Properties

Label 92.5.c.a.47.13
Level $92$
Weight $5$
Character 92.47
Analytic conductor $9.510$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,5,Mod(47,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.47");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 92.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.51003660371\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 47.13
Character \(\chi\) \(=\) 92.47
Dual form 92.5.c.a.47.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.57175 - 3.06367i) q^{2} -5.48369i q^{3} +(-2.77216 + 15.7580i) q^{4} -44.5238 q^{5} +(-16.8002 + 14.1027i) q^{6} +30.2349i q^{7} +(55.4067 - 32.0328i) q^{8} +50.9292 q^{9} +(114.504 + 136.406i) q^{10} -22.6187i q^{11} +(86.4121 + 15.2016i) q^{12} +30.9952 q^{13} +(92.6298 - 77.7568i) q^{14} +244.154i q^{15} +(-240.630 - 87.3674i) q^{16} +139.235 q^{17} +(-130.977 - 156.030i) q^{18} +262.192i q^{19} +(123.427 - 701.606i) q^{20} +165.799 q^{21} +(-69.2963 + 58.1698i) q^{22} -110.304i q^{23} +(-175.658 - 303.833i) q^{24} +1357.36 q^{25} +(-79.7119 - 94.9589i) q^{26} -723.458i q^{27} +(-476.442 - 83.8160i) q^{28} +1586.56 q^{29} +(748.009 - 627.905i) q^{30} +1375.02i q^{31} +(351.177 + 961.900i) q^{32} -124.034 q^{33} +(-358.078 - 426.570i) q^{34} -1346.17i q^{35} +(-141.184 + 802.543i) q^{36} -1136.05 q^{37} +(803.269 - 674.292i) q^{38} -169.968i q^{39} +(-2466.91 + 1426.22i) q^{40} +279.608 q^{41} +(-426.394 - 507.953i) q^{42} +1948.26i q^{43} +(356.426 + 62.7027i) q^{44} -2267.56 q^{45} +(-337.936 + 283.675i) q^{46} +3539.82i q^{47} +(-479.096 + 1319.54i) q^{48} +1486.85 q^{49} +(-3490.81 - 4158.52i) q^{50} -763.520i q^{51} +(-85.9234 + 488.422i) q^{52} -1622.94 q^{53} +(-2216.44 + 1860.56i) q^{54} +1007.07i q^{55} +(968.508 + 1675.22i) q^{56} +1437.78 q^{57} +(-4080.23 - 4860.69i) q^{58} -2511.03i q^{59} +(-3847.39 - 676.834i) q^{60} +2934.00 q^{61} +(4212.60 - 3536.21i) q^{62} +1539.84i q^{63} +(2043.80 - 3549.66i) q^{64} -1380.02 q^{65} +(318.985 + 379.999i) q^{66} +3785.29i q^{67} +(-385.981 + 2194.06i) q^{68} -604.873 q^{69} +(-4124.23 + 3462.02i) q^{70} +5279.33i q^{71} +(2821.82 - 1631.40i) q^{72} -677.672 q^{73} +(2921.65 + 3480.50i) q^{74} -7443.36i q^{75} +(-4131.62 - 726.836i) q^{76} +683.875 q^{77} +(-520.725 + 437.115i) q^{78} +10397.5i q^{79} +(10713.8 + 3889.93i) q^{80} +158.041 q^{81} +(-719.083 - 856.626i) q^{82} -13523.6i q^{83} +(-459.621 + 2612.66i) q^{84} -6199.26 q^{85} +(5968.83 - 5010.45i) q^{86} -8700.18i q^{87} +(-724.540 - 1253.23i) q^{88} -6551.94 q^{89} +(5831.60 + 6947.05i) q^{90} +937.136i q^{91} +(1738.17 + 305.780i) q^{92} +7540.17 q^{93} +(10844.8 - 9103.54i) q^{94} -11673.8i q^{95} +(5274.76 - 1925.75i) q^{96} +7011.29 q^{97} +(-3823.81 - 4555.22i) q^{98} -1151.95i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 24 q^{5} + 33 q^{6} - 27 q^{8} - 1300 q^{9} - 46 q^{10} + 145 q^{12} + 472 q^{13} - 264 q^{14} + 272 q^{16} - 648 q^{17} + 1313 q^{18} + 324 q^{20} - 288 q^{21} + 796 q^{22} - 1028 q^{24} + 5604 q^{25}+ \cdots + 57204 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.57175 3.06367i −0.642939 0.765918i
\(3\) 5.48369i 0.609299i −0.952465 0.304649i \(-0.901461\pi\)
0.952465 0.304649i \(-0.0985393\pi\)
\(4\) −2.77216 + 15.7580i −0.173260 + 0.984876i
\(5\) −44.5238 −1.78095 −0.890475 0.455032i \(-0.849628\pi\)
−0.890475 + 0.455032i \(0.849628\pi\)
\(6\) −16.8002 + 14.1027i −0.466673 + 0.391742i
\(7\) 30.2349i 0.617039i 0.951218 + 0.308520i \(0.0998335\pi\)
−0.951218 + 0.308520i \(0.900166\pi\)
\(8\) 55.4067 32.0328i 0.865730 0.500512i
\(9\) 50.9292 0.628755
\(10\) 114.504 + 136.406i 1.14504 + 1.36406i
\(11\) 22.6187i 0.186932i −0.995622 0.0934658i \(-0.970205\pi\)
0.995622 0.0934658i \(-0.0297946\pi\)
\(12\) 86.4121 + 15.2016i 0.600084 + 0.105567i
\(13\) 30.9952 0.183403 0.0917016 0.995787i \(-0.470769\pi\)
0.0917016 + 0.995787i \(0.470769\pi\)
\(14\) 92.6298 77.7568i 0.472601 0.396718i
\(15\) 244.154i 1.08513i
\(16\) −240.630 87.3674i −0.939962 0.341279i
\(17\) 139.235 0.481781 0.240891 0.970552i \(-0.422560\pi\)
0.240891 + 0.970552i \(0.422560\pi\)
\(18\) −130.977 156.030i −0.404251 0.481575i
\(19\) 262.192i 0.726293i 0.931732 + 0.363146i \(0.118297\pi\)
−0.931732 + 0.363146i \(0.881703\pi\)
\(20\) 123.427 701.606i 0.308567 1.75402i
\(21\) 165.799 0.375961
\(22\) −69.2963 + 58.1698i −0.143174 + 0.120186i
\(23\) 110.304i 0.208514i
\(24\) −175.658 303.833i −0.304961 0.527488i
\(25\) 1357.36 2.17178
\(26\) −79.7119 94.9589i −0.117917 0.140472i
\(27\) 723.458i 0.992398i
\(28\) −476.442 83.8160i −0.607707 0.106908i
\(29\) 1586.56 1.88651 0.943256 0.332067i \(-0.107746\pi\)
0.943256 + 0.332067i \(0.107746\pi\)
\(30\) 748.009 627.905i 0.831121 0.697672i
\(31\) 1375.02i 1.43082i 0.698705 + 0.715409i \(0.253760\pi\)
−0.698705 + 0.715409i \(0.746240\pi\)
\(32\) 351.177 + 961.900i 0.342946 + 0.939355i
\(33\) −124.034 −0.113897
\(34\) −358.078 426.570i −0.309756 0.369005i
\(35\) 1346.17i 1.09892i
\(36\) −141.184 + 802.543i −0.108938 + 0.619246i
\(37\) −1136.05 −0.829842 −0.414921 0.909857i \(-0.636191\pi\)
−0.414921 + 0.909857i \(0.636191\pi\)
\(38\) 803.269 674.292i 0.556280 0.466962i
\(39\) 169.968i 0.111747i
\(40\) −2466.91 + 1426.22i −1.54182 + 0.891387i
\(41\) 279.608 0.166334 0.0831671 0.996536i \(-0.473496\pi\)
0.0831671 + 0.996536i \(0.473496\pi\)
\(42\) −426.394 507.953i −0.241720 0.287955i
\(43\) 1948.26i 1.05368i 0.849963 + 0.526842i \(0.176624\pi\)
−0.849963 + 0.526842i \(0.823376\pi\)
\(44\) 356.426 + 62.7027i 0.184104 + 0.0323877i
\(45\) −2267.56 −1.11978
\(46\) −337.936 + 283.675i −0.159705 + 0.134062i
\(47\) 3539.82i 1.60245i 0.598362 + 0.801226i \(0.295819\pi\)
−0.598362 + 0.801226i \(0.704181\pi\)
\(48\) −479.096 + 1319.54i −0.207941 + 0.572718i
\(49\) 1486.85 0.619263
\(50\) −3490.81 4158.52i −1.39632 1.66341i
\(51\) 763.520i 0.293549i
\(52\) −85.9234 + 488.422i −0.0317764 + 0.180629i
\(53\) −1622.94 −0.577764 −0.288882 0.957365i \(-0.593284\pi\)
−0.288882 + 0.957365i \(0.593284\pi\)
\(54\) −2216.44 + 1860.56i −0.760096 + 0.638051i
\(55\) 1007.07i 0.332916i
\(56\) 968.508 + 1675.22i 0.308836 + 0.534189i
\(57\) 1437.78 0.442529
\(58\) −4080.23 4860.69i −1.21291 1.44491i
\(59\) 2511.03i 0.721352i −0.932691 0.360676i \(-0.882546\pi\)
0.932691 0.360676i \(-0.117454\pi\)
\(60\) −3847.39 676.834i −1.06872 0.188010i
\(61\) 2934.00 0.788499 0.394249 0.919004i \(-0.371005\pi\)
0.394249 + 0.919004i \(0.371005\pi\)
\(62\) 4212.60 3536.21i 1.09589 0.919929i
\(63\) 1539.84i 0.387966i
\(64\) 2043.80 3549.66i 0.498975 0.866616i
\(65\) −1380.02 −0.326632
\(66\) 318.985 + 379.999i 0.0732289 + 0.0872359i
\(67\) 3785.29i 0.843237i 0.906773 + 0.421618i \(0.138538\pi\)
−0.906773 + 0.421618i \(0.861462\pi\)
\(68\) −385.981 + 2194.06i −0.0834734 + 0.474495i
\(69\) −604.873 −0.127048
\(70\) −4124.23 + 3462.02i −0.841679 + 0.706535i
\(71\) 5279.33i 1.04728i 0.851940 + 0.523639i \(0.175426\pi\)
−0.851940 + 0.523639i \(0.824574\pi\)
\(72\) 2821.82 1631.40i 0.544332 0.314700i
\(73\) −677.672 −0.127167 −0.0635834 0.997977i \(-0.520253\pi\)
−0.0635834 + 0.997977i \(0.520253\pi\)
\(74\) 2921.65 + 3480.50i 0.533538 + 0.635591i
\(75\) 7443.36i 1.32326i
\(76\) −4131.62 726.836i −0.715308 0.125837i
\(77\) 683.875 0.115344
\(78\) −520.725 + 437.115i −0.0855893 + 0.0718467i
\(79\) 10397.5i 1.66600i 0.553275 + 0.832999i \(0.313378\pi\)
−0.553275 + 0.832999i \(0.686622\pi\)
\(80\) 10713.8 + 3889.93i 1.67403 + 0.607801i
\(81\) 158.041 0.0240880
\(82\) −719.083 856.626i −0.106943 0.127398i
\(83\) 13523.6i 1.96307i −0.191289 0.981534i \(-0.561267\pi\)
0.191289 0.981534i \(-0.438733\pi\)
\(84\) −459.621 + 2612.66i −0.0651390 + 0.370275i
\(85\) −6199.26 −0.858029
\(86\) 5968.83 5010.45i 0.807035 0.677454i
\(87\) 8700.18i 1.14945i
\(88\) −724.540 1253.23i −0.0935615 0.161832i
\(89\) −6551.94 −0.827160 −0.413580 0.910468i \(-0.635722\pi\)
−0.413580 + 0.910468i \(0.635722\pi\)
\(90\) 5831.60 + 6947.05i 0.719951 + 0.857660i
\(91\) 937.136i 0.113167i
\(92\) 1738.17 + 305.780i 0.205361 + 0.0361272i
\(93\) 7540.17 0.871796
\(94\) 10844.8 9103.54i 1.22735 1.03028i
\(95\) 11673.8i 1.29349i
\(96\) 5274.76 1925.75i 0.572348 0.208957i
\(97\) 7011.29 0.745168 0.372584 0.927998i \(-0.378472\pi\)
0.372584 + 0.927998i \(0.378472\pi\)
\(98\) −3823.81 4555.22i −0.398148 0.474304i
\(99\) 1151.95i 0.117534i
\(100\) −3762.83 + 21389.4i −0.376283 + 2.13894i
\(101\) −1117.76 −0.109573 −0.0547865 0.998498i \(-0.517448\pi\)
−0.0547865 + 0.998498i \(0.517448\pi\)
\(102\) −2339.18 + 1963.59i −0.224834 + 0.188734i
\(103\) 7418.69i 0.699283i −0.936884 0.349642i \(-0.886303\pi\)
0.936884 0.349642i \(-0.113697\pi\)
\(104\) 1717.34 992.861i 0.158778 0.0917956i
\(105\) −7381.99 −0.669568
\(106\) 4173.80 + 4972.15i 0.371467 + 0.442520i
\(107\) 3121.54i 0.272647i −0.990664 0.136324i \(-0.956471\pi\)
0.990664 0.136324i \(-0.0435287\pi\)
\(108\) 11400.3 + 2005.54i 0.977390 + 0.171943i
\(109\) −9546.71 −0.803527 −0.401764 0.915743i \(-0.631603\pi\)
−0.401764 + 0.915743i \(0.631603\pi\)
\(110\) 3085.33 2589.94i 0.254986 0.214044i
\(111\) 6229.77i 0.505622i
\(112\) 2641.55 7275.44i 0.210582 0.579993i
\(113\) 13939.7 1.09168 0.545842 0.837888i \(-0.316210\pi\)
0.545842 + 0.837888i \(0.316210\pi\)
\(114\) −3697.61 4404.88i −0.284519 0.338941i
\(115\) 4911.15i 0.371354i
\(116\) −4398.18 + 25001.0i −0.326857 + 1.85798i
\(117\) 1578.56 0.115316
\(118\) −7692.96 + 6457.75i −0.552496 + 0.463785i
\(119\) 4209.75i 0.297278i
\(120\) 7820.94 + 13527.8i 0.543121 + 0.939430i
\(121\) 14129.4 0.965057
\(122\) −7545.54 8988.82i −0.506956 0.603925i
\(123\) 1533.28i 0.101347i
\(124\) −21667.5 3811.76i −1.40918 0.247903i
\(125\) −32607.6 −2.08689
\(126\) 4717.56 3960.09i 0.297150 0.249439i
\(127\) 16742.2i 1.03802i −0.854769 0.519008i \(-0.826301\pi\)
0.854769 0.519008i \(-0.173699\pi\)
\(128\) −16131.1 + 2867.32i −0.984567 + 0.175007i
\(129\) 10683.7 0.642008
\(130\) 3549.07 + 4227.93i 0.210004 + 0.250173i
\(131\) 12176.5i 0.709547i 0.934952 + 0.354774i \(0.115442\pi\)
−0.934952 + 0.354774i \(0.884558\pi\)
\(132\) 343.842 1954.53i 0.0197338 0.112175i
\(133\) −7927.34 −0.448151
\(134\) 11596.9 9734.84i 0.645850 0.542150i
\(135\) 32211.1i 1.76741i
\(136\) 7714.54 4460.08i 0.417092 0.241137i
\(137\) 2440.37 0.130021 0.0650107 0.997885i \(-0.479292\pi\)
0.0650107 + 0.997885i \(0.479292\pi\)
\(138\) 1555.59 + 1853.13i 0.0816838 + 0.0973080i
\(139\) 10164.2i 0.526072i 0.964786 + 0.263036i \(0.0847238\pi\)
−0.964786 + 0.263036i \(0.915276\pi\)
\(140\) 21213.0 + 3731.80i 1.08230 + 0.190398i
\(141\) 19411.3 0.976372
\(142\) 16174.1 13577.1i 0.802128 0.673335i
\(143\) 701.071i 0.0342839i
\(144\) −12255.1 4449.55i −0.591006 0.214581i
\(145\) −70639.4 −3.35978
\(146\) 1742.81 + 2076.16i 0.0817604 + 0.0973993i
\(147\) 8153.42i 0.377316i
\(148\) 3149.32 17902.0i 0.143778 0.817292i
\(149\) 21021.7 0.946879 0.473440 0.880826i \(-0.343012\pi\)
0.473440 + 0.880826i \(0.343012\pi\)
\(150\) −22804.0 + 19142.5i −1.01351 + 0.850778i
\(151\) 28768.0i 1.26170i −0.775904 0.630851i \(-0.782706\pi\)
0.775904 0.630851i \(-0.217294\pi\)
\(152\) 8398.72 + 14527.2i 0.363518 + 0.628773i
\(153\) 7091.11 0.302922
\(154\) −1758.76 2095.17i −0.0741592 0.0883441i
\(155\) 61220.9i 2.54822i
\(156\) 2678.36 + 471.177i 0.110057 + 0.0193613i
\(157\) −17198.0 −0.697715 −0.348858 0.937176i \(-0.613430\pi\)
−0.348858 + 0.937176i \(0.613430\pi\)
\(158\) 31854.5 26739.8i 1.27602 1.07113i
\(159\) 8899.69i 0.352031i
\(160\) −15635.7 42827.4i −0.610770 1.67294i
\(161\) 3335.04 0.128662
\(162\) −406.443 484.186i −0.0154871 0.0184494i
\(163\) 16825.0i 0.633258i 0.948550 + 0.316629i \(0.102551\pi\)
−0.948550 + 0.316629i \(0.897449\pi\)
\(164\) −775.117 + 4406.06i −0.0288190 + 0.163819i
\(165\) 5522.46 0.202845
\(166\) −41431.8 + 34779.3i −1.50355 + 1.26213i
\(167\) 22936.3i 0.822413i −0.911542 0.411207i \(-0.865107\pi\)
0.911542 0.411207i \(-0.134893\pi\)
\(168\) 9186.37 5311.00i 0.325481 0.188173i
\(169\) −27600.3 −0.966363
\(170\) 15943.0 + 18992.5i 0.551660 + 0.657179i
\(171\) 13353.2i 0.456660i
\(172\) −30700.7 5400.89i −1.03775 0.182561i
\(173\) −26139.9 −0.873398 −0.436699 0.899608i \(-0.643853\pi\)
−0.436699 + 0.899608i \(0.643853\pi\)
\(174\) −26654.5 + 22374.7i −0.880383 + 0.739025i
\(175\) 41039.8i 1.34008i
\(176\) −1976.14 + 5442.75i −0.0637958 + 0.175709i
\(177\) −13769.7 −0.439519
\(178\) 16850.0 + 20073.0i 0.531813 + 0.633537i
\(179\) 41969.6i 1.30987i 0.755685 + 0.654935i \(0.227304\pi\)
−0.755685 + 0.654935i \(0.772696\pi\)
\(180\) 6286.03 35732.2i 0.194013 1.10285i
\(181\) 6103.48 0.186303 0.0931516 0.995652i \(-0.470306\pi\)
0.0931516 + 0.995652i \(0.470306\pi\)
\(182\) 2871.08 2410.08i 0.0866766 0.0727594i
\(183\) 16089.2i 0.480431i
\(184\) −3533.35 6111.59i −0.104364 0.180517i
\(185\) 50581.4 1.47791
\(186\) −19391.5 23100.6i −0.560511 0.667724i
\(187\) 3149.31i 0.0900602i
\(188\) −55780.5 9812.93i −1.57822 0.277641i
\(189\) 21873.7 0.612349
\(190\) −35764.5 + 30022.0i −0.990707 + 0.831635i
\(191\) 59907.4i 1.64215i 0.570818 + 0.821076i \(0.306626\pi\)
−0.570818 + 0.821076i \(0.693374\pi\)
\(192\) −19465.2 11207.6i −0.528028 0.304025i
\(193\) 68234.5 1.83185 0.915923 0.401353i \(-0.131460\pi\)
0.915923 + 0.401353i \(0.131460\pi\)
\(194\) −18031.3 21480.3i −0.479097 0.570738i
\(195\) 7567.60i 0.199016i
\(196\) −4121.78 + 23429.8i −0.107293 + 0.609897i
\(197\) 74100.3 1.90936 0.954680 0.297634i \(-0.0961976\pi\)
0.954680 + 0.297634i \(0.0961976\pi\)
\(198\) −3529.20 + 2962.54i −0.0900215 + 0.0755673i
\(199\) 22922.2i 0.578830i 0.957204 + 0.289415i \(0.0934607\pi\)
−0.957204 + 0.289415i \(0.906539\pi\)
\(200\) 75207.1 43480.2i 1.88018 1.08700i
\(201\) 20757.4 0.513783
\(202\) 2874.59 + 3424.43i 0.0704488 + 0.0839240i
\(203\) 47969.4i 1.16405i
\(204\) 12031.6 + 2116.60i 0.289109 + 0.0508602i
\(205\) −12449.2 −0.296233
\(206\) −22728.4 + 19079.1i −0.535593 + 0.449596i
\(207\) 5617.70i 0.131104i
\(208\) −7458.37 2707.97i −0.172392 0.0625917i
\(209\) 5930.44 0.135767
\(210\) 18984.7 + 22616.0i 0.430491 + 0.512834i
\(211\) 15098.1i 0.339123i −0.985520 0.169562i \(-0.945765\pi\)
0.985520 0.169562i \(-0.0542351\pi\)
\(212\) 4499.04 25574.3i 0.100103 0.569026i
\(213\) 28950.2 0.638105
\(214\) −9563.37 + 8027.83i −0.208825 + 0.175295i
\(215\) 86743.9i 1.87656i
\(216\) −23174.4 40084.4i −0.496707 0.859149i
\(217\) −41573.5 −0.882871
\(218\) 24551.8 + 29248.0i 0.516619 + 0.615436i
\(219\) 3716.14i 0.0774826i
\(220\) −15869.4 2791.76i −0.327881 0.0576809i
\(221\) 4315.60 0.0883603
\(222\) 19086.0 16021.4i 0.387265 0.325084i
\(223\) 60056.0i 1.20767i 0.797111 + 0.603833i \(0.206361\pi\)
−0.797111 + 0.603833i \(0.793639\pi\)
\(224\) −29083.0 + 10617.8i −0.579619 + 0.211611i
\(225\) 69129.4 1.36552
\(226\) −35849.5 42706.7i −0.701886 0.836140i
\(227\) 59414.8i 1.15304i 0.817084 + 0.576518i \(0.195589\pi\)
−0.817084 + 0.576518i \(0.804411\pi\)
\(228\) −3985.74 + 22656.5i −0.0766725 + 0.435836i
\(229\) −69073.8 −1.31717 −0.658586 0.752505i \(-0.728845\pi\)
−0.658586 + 0.752505i \(0.728845\pi\)
\(230\) 15046.2 12630.3i 0.284426 0.238758i
\(231\) 3750.16i 0.0702790i
\(232\) 87905.8 50821.8i 1.63321 0.944222i
\(233\) 1533.44 0.0282458 0.0141229 0.999900i \(-0.495504\pi\)
0.0141229 + 0.999900i \(0.495504\pi\)
\(234\) −4059.66 4836.18i −0.0741409 0.0883224i
\(235\) 157606.i 2.85389i
\(236\) 39568.8 + 6960.96i 0.710443 + 0.124981i
\(237\) 57016.6 1.01509
\(238\) 12897.3 10826.5i 0.227690 0.191131i
\(239\) 50659.3i 0.886877i 0.896305 + 0.443439i \(0.146242\pi\)
−0.896305 + 0.443439i \(0.853758\pi\)
\(240\) 21331.1 58750.9i 0.370332 1.01998i
\(241\) 58870.1 1.01359 0.506793 0.862068i \(-0.330831\pi\)
0.506793 + 0.862068i \(0.330831\pi\)
\(242\) −36337.3 43287.8i −0.620472 0.739154i
\(243\) 59466.8i 1.00708i
\(244\) −8133.52 + 46234.1i −0.136615 + 0.776573i
\(245\) −66200.1 −1.10288
\(246\) −4697.47 + 3943.22i −0.0776236 + 0.0651600i
\(247\) 8126.67i 0.133204i
\(248\) 44045.6 + 76185.1i 0.716142 + 1.23870i
\(249\) −74159.1 −1.19609
\(250\) 83858.8 + 99899.0i 1.34174 + 1.59838i
\(251\) 60851.2i 0.965876i −0.875654 0.482938i \(-0.839570\pi\)
0.875654 0.482938i \(-0.160430\pi\)
\(252\) −24264.8 4268.68i −0.382099 0.0672190i
\(253\) −2494.94 −0.0389779
\(254\) −51292.5 + 43056.7i −0.795035 + 0.667381i
\(255\) 33994.8i 0.522796i
\(256\) 50269.9 + 42046.5i 0.767057 + 0.641579i
\(257\) −77955.9 −1.18027 −0.590137 0.807303i \(-0.700926\pi\)
−0.590137 + 0.807303i \(0.700926\pi\)
\(258\) −27475.7 32731.2i −0.412772 0.491725i
\(259\) 34348.5i 0.512045i
\(260\) 3825.63 21746.4i 0.0565922 0.321692i
\(261\) 80802.0 1.18615
\(262\) 37304.9 31315.1i 0.543455 0.456195i
\(263\) 62647.1i 0.905711i −0.891584 0.452856i \(-0.850405\pi\)
0.891584 0.452856i \(-0.149595\pi\)
\(264\) −6872.31 + 3973.15i −0.0986042 + 0.0570069i
\(265\) 72259.3 1.02897
\(266\) 20387.2 + 24286.8i 0.288133 + 0.343247i
\(267\) 35928.8i 0.503988i
\(268\) −59648.7 10493.4i −0.830484 0.146099i
\(269\) −94328.6 −1.30358 −0.651791 0.758398i \(-0.725982\pi\)
−0.651791 + 0.758398i \(0.725982\pi\)
\(270\) 98684.2 82839.0i 1.35369 1.13634i
\(271\) 136475.i 1.85829i 0.369711 + 0.929147i \(0.379457\pi\)
−0.369711 + 0.929147i \(0.620543\pi\)
\(272\) −33504.1 12164.6i −0.452856 0.164422i
\(273\) 5138.96 0.0689525
\(274\) −6276.04 7476.50i −0.0835958 0.0995858i
\(275\) 30701.8i 0.405975i
\(276\) 1676.80 9531.61i 0.0220122 0.125126i
\(277\) 133086. 1.73450 0.867249 0.497875i \(-0.165886\pi\)
0.867249 + 0.497875i \(0.165886\pi\)
\(278\) 31139.9 26139.9i 0.402928 0.338232i
\(279\) 70028.5i 0.899635i
\(280\) −43121.6 74586.9i −0.550021 0.951364i
\(281\) −60208.4 −0.762507 −0.381254 0.924470i \(-0.624508\pi\)
−0.381254 + 0.924470i \(0.624508\pi\)
\(282\) −49921.0 59469.7i −0.627747 0.747821i
\(283\) 62011.7i 0.774285i −0.922020 0.387142i \(-0.873462\pi\)
0.922020 0.387142i \(-0.126538\pi\)
\(284\) −83191.7 14635.1i −1.03144 0.181451i
\(285\) −64015.2 −0.788122
\(286\) −2147.85 + 1802.98i −0.0262586 + 0.0220424i
\(287\) 8453.92i 0.102635i
\(288\) 17885.1 + 48988.7i 0.215629 + 0.590624i
\(289\) −64134.7 −0.767887
\(290\) 181667. + 216416.i 2.16013 + 2.57332i
\(291\) 38447.7i 0.454030i
\(292\) 1878.61 10678.8i 0.0220329 0.125244i
\(293\) −104530. −1.21760 −0.608799 0.793324i \(-0.708348\pi\)
−0.608799 + 0.793324i \(0.708348\pi\)
\(294\) −24979.4 + 20968.6i −0.288993 + 0.242591i
\(295\) 111800.i 1.28469i
\(296\) −62945.0 + 36391.0i −0.718419 + 0.415346i
\(297\) −16363.7 −0.185511
\(298\) −54062.6 64403.5i −0.608785 0.725232i
\(299\) 3418.89i 0.0382422i
\(300\) 117293. + 20634.2i 1.30325 + 0.229269i
\(301\) −58905.5 −0.650164
\(302\) −88135.8 + 73984.4i −0.966359 + 0.811196i
\(303\) 6129.42i 0.0667627i
\(304\) 22907.0 63091.2i 0.247868 0.682687i
\(305\) −130633. −1.40428
\(306\) −18236.6 21724.8i −0.194761 0.232014i
\(307\) 53532.5i 0.567991i 0.958826 + 0.283995i \(0.0916600\pi\)
−0.958826 + 0.283995i \(0.908340\pi\)
\(308\) −1895.81 + 10776.5i −0.0199845 + 0.113600i
\(309\) −40681.8 −0.426072
\(310\) −187561. + 157445.i −1.95172 + 1.63835i
\(311\) 62979.4i 0.651145i −0.945517 0.325573i \(-0.894443\pi\)
0.945517 0.325573i \(-0.105557\pi\)
\(312\) −5444.54 9417.35i −0.0559309 0.0967430i
\(313\) −13166.2 −0.134391 −0.0671956 0.997740i \(-0.521405\pi\)
−0.0671956 + 0.997740i \(0.521405\pi\)
\(314\) 44229.0 + 52688.9i 0.448588 + 0.534392i
\(315\) 68559.4i 0.690949i
\(316\) −163844. 28823.5i −1.64080 0.288650i
\(317\) 85277.8 0.848628 0.424314 0.905515i \(-0.360515\pi\)
0.424314 + 0.905515i \(0.360515\pi\)
\(318\) 27265.7 22887.8i 0.269627 0.226334i
\(319\) 35885.9i 0.352649i
\(320\) −90997.8 + 158044.i −0.888650 + 1.54340i
\(321\) −17117.5 −0.166124
\(322\) −8576.89 10217.5i −0.0827215 0.0985442i
\(323\) 36506.2i 0.349914i
\(324\) −438.115 + 2490.41i −0.00417348 + 0.0237237i
\(325\) 42071.7 0.398312
\(326\) 51546.3 43269.8i 0.485023 0.407146i
\(327\) 52351.2i 0.489588i
\(328\) 15492.1 8956.61i 0.144000 0.0832523i
\(329\) −107026. −0.988775
\(330\) −14202.4 16919.0i −0.130417 0.155363i
\(331\) 93810.9i 0.856244i −0.903721 0.428122i \(-0.859175\pi\)
0.903721 0.428122i \(-0.140825\pi\)
\(332\) 213105. + 37489.5i 1.93338 + 0.340121i
\(333\) −57858.3 −0.521768
\(334\) −70269.2 + 58986.5i −0.629901 + 0.528761i
\(335\) 168535.i 1.50176i
\(336\) −39896.2 14485.4i −0.353389 0.128308i
\(337\) −54093.7 −0.476307 −0.238153 0.971228i \(-0.576542\pi\)
−0.238153 + 0.971228i \(0.576542\pi\)
\(338\) 70981.2 + 84558.2i 0.621312 + 0.740155i
\(339\) 76441.1i 0.665162i
\(340\) 17185.3 97688.0i 0.148662 0.845052i
\(341\) 31101.1 0.267465
\(342\) 40909.8 34341.1i 0.349764 0.293604i
\(343\) 117549.i 0.999148i
\(344\) 62408.2 + 107947.i 0.527381 + 0.912205i
\(345\) 26931.2 0.226265
\(346\) 67225.5 + 80084.1i 0.561541 + 0.668951i
\(347\) 154867.i 1.28617i −0.765794 0.643086i \(-0.777654\pi\)
0.765794 0.643086i \(-0.222346\pi\)
\(348\) 137098. + 24118.3i 1.13206 + 0.199153i
\(349\) 159957. 1.31327 0.656634 0.754209i \(-0.271980\pi\)
0.656634 + 0.754209i \(0.271980\pi\)
\(350\) 125732. 105544.i 1.02639 0.861586i
\(351\) 22423.7i 0.182009i
\(352\) 21756.9 7943.17i 0.175595 0.0641075i
\(353\) −115356. −0.925745 −0.462872 0.886425i \(-0.653181\pi\)
−0.462872 + 0.886425i \(0.653181\pi\)
\(354\) 35412.3 + 42185.8i 0.282584 + 0.336635i
\(355\) 235055.i 1.86515i
\(356\) 18163.0 103246.i 0.143314 0.814651i
\(357\) 23085.0 0.181131
\(358\) 128581. 107935.i 1.00325 0.842166i
\(359\) 123700.i 0.959798i 0.877324 + 0.479899i \(0.159327\pi\)
−0.877324 + 0.479899i \(0.840673\pi\)
\(360\) −125638. + 72636.2i −0.969428 + 0.560464i
\(361\) 61576.6 0.472499
\(362\) −15696.7 18699.1i −0.119782 0.142693i
\(363\) 77481.2i 0.588008i
\(364\) −14767.4 2597.89i −0.111455 0.0196073i
\(365\) 30172.5 0.226478
\(366\) −49291.9 + 41377.4i −0.367971 + 0.308888i
\(367\) 47343.6i 0.351503i 0.984435 + 0.175752i \(0.0562355\pi\)
−0.984435 + 0.175752i \(0.943764\pi\)
\(368\) −9636.99 + 26542.5i −0.0711616 + 0.195996i
\(369\) 14240.2 0.104583
\(370\) −130083. 154965.i −0.950204 1.13196i
\(371\) 49069.4i 0.356503i
\(372\) −20902.5 + 118818.i −0.151047 + 0.858611i
\(373\) 116789. 0.839427 0.419714 0.907657i \(-0.362130\pi\)
0.419714 + 0.907657i \(0.362130\pi\)
\(374\) −9648.46 + 8099.26i −0.0689787 + 0.0579032i
\(375\) 178810.i 1.27154i
\(376\) 113390. + 196130.i 0.802047 + 1.38729i
\(377\) 49175.5 0.345992
\(378\) −56253.8 67013.8i −0.393703 0.469009i
\(379\) 21564.2i 0.150126i 0.997179 + 0.0750630i \(0.0239158\pi\)
−0.997179 + 0.0750630i \(0.976084\pi\)
\(380\) 183955. + 32361.5i 1.27393 + 0.224110i
\(381\) −91808.8 −0.632462
\(382\) 183536. 154067.i 1.25775 1.05580i
\(383\) 144457.i 0.984784i 0.870374 + 0.492392i \(0.163877\pi\)
−0.870374 + 0.492392i \(0.836123\pi\)
\(384\) 15723.5 + 88458.2i 0.106632 + 0.599896i
\(385\) −30448.7 −0.205422
\(386\) −175482. 209048.i −1.17776 1.40304i
\(387\) 99223.3i 0.662509i
\(388\) −19436.4 + 110484.i −0.129108 + 0.733898i
\(389\) −70461.2 −0.465641 −0.232820 0.972520i \(-0.574795\pi\)
−0.232820 + 0.972520i \(0.574795\pi\)
\(390\) 23184.6 19462.0i 0.152430 0.127955i
\(391\) 15358.2i 0.100458i
\(392\) 82381.4 47627.9i 0.536114 0.309949i
\(393\) 66772.3 0.432326
\(394\) −190568. 227019.i −1.22760 1.46241i
\(395\) 462935.i 2.96706i
\(396\) 18152.5 + 3193.39i 0.115757 + 0.0203640i
\(397\) −148304. −0.940960 −0.470480 0.882411i \(-0.655919\pi\)
−0.470480 + 0.882411i \(0.655919\pi\)
\(398\) 70226.2 58950.3i 0.443336 0.372152i
\(399\) 43471.1i 0.273058i
\(400\) −326623. 118589.i −2.04139 0.741184i
\(401\) 254274. 1.58130 0.790648 0.612272i \(-0.209744\pi\)
0.790648 + 0.612272i \(0.209744\pi\)
\(402\) −53382.8 63593.7i −0.330331 0.393516i
\(403\) 42618.9i 0.262417i
\(404\) 3098.59 17613.6i 0.0189846 0.107916i
\(405\) −7036.58 −0.0428994
\(406\) 146962. 123365.i 0.891568 0.748414i
\(407\) 25696.1i 0.155124i
\(408\) −24457.7 42304.1i −0.146925 0.254134i
\(409\) 95983.2 0.573784 0.286892 0.957963i \(-0.407378\pi\)
0.286892 + 0.957963i \(0.407378\pi\)
\(410\) 32016.3 + 38140.2i 0.190460 + 0.226890i
\(411\) 13382.2i 0.0792219i
\(412\) 116904. + 20565.8i 0.688707 + 0.121158i
\(413\) 75920.7 0.445103
\(414\) −17210.8 + 14447.3i −0.100415 + 0.0842921i
\(415\) 602120.i 3.49613i
\(416\) 10884.8 + 29814.2i 0.0628975 + 0.172281i
\(417\) 55737.5 0.320535
\(418\) −15251.6 18168.9i −0.0872899 0.103986i
\(419\) 285148.i 1.62421i 0.583510 + 0.812106i \(0.301679\pi\)
−0.583510 + 0.812106i \(0.698321\pi\)
\(420\) 20464.0 116325.i 0.116009 0.659442i
\(421\) 267715. 1.51046 0.755229 0.655460i \(-0.227525\pi\)
0.755229 + 0.655460i \(0.227525\pi\)
\(422\) −46255.6 + 38828.6i −0.259740 + 0.218035i
\(423\) 180280.i 1.00755i
\(424\) −89921.7 + 51987.3i −0.500187 + 0.289178i
\(425\) 188992. 1.04632
\(426\) −74452.8 88693.8i −0.410262 0.488736i
\(427\) 88709.3i 0.486534i
\(428\) 49189.3 + 8653.40i 0.268524 + 0.0472388i
\(429\) −3844.45 −0.0208891
\(430\) −265755. + 223084.i −1.43729 + 1.20651i
\(431\) 270794.i 1.45776i −0.684644 0.728878i \(-0.740042\pi\)
0.684644 0.728878i \(-0.259958\pi\)
\(432\) −63206.7 + 174086.i −0.338685 + 0.932817i
\(433\) 78598.9 0.419219 0.209609 0.977785i \(-0.432781\pi\)
0.209609 + 0.977785i \(0.432781\pi\)
\(434\) 106917. + 127368.i 0.567632 + 0.676207i
\(435\) 387365.i 2.04711i
\(436\) 26465.0 150437.i 0.139219 0.791375i
\(437\) 28920.8 0.151442
\(438\) 11385.0 9557.00i 0.0593453 0.0498165i
\(439\) 86920.9i 0.451019i −0.974241 0.225510i \(-0.927595\pi\)
0.974241 0.225510i \(-0.0724047\pi\)
\(440\) 32259.3 + 55798.4i 0.166628 + 0.288215i
\(441\) 75724.0 0.389365
\(442\) −11098.7 13221.6i −0.0568102 0.0676767i
\(443\) 128470.i 0.654628i −0.944916 0.327314i \(-0.893857\pi\)
0.944916 0.327314i \(-0.106143\pi\)
\(444\) −98168.8 17269.9i −0.497975 0.0876040i
\(445\) 291717. 1.47313
\(446\) 183992. 154449.i 0.924973 0.776455i
\(447\) 115276.i 0.576932i
\(448\) 107324. + 61794.2i 0.534736 + 0.307887i
\(449\) −288030. −1.42872 −0.714358 0.699781i \(-0.753281\pi\)
−0.714358 + 0.699781i \(0.753281\pi\)
\(450\) −177784. 211790.i −0.877945 1.04588i
\(451\) 6324.37i 0.0310931i
\(452\) −38643.1 + 219662.i −0.189145 + 1.07517i
\(453\) −157755. −0.768753
\(454\) 182027. 152800.i 0.883131 0.741332i
\(455\) 41724.8i 0.201545i
\(456\) 79662.5 46056.0i 0.383111 0.221491i
\(457\) 150727. 0.721704 0.360852 0.932623i \(-0.382486\pi\)
0.360852 + 0.932623i \(0.382486\pi\)
\(458\) 177641. + 211619.i 0.846861 + 1.00885i
\(459\) 100731.i 0.478119i
\(460\) −77390.0 13614.5i −0.365737 0.0643407i
\(461\) −251105. −1.18155 −0.590777 0.806835i \(-0.701179\pi\)
−0.590777 + 0.806835i \(0.701179\pi\)
\(462\) −11489.3 + 9644.49i −0.0538279 + 0.0451851i
\(463\) 316650.i 1.47713i −0.674184 0.738563i \(-0.735505\pi\)
0.674184 0.738563i \(-0.264495\pi\)
\(464\) −381773. 138613.i −1.77325 0.643827i
\(465\) −335716. −1.55263
\(466\) −3943.62 4697.95i −0.0181603 0.0216340i
\(467\) 69521.5i 0.318776i 0.987216 + 0.159388i \(0.0509520\pi\)
−0.987216 + 0.159388i \(0.949048\pi\)
\(468\) −4376.01 + 24874.9i −0.0199796 + 0.113572i
\(469\) −114448. −0.520310
\(470\) −482853. + 405324.i −2.18584 + 1.83487i
\(471\) 94308.4i 0.425117i
\(472\) −80435.2 139128.i −0.361046 0.624496i
\(473\) 44067.2 0.196967
\(474\) −146633. 174680.i −0.652641 0.777476i
\(475\) 355890.i 1.57735i
\(476\) −66337.4 11670.1i −0.292782 0.0515063i
\(477\) −82654.9 −0.363272
\(478\) 155204. 130283.i 0.679275 0.570208i
\(479\) 268700.i 1.17111i −0.810634 0.585553i \(-0.800878\pi\)
0.810634 0.585553i \(-0.199122\pi\)
\(480\) −234852. + 85741.4i −1.01932 + 0.372142i
\(481\) −35212.2 −0.152196
\(482\) −151399. 180359.i −0.651673 0.776323i
\(483\) 18288.3i 0.0783933i
\(484\) −39168.9 + 222651.i −0.167206 + 0.950461i
\(485\) −312169. −1.32711
\(486\) −182187. + 152934.i −0.771337 + 0.647488i
\(487\) 248749.i 1.04883i −0.851464 0.524413i \(-0.824285\pi\)
0.851464 0.524413i \(-0.175715\pi\)
\(488\) 162563. 93984.3i 0.682627 0.394653i
\(489\) 92263.2 0.385843
\(490\) 170250. + 202815.i 0.709082 + 0.844712i
\(491\) 36717.3i 0.152303i 0.997096 + 0.0761513i \(0.0242632\pi\)
−0.997096 + 0.0761513i \(0.975737\pi\)
\(492\) 24161.5 + 4250.50i 0.0998145 + 0.0175594i
\(493\) 220904. 0.908886
\(494\) 24897.4 20899.8i 0.102024 0.0856423i
\(495\) 51289.2i 0.209322i
\(496\) 120132. 330871.i 0.488308 1.34492i
\(497\) −159620. −0.646211
\(498\) 190719. + 227199.i 0.769015 + 0.916110i
\(499\) 17548.7i 0.0704764i 0.999379 + 0.0352382i \(0.0112190\pi\)
−0.999379 + 0.0352382i \(0.988781\pi\)
\(500\) 90393.4 513831.i 0.361574 2.05533i
\(501\) −125775. −0.501095
\(502\) −186428. + 156494.i −0.739782 + 0.620999i
\(503\) 416903.i 1.64778i −0.566750 0.823890i \(-0.691800\pi\)
0.566750 0.823890i \(-0.308200\pi\)
\(504\) 49325.3 + 85317.4i 0.194182 + 0.335874i
\(505\) 49766.6 0.195144
\(506\) 6416.37 + 7643.67i 0.0250604 + 0.0298539i
\(507\) 151351.i 0.588804i
\(508\) 263823. + 46411.9i 1.02232 + 0.179846i
\(509\) −55565.6 −0.214472 −0.107236 0.994234i \(-0.534200\pi\)
−0.107236 + 0.994234i \(0.534200\pi\)
\(510\) 104149. 87426.3i 0.400418 0.336126i
\(511\) 20489.3i 0.0784669i
\(512\) −465.131 262144.i −0.00177433 0.999998i
\(513\) 189685. 0.720772
\(514\) 200483. + 238831.i 0.758843 + 0.903992i
\(515\) 330308.i 1.24539i
\(516\) −29616.8 + 168353.i −0.111234 + 0.632298i
\(517\) 80066.1 0.299549
\(518\) −105232. + 88335.9i −0.392184 + 0.329214i
\(519\) 143343.i 0.532160i
\(520\) −76462.4 + 44205.9i −0.282775 + 0.163483i
\(521\) 273621. 1.00803 0.504016 0.863694i \(-0.331855\pi\)
0.504016 + 0.863694i \(0.331855\pi\)
\(522\) −207803. 247551.i −0.762624 0.908496i
\(523\) 54651.2i 0.199800i 0.994997 + 0.0999002i \(0.0318523\pi\)
−0.994997 + 0.0999002i \(0.968148\pi\)
\(524\) −191878. 33755.3i −0.698816 0.122936i
\(525\) 225049. 0.816506
\(526\) −191930. + 161113.i −0.693700 + 0.582317i
\(527\) 191450.i 0.689342i
\(528\) 29846.3 + 10836.5i 0.107059 + 0.0388707i
\(529\) −12167.0 −0.0434783
\(530\) −185833. 221379.i −0.661564 0.788106i
\(531\) 127885.i 0.453554i
\(532\) 21975.8 124919.i 0.0776466 0.441373i
\(533\) 8666.49 0.0305062
\(534\) 110074. 92400.0i 0.386013 0.324033i
\(535\) 138983.i 0.485571i
\(536\) 121253. + 209730.i 0.422050 + 0.730015i
\(537\) 230148. 0.798103
\(538\) 242590. + 288992.i 0.838124 + 0.998437i
\(539\) 33630.6i 0.115760i
\(540\) −507583. 89294.2i −1.74068 0.306222i
\(541\) 176569. 0.603282 0.301641 0.953422i \(-0.402466\pi\)
0.301641 + 0.953422i \(0.402466\pi\)
\(542\) 418114. 350980.i 1.42330 1.19477i
\(543\) 33469.6i 0.113514i
\(544\) 48896.1 + 133930.i 0.165225 + 0.452564i
\(545\) 425055. 1.43104
\(546\) −13216.1 15744.1i −0.0443322 0.0528119i
\(547\) 327129.i 1.09331i −0.837357 0.546656i \(-0.815900\pi\)
0.837357 0.546656i \(-0.184100\pi\)
\(548\) −6765.10 + 38455.4i −0.0225275 + 0.128055i
\(549\) 149426. 0.495772
\(550\) −94060.4 + 78957.6i −0.310943 + 0.261017i
\(551\) 415982.i 1.37016i
\(552\) −33514.0 + 19375.8i −0.109989 + 0.0635888i
\(553\) −314367. −1.02799
\(554\) −342265. 407732.i −1.11518 1.32848i
\(555\) 277373.i 0.900487i
\(556\) −160168. 28176.9i −0.518116 0.0911472i
\(557\) −593961. −1.91447 −0.957233 0.289320i \(-0.906571\pi\)
−0.957233 + 0.289320i \(0.906571\pi\)
\(558\) 214544. 180096.i 0.689046 0.578410i
\(559\) 60386.6i 0.193249i
\(560\) −117612. + 323930.i −0.375037 + 1.03294i
\(561\) −17269.9 −0.0548735
\(562\) 154841. + 184459.i 0.490246 + 0.584018i
\(563\) 192698.i 0.607940i −0.952682 0.303970i \(-0.901688\pi\)
0.952682 0.303970i \(-0.0983123\pi\)
\(564\) −53811.0 + 305883.i −0.169166 + 0.961605i
\(565\) −620649. −1.94424
\(566\) −189983. + 159479.i −0.593038 + 0.497817i
\(567\) 4778.36i 0.0148632i
\(568\) 169111. + 292510.i 0.524175 + 0.906659i
\(569\) −495420. −1.53020 −0.765101 0.643910i \(-0.777311\pi\)
−0.765101 + 0.643910i \(0.777311\pi\)
\(570\) 164631. + 196122.i 0.506714 + 0.603637i
\(571\) 498704.i 1.52958i 0.644282 + 0.764788i \(0.277156\pi\)
−0.644282 + 0.764788i \(0.722844\pi\)
\(572\) 11047.5 + 1943.48i 0.0337654 + 0.00594002i
\(573\) 328513. 1.00056
\(574\) 25900.0 21741.4i 0.0786097 0.0659878i
\(575\) 149723.i 0.452848i
\(576\) 104089. 180781.i 0.313733 0.544889i
\(577\) −319578. −0.959898 −0.479949 0.877296i \(-0.659345\pi\)
−0.479949 + 0.877296i \(0.659345\pi\)
\(578\) 164939. + 196488.i 0.493704 + 0.588138i
\(579\) 374176.i 1.11614i
\(580\) 195824. 1.11314e6i 0.582115 3.30897i
\(581\) 408884. 1.21129
\(582\) −117791. + 98878.1i −0.347750 + 0.291913i
\(583\) 36708.8i 0.108002i
\(584\) −37547.5 + 21707.7i −0.110092 + 0.0636485i
\(585\) −70283.3 −0.205372
\(586\) 268824. + 320244.i 0.782841 + 0.932580i
\(587\) 53996.2i 0.156706i 0.996926 + 0.0783532i \(0.0249662\pi\)
−0.996926 + 0.0783532i \(0.975034\pi\)
\(588\) 128482. + 22602.6i 0.371610 + 0.0653737i
\(589\) −360518. −1.03919
\(590\) 342519. 287523.i 0.983969 0.825978i
\(591\) 406343.i 1.16337i
\(592\) 273369. + 99254.1i 0.780020 + 0.283208i
\(593\) −377167. −1.07257 −0.536283 0.844038i \(-0.680172\pi\)
−0.536283 + 0.844038i \(0.680172\pi\)
\(594\) 42083.4 + 50133.0i 0.119272 + 0.142086i
\(595\) 187434.i 0.529437i
\(596\) −58275.4 + 331260.i −0.164056 + 0.932559i
\(597\) 125698. 0.352680
\(598\) −10474.4 + 8792.55i −0.0292904 + 0.0245874i
\(599\) 6321.51i 0.0176184i −0.999961 0.00880922i \(-0.997196\pi\)
0.999961 0.00880922i \(-0.00280410\pi\)
\(600\) −238432. 412412.i −0.662310 1.14559i
\(601\) 58908.9 0.163092 0.0815459 0.996670i \(-0.474014\pi\)
0.0815459 + 0.996670i \(0.474014\pi\)
\(602\) 151490. + 180467.i 0.418015 + 0.497972i
\(603\) 192782.i 0.530189i
\(604\) 453327. + 79749.6i 1.24262 + 0.218602i
\(605\) −629094. −1.71872
\(606\) 18778.5 15763.4i 0.0511348 0.0429243i
\(607\) 358907.i 0.974104i −0.873373 0.487052i \(-0.838072\pi\)
0.873373 0.487052i \(-0.161928\pi\)
\(608\) −252202. + 92075.7i −0.682247 + 0.249079i
\(609\) 263049. 0.709255
\(610\) 335956. + 400216.i 0.902864 + 1.07556i
\(611\) 109717.i 0.293895i
\(612\) −19657.7 + 111742.i −0.0524843 + 0.298341i
\(613\) 295756. 0.787068 0.393534 0.919310i \(-0.371252\pi\)
0.393534 + 0.919310i \(0.371252\pi\)
\(614\) 164006. 137673.i 0.435034 0.365183i
\(615\) 68267.5i 0.180494i
\(616\) 37891.3 21906.4i 0.0998568 0.0577311i
\(617\) 9107.73 0.0239243 0.0119622 0.999928i \(-0.496192\pi\)
0.0119622 + 0.999928i \(0.496192\pi\)
\(618\) 104624. + 124636.i 0.273938 + 0.326336i
\(619\) 366446.i 0.956375i −0.878258 0.478187i \(-0.841294\pi\)
0.878258 0.478187i \(-0.158706\pi\)
\(620\) 964720. + 169714.i 2.50968 + 0.441504i
\(621\) −79800.4 −0.206929
\(622\) −192948. + 161968.i −0.498724 + 0.418646i
\(623\) 198097.i 0.510390i
\(624\) −14849.6 + 40899.4i −0.0381370 + 0.105038i
\(625\) 603460. 1.54486
\(626\) 33860.2 + 40336.8i 0.0864053 + 0.102933i
\(627\) 32520.7i 0.0827227i
\(628\) 47675.5 271006.i 0.120886 0.687163i
\(629\) −158178. −0.399803
\(630\) −210043. + 176318.i −0.529210 + 0.444238i
\(631\) 426323.i 1.07073i −0.844621 0.535365i \(-0.820174\pi\)
0.844621 0.535365i \(-0.179826\pi\)
\(632\) 333060. + 576091.i 0.833852 + 1.44230i
\(633\) −82793.3 −0.206627
\(634\) −219313. 261263.i −0.545616 0.649979i
\(635\) 745424.i 1.84865i
\(636\) −140242. 24671.4i −0.346707 0.0609928i
\(637\) 46085.1 0.113575
\(638\) −109943. + 92289.7i −0.270100 + 0.226731i
\(639\) 268872.i 0.658481i
\(640\) 718219. 127664.i 1.75346 0.311679i
\(641\) 115069. 0.280055 0.140027 0.990148i \(-0.455281\pi\)
0.140027 + 0.990148i \(0.455281\pi\)
\(642\) 44022.1 + 52442.5i 0.106807 + 0.127237i
\(643\) 399150.i 0.965417i −0.875781 0.482708i \(-0.839653\pi\)
0.875781 0.482708i \(-0.160347\pi\)
\(644\) −9245.25 + 52553.6i −0.0222919 + 0.126716i
\(645\) −475676. −1.14338
\(646\) 111843. 93885.0i 0.268005 0.224973i
\(647\) 388586.i 0.928279i 0.885762 + 0.464139i \(0.153636\pi\)
−0.885762 + 0.464139i \(0.846364\pi\)
\(648\) 8756.53 5062.49i 0.0208537 0.0120563i
\(649\) −56796.2 −0.134844
\(650\) −108198. 128894.i −0.256090 0.305074i
\(651\) 227976.i 0.537932i
\(652\) −265129. 46641.6i −0.623680 0.109718i
\(653\) −33091.6 −0.0776053 −0.0388027 0.999247i \(-0.512354\pi\)
−0.0388027 + 0.999247i \(0.512354\pi\)
\(654\) 160387. 134634.i 0.374984 0.314775i
\(655\) 542145.i 1.26367i
\(656\) −67282.1 24428.6i −0.156348 0.0567664i
\(657\) −34513.3 −0.0799567
\(658\) 275245. + 327893.i 0.635722 + 0.757321i
\(659\) 237713.i 0.547372i 0.961819 + 0.273686i \(0.0882429\pi\)
−0.961819 + 0.273686i \(0.911757\pi\)
\(660\) −15309.1 + 87023.0i −0.0351449 + 0.199777i
\(661\) 530619. 1.21445 0.607225 0.794530i \(-0.292283\pi\)
0.607225 + 0.794530i \(0.292283\pi\)
\(662\) −287406. + 241259.i −0.655812 + 0.550512i
\(663\) 23665.4i 0.0538378i
\(664\) −433198. 749296.i −0.982539 1.69949i
\(665\) 352955. 0.798134
\(666\) 148797. + 177259.i 0.335464 + 0.399631i
\(667\) 175004.i 0.393365i
\(668\) 361430. + 63583.0i 0.809975 + 0.142491i
\(669\) 329329. 0.735830
\(670\) −516337. + 433432.i −1.15023 + 0.965541i
\(671\) 66363.4i 0.147395i
\(672\) 58224.7 + 159482.i 0.128934 + 0.353161i
\(673\) −175499. −0.387476 −0.193738 0.981053i \(-0.562061\pi\)
−0.193738 + 0.981053i \(0.562061\pi\)
\(674\) 139116. + 165725.i 0.306236 + 0.364812i
\(675\) 981997.i 2.15527i
\(676\) 76512.4 434926.i 0.167432 0.951748i
\(677\) 112908. 0.246348 0.123174 0.992385i \(-0.460693\pi\)
0.123174 + 0.992385i \(0.460693\pi\)
\(678\) −234190. + 196588.i −0.509459 + 0.427658i
\(679\) 211986.i 0.459798i
\(680\) −343480. + 198579.i −0.742821 + 0.429454i
\(681\) 325812. 0.702544
\(682\) −79984.5 95283.6i −0.171964 0.204856i
\(683\) 136478.i 0.292564i −0.989243 0.146282i \(-0.953269\pi\)
0.989243 0.146282i \(-0.0467307\pi\)
\(684\) −210420. 37017.2i −0.449754 0.0791209i
\(685\) −108655. −0.231562
\(686\) 360131. 302307.i 0.765265 0.642391i
\(687\) 378779.i 0.802551i
\(688\) 170214. 468810.i 0.359600 0.990422i
\(689\) −50303.2 −0.105964
\(690\) −69260.5 82508.4i −0.145475 0.173301i
\(691\) 585637.i 1.22651i 0.789883 + 0.613257i \(0.210141\pi\)
−0.789883 + 0.613257i \(0.789859\pi\)
\(692\) 72464.0 411914.i 0.151325 0.860189i
\(693\) 34829.2 0.0725232
\(694\) −474461. + 398279.i −0.985102 + 0.826930i
\(695\) 452550.i 0.936908i
\(696\) −278691. 482048.i −0.575313 0.995112i
\(697\) 38931.1 0.0801367
\(698\) −411371. 490057.i −0.844351 1.00586i
\(699\) 8408.89i 0.0172101i
\(700\) −646706. 113769.i −1.31981 0.232181i
\(701\) −119216. −0.242605 −0.121303 0.992616i \(-0.538707\pi\)
−0.121303 + 0.992616i \(0.538707\pi\)
\(702\) −68698.8 + 57668.3i −0.139404 + 0.117021i
\(703\) 297864.i 0.602708i
\(704\) −80288.8 46228.2i −0.161998 0.0932742i
\(705\) −864262. −1.73887
\(706\) 296668. + 353413.i 0.595197 + 0.709044i
\(707\) 33795.2i 0.0676109i
\(708\) 38171.8 216983.i 0.0761510 0.432872i
\(709\) −863137. −1.71707 −0.858533 0.512758i \(-0.828624\pi\)
−0.858533 + 0.512758i \(0.828624\pi\)
\(710\) −720132. + 604505.i −1.42855 + 1.19918i
\(711\) 529535.i 1.04750i
\(712\) −363021. + 209877.i −0.716097 + 0.414004i
\(713\) 151670. 0.298346
\(714\) −59368.9 70724.8i −0.116456 0.138731i
\(715\) 31214.3i 0.0610578i
\(716\) −661357. 116346.i −1.29006 0.226948i
\(717\) 277800. 0.540373
\(718\) 378975. 318125.i 0.735127 0.617091i
\(719\) 608990.i 1.17802i −0.808126 0.589009i \(-0.799518\pi\)
0.808126 0.589009i \(-0.200482\pi\)
\(720\) 545643. + 198111.i 1.05255 + 0.382158i
\(721\) 224304. 0.431485
\(722\) −158360. 188650.i −0.303788 0.361896i
\(723\) 322825.i 0.617577i
\(724\) −16919.8 + 96178.8i −0.0322789 + 0.183486i
\(725\) 2.15353e6 4.09709
\(726\) −237377. + 199263.i −0.450366 + 0.378053i
\(727\) 877940.i 1.66110i 0.556944 + 0.830550i \(0.311974\pi\)
−0.556944 + 0.830550i \(0.688026\pi\)
\(728\) 30019.1 + 51923.6i 0.0566414 + 0.0979720i
\(729\) −313296. −0.589522
\(730\) −77596.2 92438.6i −0.145611 0.173463i
\(731\) 271266.i 0.507645i
\(732\) 253533. + 44601.7i 0.473165 + 0.0832394i
\(733\) −359507. −0.669112 −0.334556 0.942376i \(-0.608586\pi\)
−0.334556 + 0.942376i \(0.608586\pi\)
\(734\) 145045. 121756.i 0.269222 0.225995i
\(735\) 363021.i 0.671981i
\(736\) 106101. 38736.3i 0.195869 0.0715092i
\(737\) 85618.4 0.157628
\(738\) −36622.3 43627.3i −0.0672407 0.0801023i
\(739\) 323164.i 0.591745i −0.955227 0.295873i \(-0.904390\pi\)
0.955227 0.295873i \(-0.0956104\pi\)
\(740\) −140220. + 797062.i −0.256062 + 1.45556i
\(741\) 44564.1 0.0811613
\(742\) −150333. + 126195.i −0.273052 + 0.229210i
\(743\) 565953.i 1.02519i 0.858632 + 0.512593i \(0.171315\pi\)
−0.858632 + 0.512593i \(0.828685\pi\)
\(744\) 417776. 241532.i 0.754740 0.436345i
\(745\) −935964. −1.68634
\(746\) −300352. 357802.i −0.539700 0.642932i
\(747\) 688744.i 1.23429i
\(748\) 49626.9 + 8730.39i 0.0886981 + 0.0156038i
\(749\) 94379.5 0.168234
\(750\) 547815. 459855.i 0.973893 0.817521i
\(751\) 204183.i 0.362025i −0.983481 0.181013i \(-0.942062\pi\)
0.983481 0.181013i \(-0.0579375\pi\)
\(752\) 309265. 851787.i 0.546883 1.50624i
\(753\) −333689. −0.588507
\(754\) −126467. 150658.i −0.222452 0.265002i
\(755\) 1.28086e6i 2.24703i
\(756\) −60637.4 + 344686.i −0.106095 + 0.603088i
\(757\) 177058. 0.308976 0.154488 0.987995i \(-0.450627\pi\)
0.154488 + 0.987995i \(0.450627\pi\)
\(758\) 66065.8 55458.0i 0.114984 0.0965218i
\(759\) 13681.5i 0.0237492i
\(760\) −373943. 646804.i −0.647408 1.11981i
\(761\) −828023. −1.42979 −0.714896 0.699231i \(-0.753526\pi\)
−0.714896 + 0.699231i \(0.753526\pi\)
\(762\) 236110. + 281272.i 0.406634 + 0.484414i
\(763\) 288644.i 0.495808i
\(764\) −944021. 166073.i −1.61732 0.284519i
\(765\) −315723. −0.539490
\(766\) 442569. 371508.i 0.754263 0.633156i
\(767\) 77829.7i 0.132298i
\(768\) 230570. 275664.i 0.390913 0.467367i
\(769\) 605732. 1.02430 0.512151 0.858896i \(-0.328849\pi\)
0.512151 + 0.858896i \(0.328849\pi\)
\(770\) 78306.5 + 93284.8i 0.132074 + 0.157336i
\(771\) 427486.i 0.719139i
\(772\) −189157. + 1.07524e6i −0.317385 + 1.80414i
\(773\) −911702. −1.52579 −0.762893 0.646525i \(-0.776222\pi\)
−0.762893 + 0.646525i \(0.776222\pi\)
\(774\) 303987. 255178.i 0.507427 0.425952i
\(775\) 1.86640e6i 3.10743i
\(776\) 388472. 224591.i 0.645114 0.372966i
\(777\) −188356. −0.311988
\(778\) 181209. + 215870.i 0.299379 + 0.356643i
\(779\) 73310.8i 0.120807i
\(780\) −119250. 20978.6i −0.196007 0.0344816i
\(781\) 119412. 0.195769
\(782\) −47052.4 + 39497.5i −0.0769428 + 0.0645886i
\(783\) 1.14781e6i 1.87217i
\(784\) −357781. 129902.i −0.582083 0.211341i
\(785\) 765718. 1.24260
\(786\) −171722. 204568.i −0.277959 0.331126i
\(787\) 131294.i 0.211980i −0.994367 0.105990i \(-0.966199\pi\)
0.994367 0.105990i \(-0.0338012\pi\)
\(788\) −205418. + 1.16767e6i −0.330815 + 1.88048i
\(789\) −343537. −0.551849
\(790\) −1.41828e6 + 1.19056e6i −2.27252 + 1.90764i
\(791\) 421466.i 0.673612i
\(792\) −36900.2 63825.9i −0.0588273 0.101753i
\(793\) 90939.9 0.144613
\(794\) 381401. + 454354.i 0.604979 + 0.720698i
\(795\) 396248.i 0.626950i
\(796\) −361209. 63544.0i −0.570075 0.100288i
\(797\) 270247. 0.425446 0.212723 0.977113i \(-0.431767\pi\)
0.212723 + 0.977113i \(0.431767\pi\)
\(798\) 133181. 111797.i 0.209140 0.175559i
\(799\) 492866.i 0.772031i
\(800\) 476675. + 1.30565e6i 0.744805 + 2.04008i
\(801\) −333685. −0.520081
\(802\) −653930. 779011.i −1.01668 1.21114i
\(803\) 15328.1i 0.0237715i
\(804\) −57542.7 + 327095.i −0.0890180 + 0.506013i
\(805\) −148488. −0.229140
\(806\) 130570. 109605.i 0.200990 0.168718i
\(807\) 517268.i 0.794271i
\(808\) −61931.1 + 35804.8i −0.0948607 + 0.0548427i
\(809\) −174780. −0.267051 −0.133526 0.991045i \(-0.542630\pi\)
−0.133526 + 0.991045i \(0.542630\pi\)
\(810\) 18096.4 + 21557.8i 0.0275817 + 0.0328574i
\(811\) 1.14514e6i 1.74107i 0.492106 + 0.870535i \(0.336227\pi\)
−0.492106 + 0.870535i \(0.663773\pi\)
\(812\) −755903. 132979.i −1.14645 0.201683i
\(813\) 748386. 1.13226
\(814\) 78724.4 66084.0i 0.118812 0.0997350i
\(815\) 749113.i 1.12780i
\(816\) −66706.8 + 183726.i −0.100182 + 0.275925i
\(817\) −510818. −0.765282
\(818\) −246845. 294061.i −0.368908 0.439472i
\(819\) 47727.5i 0.0711543i
\(820\) 34511.1 196175.i 0.0513253 0.291753i
\(821\) 176992. 0.262583 0.131291 0.991344i \(-0.458088\pi\)
0.131291 + 0.991344i \(0.458088\pi\)
\(822\) −40998.8 + 34415.9i −0.0606775 + 0.0509348i
\(823\) 979151.i 1.44561i −0.691054 0.722803i \(-0.742853\pi\)
0.691054 0.722803i \(-0.257147\pi\)
\(824\) −237641. 411045.i −0.350000 0.605390i
\(825\) −168359. −0.247360
\(826\) −195249. 232596.i −0.286174 0.340912i
\(827\) 718923.i 1.05117i 0.850742 + 0.525583i \(0.176153\pi\)
−0.850742 + 0.525583i \(0.823847\pi\)
\(828\) 88523.8 + 15573.1i 0.129122 + 0.0227151i
\(829\) 230095. 0.334809 0.167405 0.985888i \(-0.446461\pi\)
0.167405 + 0.985888i \(0.446461\pi\)
\(830\) 1.84470e6 1.54851e6i 2.67774 2.24779i
\(831\) 729804.i 1.05683i
\(832\) 63348.0 110022.i 0.0915137 0.158940i
\(833\) 207021. 0.298349
\(834\) −143343. 170761.i −0.206084 0.245504i
\(835\) 1.02121e6i 1.46468i
\(836\) −16440.1 + 93452.0i −0.0235230 + 0.133714i
\(837\) 994768. 1.41994
\(838\) 873600. 733331.i 1.24401 1.04427i
\(839\) 951712.i 1.35202i −0.736894 0.676008i \(-0.763708\pi\)
0.736894 0.676008i \(-0.236292\pi\)
\(840\) −409011. + 236466.i −0.579665 + 0.335127i
\(841\) 1.80988e6 2.55893
\(842\) −688498. 820191.i −0.971132 1.15689i
\(843\) 330164.i 0.464595i
\(844\) 237916. + 41854.3i 0.333994 + 0.0587564i
\(845\) 1.22887e6 1.72104
\(846\) 552318. 463636.i 0.771700 0.647793i
\(847\) 427201.i 0.595478i
\(848\) 390528. + 141792.i 0.543076 + 0.197179i
\(849\) −340053. −0.471771
\(850\) −486042. 579010.i −0.672723 0.801399i
\(851\) 125311.i 0.173034i
\(852\) −80254.5 + 456198.i −0.110558 + 0.628454i
\(853\) −759394. −1.04368 −0.521842 0.853042i \(-0.674755\pi\)
−0.521842 + 0.853042i \(0.674755\pi\)
\(854\) 271776. 228139.i 0.372645 0.312812i
\(855\) 594534.i 0.813289i
\(856\) −99991.6 172954.i −0.136463 0.236039i
\(857\) 448123. 0.610148 0.305074 0.952329i \(-0.401319\pi\)
0.305074 + 0.952329i \(0.401319\pi\)
\(858\) 9886.99 + 11778.1i 0.0134304 + 0.0159993i
\(859\) 510433.i 0.691756i −0.938280 0.345878i \(-0.887581\pi\)
0.938280 0.345878i \(-0.112419\pi\)
\(860\) 1.36691e6 + 240468.i 1.84818 + 0.325132i
\(861\) 46358.7 0.0625352
\(862\) −829624. + 696416.i −1.11652 + 0.937247i
\(863\) 953964.i 1.28089i −0.768006 0.640443i \(-0.778751\pi\)
0.768006 0.640443i \(-0.221249\pi\)
\(864\) 695894. 254062.i 0.932214 0.340339i
\(865\) 1.16385e6 1.55548
\(866\) −202137. 240801.i −0.269532 0.321087i
\(867\) 351695.i 0.467872i
\(868\) 115248. 655116.i 0.152966 0.869519i
\(869\) 235178. 0.311428
\(870\) 1.18676e6 996207.i 1.56792 1.31617i
\(871\) 117326.i 0.154652i
\(872\) −528952. + 305808.i −0.695637 + 0.402175i
\(873\) 357079. 0.468528
\(874\) −74377.2 88603.9i −0.0973682 0.115992i
\(875\) 985888.i 1.28769i
\(876\) −58559.0 10301.7i −0.0763107 0.0134246i
\(877\) 417003. 0.542176 0.271088 0.962555i \(-0.412617\pi\)
0.271088 + 0.962555i \(0.412617\pi\)
\(878\) −266297. + 223539.i −0.345444 + 0.289978i
\(879\) 573208.i 0.741881i
\(880\) 87985.1 242332.i 0.113617 0.312928i
\(881\) −351359. −0.452689 −0.226344 0.974047i \(-0.572677\pi\)
−0.226344 + 0.974047i \(0.572677\pi\)
\(882\) −194744. 231993.i −0.250338 0.298221i
\(883\) 641008.i 0.822133i −0.911605 0.411066i \(-0.865156\pi\)
0.911605 0.411066i \(-0.134844\pi\)
\(884\) −11963.5 + 68005.4i −0.0153093 + 0.0870239i
\(885\) 613078. 0.782761
\(886\) −393590. + 330393.i −0.501391 + 0.420885i
\(887\) 232704.i 0.295772i −0.989004 0.147886i \(-0.952753\pi\)
0.989004 0.147886i \(-0.0472468\pi\)
\(888\) 199557. + 345171.i 0.253070 + 0.437732i
\(889\) 506198. 0.640496
\(890\) −750224. 893724.i −0.947133 1.12830i
\(891\) 3574.69i 0.00450280i
\(892\) −946364. 166485.i −1.18940 0.209240i
\(893\) −928110. −1.16385
\(894\) −353169. + 296462.i −0.441883 + 0.370932i
\(895\) 1.86864e6i 2.33281i
\(896\) −86693.1 487724.i −0.107986 0.607516i
\(897\) −18748.1 −0.0233009
\(898\) 740744. + 882431.i 0.918576 + 1.09428i
\(899\) 2.18154e6i 2.69926i
\(900\) −191638. + 1.08934e6i −0.236590 + 1.34487i
\(901\) −225970. −0.278356
\(902\) −19375.8 + 16264.7i −0.0238148 + 0.0199910i
\(903\) 323019.i 0.396144i
\(904\) 772354. 446528.i 0.945103 0.546401i
\(905\) −271750. −0.331797
\(906\) 405707. + 483309.i 0.494261 + 0.588802i
\(907\) 1.62607e6i 1.97663i 0.152429 + 0.988314i \(0.451290\pi\)
−0.152429 + 0.988314i \(0.548710\pi\)
\(908\) −936260. 164707.i −1.13560 0.199775i
\(909\) −56926.3 −0.0688946
\(910\) −127831. + 107306.i −0.154367 + 0.129581i
\(911\) 1.08097e6i 1.30250i −0.758865 0.651248i \(-0.774246\pi\)
0.758865 0.651248i \(-0.225754\pi\)
\(912\) −345973. 125615.i −0.415961 0.151026i
\(913\) −305886. −0.366959
\(914\) −387633. 461779.i −0.464012 0.552766i
\(915\) 716350.i 0.855624i
\(916\) 191484. 1.08847e6i 0.228213 1.29725i
\(917\) −368157. −0.437818
\(918\) −308605. + 259054.i −0.366200 + 0.307401i
\(919\) 1.17701e6i 1.39363i −0.717249 0.696817i \(-0.754599\pi\)
0.717249 0.696817i \(-0.245401\pi\)
\(920\) 157318. + 272111.i 0.185867 + 0.321492i
\(921\) 293556. 0.346076
\(922\) 645780. + 769303.i 0.759666 + 0.904973i
\(923\) 163634.i 0.192074i
\(924\) 59095.1 + 10396.0i 0.0692161 + 0.0121765i
\(925\) −1.54204e6 −1.80224
\(926\) −970112. + 814346.i −1.13136 + 0.949702i
\(927\) 377828.i 0.439678i
\(928\) 557162. + 1.52611e6i 0.646972 + 1.77210i
\(929\) 809977. 0.938516 0.469258 0.883061i \(-0.344522\pi\)
0.469258 + 0.883061i \(0.344522\pi\)
\(930\) 863380. + 1.02852e6i 0.998243 + 1.18918i
\(931\) 389840.i 0.449766i
\(932\) −4250.93 + 24163.9i −0.00489387 + 0.0278186i
\(933\) −345360. −0.396742
\(934\) 212991. 178792.i 0.244156 0.204953i
\(935\) 140219.i 0.160393i
\(936\) 87462.6 50565.6i 0.0998322 0.0577169i
\(937\) −1.27074e6 −1.44737 −0.723684 0.690131i \(-0.757553\pi\)
−0.723684 + 0.690131i \(0.757553\pi\)
\(938\) 294332. + 350631.i 0.334528 + 0.398515i
\(939\) 72199.2i 0.0818844i
\(940\) 2.48356e6 + 436908.i 2.81073 + 0.494464i
\(941\) 1.56957e6 1.77256 0.886282 0.463145i \(-0.153279\pi\)
0.886282 + 0.463145i \(0.153279\pi\)
\(942\) 288930. 242538.i 0.325605 0.273324i
\(943\) 30841.9i 0.0346831i
\(944\) −219382. + 604229.i −0.246182 + 0.678044i
\(945\) −973899. −1.09056
\(946\) −113330. 135007.i −0.126637 0.150860i
\(947\) 10114.4i 0.0112782i 0.999984 + 0.00563908i \(0.00179498\pi\)
−0.999984 + 0.00563908i \(0.998205\pi\)
\(948\) −158059. + 898469.i −0.175874 + 0.999738i
\(949\) −21004.5 −0.0233228
\(950\) 1.09033e6 915261.i 1.20812 1.01414i
\(951\) 467637.i 0.517068i
\(952\) 134850. + 233248.i 0.148791 + 0.257362i
\(953\) 401713. 0.442313 0.221157 0.975238i \(-0.429017\pi\)
0.221157 + 0.975238i \(0.429017\pi\)
\(954\) 212568. + 253228.i 0.233562 + 0.278237i
\(955\) 2.66730e6i 2.92459i
\(956\) −798291. 140436.i −0.873464 0.153660i
\(957\) −196787. −0.214868
\(958\) −823207. + 691029.i −0.896970 + 0.752949i
\(959\) 73784.5i 0.0802283i
\(960\) 866665. + 499003.i 0.940392 + 0.541453i
\(961\) −967151. −1.04724
\(962\) 90557.0 + 107878.i 0.0978525 + 0.116569i
\(963\) 158977.i 0.171428i
\(964\) −163197. + 927676.i −0.175614 + 0.998256i
\(965\) −3.03805e6 −3.26243
\(966\) −56029.3 + 47033.0i −0.0600428 + 0.0504021i
\(967\) 95844.6i 0.102498i 0.998686 + 0.0512489i \(0.0163202\pi\)
−0.998686 + 0.0512489i \(0.983680\pi\)
\(968\) 782863. 452604.i 0.835478 0.483023i
\(969\) 200189. 0.213202
\(970\) 802822. + 956383.i 0.853249 + 1.01645i
\(971\) 1.25558e6i 1.33170i 0.746084 + 0.665852i \(0.231932\pi\)
−0.746084 + 0.665852i \(0.768068\pi\)
\(972\) 937079. + 164851.i 0.991844 + 0.174486i
\(973\) −307315. −0.324607
\(974\) −762086. + 639722.i −0.803315 + 0.674331i
\(975\) 230708.i 0.242691i
\(976\) −706010. 256336.i −0.741159 0.269098i
\(977\) 1.68818e6 1.76860 0.884299 0.466920i \(-0.154637\pi\)
0.884299 + 0.466920i \(0.154637\pi\)
\(978\) −237278. 282664.i −0.248073 0.295524i
\(979\) 148196.i 0.154622i
\(980\) 183517. 1.04318e6i 0.191084 1.08620i
\(981\) −486206. −0.505222
\(982\) 112490. 94427.8i 0.116651 0.0979213i
\(983\) 174844.i 0.180944i −0.995899 0.0904718i \(-0.971163\pi\)
0.995899 0.0904718i \(-0.0288375\pi\)
\(984\) −49115.3 84954.1i −0.0507255 0.0877393i
\(985\) −3.29923e6 −3.40047
\(986\) −568110. 676777.i −0.584358 0.696132i
\(987\) 586898.i 0.602460i
\(988\) −128060. 22528.4i −0.131190 0.0230790i
\(989\) 214901. 0.219708
\(990\) 157133. 131903.i 0.160324 0.134582i
\(991\) 1.04063e6i 1.05962i 0.848118 + 0.529808i \(0.177736\pi\)
−0.848118 + 0.529808i \(0.822264\pi\)
\(992\) −1.32263e6 + 482874.i −1.34405 + 0.490694i
\(993\) −514430. −0.521708
\(994\) 410503. + 489023.i 0.415474 + 0.494945i
\(995\) 1.02058e6i 1.03087i
\(996\) 205581. 1.16860e6i 0.207235 1.17801i
\(997\) 1.22050e6 1.22786 0.613930 0.789361i \(-0.289588\pi\)
0.613930 + 0.789361i \(0.289588\pi\)
\(998\) 53763.4 45130.9i 0.0539791 0.0453120i
\(999\) 821888.i 0.823534i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.5.c.a.47.13 44
4.3 odd 2 inner 92.5.c.a.47.14 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.5.c.a.47.13 44 1.1 even 1 trivial
92.5.c.a.47.14 yes 44 4.3 odd 2 inner