Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [92,5,Mod(47,92)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(92, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("92.47");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 92.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.51003660371\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −3.90902 | − | 0.848274i | 16.4740i | 14.5609 | + | 6.63184i | −40.3079 | 13.9745 | − | 64.3971i | 75.6184i | −51.2931 | − | 38.2756i | −190.392 | 157.564 | + | 34.1921i | ||||||||
47.2 | −3.90902 | + | 0.848274i | − | 16.4740i | 14.5609 | − | 6.63184i | −40.3079 | 13.9745 | + | 64.3971i | − | 75.6184i | −51.2931 | + | 38.2756i | −190.392 | 157.564 | − | 34.1921i | ||||||
47.3 | −3.78901 | − | 1.28195i | 8.06260i | 12.7132 | + | 9.71463i | 47.7328 | 10.3358 | − | 30.5493i | 53.2079i | −35.7169 | − | 53.1065i | 15.9945 | −180.860 | − | 61.1909i | ||||||||
47.4 | −3.78901 | + | 1.28195i | − | 8.06260i | 12.7132 | − | 9.71463i | 47.7328 | 10.3358 | + | 30.5493i | − | 53.2079i | −35.7169 | + | 53.1065i | 15.9945 | −180.860 | + | 61.1909i | ||||||
47.5 | −3.73586 | − | 1.42945i | − | 15.9813i | 11.9134 | + | 10.6804i | 10.8136 | −22.8444 | + | 59.7040i | 78.4065i | −29.2396 | − | 56.9302i | −174.403 | −40.3982 | − | 15.4575i | |||||||
47.6 | −3.73586 | + | 1.42945i | 15.9813i | 11.9134 | − | 10.6804i | 10.8136 | −22.8444 | − | 59.7040i | − | 78.4065i | −29.2396 | + | 56.9302i | −174.403 | −40.3982 | + | 15.4575i | |||||||
47.7 | −3.67495 | − | 1.57947i | − | 5.27417i | 11.0105 | + | 11.6090i | −2.28864 | −8.33042 | + | 19.3823i | − | 11.6647i | −22.1271 | − | 60.0532i | 53.1831 | 8.41065 | + | 3.61485i | ||||||
47.8 | −3.67495 | + | 1.57947i | 5.27417i | 11.0105 | − | 11.6090i | −2.28864 | −8.33042 | − | 19.3823i | 11.6647i | −22.1271 | + | 60.0532i | 53.1831 | 8.41065 | − | 3.61485i | ||||||||
47.9 | −3.38026 | − | 2.13866i | 9.77702i | 6.85227 | + | 14.4584i | 5.72766 | 20.9097 | − | 33.0488i | − | 87.3864i | 7.75923 | − | 63.5279i | −14.5900 | −19.3610 | − | 12.2495i | |||||||
47.10 | −3.38026 | + | 2.13866i | − | 9.77702i | 6.85227 | − | 14.4584i | 5.72766 | 20.9097 | + | 33.0488i | 87.3864i | 7.75923 | + | 63.5279i | −14.5900 | −19.3610 | + | 12.2495i | |||||||
47.11 | −2.62123 | − | 3.02145i | − | 11.5336i | −2.25832 | + | 15.8398i | 21.9613 | −34.8483 | + | 30.2323i | − | 69.4040i | 53.7788 | − | 34.6964i | −52.0244 | −57.5657 | − | 66.3551i | ||||||
47.12 | −2.62123 | + | 3.02145i | 11.5336i | −2.25832 | − | 15.8398i | 21.9613 | −34.8483 | − | 30.2323i | 69.4040i | 53.7788 | + | 34.6964i | −52.0244 | −57.5657 | + | 66.3551i | ||||||||
47.13 | −2.57175 | − | 3.06367i | − | 5.48369i | −2.77216 | + | 15.7580i | −44.5238 | −16.8002 | + | 14.1027i | 30.2349i | 55.4067 | − | 32.0328i | 50.9292 | 114.504 | + | 136.406i | |||||||
47.14 | −2.57175 | + | 3.06367i | 5.48369i | −2.77216 | − | 15.7580i | −44.5238 | −16.8002 | − | 14.1027i | − | 30.2349i | 55.4067 | + | 32.0328i | 50.9292 | 114.504 | − | 136.406i | |||||||
47.15 | −2.20274 | − | 3.33885i | 10.3499i | −6.29588 | + | 14.7092i | −0.915094 | 34.5567 | − | 22.7981i | 20.9067i | 62.9802 | − | 11.3796i | −26.1201 | 2.01571 | + | 3.05537i | ||||||||
47.16 | −2.20274 | + | 3.33885i | − | 10.3499i | −6.29588 | − | 14.7092i | −0.915094 | 34.5567 | + | 22.7981i | − | 20.9067i | 62.9802 | + | 11.3796i | −26.1201 | 2.01571 | − | 3.05537i | ||||||
47.17 | −1.24134 | − | 3.80251i | − | 3.60489i | −12.9181 | + | 9.44044i | 30.7683 | −13.7076 | + | 4.47491i | 33.9778i | 51.9332 | + | 37.4025i | 68.0048 | −38.1940 | − | 116.997i | |||||||
47.18 | −1.24134 | + | 3.80251i | 3.60489i | −12.9181 | − | 9.44044i | 30.7683 | −13.7076 | − | 4.47491i | − | 33.9778i | 51.9332 | − | 37.4025i | 68.0048 | −38.1940 | + | 116.997i | |||||||
47.19 | −0.491879 | − | 3.96964i | 10.1341i | −15.5161 | + | 3.90516i | −20.8818 | 40.2287 | − | 4.98474i | − | 26.1126i | 23.1341 | + | 59.6725i | −21.6999 | 10.2713 | + | 82.8932i | |||||||
47.20 | −0.491879 | + | 3.96964i | − | 10.1341i | −15.5161 | − | 3.90516i | −20.8818 | 40.2287 | + | 4.98474i | 26.1126i | 23.1341 | − | 59.6725i | −21.6999 | 10.2713 | − | 82.8932i | |||||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 92.5.c.a | ✓ | 44 |
4.b | odd | 2 | 1 | inner | 92.5.c.a | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
92.5.c.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
92.5.c.a | ✓ | 44 | 4.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(92, [\chi])\).