Properties

Label 912.2.q.l.49.2
Level $912$
Weight $2$
Character 912.49
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(49,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.2
Root \(1.71903 - 0.211943i\) of defining polynomial
Character \(\chi\) \(=\) 912.49
Dual form 912.2.q.l.577.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(-0.675970 + 1.17081i) q^{5} -0.351939 q^{7} +(-0.500000 - 0.866025i) q^{9} -5.52420 q^{11} +(2.58613 + 4.47931i) q^{13} +(0.675970 + 1.17081i) q^{15} +(2.43807 + 3.61328i) q^{19} +(-0.175970 + 0.304788i) q^{21} +(4.41016 + 7.63862i) q^{23} +(1.58613 + 2.74726i) q^{25} -1.00000 q^{27} +(-1.35194 - 2.34163i) q^{29} +0.524200 q^{31} +(-2.76210 + 4.78410i) q^{33} +(0.237900 - 0.412055i) q^{35} -1.00000 q^{37} +5.17226 q^{39} +(1.35194 - 2.34163i) q^{41} +(-3.26210 + 5.65012i) q^{43} +1.35194 q^{45} +(-3.00000 - 5.19615i) q^{47} -6.87614 q^{49} +(2.02791 + 3.51244i) q^{53} +(3.73419 - 6.46781i) q^{55} +(4.34823 - 0.304788i) q^{57} +(-2.76210 + 4.78410i) q^{59} +(0.938069 + 1.62478i) q^{61} +(0.175970 + 0.304788i) q^{63} -6.99258 q^{65} +(5.99629 + 10.3859i) q^{67} +8.82032 q^{69} +(2.52420 - 4.37204i) q^{71} +(-3.85194 + 6.67175i) q^{73} +3.17226 q^{75} +1.94418 q^{77} +(3.91016 - 6.77260i) q^{79} +(-0.500000 + 0.866025i) q^{81} -8.34452 q^{83} -2.70388 q^{87} +(2.32403 + 4.02534i) q^{89} +(-0.910161 - 1.57644i) q^{91} +(0.262100 - 0.453970i) q^{93} +(-5.87854 + 0.412055i) q^{95} +(6.90645 - 11.9623i) q^{97} +(2.76210 + 4.78410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 2 q^{5} + 2 q^{7} - 3 q^{9} + q^{13} + 2 q^{15} - 4 q^{19} + q^{21} + 14 q^{23} - 5 q^{25} - 6 q^{27} - 4 q^{29} - 30 q^{31} + 18 q^{35} - 6 q^{37} + 2 q^{39} + 4 q^{41} - 3 q^{43} + 4 q^{45}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) −0.675970 + 1.17081i −0.302303 + 0.523604i −0.976657 0.214804i \(-0.931089\pi\)
0.674354 + 0.738408i \(0.264422\pi\)
\(6\) 0 0
\(7\) −0.351939 −0.133021 −0.0665103 0.997786i \(-0.521187\pi\)
−0.0665103 + 0.997786i \(0.521187\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −5.52420 −1.66561 −0.832804 0.553567i \(-0.813266\pi\)
−0.832804 + 0.553567i \(0.813266\pi\)
\(12\) 0 0
\(13\) 2.58613 + 4.47931i 0.717263 + 1.24234i 0.962080 + 0.272767i \(0.0879389\pi\)
−0.244817 + 0.969569i \(0.578728\pi\)
\(14\) 0 0
\(15\) 0.675970 + 1.17081i 0.174535 + 0.302303i
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) 2.43807 + 3.61328i 0.559331 + 0.828944i
\(20\) 0 0
\(21\) −0.175970 + 0.304788i −0.0383997 + 0.0665103i
\(22\) 0 0
\(23\) 4.41016 + 7.63862i 0.919582 + 1.59276i 0.800051 + 0.599932i \(0.204806\pi\)
0.119531 + 0.992830i \(0.461861\pi\)
\(24\) 0 0
\(25\) 1.58613 + 2.74726i 0.317226 + 0.549452i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.35194 2.34163i −0.251049 0.434829i 0.712766 0.701402i \(-0.247442\pi\)
−0.963815 + 0.266573i \(0.914109\pi\)
\(30\) 0 0
\(31\) 0.524200 0.0941490 0.0470745 0.998891i \(-0.485010\pi\)
0.0470745 + 0.998891i \(0.485010\pi\)
\(32\) 0 0
\(33\) −2.76210 + 4.78410i −0.480820 + 0.832804i
\(34\) 0 0
\(35\) 0.237900 0.412055i 0.0402125 0.0696500i
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 5.17226 0.828225
\(40\) 0 0
\(41\) 1.35194 2.34163i 0.211137 0.365701i −0.740933 0.671579i \(-0.765617\pi\)
0.952071 + 0.305878i \(0.0989499\pi\)
\(42\) 0 0
\(43\) −3.26210 + 5.65012i −0.497466 + 0.861636i −0.999996 0.00292406i \(-0.999069\pi\)
0.502530 + 0.864560i \(0.332403\pi\)
\(44\) 0 0
\(45\) 1.35194 0.201535
\(46\) 0 0
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) −6.87614 −0.982306
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.02791 + 3.51244i 0.278555 + 0.482471i 0.971026 0.238975i \(-0.0768113\pi\)
−0.692471 + 0.721446i \(0.743478\pi\)
\(54\) 0 0
\(55\) 3.73419 6.46781i 0.503518 0.872119i
\(56\) 0 0
\(57\) 4.34823 0.304788i 0.575937 0.0403702i
\(58\) 0 0
\(59\) −2.76210 + 4.78410i −0.359595 + 0.622836i −0.987893 0.155136i \(-0.950418\pi\)
0.628298 + 0.777972i \(0.283752\pi\)
\(60\) 0 0
\(61\) 0.938069 + 1.62478i 0.120107 + 0.208032i 0.919810 0.392364i \(-0.128343\pi\)
−0.799702 + 0.600397i \(0.795009\pi\)
\(62\) 0 0
\(63\) 0.175970 + 0.304788i 0.0221701 + 0.0383997i
\(64\) 0 0
\(65\) −6.99258 −0.867323
\(66\) 0 0
\(67\) 5.99629 + 10.3859i 0.732564 + 1.26884i 0.955784 + 0.294069i \(0.0950096\pi\)
−0.223221 + 0.974768i \(0.571657\pi\)
\(68\) 0 0
\(69\) 8.82032 1.06184
\(70\) 0 0
\(71\) 2.52420 4.37204i 0.299567 0.518866i −0.676470 0.736471i \(-0.736491\pi\)
0.976037 + 0.217605i \(0.0698243\pi\)
\(72\) 0 0
\(73\) −3.85194 + 6.67175i −0.450835 + 0.780870i −0.998438 0.0558687i \(-0.982207\pi\)
0.547603 + 0.836738i \(0.315541\pi\)
\(74\) 0 0
\(75\) 3.17226 0.366301
\(76\) 0 0
\(77\) 1.94418 0.221560
\(78\) 0 0
\(79\) 3.91016 6.77260i 0.439927 0.761977i −0.557756 0.830005i \(-0.688337\pi\)
0.997683 + 0.0680283i \(0.0216708\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −8.34452 −0.915930 −0.457965 0.888970i \(-0.651422\pi\)
−0.457965 + 0.888970i \(0.651422\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.70388 −0.289886
\(88\) 0 0
\(89\) 2.32403 + 4.02534i 0.246347 + 0.426685i 0.962509 0.271248i \(-0.0874365\pi\)
−0.716163 + 0.697933i \(0.754103\pi\)
\(90\) 0 0
\(91\) −0.910161 1.57644i −0.0954108 0.165256i
\(92\) 0 0
\(93\) 0.262100 0.453970i 0.0271785 0.0470745i
\(94\) 0 0
\(95\) −5.87854 + 0.412055i −0.603126 + 0.0422760i
\(96\) 0 0
\(97\) 6.90645 11.9623i 0.701244 1.21459i −0.266786 0.963756i \(-0.585962\pi\)
0.968030 0.250834i \(-0.0807049\pi\)
\(98\) 0 0
\(99\) 2.76210 + 4.78410i 0.277601 + 0.480820i
\(100\) 0 0
\(101\) 1.17226 + 2.03041i 0.116644 + 0.202034i 0.918436 0.395570i \(-0.129453\pi\)
−0.801792 + 0.597604i \(0.796120\pi\)
\(102\) 0 0
\(103\) 16.1042 1.58680 0.793398 0.608703i \(-0.208310\pi\)
0.793398 + 0.608703i \(0.208310\pi\)
\(104\) 0 0
\(105\) −0.237900 0.412055i −0.0232167 0.0402125i
\(106\) 0 0
\(107\) 0.592243 0.0572543 0.0286272 0.999590i \(-0.490886\pi\)
0.0286272 + 0.999590i \(0.490886\pi\)
\(108\) 0 0
\(109\) 6.79001 11.7606i 0.650365 1.12647i −0.332669 0.943043i \(-0.607949\pi\)
0.983034 0.183422i \(-0.0587173\pi\)
\(110\) 0 0
\(111\) −0.500000 + 0.866025i −0.0474579 + 0.0821995i
\(112\) 0 0
\(113\) −12.9926 −1.22224 −0.611120 0.791538i \(-0.709281\pi\)
−0.611120 + 0.791538i \(0.709281\pi\)
\(114\) 0 0
\(115\) −11.9245 −1.11197
\(116\) 0 0
\(117\) 2.58613 4.47931i 0.239088 0.414112i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 19.5168 1.77425
\(122\) 0 0
\(123\) −1.35194 2.34163i −0.121900 0.211137i
\(124\) 0 0
\(125\) −11.0484 −0.988199
\(126\) 0 0
\(127\) 5.35194 + 9.26983i 0.474908 + 0.822564i 0.999587 0.0287355i \(-0.00914807\pi\)
−0.524679 + 0.851300i \(0.675815\pi\)
\(128\) 0 0
\(129\) 3.26210 + 5.65012i 0.287212 + 0.497466i
\(130\) 0 0
\(131\) −1.64806 + 2.85453i −0.143992 + 0.249401i −0.928996 0.370089i \(-0.879327\pi\)
0.785005 + 0.619490i \(0.212661\pi\)
\(132\) 0 0
\(133\) −0.858052 1.27166i −0.0744026 0.110267i
\(134\) 0 0
\(135\) 0.675970 1.17081i 0.0581782 0.100768i
\(136\) 0 0
\(137\) −8.52420 14.7643i −0.728272 1.26140i −0.957613 0.288057i \(-0.906991\pi\)
0.229342 0.973346i \(-0.426343\pi\)
\(138\) 0 0
\(139\) −8.96598 15.5295i −0.760484 1.31720i −0.942601 0.333921i \(-0.891628\pi\)
0.182117 0.983277i \(-0.441705\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) −14.2863 24.7446i −1.19468 2.06925i
\(144\) 0 0
\(145\) 3.65548 0.303571
\(146\) 0 0
\(147\) −3.43807 + 5.95491i −0.283567 + 0.491153i
\(148\) 0 0
\(149\) −0.972091 + 1.68371i −0.0796368 + 0.137935i −0.903093 0.429444i \(-0.858709\pi\)
0.823456 + 0.567379i \(0.192043\pi\)
\(150\) 0 0
\(151\) −13.6406 −1.11006 −0.555030 0.831830i \(-0.687293\pi\)
−0.555030 + 0.831830i \(0.687293\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.354343 + 0.613740i −0.0284615 + 0.0492968i
\(156\) 0 0
\(157\) −8.32032 + 14.4112i −0.664034 + 1.15014i 0.315512 + 0.948921i \(0.397824\pi\)
−0.979546 + 0.201219i \(0.935510\pi\)
\(158\) 0 0
\(159\) 4.05582 0.321647
\(160\) 0 0
\(161\) −1.55211 2.68833i −0.122323 0.211870i
\(162\) 0 0
\(163\) 1.99258 0.156071 0.0780355 0.996951i \(-0.475135\pi\)
0.0780355 + 0.996951i \(0.475135\pi\)
\(164\) 0 0
\(165\) −3.73419 6.46781i −0.290706 0.503518i
\(166\) 0 0
\(167\) 1.29372 + 2.24078i 0.100111 + 0.173397i 0.911730 0.410790i \(-0.134747\pi\)
−0.811619 + 0.584187i \(0.801414\pi\)
\(168\) 0 0
\(169\) −6.87614 + 11.9098i −0.528934 + 0.916140i
\(170\) 0 0
\(171\) 1.91016 3.91807i 0.146074 0.299622i
\(172\) 0 0
\(173\) −8.82032 + 15.2772i −0.670597 + 1.16151i 0.307139 + 0.951665i \(0.400628\pi\)
−0.977735 + 0.209843i \(0.932705\pi\)
\(174\) 0 0
\(175\) −0.558221 0.966868i −0.0421976 0.0730883i
\(176\) 0 0
\(177\) 2.76210 + 4.78410i 0.207612 + 0.359595i
\(178\) 0 0
\(179\) −2.22808 −0.166534 −0.0832672 0.996527i \(-0.526535\pi\)
−0.0832672 + 0.996527i \(0.526535\pi\)
\(180\) 0 0
\(181\) −4.73419 8.19986i −0.351890 0.609491i 0.634691 0.772766i \(-0.281127\pi\)
−0.986581 + 0.163275i \(0.947794\pi\)
\(182\) 0 0
\(183\) 1.87614 0.138688
\(184\) 0 0
\(185\) 0.675970 1.17081i 0.0496983 0.0860799i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.351939 0.0255998
\(190\) 0 0
\(191\) 22.5726 1.63330 0.816648 0.577136i \(-0.195830\pi\)
0.816648 + 0.577136i \(0.195830\pi\)
\(192\) 0 0
\(193\) 6.93807 12.0171i 0.499413 0.865009i −0.500587 0.865686i \(-0.666882\pi\)
1.00000 0.000677488i \(0.000215651\pi\)
\(194\) 0 0
\(195\) −3.49629 + 6.05575i −0.250375 + 0.433662i
\(196\) 0 0
\(197\) 8.30354 0.591603 0.295801 0.955249i \(-0.404413\pi\)
0.295801 + 0.955249i \(0.404413\pi\)
\(198\) 0 0
\(199\) −3.44178 5.96134i −0.243981 0.422588i 0.717863 0.696184i \(-0.245120\pi\)
−0.961845 + 0.273596i \(0.911787\pi\)
\(200\) 0 0
\(201\) 11.9926 0.845891
\(202\) 0 0
\(203\) 0.475800 + 0.824110i 0.0333946 + 0.0578412i
\(204\) 0 0
\(205\) 1.82774 + 3.16574i 0.127655 + 0.221105i
\(206\) 0 0
\(207\) 4.41016 7.63862i 0.306527 0.530921i
\(208\) 0 0
\(209\) −13.4684 19.9605i −0.931627 1.38070i
\(210\) 0 0
\(211\) −4.31792 + 7.47885i −0.297258 + 0.514865i −0.975508 0.219966i \(-0.929405\pi\)
0.678250 + 0.734831i \(0.262739\pi\)
\(212\) 0 0
\(213\) −2.52420 4.37204i −0.172955 0.299567i
\(214\) 0 0
\(215\) −4.41016 7.63862i −0.300770 0.520950i
\(216\) 0 0
\(217\) −0.184486 −0.0125238
\(218\) 0 0
\(219\) 3.85194 + 6.67175i 0.260290 + 0.450835i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 6.13824 10.6317i 0.411047 0.711954i −0.583958 0.811784i \(-0.698497\pi\)
0.995004 + 0.0998301i \(0.0318299\pi\)
\(224\) 0 0
\(225\) 1.58613 2.74726i 0.105742 0.183151i
\(226\) 0 0
\(227\) −0.475800 −0.0315800 −0.0157900 0.999875i \(-0.505026\pi\)
−0.0157900 + 0.999875i \(0.505026\pi\)
\(228\) 0 0
\(229\) −5.17226 −0.341793 −0.170896 0.985289i \(-0.554666\pi\)
−0.170896 + 0.985289i \(0.554666\pi\)
\(230\) 0 0
\(231\) 0.972091 1.68371i 0.0639589 0.110780i
\(232\) 0 0
\(233\) 5.34452 9.25698i 0.350131 0.606445i −0.636141 0.771573i \(-0.719470\pi\)
0.986272 + 0.165128i \(0.0528037\pi\)
\(234\) 0 0
\(235\) 8.11164 0.529145
\(236\) 0 0
\(237\) −3.91016 6.77260i −0.253992 0.439927i
\(238\) 0 0
\(239\) 0.475800 0.0307770 0.0153885 0.999882i \(-0.495101\pi\)
0.0153885 + 0.999882i \(0.495101\pi\)
\(240\) 0 0
\(241\) 0.320321 + 0.554813i 0.0206337 + 0.0357386i 0.876158 0.482024i \(-0.160098\pi\)
−0.855524 + 0.517763i \(0.826765\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 4.64806 8.05068i 0.296954 0.514339i
\(246\) 0 0
\(247\) −9.87985 + 20.2653i −0.628640 + 1.28945i
\(248\) 0 0
\(249\) −4.17226 + 7.22657i −0.264406 + 0.457965i
\(250\) 0 0
\(251\) −2.52420 4.37204i −0.159326 0.275961i 0.775300 0.631593i \(-0.217599\pi\)
−0.934626 + 0.355633i \(0.884265\pi\)
\(252\) 0 0
\(253\) −24.3626 42.1973i −1.53166 2.65292i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.3724 17.9656i −0.647014 1.12066i −0.983832 0.179092i \(-0.942684\pi\)
0.336818 0.941570i \(-0.390649\pi\)
\(258\) 0 0
\(259\) 0.351939 0.0218684
\(260\) 0 0
\(261\) −1.35194 + 2.34163i −0.0836829 + 0.144943i
\(262\) 0 0
\(263\) 8.52420 14.7643i 0.525625 0.910409i −0.473930 0.880563i \(-0.657165\pi\)
0.999555 0.0298460i \(-0.00950169\pi\)
\(264\) 0 0
\(265\) −5.48322 −0.336831
\(266\) 0 0
\(267\) 4.64806 0.284457
\(268\) 0 0
\(269\) −4.55211 + 7.88448i −0.277547 + 0.480725i −0.970775 0.239993i \(-0.922855\pi\)
0.693228 + 0.720719i \(0.256188\pi\)
\(270\) 0 0
\(271\) 13.2207 22.8989i 0.803098 1.39101i −0.114470 0.993427i \(-0.536517\pi\)
0.917568 0.397580i \(-0.130150\pi\)
\(272\) 0 0
\(273\) −1.82032 −0.110171
\(274\) 0 0
\(275\) −8.76210 15.1764i −0.528374 0.915171i
\(276\) 0 0
\(277\) 26.1574 1.57165 0.785824 0.618451i \(-0.212239\pi\)
0.785824 + 0.618451i \(0.212239\pi\)
\(278\) 0 0
\(279\) −0.262100 0.453970i −0.0156915 0.0271785i
\(280\) 0 0
\(281\) 12.2002 + 21.1313i 0.727801 + 1.26059i 0.957811 + 0.287400i \(0.0927909\pi\)
−0.230010 + 0.973188i \(0.573876\pi\)
\(282\) 0 0
\(283\) −0.172260 + 0.298364i −0.0102398 + 0.0177359i −0.871100 0.491106i \(-0.836593\pi\)
0.860860 + 0.508842i \(0.169926\pi\)
\(284\) 0 0
\(285\) −2.58242 + 5.29699i −0.152969 + 0.313767i
\(286\) 0 0
\(287\) −0.475800 + 0.824110i −0.0280856 + 0.0486457i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) −6.90645 11.9623i −0.404863 0.701244i
\(292\) 0 0
\(293\) 17.2813 1.00958 0.504792 0.863241i \(-0.331569\pi\)
0.504792 + 0.863241i \(0.331569\pi\)
\(294\) 0 0
\(295\) −3.73419 6.46781i −0.217413 0.376570i
\(296\) 0 0
\(297\) 5.52420 0.320547
\(298\) 0 0
\(299\) −22.8105 + 39.5089i −1.31917 + 2.28486i
\(300\) 0 0
\(301\) 1.14806 1.98850i 0.0661731 0.114615i
\(302\) 0 0
\(303\) 2.34452 0.134689
\(304\) 0 0
\(305\) −2.53643 −0.145235
\(306\) 0 0
\(307\) 4.43807 7.68696i 0.253294 0.438718i −0.711137 0.703054i \(-0.751819\pi\)
0.964431 + 0.264336i \(0.0851527\pi\)
\(308\) 0 0
\(309\) 8.05211 13.9467i 0.458068 0.793398i
\(310\) 0 0
\(311\) 11.1648 0.633100 0.316550 0.948576i \(-0.397475\pi\)
0.316550 + 0.948576i \(0.397475\pi\)
\(312\) 0 0
\(313\) 2.25839 + 3.91165i 0.127652 + 0.221099i 0.922766 0.385360i \(-0.125923\pi\)
−0.795115 + 0.606459i \(0.792589\pi\)
\(314\) 0 0
\(315\) −0.475800 −0.0268083
\(316\) 0 0
\(317\) 2.50371 + 4.33655i 0.140622 + 0.243565i 0.927731 0.373249i \(-0.121756\pi\)
−0.787109 + 0.616814i \(0.788423\pi\)
\(318\) 0 0
\(319\) 7.46838 + 12.9356i 0.418149 + 0.724256i
\(320\) 0 0
\(321\) 0.296122 0.512898i 0.0165279 0.0286272i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.20388 + 14.2095i −0.455069 + 0.788203i
\(326\) 0 0
\(327\) −6.79001 11.7606i −0.375488 0.650365i
\(328\) 0 0
\(329\) 1.05582 + 1.82873i 0.0582091 + 0.100821i
\(330\) 0 0
\(331\) 10.1797 0.559526 0.279763 0.960069i \(-0.409744\pi\)
0.279763 + 0.960069i \(0.409744\pi\)
\(332\) 0 0
\(333\) 0.500000 + 0.866025i 0.0273998 + 0.0474579i
\(334\) 0 0
\(335\) −16.2132 −0.885824
\(336\) 0 0
\(337\) −11.7584 + 20.3661i −0.640520 + 1.10941i 0.344796 + 0.938677i \(0.387948\pi\)
−0.985317 + 0.170736i \(0.945385\pi\)
\(338\) 0 0
\(339\) −6.49629 + 11.2519i −0.352830 + 0.611120i
\(340\) 0 0
\(341\) −2.89578 −0.156815
\(342\) 0 0
\(343\) 4.88356 0.263687
\(344\) 0 0
\(345\) −5.96227 + 10.3270i −0.320998 + 0.555984i
\(346\) 0 0
\(347\) 6.23790 10.8044i 0.334868 0.580008i −0.648591 0.761137i \(-0.724642\pi\)
0.983459 + 0.181128i \(0.0579749\pi\)
\(348\) 0 0
\(349\) 6.23550 0.333778 0.166889 0.985976i \(-0.446628\pi\)
0.166889 + 0.985976i \(0.446628\pi\)
\(350\) 0 0
\(351\) −2.58613 4.47931i −0.138037 0.239088i
\(352\) 0 0
\(353\) 29.8081 1.58652 0.793262 0.608880i \(-0.208381\pi\)
0.793262 + 0.608880i \(0.208381\pi\)
\(354\) 0 0
\(355\) 3.41256 + 5.91073i 0.181120 + 0.313709i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.87614 + 11.9098i −0.362909 + 0.628576i −0.988438 0.151624i \(-0.951550\pi\)
0.625529 + 0.780201i \(0.284883\pi\)
\(360\) 0 0
\(361\) −7.11164 + 17.6189i −0.374297 + 0.927309i
\(362\) 0 0
\(363\) 9.75839 16.9020i 0.512183 0.887126i
\(364\) 0 0
\(365\) −5.20759 9.01981i −0.272578 0.472118i
\(366\) 0 0
\(367\) 9.25468 + 16.0296i 0.483090 + 0.836737i 0.999811 0.0194166i \(-0.00618090\pi\)
−0.516721 + 0.856154i \(0.672848\pi\)
\(368\) 0 0
\(369\) −2.70388 −0.140758
\(370\) 0 0
\(371\) −0.713701 1.23617i −0.0370535 0.0641785i
\(372\) 0 0
\(373\) 6.53162 0.338194 0.169097 0.985599i \(-0.445915\pi\)
0.169097 + 0.985599i \(0.445915\pi\)
\(374\) 0 0
\(375\) −5.52420 + 9.56819i −0.285268 + 0.494099i
\(376\) 0 0
\(377\) 6.99258 12.1115i 0.360136 0.623774i
\(378\) 0 0
\(379\) −24.8687 −1.27742 −0.638710 0.769447i \(-0.720532\pi\)
−0.638710 + 0.769447i \(0.720532\pi\)
\(380\) 0 0
\(381\) 10.7039 0.548376
\(382\) 0 0
\(383\) −4.99018 + 8.64324i −0.254986 + 0.441649i −0.964892 0.262648i \(-0.915404\pi\)
0.709906 + 0.704297i \(0.248738\pi\)
\(384\) 0 0
\(385\) −1.31421 + 2.27628i −0.0669783 + 0.116010i
\(386\) 0 0
\(387\) 6.52420 0.331644
\(388\) 0 0
\(389\) 8.54469 + 14.7998i 0.433233 + 0.750382i 0.997150 0.0754502i \(-0.0240394\pi\)
−0.563917 + 0.825832i \(0.690706\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 1.64806 + 2.85453i 0.0831337 + 0.143992i
\(394\) 0 0
\(395\) 5.28630 + 9.15614i 0.265983 + 0.460695i
\(396\) 0 0
\(397\) 0.821627 1.42310i 0.0412363 0.0714233i −0.844671 0.535286i \(-0.820204\pi\)
0.885907 + 0.463863i \(0.153537\pi\)
\(398\) 0 0
\(399\) −1.53031 + 0.107267i −0.0766115 + 0.00537006i
\(400\) 0 0
\(401\) 3.67597 6.36697i 0.183569 0.317951i −0.759524 0.650479i \(-0.774568\pi\)
0.943093 + 0.332528i \(0.107902\pi\)
\(402\) 0 0
\(403\) 1.35565 + 2.34805i 0.0675297 + 0.116965i
\(404\) 0 0
\(405\) −0.675970 1.17081i −0.0335892 0.0581782i
\(406\) 0 0
\(407\) 5.52420 0.273824
\(408\) 0 0
\(409\) −1.03773 1.79740i −0.0513125 0.0888758i 0.839228 0.543779i \(-0.183007\pi\)
−0.890541 + 0.454903i \(0.849674\pi\)
\(410\) 0 0
\(411\) −17.0484 −0.840936
\(412\) 0 0
\(413\) 0.972091 1.68371i 0.0478335 0.0828500i
\(414\) 0 0
\(415\) 5.64064 9.76988i 0.276888 0.479585i
\(416\) 0 0
\(417\) −17.9320 −0.878132
\(418\) 0 0
\(419\) −8.22808 −0.401968 −0.200984 0.979595i \(-0.564414\pi\)
−0.200984 + 0.979595i \(0.564414\pi\)
\(420\) 0 0
\(421\) −2.79001 + 4.83244i −0.135977 + 0.235519i −0.925970 0.377597i \(-0.876751\pi\)
0.789993 + 0.613115i \(0.210084\pi\)
\(422\) 0 0
\(423\) −3.00000 + 5.19615i −0.145865 + 0.252646i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.330143 0.571825i −0.0159768 0.0276726i
\(428\) 0 0
\(429\) −28.5726 −1.37950
\(430\) 0 0
\(431\) 14.0484 + 24.3325i 0.676688 + 1.17206i 0.975973 + 0.217893i \(0.0699185\pi\)
−0.299285 + 0.954164i \(0.596748\pi\)
\(432\) 0 0
\(433\) −14.1661 24.5365i −0.680782 1.17915i −0.974743 0.223331i \(-0.928307\pi\)
0.293961 0.955817i \(-0.405026\pi\)
\(434\) 0 0
\(435\) 1.82774 3.16574i 0.0876334 0.151786i
\(436\) 0 0
\(437\) −16.8482 + 34.5587i −0.805960 + 1.65316i
\(438\) 0 0
\(439\) −5.16855 + 8.95219i −0.246681 + 0.427265i −0.962603 0.270916i \(-0.912673\pi\)
0.715922 + 0.698181i \(0.246007\pi\)
\(440\) 0 0
\(441\) 3.43807 + 5.95491i 0.163718 + 0.283567i
\(442\) 0 0
\(443\) −0.475800 0.824110i −0.0226060 0.0391547i 0.854501 0.519450i \(-0.173863\pi\)
−0.877107 + 0.480295i \(0.840530\pi\)
\(444\) 0 0
\(445\) −6.28390 −0.297885
\(446\) 0 0
\(447\) 0.972091 + 1.68371i 0.0459783 + 0.0796368i
\(448\) 0 0
\(449\) −21.8639 −1.03182 −0.515911 0.856642i \(-0.672546\pi\)
−0.515911 + 0.856642i \(0.672546\pi\)
\(450\) 0 0
\(451\) −7.46838 + 12.9356i −0.351672 + 0.609114i
\(452\) 0 0
\(453\) −6.82032 + 11.8131i −0.320447 + 0.555030i
\(454\) 0 0
\(455\) 2.46096 0.115372
\(456\) 0 0
\(457\) 21.7645 1.01810 0.509050 0.860737i \(-0.329997\pi\)
0.509050 + 0.860737i \(0.329997\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.5521 + 18.2768i −0.491461 + 0.851235i −0.999952 0.00983244i \(-0.996870\pi\)
0.508491 + 0.861067i \(0.330204\pi\)
\(462\) 0 0
\(463\) −5.16745 −0.240152 −0.120076 0.992765i \(-0.538314\pi\)
−0.120076 + 0.992765i \(0.538314\pi\)
\(464\) 0 0
\(465\) 0.354343 + 0.613740i 0.0164323 + 0.0284615i
\(466\) 0 0
\(467\) 36.8007 1.70293 0.851466 0.524410i \(-0.175714\pi\)
0.851466 + 0.524410i \(0.175714\pi\)
\(468\) 0 0
\(469\) −2.11033 3.65520i −0.0974460 0.168781i
\(470\) 0 0
\(471\) 8.32032 + 14.4112i 0.383380 + 0.664034i
\(472\) 0 0
\(473\) 18.0205 31.2124i 0.828583 1.43515i
\(474\) 0 0
\(475\) −6.05953 + 12.4291i −0.278030 + 0.570288i
\(476\) 0 0
\(477\) 2.02791 3.51244i 0.0928516 0.160824i
\(478\) 0 0
\(479\) 7.28870 + 12.6244i 0.333029 + 0.576824i 0.983104 0.183046i \(-0.0585958\pi\)
−0.650075 + 0.759870i \(0.725263\pi\)
\(480\) 0 0
\(481\) −2.58613 4.47931i −0.117917 0.204239i
\(482\) 0 0
\(483\) −3.10422 −0.141247
\(484\) 0 0
\(485\) 9.33710 + 16.1723i 0.423976 + 0.734348i
\(486\) 0 0
\(487\) −7.04840 −0.319393 −0.159697 0.987166i \(-0.551052\pi\)
−0.159697 + 0.987166i \(0.551052\pi\)
\(488\) 0 0
\(489\) 0.996291 1.72563i 0.0450538 0.0780355i
\(490\) 0 0
\(491\) 5.22808 9.05530i 0.235940 0.408660i −0.723606 0.690214i \(-0.757516\pi\)
0.959545 + 0.281554i \(0.0908498\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −7.46838 −0.335679
\(496\) 0 0
\(497\) −0.888365 + 1.53869i −0.0398486 + 0.0690198i
\(498\) 0 0
\(499\) 2.23659 3.87390i 0.100124 0.173419i −0.811612 0.584197i \(-0.801409\pi\)
0.911735 + 0.410778i \(0.134743\pi\)
\(500\) 0 0
\(501\) 2.58744 0.115598
\(502\) 0 0
\(503\) 11.5242 + 19.9605i 0.513839 + 0.889995i 0.999871 + 0.0160539i \(0.00511034\pi\)
−0.486032 + 0.873941i \(0.661556\pi\)
\(504\) 0 0
\(505\) −3.16965 −0.141048
\(506\) 0 0
\(507\) 6.87614 + 11.9098i 0.305380 + 0.528934i
\(508\) 0 0
\(509\) 13.1723 + 22.8150i 0.583850 + 1.01126i 0.995018 + 0.0996984i \(0.0317878\pi\)
−0.411168 + 0.911560i \(0.634879\pi\)
\(510\) 0 0
\(511\) 1.35565 2.34805i 0.0599704 0.103872i
\(512\) 0 0
\(513\) −2.43807 3.61328i −0.107643 0.159530i
\(514\) 0 0
\(515\) −10.8860 + 18.8550i −0.479693 + 0.830852i
\(516\) 0 0
\(517\) 16.5726 + 28.7046i 0.728862 + 1.26243i
\(518\) 0 0
\(519\) 8.82032 + 15.2772i 0.387169 + 0.670597i
\(520\) 0 0
\(521\) 42.6332 1.86780 0.933898 0.357540i \(-0.116385\pi\)
0.933898 + 0.357540i \(0.116385\pi\)
\(522\) 0 0
\(523\) −5.94047 10.2892i −0.259759 0.449915i 0.706418 0.707794i \(-0.250310\pi\)
−0.966177 + 0.257879i \(0.916976\pi\)
\(524\) 0 0
\(525\) −1.11644 −0.0487256
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −27.3990 + 47.4565i −1.19126 + 2.06333i
\(530\) 0 0
\(531\) 5.52420 0.239730
\(532\) 0 0
\(533\) 13.9852 0.605765
\(534\) 0 0
\(535\) −0.400338 + 0.693406i −0.0173081 + 0.0299786i
\(536\) 0 0
\(537\) −1.11404 + 1.92957i −0.0480743 + 0.0832672i
\(538\) 0 0
\(539\) 37.9852 1.63614
\(540\) 0 0
\(541\) −16.9610 29.3773i −0.729209 1.26303i −0.957218 0.289368i \(-0.906555\pi\)
0.228009 0.973659i \(-0.426778\pi\)
\(542\) 0 0
\(543\) −9.46838 −0.406327
\(544\) 0 0
\(545\) 9.17968 + 15.8997i 0.393214 + 0.681067i
\(546\) 0 0
\(547\) −4.49760 7.79007i −0.192303 0.333079i 0.753710 0.657207i \(-0.228262\pi\)
−0.946013 + 0.324128i \(0.894929\pi\)
\(548\) 0 0
\(549\) 0.938069 1.62478i 0.0400358 0.0693441i
\(550\) 0 0
\(551\) 5.16484 10.5940i 0.220030 0.451319i
\(552\) 0 0
\(553\) −1.37614 + 2.38354i −0.0585194 + 0.101359i
\(554\) 0 0
\(555\) −0.675970 1.17081i −0.0286933 0.0496983i
\(556\) 0 0
\(557\) −4.94418 8.56358i −0.209492 0.362850i 0.742063 0.670330i \(-0.233848\pi\)
−0.951555 + 0.307480i \(0.900514\pi\)
\(558\) 0 0
\(559\) −33.7449 −1.42726
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.4413 1.53582 0.767909 0.640559i \(-0.221297\pi\)
0.767909 + 0.640559i \(0.221297\pi\)
\(564\) 0 0
\(565\) 8.78259 15.2119i 0.369486 0.639969i
\(566\) 0 0
\(567\) 0.175970 0.304788i 0.00739003 0.0127999i
\(568\) 0 0
\(569\) −27.2717 −1.14329 −0.571644 0.820502i \(-0.693694\pi\)
−0.571644 + 0.820502i \(0.693694\pi\)
\(570\) 0 0
\(571\) 16.1042 0.673940 0.336970 0.941515i \(-0.390598\pi\)
0.336970 + 0.941515i \(0.390598\pi\)
\(572\) 0 0
\(573\) 11.2863 19.5484i 0.471492 0.816648i
\(574\) 0 0
\(575\) −13.9902 + 24.2317i −0.583431 + 1.01053i
\(576\) 0 0
\(577\) −27.3323 −1.13786 −0.568929 0.822387i \(-0.692642\pi\)
−0.568929 + 0.822387i \(0.692642\pi\)
\(578\) 0 0
\(579\) −6.93807 12.0171i −0.288336 0.499413i
\(580\) 0 0
\(581\) 2.93676 0.121838
\(582\) 0 0
\(583\) −11.2026 19.4034i −0.463963 0.803608i
\(584\) 0 0
\(585\) 3.49629 + 6.05575i 0.144554 + 0.250375i
\(586\) 0 0
\(587\) 13.0508 22.6047i 0.538664 0.932994i −0.460312 0.887757i \(-0.652262\pi\)
0.998976 0.0452367i \(-0.0144042\pi\)
\(588\) 0 0
\(589\) 1.27803 + 1.89408i 0.0526605 + 0.0780443i
\(590\) 0 0
\(591\) 4.15177 7.19108i 0.170781 0.295801i
\(592\) 0 0
\(593\) 4.55211 + 7.88448i 0.186933 + 0.323777i 0.944226 0.329298i \(-0.106812\pi\)
−0.757293 + 0.653075i \(0.773479\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.88356 −0.281725
\(598\) 0 0
\(599\) −13.2937 23.0254i −0.543167 0.940792i −0.998720 0.0505836i \(-0.983892\pi\)
0.455553 0.890209i \(-0.349441\pi\)
\(600\) 0 0
\(601\) 31.2691 1.27549 0.637746 0.770247i \(-0.279867\pi\)
0.637746 + 0.770247i \(0.279867\pi\)
\(602\) 0 0
\(603\) 5.99629 10.3859i 0.244188 0.422946i
\(604\) 0 0
\(605\) −13.1928 + 22.8505i −0.536362 + 0.929006i
\(606\) 0 0
\(607\) −18.8687 −0.765858 −0.382929 0.923778i \(-0.625085\pi\)
−0.382929 + 0.923778i \(0.625085\pi\)
\(608\) 0 0
\(609\) 0.951601 0.0385608
\(610\) 0 0
\(611\) 15.5168 26.8759i 0.627742 1.08728i
\(612\) 0 0
\(613\) 9.61033 16.6456i 0.388158 0.672309i −0.604044 0.796951i \(-0.706445\pi\)
0.992202 + 0.124642i \(0.0397783\pi\)
\(614\) 0 0
\(615\) 3.65548 0.147403
\(616\) 0 0
\(617\) −11.2608 19.5043i −0.453343 0.785212i 0.545249 0.838274i \(-0.316435\pi\)
−0.998591 + 0.0530621i \(0.983102\pi\)
\(618\) 0 0
\(619\) −5.99258 −0.240862 −0.120431 0.992722i \(-0.538428\pi\)
−0.120431 + 0.992722i \(0.538428\pi\)
\(620\) 0 0
\(621\) −4.41016 7.63862i −0.176974 0.306527i
\(622\) 0 0
\(623\) −0.817917 1.41667i −0.0327692 0.0567579i
\(624\) 0 0
\(625\) −0.462269 + 0.800673i −0.0184908 + 0.0320269i
\(626\) 0 0
\(627\) −24.0205 + 1.68371i −0.959286 + 0.0672410i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.700169 1.21273i −0.0278733 0.0482780i 0.851752 0.523945i \(-0.175540\pi\)
−0.879626 + 0.475667i \(0.842207\pi\)
\(632\) 0 0
\(633\) 4.31792 + 7.47885i 0.171622 + 0.297258i
\(634\) 0 0
\(635\) −14.4710 −0.574264
\(636\) 0 0
\(637\) −17.7826 30.8003i −0.704572 1.22035i
\(638\) 0 0
\(639\) −5.04840 −0.199712
\(640\) 0 0
\(641\) −5.30354 + 9.18600i −0.209477 + 0.362825i −0.951550 0.307494i \(-0.900510\pi\)
0.742073 + 0.670319i \(0.233843\pi\)
\(642\) 0 0
\(643\) −21.9963 + 38.0987i −0.867449 + 1.50247i −0.00285431 + 0.999996i \(0.500909\pi\)
−0.864595 + 0.502470i \(0.832425\pi\)
\(644\) 0 0
\(645\) −8.82032 −0.347300
\(646\) 0 0
\(647\) 8.11164 0.318901 0.159451 0.987206i \(-0.449028\pi\)
0.159451 + 0.987206i \(0.449028\pi\)
\(648\) 0 0
\(649\) 15.2584 26.4283i 0.598944 1.03740i
\(650\) 0 0
\(651\) −0.0922432 + 0.159770i −0.00361530 + 0.00626188i
\(652\) 0 0
\(653\) 34.6890 1.35749 0.678744 0.734375i \(-0.262525\pi\)
0.678744 + 0.734375i \(0.262525\pi\)
\(654\) 0 0
\(655\) −2.22808 3.85914i −0.0870582 0.150789i
\(656\) 0 0
\(657\) 7.70388 0.300557
\(658\) 0 0
\(659\) 15.5218 + 26.8845i 0.604643 + 1.04727i 0.992108 + 0.125388i \(0.0400177\pi\)
−0.387464 + 0.921885i \(0.626649\pi\)
\(660\) 0 0
\(661\) 7.34452 + 12.7211i 0.285669 + 0.494793i 0.972771 0.231768i \(-0.0744510\pi\)
−0.687102 + 0.726561i \(0.741118\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.06889 0.145018i 0.0802281 0.00562357i
\(666\) 0 0
\(667\) 11.9245 20.6539i 0.461720 0.799722i
\(668\) 0 0
\(669\) −6.13824 10.6317i −0.237318 0.411047i
\(670\) 0 0
\(671\) −5.18208 8.97563i −0.200052 0.346500i
\(672\) 0 0
\(673\) −12.3567 −0.476318 −0.238159 0.971226i \(-0.576544\pi\)
−0.238159 + 0.971226i \(0.576544\pi\)
\(674\) 0 0
\(675\) −1.58613 2.74726i −0.0610502 0.105742i
\(676\) 0 0
\(677\) 32.7858 1.26006 0.630031 0.776570i \(-0.283042\pi\)
0.630031 + 0.776570i \(0.283042\pi\)
\(678\) 0 0
\(679\) −2.43065 + 4.21001i −0.0932798 + 0.161565i
\(680\) 0 0
\(681\) −0.237900 + 0.412055i −0.00911636 + 0.0157900i
\(682\) 0 0
\(683\) −41.3977 −1.58404 −0.792020 0.610495i \(-0.790970\pi\)
−0.792020 + 0.610495i \(0.790970\pi\)
\(684\) 0 0
\(685\) 23.0484 0.880634
\(686\) 0 0
\(687\) −2.58613 + 4.47931i −0.0986670 + 0.170896i
\(688\) 0 0
\(689\) −10.4889 + 18.1673i −0.399594 + 0.692117i
\(690\) 0 0
\(691\) 42.9368 1.63339 0.816696 0.577069i \(-0.195803\pi\)
0.816696 + 0.577069i \(0.195803\pi\)
\(692\) 0 0
\(693\) −0.972091 1.68371i −0.0369267 0.0639589i
\(694\) 0 0
\(695\) 24.2429 0.919586
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −5.34452 9.25698i −0.202148 0.350131i
\(700\) 0 0
\(701\) 1.03533 1.79324i 0.0391038 0.0677297i −0.845811 0.533482i \(-0.820883\pi\)
0.884915 + 0.465753i \(0.154216\pi\)
\(702\) 0 0
\(703\) −2.43807 3.61328i −0.0919535 0.136278i
\(704\) 0 0
\(705\) 4.05582 7.02488i 0.152751 0.264572i
\(706\) 0 0
\(707\) −0.412564 0.714582i −0.0155161 0.0268746i
\(708\) 0 0
\(709\) 6.28259 + 10.8818i 0.235948 + 0.408673i 0.959548 0.281546i \(-0.0908473\pi\)
−0.723600 + 0.690220i \(0.757514\pi\)
\(710\) 0 0
\(711\) −7.82032 −0.293285
\(712\) 0 0
\(713\) 2.31180 + 4.00416i 0.0865778 + 0.149957i
\(714\) 0 0
\(715\) 38.6284 1.44462
\(716\) 0 0
\(717\) 0.237900 0.412055i 0.00888455 0.0153885i
\(718\) 0 0
\(719\) −25.1550 + 43.5698i −0.938124 + 1.62488i −0.169158 + 0.985589i \(0.554105\pi\)
−0.768966 + 0.639289i \(0.779229\pi\)
\(720\) 0 0
\(721\) −5.66771 −0.211076
\(722\) 0 0
\(723\) 0.640642 0.0238257
\(724\) 0 0
\(725\) 4.28870 7.42825i 0.159278 0.275878i
\(726\) 0 0
\(727\) −16.6672 + 28.8685i −0.618154 + 1.07067i 0.371668 + 0.928366i \(0.378786\pi\)
−0.989822 + 0.142308i \(0.954548\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −25.8129 −0.953421 −0.476711 0.879060i \(-0.658171\pi\)
−0.476711 + 0.879060i \(0.658171\pi\)
\(734\) 0 0
\(735\) −4.64806 8.05068i −0.171446 0.296954i
\(736\) 0 0
\(737\) −33.1247 57.3737i −1.22016 2.11339i
\(738\) 0 0
\(739\) 24.2802 42.0545i 0.893161 1.54700i 0.0570970 0.998369i \(-0.481816\pi\)
0.836064 0.548632i \(-0.184851\pi\)
\(740\) 0 0
\(741\) 12.6103 + 18.6888i 0.463252 + 0.686552i
\(742\) 0 0
\(743\) 7.33470 12.7041i 0.269084 0.466067i −0.699542 0.714592i \(-0.746612\pi\)
0.968626 + 0.248525i \(0.0799457\pi\)
\(744\) 0 0
\(745\) −1.31421 2.27628i −0.0481489 0.0833963i
\(746\) 0 0
\(747\) 4.17226 + 7.22657i 0.152655 + 0.264406i
\(748\) 0 0
\(749\) −0.208434 −0.00761600
\(750\) 0 0
\(751\) 3.87243 + 6.70724i 0.141307 + 0.244751i 0.927989 0.372607i \(-0.121536\pi\)
−0.786682 + 0.617358i \(0.788203\pi\)
\(752\) 0 0
\(753\) −5.04840 −0.183974
\(754\) 0 0
\(755\) 9.22066 15.9707i 0.335574 0.581231i
\(756\) 0 0
\(757\) 15.8626 27.4748i 0.576536 0.998590i −0.419337 0.907831i \(-0.637737\pi\)
0.995873 0.0907593i \(-0.0289294\pi\)
\(758\) 0 0
\(759\) −48.7252 −1.76861
\(760\) 0 0
\(761\) −37.2255 −1.34942 −0.674711 0.738082i \(-0.735732\pi\)
−0.674711 + 0.738082i \(0.735732\pi\)
\(762\) 0 0
\(763\) −2.38967 + 4.13903i −0.0865119 + 0.149843i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −28.5726 −1.03170
\(768\) 0 0
\(769\) 11.2645 + 19.5107i 0.406208 + 0.703574i 0.994461 0.105103i \(-0.0335174\pi\)
−0.588253 + 0.808677i \(0.700184\pi\)
\(770\) 0 0
\(771\) −20.7449 −0.747108
\(772\) 0 0
\(773\) 25.5726 + 44.2930i 0.919782 + 1.59311i 0.799744 + 0.600341i \(0.204968\pi\)
0.120038 + 0.992769i \(0.461698\pi\)
\(774\) 0 0
\(775\) 0.831449 + 1.44011i 0.0298665 + 0.0517303i
\(776\) 0 0
\(777\) 0.175970 0.304788i 0.00631287 0.0109342i
\(778\) 0 0
\(779\) 11.7571 0.824110i 0.421241 0.0295268i
\(780\) 0 0
\(781\) −13.9442 + 24.1520i −0.498962 + 0.864228i
\(782\) 0 0
\(783\) 1.35194 + 2.34163i 0.0483144 + 0.0836829i
\(784\) 0 0
\(785\) −11.2486 19.4831i −0.401479 0.695381i
\(786\) 0 0
\(787\) 1.16745 0.0416152 0.0208076 0.999783i \(-0.493376\pi\)
0.0208076 + 0.999783i \(0.493376\pi\)
\(788\) 0 0
\(789\) −8.52420 14.7643i −0.303470 0.525625i
\(790\) 0 0
\(791\) 4.57260 0.162583
\(792\) 0 0
\(793\) −4.85194 + 8.40381i −0.172297 + 0.298428i
\(794\) 0 0
\(795\) −2.74161 + 4.74861i −0.0972349 + 0.168416i
\(796\) 0 0
\(797\) 37.1600 1.31628 0.658138 0.752897i \(-0.271344\pi\)
0.658138 + 0.752897i \(0.271344\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 2.32403 4.02534i 0.0821156 0.142228i
\(802\) 0 0
\(803\) 21.2789 36.8561i 0.750915 1.30062i
\(804\) 0 0
\(805\) 4.19671 0.147915
\(806\) 0 0
\(807\) 4.55211 + 7.88448i 0.160242 + 0.277547i
\(808\) 0 0
\(809\) 30.7597 1.08145 0.540727 0.841198i \(-0.318149\pi\)
0.540727 + 0.841198i \(0.318149\pi\)
\(810\) 0 0
\(811\) −17.1042 29.6254i −0.600610 1.04029i −0.992729 0.120373i \(-0.961591\pi\)
0.392118 0.919915i \(-0.371742\pi\)
\(812\) 0 0
\(813\) −13.2207 22.8989i −0.463669 0.803098i
\(814\) 0 0
\(815\) −1.34692 + 2.33294i −0.0471807 + 0.0817194i
\(816\) 0 0
\(817\) −28.3687 + 1.98850i −0.992496 + 0.0695688i
\(818\) 0 0
\(819\) −0.910161 + 1.57644i −0.0318036 + 0.0550854i
\(820\) 0 0
\(821\) −14.4610 25.0471i −0.504691 0.874151i −0.999985 0.00542532i \(-0.998273\pi\)
0.495294 0.868725i \(-0.335060\pi\)
\(822\) 0 0
\(823\) 3.24030 + 5.61237i 0.112950 + 0.195635i 0.916958 0.398983i \(-0.130637\pi\)
−0.804008 + 0.594618i \(0.797303\pi\)
\(824\) 0 0
\(825\) −17.5242 −0.610114
\(826\) 0 0
\(827\) −20.2281 35.0361i −0.703399 1.21832i −0.967266 0.253764i \(-0.918331\pi\)
0.263867 0.964559i \(-0.415002\pi\)
\(828\) 0 0
\(829\) −51.5019 −1.78874 −0.894368 0.447331i \(-0.852374\pi\)
−0.894368 + 0.447331i \(0.852374\pi\)
\(830\) 0 0
\(831\) 13.0787 22.6530i 0.453695 0.785824i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −3.49806 −0.121055
\(836\) 0 0
\(837\) −0.524200 −0.0181190
\(838\) 0 0
\(839\) 16.8105 29.1166i 0.580363 1.00522i −0.415073 0.909788i \(-0.636244\pi\)
0.995436 0.0954300i \(-0.0304226\pi\)
\(840\) 0 0
\(841\) 10.8445 18.7833i 0.373949 0.647699i
\(842\) 0 0
\(843\) 24.4003 0.840392
\(844\) 0 0
\(845\) −9.29612 16.1014i −0.319796 0.553903i
\(846\) 0 0
\(847\) −6.86872 −0.236012
\(848\) 0 0
\(849\) 0.172260 + 0.298364i 0.00591196 + 0.0102398i
\(850\) 0 0
\(851\) −4.41016 7.63862i −0.151178 0.261849i
\(852\) 0 0
\(853\) 25.3007 43.8221i 0.866279 1.50044i 0.000506763 1.00000i \(-0.499839\pi\)
0.865772 0.500439i \(-0.166828\pi\)
\(854\) 0 0
\(855\) 3.29612 + 4.88494i 0.112725 + 0.167061i
\(856\) 0 0
\(857\) 3.00000 5.19615i 0.102478 0.177497i −0.810227 0.586116i \(-0.800656\pi\)
0.912705 + 0.408619i \(0.133990\pi\)
\(858\) 0 0
\(859\) 11.0447 + 19.1300i 0.376840 + 0.652706i 0.990601 0.136786i \(-0.0436773\pi\)
−0.613761 + 0.789492i \(0.710344\pi\)
\(860\) 0 0
\(861\) 0.475800 + 0.824110i 0.0162152 + 0.0280856i
\(862\) 0 0
\(863\) −10.6890 −0.363859 −0.181930 0.983312i \(-0.558234\pi\)
−0.181930 + 0.983312i \(0.558234\pi\)
\(864\) 0 0
\(865\) −11.9245 20.6539i −0.405446 0.702254i
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) −21.6005 + 37.4132i −0.732747 + 1.26916i
\(870\) 0 0
\(871\) −31.0144 + 53.7185i −1.05088 + 1.82018i
\(872\) 0 0
\(873\) −13.8129 −0.467496
\(874\) 0 0
\(875\) 3.88836 0.131451
\(876\) 0 0
\(877\) −15.5968 + 27.0144i −0.526666 + 0.912213i 0.472851 + 0.881143i \(0.343225\pi\)
−0.999517 + 0.0310705i \(0.990108\pi\)
\(878\) 0 0
\(879\) 8.64064 14.9660i 0.291442 0.504792i
\(880\) 0 0
\(881\) −9.69646 −0.326682 −0.163341 0.986570i \(-0.552227\pi\)
−0.163341 + 0.986570i \(0.552227\pi\)
\(882\) 0 0
\(883\) −19.0750 33.0389i −0.641925 1.11185i −0.985003 0.172540i \(-0.944803\pi\)
0.343078 0.939307i \(-0.388531\pi\)
\(884\) 0 0
\(885\) −7.46838 −0.251047
\(886\) 0 0
\(887\) −4.99018 8.64324i −0.167554 0.290212i 0.770005 0.638037i \(-0.220253\pi\)
−0.937559 + 0.347826i \(0.886920\pi\)
\(888\) 0 0
\(889\) −1.88356 3.26242i −0.0631725 0.109418i
\(890\) 0 0
\(891\) 2.76210 4.78410i 0.0925338 0.160273i
\(892\) 0 0
\(893\) 11.4610 23.5084i 0.383527 0.786680i
\(894\) 0 0
\(895\) 1.50611 2.60866i 0.0503438 0.0871980i
\(896\) 0 0
\(897\) 22.8105 + 39.5089i 0.761620 + 1.31917i
\(898\) 0 0
\(899\) −0.708686 1.22748i −0.0236360 0.0409388i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −1.14806 1.98850i −0.0382051 0.0661731i
\(904\) 0 0
\(905\) 12.8007 0.425509
\(906\) 0 0
\(907\) 10.2329 17.7239i 0.339777 0.588512i −0.644613 0.764509i \(-0.722982\pi\)
0.984391 + 0.175997i \(0.0563149\pi\)
\(908\) 0 0
\(909\) 1.17226 2.03041i 0.0388814 0.0673446i
\(910\) 0 0
\(911\) 27.1696 0.900171 0.450085 0.892986i \(-0.351394\pi\)
0.450085 + 0.892986i \(0.351394\pi\)
\(912\) 0 0
\(913\) 46.0968 1.52558
\(914\) 0 0
\(915\) −1.26821 + 2.19661i −0.0419258 + 0.0726177i
\(916\) 0 0
\(917\) 0.580017 1.00462i 0.0191539 0.0331755i
\(918\) 0 0
\(919\) −33.1378 −1.09311 −0.546557 0.837422i \(-0.684062\pi\)
−0.546557 + 0.837422i \(0.684062\pi\)
\(920\) 0 0
\(921\) −4.43807 7.68696i −0.146239 0.253294i
\(922\) 0 0
\(923\) 26.1116 0.859475
\(924\) 0 0
\(925\) −1.58613 2.74726i −0.0521516 0.0903293i
\(926\) 0 0
\(927\) −8.05211 13.9467i −0.264466 0.458068i
\(928\) 0 0
\(929\) 24.3166 42.1176i 0.797802 1.38183i −0.123242 0.992377i \(-0.539329\pi\)
0.921045 0.389457i \(-0.127337\pi\)
\(930\) 0 0
\(931\) −16.7645 24.8454i −0.549434 0.814276i
\(932\) 0 0
\(933\) 5.58242 9.66904i 0.182760 0.316550i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 24.8626 + 43.0633i 0.812226 + 1.40682i 0.911303 + 0.411737i \(0.135078\pi\)
−0.0990768 + 0.995080i \(0.531589\pi\)
\(938\) 0 0
\(939\) 4.51678 0.147400
\(940\) 0 0
\(941\) −23.9245 41.4385i −0.779918 1.35086i −0.931989 0.362487i \(-0.881928\pi\)
0.152071 0.988370i \(-0.451406\pi\)
\(942\) 0 0
\(943\) 23.8491 0.776633
\(944\) 0 0
\(945\) −0.237900 + 0.412055i −0.00773889 + 0.0134042i
\(946\) 0 0
\(947\) 6.69646 11.5986i 0.217606 0.376904i −0.736470 0.676470i \(-0.763509\pi\)
0.954075 + 0.299566i \(0.0968420\pi\)
\(948\) 0 0
\(949\) −39.8465 −1.29347
\(950\) 0 0
\(951\) 5.00742 0.162377
\(952\) 0 0
\(953\) 2.72437 4.71875i 0.0882510 0.152855i −0.818521 0.574477i \(-0.805206\pi\)
0.906772 + 0.421622i \(0.138539\pi\)
\(954\) 0 0
\(955\) −15.2584 + 26.4283i −0.493750 + 0.855200i
\(956\) 0 0
\(957\) 14.9368 0.482837
\(958\) 0 0
\(959\) 3.00000 + 5.19615i 0.0968751 + 0.167793i
\(960\) 0 0
\(961\) −30.7252 −0.991136
\(962\) 0 0
\(963\) −0.296122 0.512898i −0.00954239 0.0165279i
\(964\) 0 0
\(965\) 9.37985 + 16.2464i 0.301948 + 0.522989i
\(966\) 0 0
\(967\) 16.6066 28.7635i 0.534033 0.924972i −0.465177 0.885218i \(-0.654009\pi\)
0.999209 0.0397542i \(-0.0126575\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.5652 + 46.0122i −0.852517 + 1.47660i 0.0264121 + 0.999651i \(0.491592\pi\)
−0.878929 + 0.476952i \(0.841742\pi\)
\(972\) 0 0
\(973\) 3.15548 + 5.46545i 0.101160 + 0.175214i
\(974\) 0 0
\(975\) 8.20388 + 14.2095i 0.262734 + 0.455069i
\(976\) 0 0
\(977\) −10.9219 −0.349423 −0.174712 0.984620i \(-0.555899\pi\)
−0.174712 + 0.984620i \(0.555899\pi\)
\(978\) 0 0
\(979\) −12.8384 22.2368i −0.410317 0.710690i
\(980\) 0 0
\(981\) −13.5800 −0.433577
\(982\) 0 0
\(983\) −19.6941 + 34.1111i −0.628143 + 1.08798i 0.359781 + 0.933037i \(0.382851\pi\)
−0.987924 + 0.154939i \(0.950482\pi\)
\(984\) 0 0
\(985\) −5.61294 + 9.72190i −0.178843 + 0.309765i
\(986\) 0 0
\(987\) 2.11164 0.0672141
\(988\) 0 0
\(989\) −57.5455 −1.82984
\(990\) 0 0
\(991\) 7.19406 12.4605i 0.228527 0.395820i −0.728845 0.684679i \(-0.759943\pi\)
0.957372 + 0.288859i \(0.0932758\pi\)
\(992\) 0 0
\(993\) 5.08984 8.81586i 0.161521 0.279763i
\(994\) 0 0
\(995\) 9.30615 0.295025
\(996\) 0 0
\(997\) −17.9758 31.1350i −0.569299 0.986055i −0.996635 0.0819625i \(-0.973881\pi\)
0.427336 0.904093i \(-0.359452\pi\)
\(998\) 0 0
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.q.l.49.2 6
3.2 odd 2 2736.2.s.z.1873.2 6
4.3 odd 2 57.2.e.b.49.1 yes 6
12.11 even 2 171.2.f.b.163.3 6
19.7 even 3 inner 912.2.q.l.577.2 6
57.26 odd 6 2736.2.s.z.577.2 6
76.7 odd 6 57.2.e.b.7.1 6
76.11 odd 6 1083.2.a.l.1.3 3
76.27 even 6 1083.2.a.o.1.1 3
228.11 even 6 3249.2.a.y.1.1 3
228.83 even 6 171.2.f.b.64.3 6
228.179 odd 6 3249.2.a.t.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.e.b.7.1 6 76.7 odd 6
57.2.e.b.49.1 yes 6 4.3 odd 2
171.2.f.b.64.3 6 228.83 even 6
171.2.f.b.163.3 6 12.11 even 2
912.2.q.l.49.2 6 1.1 even 1 trivial
912.2.q.l.577.2 6 19.7 even 3 inner
1083.2.a.l.1.3 3 76.11 odd 6
1083.2.a.o.1.1 3 76.27 even 6
2736.2.s.z.577.2 6 57.26 odd 6
2736.2.s.z.1873.2 6 3.2 odd 2
3249.2.a.t.1.3 3 228.179 odd 6
3249.2.a.y.1.1 3 228.11 even 6