-0.513712\pi\)
0.936867 + 0.349686i \(0.113712\pi\)
\(312\) −1.86264 1.35328i −0.105451 0.0766146i
\(313\) −5.36228 16.5034i −0.303094 0.932827i −0.980382 0.197109i \(-0.936845\pi\)
0.677288 0.735718i \(-0.263155\pi\)
\(314\) 11.9672 + 36.8312i 0.675348 + 2.07851i
\(315\) 0 0
\(316\) 7.62634 5.54086i 0.429015 0.311698i
\(317\) −0.256706 + 0.790059i −0.0144180 + 0.0443741i −0.958007 0.286746i \(-0.907426\pi\)
0.943589 + 0.331120i \(0.107426\pi\)
\(318\) −24.5105 −1.37448
\(319\) 3.11538 + 2.03865i 0.174428 + 0.114142i
\(320\) 0 0
\(321\) −4.79328 + 14.7522i −0.267535 + 0.823388i
\(322\) 33.2899 24.1865i 1.85518 1.34786i
\(323\) −6.32328 4.59413i −0.351837 0.255624i
\(324\) 0.753192 + 2.31809i 0.0418440 + 0.128783i
\(325\) 0 0
\(326\) −29.9462 21.7572i −1.65857 1.20502i
\(327\) −5.49997 + 3.99596i −0.304149 + 0.220977i
\(328\) 0.265513 0.817166i 0.0146605 0.0451205i
\(329\) −7.07794 −0.390220
\(330\) 0 0
\(331\) −31.5311 −1.73311 −0.866554 0.499084i \(-0.833670\pi\)
−0.866554 + 0.499084i \(0.833670\pi\)
\(332\) −4.57982 + 14.0953i −0.251351 + 0.773577i
\(333\) 9.33514 6.78238i 0.511563 0.371672i
\(334\) −20.5828 14.9543i −1.12624 0.818261i
\(335\) 0 0
\(336\) −3.00670 9.25367i −0.164029 0.504829i
\(337\) −13.1335 9.54207i −0.715429 0.519790i 0.169491 0.985532i \(-0.445788\pi\)
−0.884921 + 0.465742i \(0.845788\pi\)
\(338\) −11.5129 + 8.36458i −0.626217 + 0.454973i
\(339\) −0.0931652 + 0.286733i −0.00506004 + 0.0155732i
\(340\) 0 0
\(341\) −0.953695 + 3.51019i −0.0516455 + 0.190087i
\(342\) 2.41763 0.130730
\(343\) −3.07643 + 9.46829i −0.166112 + 0.511239i
\(344\) 0.411594 0.299040i 0.0221916 0.0161232i
\(345\) 0 0
\(346\) 15.7813 + 48.5698i 0.848408 + 2.61113i
\(347\) 3.84726 + 11.8406i 0.206532 + 0.635639i 0.999647 + 0.0265674i \(0.00845767\pi\)
−0.793115 + 0.609071i \(0.791542\pi\)
\(348\) 2.21357 + 1.60825i 0.118660 + 0.0862113i
\(349\) −26.3980 + 19.1793i −1.41305 + 1.02664i −0.420182 + 0.907440i \(0.638034\pi\)
−0.992870 + 0.119203i \(0.961966\pi\)
\(350\) 0 0
\(351\) −2.49889 −0.133381
\(352\) 26.5777 1.29989i 1.41660 0.0692842i
\(353\) 15.7921 0.840530 0.420265 0.907402i \(-0.361937\pi\)
0.420265 + 0.907402i \(0.361937\pi\)
\(354\) −5.46690 + 16.8254i −0.290562 + 0.894259i
\(355\) 0 0
\(356\) −24.8358 18.0443i −1.31629 0.956343i
\(357\) −6.97909 21.4794i −0.369373 1.13681i
\(358\) 12.9792 + 39.9460i 0.685974 + 2.11121i
\(359\) −14.6935 10.6755i −0.775494 0.563429i 0.128129 0.991757i \(-0.459103\pi\)
−0.903623 + 0.428328i \(0.859103\pi\)
\(360\) 0 0
\(361\) −5.46429 + 16.8173i −0.287594 + 0.885123i
\(362\) 10.8125 0.568292
\(363\) −8.22577 + 7.30320i −0.431741 + 0.383319i
\(364\) −20.1989 −1.05871
\(365\) 0 0
\(366\) −13.9968 + 10.1693i −0.731626 + 0.531558i
\(367\) −0.381893 0.277462i −0.0199347 0.0144834i 0.577773 0.816197i \(-0.303922\pi\)
−0.597708 + 0.801714i \(0.703922\pi\)
\(368\) −5.34032 16.4358i −0.278383 0.856776i
\(369\) −0.288179 0.886924i −0.0150020 0.0461714i
\(370\) 0 0
\(371\) −31.2179 + 22.6811i −1.62075 + 1.17755i
\(372\) −0.826048 + 2.54231i −0.0428286 + 0.131813i
\(373\) −15.4102 −0.797910 −0.398955 0.916970i \(-0.630627\pi\)
−0.398955 + 0.916970i \(0.630627\pi\)
\(374\) 47.5226 2.32428i 2.45733 0.120186i
\(375\) 0 0
\(376\) 0.607653 1.87017i 0.0313373 0.0964464i
\(377\) −2.26942 + 1.64883i −0.116881 + 0.0849192i
\(378\) 5.65169 + 4.10619i 0.290692 + 0.211200i
\(379\) −5.95617 18.3312i −0.305948 0.941611i −0.979322 0.202309i \(-0.935156\pi\)
0.673374 0.739302i \(-0.264844\pi\)
\(380\) 0 0
\(381\) 5.42477 + 3.94133i 0.277920 + 0.201920i
\(382\) −4.79454 + 3.48344i −0.245310 + 0.178228i
\(383\) 2.30163 7.08369i 0.117608 0.361960i −0.874874 0.484350i \(-0.839056\pi\)
0.992482 + 0.122390i \(0.0390560\pi\)
\(384\) 7.19453 0.367144
\(385\) 0 0
\(386\) 40.6624 2.06966
\(387\) 0.170636 0.525162i 0.00867390 0.0266955i
\(388\) 5.65680 4.10990i 0.287180 0.208649i
\(389\) 0.577492 + 0.419572i 0.0292800 + 0.0212732i 0.602329 0.798248i \(-0.294240\pi\)
−0.573049 + 0.819521i \(0.694240\pi\)
\(390\) 0 0
\(391\) −12.3958 38.1505i −0.626885 1.92935i
\(392\) 2.98007 + 2.16515i 0.150516 + 0.109356i
\(393\) 6.53467 4.74771i 0.329630 0.239490i
\(394\) −2.33010 + 7.17132i −0.117389 + 0.361286i
\(395\) 0 0
\(396\) −6.30007 + 5.06539i −0.316590 + 0.254546i
\(397\) 0.764171 0.0383526 0.0191763 0.999816i \(-0.493896\pi\)
0.0191763 + 0.999816i \(0.493896\pi\)
\(398\) −8.27267 + 25.4607i −0.414672 + 1.27623i
\(399\) 3.07922 2.23718i 0.154154 0.111999i
\(400\) 0 0
\(401\) −4.86839 14.9834i −0.243116 0.748234i −0.995941 0.0900128i \(-0.971309\pi\)
0.752825 0.658221i \(-0.228691\pi\)
\(402\) 2.70416 + 8.32254i 0.134871 + 0.415091i
\(403\) −2.21719 1.61089i −0.110446 0.0802439i
\(404\) −19.4625 + 14.1403i −0.968296 + 0.703508i
\(405\) 0 0
\(406\) 7.84210 0.389197
\(407\) 32.0231 + 20.9553i 1.58732 + 1.03871i
\(408\) 6.27456 0.310637
\(409\) −0.809935 + 2.49272i −0.0400487 + 0.123257i −0.969082 0.246739i \(-0.920641\pi\)
0.929033 + 0.369996i \(0.120641\pi\)
\(410\) 0 0
\(411\) 5.20830 + 3.78405i 0.256907 + 0.186654i
\(412\) 5.81429 + 17.8945i 0.286450 + 0.881601i
\(413\) 8.60666 + 26.4886i 0.423506 + 1.30342i
\(414\) 10.0382 + 7.29318i 0.493350 + 0.358440i
\(415\) 0 0
\(416\) −6.19539 + 19.0674i −0.303754 + 0.934858i
\(417\) 6.97567 0.341600
\(418\) 2.84738 + 7.49576i 0.139270 + 0.366630i
\(419\) −18.0078 −0.879737 −0.439868 0.898062i \(-0.644975\pi\)
−0.439868 + 0.898062i \(0.644975\pi\)
\(420\) 0 0
\(421\) −0.947495 + 0.688395i −0.0461781 + 0.0335503i −0.610635 0.791912i \(-0.709086\pi\)
0.564457 + 0.825463i \(0.309086\pi\)
\(422\) −5.95650 4.32765i −0.289958 0.210667i
\(423\) −0.659526 2.02981i −0.0320673 0.0986929i
\(424\) −3.31280 10.1957i −0.160884 0.495149i
\(425\) 0 0
\(426\) 21.3606 15.5193i 1.03492 0.751915i
\(427\) −8.41683 + 25.9043i −0.407319 + 1.25360i
\(428\) −37.8072 −1.82748
\(429\) −2.94308 7.74771i −0.142093 0.374063i
\(430\) 0 0
\(431\) 10.8441 33.3746i 0.522340 1.60760i −0.247177 0.968970i \(-0.579503\pi\)
0.769517 0.638626i \(-0.220497\pi\)
\(432\) 2.37360 1.72452i 0.114200 0.0829712i
\(433\) 14.7452 + 10.7130i 0.708608 + 0.514834i 0.882724 0.469891i \(-0.155707\pi\)
−0.174116 + 0.984725i \(0.555707\pi\)
\(434\) 2.36757 + 7.28663i 0.113647 + 0.349769i
\(435\) 0 0
\(436\) −13.4055 9.73969i −0.642009 0.466446i
\(437\) 5.46912 3.97355i 0.261624 0.190081i
\(438\) 3.73488 11.4948i 0.178460 0.549242i
\(439\) −19.8155 −0.945743 −0.472871 0.881131i \(-0.656782\pi\)
−0.472871 + 0.881131i \(0.656782\pi\)
\(440\) 0 0
\(441\) 3.99802 0.190382
\(442\) −11.0777 + 34.0938i −0.526914 + 1.62168i
\(443\) −13.5012 + 9.80922i −0.641463 + 0.466050i −0.860352 0.509700i \(-0.829757\pi\)
0.218890 + 0.975750i \(0.429757\pi\)
\(444\) 22.7533 + 16.5312i 1.07982 + 0.784538i
\(445\) 0 0
\(446\) 3.38856 + 10.4289i 0.160453 + 0.493823i
\(447\) 15.3879 + 11.1800i 0.727823 + 0.528794i
\(448\) 29.6005 21.5061i 1.39849 1.01607i
\(449\) −4.07811 + 12.5511i −0.192458 + 0.592325i 0.807539 + 0.589815i \(0.200799\pi\)
−0.999997 + 0.00251063i \(0.999201\pi\)
\(450\) 0 0
\(451\) 2.41047 1.93807i 0.113505 0.0912603i
\(452\) −0.734843 −0.0345641
\(453\) 1.20542 3.70989i 0.0566354 0.174306i
\(454\) −16.5349 + 12.0133i −0.776022 + 0.563813i
\(455\) 0 0
\(456\) 0.326762 + 1.00567i 0.0153020 + 0.0470948i
\(457\) 6.57194 + 20.2264i 0.307423 + 0.946149i 0.978762 + 0.204999i \(0.0657192\pi\)
−0.671340 + 0.741150i \(0.734281\pi\)
\(458\) 31.5296 + 22.9076i 1.47328 + 1.07040i
\(459\) 5.50956 4.00293i 0.257164 0.186841i
\(460\) 0 0
\(461\) −20.0772 −0.935086 −0.467543 0.883970i \(-0.654861\pi\)
−0.467543 + 0.883970i \(0.654861\pi\)
\(462\) −6.07478 + 22.3590i −0.282624 + 1.04023i
\(463\) −0.962526 −0.0447324 −0.0223662 0.999750i \(-0.507120\pi\)
−0.0223662 + 0.999750i \(0.507120\pi\)
\(464\) 1.01776 3.13234i 0.0472482 0.145415i
\(465\) 0 0
\(466\) 25.4852 + 18.5161i 1.18058 + 0.857742i
\(467\) −4.60838 14.1831i −0.213250 0.656317i −0.999273 0.0381194i \(-0.987863\pi\)
0.786023 0.618197i \(-0.212137\pi\)
\(468\) −1.88214 5.79264i −0.0870020 0.267765i
\(469\) 11.1455 + 8.09771i 0.514653 + 0.373917i
\(470\) 0 0
\(471\) −5.68106 + 17.4845i −0.261769 + 0.805643i
\(472\) −7.73783 −0.356162
\(473\) 1.82922 0.0894649i 0.0841074 0.00411360i
\(474\) 8.14701 0.374204
\(475\) 0 0
\(476\) 44.5346 32.3563i 2.04124 1.48305i
\(477\) −9.41340 6.83923i −0.431010 0.313147i
\(478\) 0.981082 + 3.01946i 0.0448737 + 0.138107i
\(479\) −0.146946 0.452253i −0.00671413 0.0206640i 0.947643 0.319331i \(-0.103458\pi\)
−0.954357 + 0.298667i \(0.903458\pi\)
\(480\) 0 0
\(481\) −23.3274 + 16.9484i −1.06364 + 0.772780i
\(482\) 4.61893 14.2156i 0.210387 0.647503i
\(483\) 19.5340 0.888829
\(484\) −23.1250 13.5673i −1.05114 0.616697i
\(485\) 0 0
\(486\) −0.650947 + 2.00341i −0.0295276 + 0.0908765i
\(487\) 28.6011 20.7799i 1.29604 0.941629i 0.296132 0.955147i \(-0.404303\pi\)
0.999909 + 0.0135183i \(0.00430313\pi\)
\(488\) −6.12196 4.44786i −0.277128 0.201345i
\(489\) −5.43005 16.7120i −0.245555 0.755741i
\(490\) 0 0
\(491\) 24.3779 + 17.7116i 1.10016 + 0.799314i 0.981086 0.193572i \(-0.0620072\pi\)
0.119075 + 0.992885i \(0.462007\pi\)
\(492\) 1.83891 1.33605i 0.0829047 0.0602338i
\(493\) 2.36240 7.27072i 0.106397 0.327457i
\(494\) −6.04137 −0.271814
\(495\) 0 0
\(496\) 3.21773 0.144480
\(497\) 12.8449 39.5326i 0.576173 1.77328i
\(498\) −10.3625 + 7.52879i −0.464354 + 0.337373i
\(499\) 29.5127 + 21.4422i 1.32117 + 0.959887i 0.999917 + 0.0128935i \(0.00410424\pi\)
0.321254 + 0.946993i \(0.395896\pi\)
\(500\) 0 0
\(501\) −3.73220 11.4865i −0.166743 0.513181i
\(502\) −23.3111 16.9365i −1.04043 0.755914i
\(503\) −12.4792 + 9.06666i −0.556420 + 0.404262i −0.830147 0.557545i \(-0.811743\pi\)
0.273727 + 0.961807i \(0.411743\pi\)
\(504\) −0.944199 + 2.90595i −0.0420580 + 0.129441i
\(505\) 0 0
\(506\) −10.7897 + 39.7127i −0.479659 + 1.76544i
\(507\) −6.75557 −0.300025
\(508\) −5.05045 + 15.5437i −0.224077 + 0.689639i
\(509\) −10.2238 + 7.42806i −0.453164 + 0.329243i −0.790844 0.612018i \(-0.790358\pi\)
0.337680 + 0.941261i \(0.390358\pi\)
\(510\) 0 0
\(511\) −5.87991 18.0965i −0.260112 0.800542i
\(512\) −8.94464 27.5288i −0.395301 1.21661i
\(513\) 0.928503 + 0.674597i 0.0409944 + 0.0297842i
\(514\) 14.1519 10.2819i 0.624213 0.453517i
\(515\) 0 0
\(516\) 1.34589 0.0592497
\(517\) 5.51660 4.43547i 0.242620 0.195072i
\(518\) 80.6091 3.54176
\(519\) −7.49168 + 23.0570i −0.328848 + 1.01209i
\(520\) 0 0
\(521\) 7.43033 + 5.39845i 0.325529 + 0.236510i 0.738531 0.674220i \(-0.235520\pi\)
−0.413002 + 0.910730i \(0.635520\pi\)
\(522\) 0.730731 + 2.24896i 0.0319832 + 0.0984342i
\(523\) 10.3781 + 31.9404i 0.453801 + 1.39665i 0.872537 + 0.488547i \(0.162473\pi\)
−0.418737 + 0.908108i \(0.637527\pi\)
\(524\) 15.9275 + 11.5720i 0.695795 + 0.505525i
\(525\) 0 0
\(526\) 7.24796 22.3069i 0.316026 0.972629i
\(527\) 7.46893 0.325352
\(528\) 8.14236 + 5.32820i 0.354351 + 0.231880i
\(529\) 11.6952 0.508486
\(530\) 0 0
\(531\) −6.79443 + 4.93644i −0.294853 + 0.214223i
\(532\) 7.50523 + 5.45287i 0.325393 + 0.236412i
\(533\) 0.720127 + 2.21632i 0.0311922 + 0.0959996i
\(534\) −8.19865 25.2329i −0.354790 1.09193i
\(535\) 0 0
\(536\) −3.09648 + 2.24972i −0.133747 + 0.0971731i
\(537\) −6.16149 + 18.9631i −0.265888 + 0.818319i
\(538\) −47.9364 −2.06669
\(539\) 4.70870 + 12.3957i 0.202818 + 0.533921i
\(540\) 0 0
\(541\) 13.7829 42.4194i 0.592573 1.82375i 0.0261178 0.999659i \(-0.491685\pi\)
0.566455 0.824093i \(-0.308315\pi\)
\(542\) 13.2834 9.65093i 0.570569 0.414543i
\(543\) 4.15260 + 3.01704i 0.178205 + 0.129474i
\(544\) −16.8842 51.9643i −0.723906 2.22795i
\(545\) 0 0
\(546\) −14.1229 10.2609i −0.604405 0.439126i
\(547\) −15.5582 + 11.3037i −0.665219 + 0.483310i −0.868421 0.495827i \(-0.834865\pi\)
0.203202 + 0.979137i \(0.434865\pi\)
\(548\) −4.84891 + 14.9234i −0.207135 + 0.637497i
\(549\) −8.21313 −0.350528
\(550\) 0 0
\(551\) 1.28836 0.0548860
\(552\) −1.67703 + 5.16137i −0.0713791 + 0.219682i
\(553\) 10.3765 7.53895i 0.441252 0.320589i
\(554\) −16.1340 11.7220i −0.685468 0.498022i
\(555\) 0 0
\(556\) 5.25402 + 16.1702i 0.222820 + 0.685770i
\(557\) 26.9944 + 19.6126i 1.14379 + 0.831011i 0.987643 0.156723i \(-0.0500931\pi\)
0.156145 + 0.987734i \(0.450093\pi\)
\(558\) −1.86905 + 1.35794i −0.0791231 + 0.0574863i
\(559\) −0.426399 + 1.31232i −0.0180348 + 0.0555053i
\(560\) 0 0
\(561\) 18.8999 + 12.3677i 0.797953 + 0.522165i
\(562\) −65.9370 −2.78139
\(563\) −0.646509 + 1.98975i −0.0272471 + 0.0838580i −0.963755 0.266788i \(-0.914038\pi\)
0.936508 + 0.350646i \(0.114038\pi\)
\(564\) 4.20853 3.05768i 0.177211 0.128752i
\(565\) 0 0
\(566\) −15.8911 48.9079i −0.667955 2.05575i
\(567\) 1.02480 + 3.15401i 0.0430376 + 0.132456i
\(568\) 9.34271 + 6.78788i 0.392011 + 0.284813i
\(569\) 7.53693 5.47590i 0.315964 0.229562i −0.418487 0.908223i \(-0.637439\pi\)
0.734452 + 0.678661i \(0.237439\pi\)
\(570\) 0 0
\(571\) 2.32989 0.0975029 0.0487514 0.998811i \(-0.484476\pi\)
0.0487514 + 0.998811i \(0.484476\pi\)
\(572\) 15.7432 12.6578i 0.658254 0.529251i
\(573\) −2.81336 −0.117530
\(574\) 2.01318 6.19594i 0.0840286 0.258614i
\(575\) 0 0
\(576\) 8.92570 + 6.48490i 0.371904 + 0.270204i
\(577\) 9.10449 + 28.0207i 0.379025 + 1.16652i 0.940723 + 0.339176i \(0.110148\pi\)
−0.561698 + 0.827342i \(0.689852\pi\)
\(578\) −19.1240 58.8575i −0.795452 2.44815i
\(579\) 15.6166 + 11.3461i 0.649005 + 0.471530i
\(580\) 0 0
\(581\) −6.23136 + 19.1781i −0.258520 + 0.795643i
\(582\) 6.04300 0.250491
\(583\) 10.1181 37.2409i 0.419049 1.54236i
\(584\) 5.28634 0.218750
\(585\) 0 0
\(586\) −20.1431 + 14.6348i −0.832103 + 0.604558i
\(587\) −33.5877 24.4029i −1.38631 1.00722i −0.996258 0.0864248i \(-0.972456\pi\)
−0.390056 0.920791i \(-0.627544\pi\)
\(588\) 3.01128 + 9.26776i 0.124183 + 0.382196i
\(589\) 0.388962 + 1.19710i 0.0160269 + 0.0493258i
\(590\) 0 0
\(591\) −2.89592 + 2.10401i −0.119122 + 0.0865475i
\(592\) 10.4615 32.1973i 0.429967 1.32330i
\(593\) 9.36964 0.384765 0.192383 0.981320i \(-0.438379\pi\)
0.192383 + 0.981320i \(0.438379\pi\)
\(594\) −6.97816 + 0.341294i −0.286317 + 0.0140035i
\(595\) 0 0
\(596\) −14.3261 + 44.0912i −0.586820 + 1.80605i
\(597\) −10.2815 + 7.46997i −0.420795 + 0.305725i
\(598\) −25.0843 18.2248i −1.02577 0.745268i
\(599\) 0.406983 + 1.25256i 0.0166289 + 0.0511784i 0.959027 0.283316i \(-0.0914345\pi\)
−0.942398 + 0.334494i \(0.891434\pi\)
\(600\) 0 0
\(601\) −12.6422 9.18512i −0.515688 0.374669i 0.299289 0.954162i \(-0.403250\pi\)
−0.814977 + 0.579493i \(0.803250\pi\)
\(602\) 3.12080 2.26739i 0.127194 0.0924120i
\(603\) −1.28371 + 3.95087i −0.0522769 + 0.160892i
\(604\) 9.50777 0.386866
\(605\) 0 0
\(606\) −20.7913 −0.844588
\(607\) −7.48201 + 23.0273i −0.303685 + 0.934647i 0.676479 + 0.736462i \(0.263505\pi\)
−0.980165 + 0.198186i \(0.936495\pi\)
\(608\) 7.44943 5.41233i 0.302114 0.219499i
\(609\) 3.01180 + 2.18820i 0.122044 + 0.0886705i
\(610\) 0 0
\(611\) 1.64808 + 5.07227i 0.0666742 + 0.205202i
\(612\) 13.4289 + 9.75666i 0.542831 + 0.394390i
\(613\) 3.30589 2.40187i 0.133524 0.0970105i −0.519019 0.854763i \(-0.673702\pi\)
0.652542 + 0.757752i \(0.273702\pi\)
\(614\) 14.5302 44.7194i 0.586392 1.80473i
\(615\) 0 0
\(616\) −10.1218 + 0.495047i −0.407820 + 0.0199460i
\(617\) −16.9835 −0.683731 −0.341866 0.939749i \(-0.611059\pi\)
−0.341866 + 0.939749i \(0.611059\pi\)
\(618\) −5.02501 + 15.4654i −0.202135 + 0.622109i
\(619\) 25.9942 18.8859i 1.04480 0.759089i 0.0735802 0.997289i \(-0.476558\pi\)
0.971216 + 0.238200i \(0.0765575\pi\)
\(620\) 0 0
\(621\) 1.82019 + 5.60197i 0.0730417 + 0.224799i
\(622\) 12.6827 + 39.0332i 0.508528 + 1.56509i
\(623\) −33.7918 24.5512i −1.35384 0.983623i
\(624\) −5.93136 + 4.30939i −0.237444 + 0.172514i
\(625\) 0 0
\(626\) 36.5536 1.46098
\(627\) −0.998011 + 3.67330i −0.0398567 + 0.146698i
\(628\) −44.8095 −1.78809
\(629\) 24.2831 74.7358i 0.968232 2.97991i
\(630\) 0 0
\(631\) 5.10947 + 3.71225i 0.203405 + 0.147782i 0.684825 0.728708i \(-0.259879\pi\)
−0.481420 + 0.876490i \(0.659879\pi\)
\(632\) 1.10114 + 3.38895i 0.0438008 + 0.134805i
\(633\) −1.08007 3.32412i −0.0429290 0.132122i
\(634\) −1.41571 1.02857i −0.0562250 0.0408499i
\(635\) 0 0
\(636\) 8.76384 26.9723i 0.347509 1.06952i
\(637\) −9.99059 −0.395842
\(638\) −6.11219 + 4.91434i −0.241984 + 0.194560i
\(639\) 12.5340 0.495839
\(640\) 0 0
\(641\) −11.8814 + 8.63236i −0.469288 + 0.340958i −0.797164 0.603763i \(-0.793667\pi\)
0.327876 + 0.944721i \(0.393667\pi\)
\(642\) −26.4345 19.2058i −1.04329 0.757993i
\(643\) 4.99093 + 15.3605i 0.196823 + 0.605759i 0.999950 + 0.00995196i \(0.00316786\pi\)
−0.803127 + 0.595807i \(0.796832\pi\)
\(644\) 14.7129 + 45.2816i 0.579769 + 1.78434i
\(645\) 0 0
\(646\) 13.3200 9.67758i 0.524070 0.380759i
\(647\) −8.58676 + 26.4273i −0.337581 + 1.03897i 0.627856 + 0.778329i \(0.283933\pi\)
−0.965437 + 0.260637i \(0.916067\pi\)
\(648\) −0.921348 −0.0361940
\(649\) −23.3075 15.2519i −0.914898 0.598691i
\(650\) 0 0
\(651\) −1.12393 + 3.45910i −0.0440503 + 0.135573i
\(652\) 34.6499 25.1747i 1.35700 0.985916i
\(653\) −27.5595 20.0232i −1.07849 0.783568i −0.101070 0.994879i \(-0.532227\pi\)
−0.977419 + 0.211312i \(0.932227\pi\)
\(654\) −4.42536 13.6199i −0.173045 0.532579i
\(655\) 0 0
\(656\) −2.21354 1.60823i −0.0864244 0.0627910i
\(657\) 4.64182 3.37248i 0.181095 0.131573i
\(658\) 4.60737 14.1800i 0.179614 0.552795i
\(659\) 14.4196 0.561709 0.280855 0.959750i \(-0.409382\pi\)
0.280855 + 0.959750i \(0.409382\pi\)
\(660\) 0 0
\(661\) 26.4275 1.02791 0.513956 0.857817i \(-0.328179\pi\)
0.513956 + 0.857817i \(0.328179\pi\)
\(662\) 20.5251 63.1697i 0.797730 2.45516i
\(663\) −13.7678 + 10.0029i −0.534695 + 0.388479i
\(664\) −4.53236 3.29295i −0.175890 0.127791i
\(665\) 0 0
\(666\) 7.51119 + 23.1171i 0.291053 + 0.895769i
\(667\) 5.34939 + 3.88656i 0.207129 + 0.150488i
\(668\) 23.8157 17.3032i 0.921459 0.669479i
\(669\) −1.60861 + 4.95080i −0.0621925 + 0.191409i
\(670\) 0 0
\(671\) −9.67309 25.4645i −0.373426 0.983047i
\(672\) 26.6071 1.02639
\(673\) −11.2213 + 34.5357i −0.432550 + 1.33125i 0.463026 + 0.886345i \(0.346764\pi\)
−0.895576 + 0.444908i \(0.853236\pi\)
\(674\) 27.6659 20.1005i 1.06565 0.774241i
\(675\) 0 0
\(676\) −5.08824 15.6600i −0.195702 0.602308i
\(677\) −3.50556 10.7890i −0.134730 0.414655i 0.860818 0.508913i \(-0.169952\pi\)
−0.995548 + 0.0942574i \(0.969952\pi\)
\(678\) −0.513798 0.373296i −0.0197323 0.0143363i
\(679\) 7.69669 5.59198i 0.295372 0.214600i
\(680\) 0 0
\(681\) −9.70244 −0.371798
\(682\) −6.41154 4.19559i −0.245511 0.160657i
\(683\) −39.4269 −1.50863 −0.754314 0.656514i \(-0.772030\pi\)
−0.754314 + 0.656514i \(0.772030\pi\)
\(684\) −0.864433 + 2.66045i −0.0330524 + 0.101725i
\(685\) 0 0
\(686\) −16.9663 12.3267i −0.647775 0.470636i
\(687\) 5.71715 + 17.5956i 0.218123 + 0.671313i
\(688\) −0.500634 1.54079i −0.0190865 0.0587421i
\(689\) 23.5230 + 17.0905i 0.896155 + 0.651095i
\(690\) 0 0
\(691\) 4.56613 14.0531i 0.173704 0.534606i −0.825868 0.563864i \(-0.809314\pi\)
0.999572 + 0.0292578i \(0.00931437\pi\)
\(692\) −59.0909 −2.24630
\(693\) −8.57194 + 6.89203i −0.325621 + 0.261806i
\(694\) −26.2260 −0.995526
\(695\) 0 0
\(696\) −0.836745 + 0.607931i −0.0317167 + 0.0230436i
\(697\) −5.13804 3.73300i −0.194617 0.141398i
\(698\) −21.2402 65.3707i −0.803954 2.47432i
\(699\) 4.62115 + 14.2224i 0.174788 + 0.537942i
\(700\) 0 0
\(701\) 5.76774 4.19051i 0.217845 0.158273i −0.473511 0.880788i \(-0.657014\pi\)
0.691356 + 0.722514i \(0.257014\pi\)
\(702\) 1.62664 5.00629i 0.0613937 0.188950i
\(703\) 13.2431 0.499472
\(704\) −9.59389 + 35.3115i −0.361583 + 1.33085i
\(705\) 0 0
\(706\) −10.2798 + 31.6381i −0.386887 + 1.19071i
\(707\) −26.4809 + 19.2395i −0.995917 + 0.723576i
\(708\) −16.5606 12.0320i −0.622386 0.452190i
\(709\) −1.65473 5.09274i −0.0621447 0.191262i 0.915164 0.403082i \(-0.132061\pi\)
−0.977309 + 0.211820i \(0.932061\pi\)
\(710\) 0 0
\(711\) 3.12890 + 2.27328i 0.117343 + 0.0852548i
\(712\) 9.38811 6.82086i 0.351834 0.255623i
\(713\) −1.99626 + 6.14385i −0.0747604 + 0.230089i
\(714\) 47.5751 1.78045
\(715\) 0 0
\(716\) −48.5989 −1.81623
\(717\) −0.465738 + 1.43340i −0.0173933 + 0.0535311i
\(718\) 30.9520 22.4880i 1.15512 0.839243i
\(719\) 32.9940 + 23.9716i 1.23047 + 0.893989i 0.996925 0.0783569i \(-0.0249674\pi\)
0.233545 + 0.972346i \(0.424967\pi\)
\(720\) 0 0
\(721\) 7.91098 + 24.3475i 0.294620 + 0.906749i
\(722\) −30.1351 21.8944i −1.12151 0.814825i
\(723\) 5.74055 4.17075i 0.213493 0.155112i
\(724\) −3.86606 + 11.8985i −0.143681 + 0.442204i
\(725\) 0 0
\(726\) −9.27676 21.2336i −0.344293 0.788052i
\(727\) 28.6101 1.06109 0.530546 0.847656i \(-0.321987\pi\)
0.530546 + 0.847656i \(0.321987\pi\)
\(728\) 2.35944 7.26162i 0.0874468 0.269134i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) −1.16206 3.57646i −0.0429804 0.132280i
\(732\) −6.18607 19.0388i −0.228644 0.703693i
\(733\) 3.55653 + 2.58397i 0.131364 + 0.0954412i 0.651527 0.758626i \(-0.274129\pi\)
−0.520163 + 0.854067i \(0.674129\pi\)
\(734\) 0.804462 0.584476i 0.0296932 0.0215734i
\(735\) 0 0
\(736\) 47.2579 1.74195
\(737\) −13.7614 + 0.673056i −0.506909 + 0.0247924i
\(738\) 1.96446 0.0723129
\(739\) −3.25000 + 10.0025i −0.119553 + 0.367947i −0.992869 0.119207i \(-0.961965\pi\)
0.873316 + 0.487154i \(0.161965\pi\)
\(740\) 0 0
\(741\) −2.32022 1.68574i −0.0852355 0.0619272i
\(742\) −25.1184 77.3064i −0.922125 2.83801i
\(743\) 10.6580 + 32.8020i 0.391005 + 1.20339i 0.932030 + 0.362382i \(0.118036\pi\)
−0.541025 + 0.841007i \(0.681964\pi\)
\(744\) −0.817487 0.593939i −0.0299705 0.0217749i
\(745\) 0 0
\(746\) 10.0312 30.8729i 0.367269 1.13034i
\(747\) −6.08055 −0.222476
\(748\) −14.4342 + 53.1268i −0.527766 + 1.94251i
\(749\) −51.4408 −1.87961
\(750\) 0 0
\(751\) 1.92630 1.39954i 0.0702918 0.0510700i −0.552084 0.833788i \(-0.686167\pi\)
0.622376 + 0.782718i \(0.286167\pi\)
\(752\) −5.06591 3.68060i −0.184735 0.134218i
\(753\) −4.22692 13.0091i −0.154038 0.474079i
\(754\) −1.82601 5.61989i −0.0664995 0.204664i
\(755\) 0 0
\(756\) −6.53941 + 4.75116i −0.237836 + 0.172798i
\(757\) 2.59435 7.98459i 0.0942932 0.290205i −0.892776 0.450502i \(-0.851245\pi\)
0.987069 + 0.160297i \(0.0512452\pi\)
\(758\) 40.6021 1.47473
\(759\) −15.2250 + 12.2412i −0.552631 + 0.444328i
\(760\) 0 0
\(761\) 3.23481 9.95573i 0.117262 0.360895i −0.875150 0.483851i \(-0.839238\pi\)
0.992412 + 0.122956i \(0.0392375\pi\)
\(762\) −11.4273 + 8.30245i −0.413969 + 0.300766i
\(763\) −18.2397 13.2519i −0.660322 0.479752i
\(764\) −2.11900 6.52162i −0.0766628 0.235944i
\(765\) 0 0
\(766\) 12.6933 + 9.22222i 0.458627 + 0.333212i
\(767\) 16.9785 12.3356i 0.613058 0.445413i
\(768\) 2.13537 6.57200i 0.0770536 0.237146i
\(769\) −9.70799 −0.350079 −0.175040 0.984561i \(-0.556005\pi\)
−0.175040 + 0.984561i \(0.556005\pi\)
\(770\) 0 0
\(771\) 8.30411 0.299065
\(772\) −14.5390 + 44.7465i −0.523271 + 1.61046i
\(773\) 25.8560 18.7855i 0.929977 0.675668i −0.0160101 0.999872i \(-0.505096\pi\)
0.945987 + 0.324204i \(0.105096\pi\)
\(774\) 0.941041 + 0.683706i 0.0338250 + 0.0245753i
\(775\) 0 0
\(776\) 0.816762 + 2.51374i 0.0293201 + 0.0902378i
\(777\) 30.9584 + 22.4926i 1.11063 + 0.806917i
\(778\) −1.21649 + 0.883833i −0.0436133 + 0.0316869i
\(779\) 0.330741 1.01792i 0.0118500 0.0364706i
\(780\) 0 0
\(781\) 14.7621 + 38.8614i 0.528229 + 1.39057i
\(782\) 84.5001 3.02172
\(783\) −0.346892 + 1.06762i −0.0123969 + 0.0381537i
\(784\) 9.48971 6.89468i 0.338918 0.246239i
\(785\) 0 0
\(786\) 5.25789 + 16.1821i 0.187543 + 0.577197i
\(787\) 14.3605 + 44.1971i 0.511896 + 1.57545i 0.788859 + 0.614574i \(0.210672\pi\)
−0.276963 + 0.960881i \(0.589328\pi\)
\(788\) −7.05847 5.12828i −0.251448 0.182687i
\(789\) 9.00799 6.54469i 0.320693 0.232997i
\(790\) 0 0
\(791\) −0.999835 −0.0355500
\(792\) −1.08513 2.85661i −0.0385583 0.101505i
\(793\) 20.5237 0.728817
\(794\) −0.497435 + 1.53095i −0.0176533 + 0.0543313i
\(795\) 0 0
\(796\) −25.0600 18.2072i −0.888228 0.645336i
\(797\) 9.96126 + 30.6576i 0.352846 + 1.08595i 0.957248 + 0.289269i \(0.0934121\pi\)
−0.604402 + 0.796680i \(0.706588\pi\)
\(798\) 2.47759 + 7.62522i 0.0877056 + 0.269930i
\(799\) −11.7589 8.54334i −0.416000 0.302242i
\(800\) 0 0
\(801\) 3.89206 11.9785i 0.137519 0.423240i
\(802\) 33.1869 1.17187
\(803\) 15.9232 + 10.4198i 0.561918 + 0.367708i
\(804\) −10.1253 −0.357093
\(805\) 0 0
\(806\) 4.67054 3.39334i 0.164513 0.119525i
\(807\) −18.4103 13.3758i −0.648072 0.470852i
\(808\) −2.81011 8.64864i −0.0988595 0.304258i
\(809\) 6.55046 + 20.1603i 0.230302 + 0.708797i 0.997710 + 0.0676376i \(0.0215462\pi\)
−0.767408 + 0.641159i \(0.778454\pi\)
\(810\) 0 0
\(811\) 19.0967 13.8746i 0.670578 0.487203i −0.199641 0.979869i \(-0.563978\pi\)
0.870218 + 0.492666i \(0.163978\pi\)
\(812\) −2.80398 + 8.62976i −0.0984004 + 0.302845i
\(813\) 7.79448 0.273364
\(814\) −62.8273 + 50.5145i −2.20210 + 1.77053i
\(815\) 0 0
\(816\) 6.17436 19.0027i 0.216146 0.665228i
\(817\) 0.512709 0.372505i 0.0179374 0.0130323i
\(818\) −4.46672 3.24526i −0.156175 0.113468i
\(819\) −2.56086 7.88152i −0.0894837 0.275403i
\(820\) 0 0
\(821\) 36.0153 + 26.1667i 1.25694 + 0.913223i 0.998603 0.0528314i \(-0.0168246\pi\)
0.258340 + 0.966054i \(0.416825\pi\)
\(822\) −10.9713 + 7.97114i −0.382669 + 0.278026i
\(823\) 0.0421588 0.129751i 0.00146956 0.00452285i −0.950319 0.311278i \(-0.899243\pi\)
0.951789 + 0.306755i \(0.0992431\pi\)
\(824\) −7.11238 −0.247771
\(825\) 0 0
\(826\) −58.6700 −2.04139
\(827\) −3.63750 + 11.1951i −0.126488 + 0.389291i −0.994169 0.107830i \(-0.965610\pi\)
0.867681 + 0.497121i \(0.165610\pi\)
\(828\) −11.6149 + 8.43872i −0.403646 + 0.293266i
\(829\) −8.92262 6.48266i −0.309895 0.225152i 0.421956 0.906616i \(-0.361344\pi\)
−0.731852 + 0.681464i \(0.761344\pi\)
\(830\) 0 0
\(831\) −2.92552 9.00383i −0.101485 0.312339i
\(832\) −22.3043 16.2050i −0.773263 0.561808i
\(833\) 22.0273 16.0038i 0.763202 0.554498i
\(834\) −4.54080 + 13.9751i −0.157235 + 0.483919i
\(835\) 0 0
\(836\) −9.26673 + 0.453226i −0.320497 + 0.0156751i
\(837\) −1.09673 −0.0379085
\(838\) 11.7221 36.0769i 0.404933 1.24626i
\(839\) 8.56769 6.22479i 0.295790 0.214904i −0.429985 0.902836i \(-0.641481\pi\)
0.725775 + 0.687932i \(0.241481\pi\)
\(840\) 0 0
\(841\) −8.57208 26.3822i −0.295589 0.909730i
\(842\) −0.762368 2.34633i −0.0262730 0.0808598i
\(843\) −25.3235 18.3986i −0.872188 0.633681i
\(844\) 6.89209 5.00740i 0.237236 0.172362i
\(845\) 0 0
\(846\) 4.49586 0.154571
\(847\) −31.4642 18.4599i −1.08112 0.634288i
\(848\) −34.1381 −1.17231
\(849\) 7.54383 23.2175i 0.258903 0.796823i
\(850\) 0 0
\(851\) 54.9864 + 39.9500i 1.88491 + 1.36947i
\(852\) 9.44055 + 29.0550i 0.323428 + 0.995409i
\(853\) −13.7763 42.3992i −0.471693 1.45172i −0.850367 0.526190i \(-0.823620\pi\)
0.378674 0.925530i \(-0.376380\pi\)
\(854\) −46.4181 33.7247i −1.58839 1.15404i
\(855\) 0 0
\(856\) 4.41628 13.5919i 0.150945 0.464562i
\(857\) −24.3105 −0.830430 −0.415215 0.909723i \(-0.636294\pi\)
−0.415215 + 0.909723i \(0.636294\pi\)
\(858\) 17.4376 0.852855i 0.595311 0.0291160i
\(859\) −35.5045 −1.21140 −0.605699 0.795694i \(-0.707107\pi\)
−0.605699 + 0.795694i \(0.707107\pi\)
\(860\) 0 0
\(861\) 2.50205 1.81784i 0.0852695 0.0619519i
\(862\) 59.8040 + 43.4502i 2.03693 + 1.47992i
\(863\) 3.60684 + 11.1007i 0.122778 + 0.377873i 0.993490 0.113921i \(-0.0363412\pi\)
−0.870711 + 0.491794i \(0.836341\pi\)
\(864\) 2.47926 + 7.63038i 0.0843462 + 0.259591i
\(865\) 0 0
\(866\) −31.0609 + 22.5670i −1.05549 + 0.766859i
\(867\) 9.07851 27.9408i 0.308322 0.948919i
\(868\) −8.86503 −0.300899
\(869\) −3.36314 + 12.3784i −0.114087 + 0.419910i
\(870\) 0 0
\(871\) 3.20786 9.87276i 0.108694 0.334526i
\(872\) 5.06739 3.68167i 0.171603 0.124677i
\(873\) 2.32085 + 1.68620i 0.0785489 + 0.0570691i
\(874\) 4.40054 + 13.5435i 0.148850 + 0.458115i
\(875\) 0 0
\(876\) 11.3139 + 8.22003i 0.382261 + 0.277729i
\(877\) 21.4243 15.5657i 0.723447 0.525615i −0.164036 0.986454i \(-0.552451\pi\)
0.887484 + 0.460839i \(0.152451\pi\)
\(878\) 12.8989 39.6986i 0.435315 1.33976i
\(879\) −11.8197 −0.398667
\(880\) 0 0
\(881\) 10.3488 0.348658 0.174329 0.984687i \(-0.444224\pi\)
0.174329 + 0.984687i \(0.444224\pi\)
\(882\) −2.60250 + 8.00967i −0.0876307 + 0.269700i
\(883\) 2.19364 1.59377i 0.0738217 0.0536346i −0.550262 0.834992i \(-0.685472\pi\)
0.624084 + 0.781357i \(0.285472\pi\)
\(884\) −33.5573 24.3808i −1.12865 0.820015i
\(885\) 0 0
\(886\) −10.8633 33.4338i −0.364959 1.12323i
\(887\) −0.0992445 0.0721054i −0.00333230 0.00242106i 0.586118 0.810226i \(-0.300656\pi\)
−0.589450 + 0.807805i \(0.700656\pi\)
\(888\) −8.60092 + 6.24893i −0.288628 + 0.209700i
\(889\) −6.87169 + 21.1489i −0.230469 + 0.709311i
\(890\) 0 0
\(891\) −2.77523 1.81606i −0.0929739 0.0608403i
\(892\) −12.6880 −0.424825
\(893\) 0.756933 2.32960i 0.0253298 0.0779571i
\(894\) −32.4148 + 23.5507i −1.08411 + 0.787654i
\(895\) 0 0
\(896\) 7.37296 + 22.6916i 0.246313 + 0.758075i
\(897\) −4.54845 13.9987i −0.151868 0.467403i
\(898\) −22.4904 16.3403i −0.750516 0.545282i
\(899\) −0.996022 + 0.723652i −0.0332192 + 0.0241352i
\(900\) 0 0
\(901\) −79.2406 −2.63989
\(902\) 2.31366 + 6.09075i 0.0770365 + 0.202800i
\(903\) 1.83124 0.0609398
\(904\) 0.0858376 0.264181i 0.00285491 0.00878652i
\(905\) 0 0
\(906\) 6.64777 + 4.82989i 0.220857 + 0.160462i
\(907\) −4.27023 13.1424i −0.141791 0.436387i 0.854794 0.518968i \(-0.173684\pi\)
−0.996584 + 0.0825812i \(0.973684\pi\)
\(908\) −7.30780 22.4911i −0.242518 0.746393i
\(909\) −7.98501 5.80145i −0.264846 0.192422i
\(910\) 0 0
\(911\) 7.18645 22.1176i 0.238098 0.732790i −0.758598 0.651559i \(-0.774115\pi\)
0.996695 0.0812302i \(-0.0258849\pi\)
\(912\) 3.36725 0.111501
\(913\) −7.16142 18.8525i −0.237009 0.623928i
\(914\) −44.7997 −1.48184
\(915\) 0 0
\(916\) −36.4820 + 26.5057i −1.20540 + 0.875773i
\(917\) 21.6711 + 15.7450i 0.715642 + 0.519945i
\(918\) 4.43307 + 13.6436i 0.146313 + 0.450306i
\(919\) 8.16663 + 25.1343i 0.269392 + 0.829104i 0.990649 + 0.136436i \(0.0435648\pi\)
−0.721257 + 0.692668i \(0.756435\pi\)
\(920\) 0 0
\(921\) 18.0586 13.1203i 0.595051 0.432330i
\(922\) 13.0692 40.2228i 0.430410 1.32467i
\(923\) −31.3212 −1.03095
\(924\) −22.4326 14.6795i −0.737980 0.482920i
\(925\) 0 0
\(926\) 0.626554 1.92833i 0.0205898 0.0633690i
\(927\) −6.24523 + 4.53743i −0.205120 + 0.149029i
\(928\) 7.28634 + 5.29383i 0.239186 + 0.173779i
\(929\) −2.48284 7.64138i −0.0814592 0.250706i 0.902030 0.431674i \(-0.142077\pi\)
−0.983489 + 0.180968i \(0.942077\pi\)
\(930\) 0 0
\(931\) 3.71217 + 2.69705i 0.121662 + 0.0883923i
\(932\) −29.4882 + 21.4244i −0.965919 + 0.701781i
\(933\) −6.02070 + 18.5298i −0.197109 + 0.606639i
\(934\) 31.4144 1.02791
\(935\) 0 0
\(936\) 2.30234 0.0752545
\(937\) 4.16903 12.8309i 0.136196 0.419169i −0.859578 0.511005i \(-0.829274\pi\)
0.995774 + 0.0918359i \(0.0292735\pi\)
\(938\) −23.4782 + 17.0579i −0.766590 + 0.556960i
\(939\) 14.0386 + 10.1997i 0.458133 + 0.332853i
\(940\) 0 0
\(941\) −9.85889 30.3425i −0.321391 0.989138i −0.973044 0.230621i \(-0.925924\pi\)
0.651653 0.758517i \(-0.274076\pi\)
\(942\) −31.3305 22.7630i −1.02080 0.741657i
\(943\) 4.44398 3.22874i 0.144716 0.105142i
\(944\) −7.61426 + 23.4343i −0.247823 + 0.762721i
\(945\) 0 0
\(946\) −1.01149 + 3.72290i −0.0328863 + 0.121042i
\(947\) −10.2719 −0.333793 −0.166896 0.985974i \(-0.553375\pi\)
−0.166896 + 0.985974i \(0.553375\pi\)
\(948\) −2.91300 + 8.96529i −0.0946099 + 0.291179i
\(949\) −11.5994 + 8.42745i −0.376532 + 0.273567i
\(950\) 0 0
\(951\) −0.256706 0.790059i −0.00832425 0.0256194i
\(952\) 6.43017 + 19.7900i 0.208403 + 0.641399i
\(953\) 7.95608 + 5.78043i 0.257723 + 0.187247i 0.709143 0.705065i \(-0.249082\pi\)
−0.451420 + 0.892312i \(0.649082\pi\)
\(954\) 19.8294 14.4069i 0.642001 0.466441i
\(955\) 0 0
\(956\) −3.67353 −0.118810
\(957\) −3.71868 + 0.181877i −0.120208 + 0.00587924i
\(958\) 1.00170 0.0323635
\(959\) −6.59748 + 20.3050i −0.213044 + 0.655681i
\(960\) 0 0
\(961\) 24.1064 + 17.5143i 0.777627 + 0.564979i
\(962\) −18.7696 57.7669i −0.605157 1.86248i
\(963\) −4.79328 14.7522i −0.154461 0.475383i
\(964\) 13.9919 + 10.1657i 0.450649 + 0.327416i
\(965\) 0 0
\(966\) −12.7156 + 39.1347i −0.409118 + 1.25914i
\(967\) 3.85001 0.123808 0.0619041 0.998082i \(-0.480283\pi\)
0.0619041 + 0.998082i \(0.480283\pi\)
\(968\) 7.57880 6.72879i 0.243592 0.216272i
\(969\) 7.81600 0.251086
\(970\) 0 0
\(971\) −17.3065 + 12.5739i −0.555392 + 0.403516i −0.829769 0.558106i \(-0.811528\pi\)
0.274378 + 0.961622i \(0.411528\pi\)
\(972\) −1.97188 1.43266i −0.0632482 0.0459525i
\(973\) 7.14868 + 22.0014i 0.229176 + 0.705332i
\(974\) 23.0129 + 70.8264i 0.737381 + 2.26942i
\(975\) 0 0
\(976\) −19.4947 + 14.1637i −0.624011 + 0.453370i
\(977\) 5.15071 15.8523i 0.164786 0.507159i −0.834235 0.551410i \(-0.814090\pi\)
0.999020 + 0.0442509i \(0.0140901\pi\)
\(978\) 37.0156 1.18363
\(979\) 41.7229 2.04062i 1.33347 0.0652185i
\(980\) 0 0
\(981\) 2.10080 6.46561i 0.0670735 0.206431i
\(982\) −51.3524 + 37.3097i −1.63872 + 1.19060i
\(983\) 41.9532 + 30.4808i 1.33810 + 0.972186i 0.999512 + 0.0312510i \(0.00994913\pi\)
0.338588 + 0.940935i \(0.390051\pi\)
\(984\) 0.265513 + 0.817166i 0.00846426 + 0.0260503i
\(985\) 0 0
\(986\) 13.0284 + 9.46570i 0.414910 + 0.301449i
\(987\) 5.72618 4.16031i 0.182266 0.132424i
\(988\) 2.16012 6.64816i 0.0687226 0.211506i
\(989\) 3.25253 0.103425
\(990\) 0 0
\(991\) 19.8195 0.629588 0.314794 0.949160i \(-0.398065\pi\)
0.314794 + 0.949160i \(0.398065\pi\)
\(992\) −2.71908 + 8.36846i −0.0863308 + 0.265699i
\(993\) 25.5092 18.5335i 0.809510 0.588144i
\(994\) 70.8386 + 51.4672i 2.24686 + 1.63244i
\(995\) 0 0
\(996\) −4.57982 14.0953i −0.145117 0.446625i
\(997\) −41.7934 30.3647i −1.32361 0.961658i −0.999880 0.0155088i \(-0.995063\pi\)
−0.323730 0.946150i \(-0.604937\pi\)
\(998\) −62.1688 + 45.1683i −1.96792 + 1.42978i
\(999\) −3.56571 + 10.9741i −0.112814 + 0.347206i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.n.p.526.2 24
5.2 odd 4 165.2.s.a.64.3 yes 48
5.3 odd 4 165.2.s.a.64.10 yes 48
5.4 even 2 825.2.n.o.526.5 24
11.4 even 5 9075.2.a.dy.1.3 12
11.5 even 5 inner 825.2.n.p.676.2 24
11.7 odd 10 9075.2.a.ea.1.10 12
15.2 even 4 495.2.ba.c.64.10 48
15.8 even 4 495.2.ba.c.64.3 48
55.4 even 10 9075.2.a.dz.1.10 12
55.7 even 20 1815.2.c.k.364.20 24
55.18 even 20 1815.2.c.k.364.5 24
55.27 odd 20 165.2.s.a.49.10 yes 48
55.29 odd 10 9075.2.a.dx.1.3 12
55.37 odd 20 1815.2.c.j.364.5 24
55.38 odd 20 165.2.s.a.49.3 48
55.48 odd 20 1815.2.c.j.364.20 24
55.49 even 10 825.2.n.o.676.5 24
165.38 even 20 495.2.ba.c.379.10 48
165.137 even 20 495.2.ba.c.379.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.s.a.49.3 48 55.38 odd 20
165.2.s.a.49.10 yes 48 55.27 odd 20
165.2.s.a.64.3 yes 48 5.2 odd 4
165.2.s.a.64.10 yes 48 5.3 odd 4
495.2.ba.c.64.3 48 15.8 even 4
495.2.ba.c.64.10 48 15.2 even 4
495.2.ba.c.379.3 48 165.137 even 20
495.2.ba.c.379.10 48 165.38 even 20
825.2.n.o.526.5 24 5.4 even 2
825.2.n.o.676.5 24 55.49 even 10
825.2.n.p.526.2 24 1.1 even 1 trivial
825.2.n.p.676.2 24 11.5 even 5 inner
1815.2.c.j.364.5 24 55.37 odd 20
1815.2.c.j.364.20 24 55.48 odd 20
1815.2.c.k.364.5 24 55.18 even 20
1815.2.c.k.364.20 24 55.7 even 20
9075.2.a.dx.1.3 12 55.29 odd 10
9075.2.a.dy.1.3 12 11.4 even 5
9075.2.a.dz.1.10 12 55.4 even 10
9075.2.a.ea.1.10 12 11.7 odd 10