Properties

Label 92.5.c.a.47.17
Level $92$
Weight $5$
Character 92.47
Analytic conductor $9.510$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,5,Mod(47,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.47");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 92.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.51003660371\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 47.17
Character \(\chi\) \(=\) 92.47
Dual form 92.5.c.a.47.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24134 - 3.80251i) q^{2} -3.60489i q^{3} +(-12.9181 + 9.44044i) q^{4} +30.7683 q^{5} +(-13.7076 + 4.47491i) q^{6} +33.9778i q^{7} +(51.9332 + 37.4025i) q^{8} +68.0048 q^{9} +(-38.1940 - 116.997i) q^{10} +104.464i q^{11} +(34.0318 + 46.5684i) q^{12} +108.728 q^{13} +(129.201 - 42.1781i) q^{14} -110.916i q^{15} +(77.7561 - 243.906i) q^{16} +64.7428 q^{17} +(-84.4173 - 258.589i) q^{18} -252.926i q^{19} +(-397.468 + 290.466i) q^{20} +122.486 q^{21} +(397.225 - 129.676i) q^{22} -110.304i q^{23} +(134.832 - 187.213i) q^{24} +321.686 q^{25} +(-134.968 - 413.438i) q^{26} -537.146i q^{27} +(-320.765 - 438.930i) q^{28} -154.191 q^{29} +(-421.760 + 137.685i) q^{30} -241.810i q^{31} +(-1023.98 + 7.10256i) q^{32} +376.581 q^{33} +(-80.3681 - 246.185i) q^{34} +1045.44i q^{35} +(-878.494 + 641.995i) q^{36} +2228.75 q^{37} +(-961.754 + 313.968i) q^{38} -391.951i q^{39} +(1597.89 + 1150.81i) q^{40} +1293.45 q^{41} +(-152.048 - 465.755i) q^{42} +1979.19i q^{43} +(-986.187 - 1349.48i) q^{44} +2092.39 q^{45} +(-419.432 + 136.925i) q^{46} +617.769i q^{47} +(-879.253 - 280.302i) q^{48} +1246.51 q^{49} +(-399.323 - 1223.21i) q^{50} -233.391i q^{51} +(-1404.56 + 1026.44i) q^{52} -3267.31 q^{53} +(-2042.50 + 666.783i) q^{54} +3214.18i q^{55} +(-1270.85 + 1764.58i) q^{56} -911.771 q^{57} +(191.405 + 586.314i) q^{58} +4106.92i q^{59} +(1047.10 + 1432.83i) q^{60} -5222.24 q^{61} +(-919.486 + 300.170i) q^{62} +2310.65i q^{63} +(1298.11 + 3884.86i) q^{64} +3345.36 q^{65} +(-467.467 - 1431.95i) q^{66} -2850.26i q^{67} +(-836.356 + 611.200i) q^{68} -397.634 q^{69} +(3975.29 - 1297.75i) q^{70} -7409.13i q^{71} +(3531.70 + 2543.54i) q^{72} -337.243 q^{73} +(-2766.65 - 8474.85i) q^{74} -1159.64i q^{75} +(2387.73 + 3267.33i) q^{76} -3549.46 q^{77} +(-1490.40 + 486.546i) q^{78} -2830.98i q^{79} +(2392.42 - 7504.56i) q^{80} +3572.03 q^{81} +(-1605.62 - 4918.36i) q^{82} +1617.19i q^{83} +(-1582.29 + 1156.32i) q^{84} +1992.02 q^{85} +(7525.89 - 2456.86i) q^{86} +555.843i q^{87} +(-3907.21 + 5425.15i) q^{88} +5269.08 q^{89} +(-2597.37 - 7956.32i) q^{90} +3694.33i q^{91} +(1041.32 + 1424.92i) q^{92} -871.700 q^{93} +(2349.07 - 766.864i) q^{94} -7782.10i q^{95} +(25.6039 + 3691.32i) q^{96} -17042.0 q^{97} +(-1547.35 - 4739.86i) q^{98} +7104.05i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 24 q^{5} + 33 q^{6} - 27 q^{8} - 1300 q^{9} - 46 q^{10} + 145 q^{12} + 472 q^{13} - 264 q^{14} + 272 q^{16} - 648 q^{17} + 1313 q^{18} + 324 q^{20} - 288 q^{21} + 796 q^{22} - 1028 q^{24} + 5604 q^{25}+ \cdots + 57204 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24134 3.80251i −0.310336 0.950627i
\(3\) 3.60489i 0.400543i −0.979740 0.200272i \(-0.935818\pi\)
0.979740 0.200272i \(-0.0641825\pi\)
\(4\) −12.9181 + 9.44044i −0.807383 + 0.590028i
\(5\) 30.7683 1.23073 0.615365 0.788242i \(-0.289008\pi\)
0.615365 + 0.788242i \(0.289008\pi\)
\(6\) −13.7076 + 4.47491i −0.380767 + 0.124303i
\(7\) 33.9778i 0.693425i 0.937972 + 0.346712i \(0.112702\pi\)
−0.937972 + 0.346712i \(0.887298\pi\)
\(8\) 51.9332 + 37.4025i 0.811456 + 0.584413i
\(9\) 68.0048 0.839565
\(10\) −38.1940 116.997i −0.381940 1.16997i
\(11\) 104.464i 0.863339i 0.902032 + 0.431670i \(0.142075\pi\)
−0.902032 + 0.431670i \(0.857925\pi\)
\(12\) 34.0318 + 46.5684i 0.236332 + 0.323392i
\(13\) 108.728 0.643359 0.321679 0.946849i \(-0.395753\pi\)
0.321679 + 0.946849i \(0.395753\pi\)
\(14\) 129.201 42.1781i 0.659188 0.215195i
\(15\) 110.916i 0.492961i
\(16\) 77.7561 243.906i 0.303735 0.952757i
\(17\) 64.7428 0.224023 0.112012 0.993707i \(-0.464271\pi\)
0.112012 + 0.993707i \(0.464271\pi\)
\(18\) −84.4173 258.589i −0.260547 0.798113i
\(19\) 252.926i 0.700627i −0.936633 0.350313i \(-0.886075\pi\)
0.936633 0.350313i \(-0.113925\pi\)
\(20\) −397.468 + 290.466i −0.993671 + 0.726165i
\(21\) 122.486 0.277747
\(22\) 397.225 129.676i 0.820713 0.267925i
\(23\) 110.304i 0.208514i
\(24\) 134.832 187.213i 0.234083 0.325023i
\(25\) 321.686 0.514698
\(26\) −134.968 413.438i −0.199657 0.611594i
\(27\) 537.146i 0.736826i
\(28\) −320.765 438.930i −0.409140 0.559859i
\(29\) −154.191 −0.183343 −0.0916715 0.995789i \(-0.529221\pi\)
−0.0916715 + 0.995789i \(0.529221\pi\)
\(30\) −421.760 + 137.685i −0.468622 + 0.152984i
\(31\) 241.810i 0.251624i −0.992054 0.125812i \(-0.959846\pi\)
0.992054 0.125812i \(-0.0401536\pi\)
\(32\) −1023.98 + 7.10256i −0.999976 + 0.00693609i
\(33\) 376.581 0.345805
\(34\) −80.3681 246.185i −0.0695226 0.212963i
\(35\) 1045.44i 0.853419i
\(36\) −878.494 + 641.995i −0.677851 + 0.495366i
\(37\) 2228.75 1.62802 0.814008 0.580854i \(-0.197281\pi\)
0.814008 + 0.580854i \(0.197281\pi\)
\(38\) −961.754 + 313.968i −0.666034 + 0.217430i
\(39\) 391.951i 0.257693i
\(40\) 1597.89 + 1150.81i 0.998684 + 0.719255i
\(41\) 1293.45 0.769453 0.384727 0.923031i \(-0.374296\pi\)
0.384727 + 0.923031i \(0.374296\pi\)
\(42\) −152.048 465.755i −0.0861948 0.264033i
\(43\) 1979.19i 1.07041i 0.844722 + 0.535206i \(0.179766\pi\)
−0.844722 + 0.535206i \(0.820234\pi\)
\(44\) −986.187 1349.48i −0.509394 0.697045i
\(45\) 2092.39 1.03328
\(46\) −419.432 + 136.925i −0.198219 + 0.0647095i
\(47\) 617.769i 0.279660i 0.990176 + 0.139830i \(0.0446556\pi\)
−0.990176 + 0.139830i \(0.955344\pi\)
\(48\) −879.253 280.302i −0.381620 0.121659i
\(49\) 1246.51 0.519162
\(50\) −399.323 1223.21i −0.159729 0.489286i
\(51\) 233.391i 0.0897311i
\(52\) −1404.56 + 1026.44i −0.519437 + 0.379599i
\(53\) −3267.31 −1.16316 −0.581580 0.813489i \(-0.697565\pi\)
−0.581580 + 0.813489i \(0.697565\pi\)
\(54\) −2042.50 + 666.783i −0.700446 + 0.228664i
\(55\) 3214.18i 1.06254i
\(56\) −1270.85 + 1764.58i −0.405247 + 0.562684i
\(57\) −911.771 −0.280631
\(58\) 191.405 + 586.314i 0.0568979 + 0.174291i
\(59\) 4106.92i 1.17981i 0.807473 + 0.589905i \(0.200835\pi\)
−0.807473 + 0.589905i \(0.799165\pi\)
\(60\) 1047.10 + 1432.83i 0.290861 + 0.398008i
\(61\) −5222.24 −1.40345 −0.701725 0.712448i \(-0.747586\pi\)
−0.701725 + 0.712448i \(0.747586\pi\)
\(62\) −919.486 + 300.170i −0.239200 + 0.0780879i
\(63\) 2310.65i 0.582175i
\(64\) 1298.11 + 3884.86i 0.316922 + 0.948452i
\(65\) 3345.36 0.791801
\(66\) −467.467 1431.95i −0.107316 0.328731i
\(67\) 2850.26i 0.634942i −0.948268 0.317471i \(-0.897166\pi\)
0.948268 0.317471i \(-0.102834\pi\)
\(68\) −836.356 + 611.200i −0.180873 + 0.132180i
\(69\) −397.634 −0.0835191
\(70\) 3975.29 1297.75i 0.811283 0.264847i
\(71\) 7409.13i 1.46977i −0.678189 0.734887i \(-0.737235\pi\)
0.678189 0.734887i \(-0.262765\pi\)
\(72\) 3531.70 + 2543.54i 0.681270 + 0.490653i
\(73\) −337.243 −0.0632845 −0.0316422 0.999499i \(-0.510074\pi\)
−0.0316422 + 0.999499i \(0.510074\pi\)
\(74\) −2766.65 8474.85i −0.505232 1.54764i
\(75\) 1159.64i 0.206159i
\(76\) 2387.73 + 3267.33i 0.413389 + 0.565674i
\(77\) −3549.46 −0.598661
\(78\) −1490.40 + 486.546i −0.244970 + 0.0799715i
\(79\) 2830.98i 0.453610i −0.973940 0.226805i \(-0.927172\pi\)
0.973940 0.226805i \(-0.0728279\pi\)
\(80\) 2392.42 7504.56i 0.373816 1.17259i
\(81\) 3572.03 0.544434
\(82\) −1605.62 4918.36i −0.238789 0.731463i
\(83\) 1617.19i 0.234749i 0.993088 + 0.117374i \(0.0374478\pi\)
−0.993088 + 0.117374i \(0.962552\pi\)
\(84\) −1582.29 + 1156.32i −0.224248 + 0.163878i
\(85\) 1992.02 0.275713
\(86\) 7525.89 2456.86i 1.01756 0.332187i
\(87\) 555.843i 0.0734368i
\(88\) −3907.21 + 5425.15i −0.504547 + 0.700562i
\(89\) 5269.08 0.665203 0.332602 0.943067i \(-0.392074\pi\)
0.332602 + 0.943067i \(0.392074\pi\)
\(90\) −2597.37 7956.32i −0.320663 0.982262i
\(91\) 3694.33i 0.446121i
\(92\) 1041.32 + 1424.92i 0.123029 + 0.168351i
\(93\) −871.700 −0.100786
\(94\) 2349.07 766.864i 0.265852 0.0867885i
\(95\) 7782.10i 0.862283i
\(96\) 25.6039 + 3691.32i 0.00277820 + 0.400534i
\(97\) −17042.0 −1.81125 −0.905625 0.424080i \(-0.860598\pi\)
−0.905625 + 0.424080i \(0.860598\pi\)
\(98\) −1547.35 4739.86i −0.161115 0.493530i
\(99\) 7104.05i 0.724829i
\(100\) −4155.58 + 3036.86i −0.415558 + 0.303686i
\(101\) 7019.72 0.688140 0.344070 0.938944i \(-0.388194\pi\)
0.344070 + 0.938944i \(0.388194\pi\)
\(102\) −887.470 + 289.718i −0.0853008 + 0.0278468i
\(103\) 5024.23i 0.473582i −0.971561 0.236791i \(-0.923904\pi\)
0.971561 0.236791i \(-0.0760957\pi\)
\(104\) 5646.57 + 4066.68i 0.522057 + 0.375987i
\(105\) 3768.69 0.341831
\(106\) 4055.86 + 12424.0i 0.360970 + 1.10573i
\(107\) 17690.6i 1.54517i −0.634912 0.772584i \(-0.718964\pi\)
0.634912 0.772584i \(-0.281036\pi\)
\(108\) 5070.89 + 6938.92i 0.434747 + 0.594901i
\(109\) −17000.1 −1.43087 −0.715434 0.698680i \(-0.753771\pi\)
−0.715434 + 0.698680i \(0.753771\pi\)
\(110\) 12221.9 3989.90i 1.01008 0.329744i
\(111\) 8034.41i 0.652091i
\(112\) 8287.38 + 2641.98i 0.660665 + 0.210617i
\(113\) −8038.92 −0.629566 −0.314783 0.949164i \(-0.601932\pi\)
−0.314783 + 0.949164i \(0.601932\pi\)
\(114\) 1131.82 + 3467.02i 0.0870900 + 0.266776i
\(115\) 3393.87i 0.256625i
\(116\) 1991.87 1455.64i 0.148028 0.108177i
\(117\) 7394.00 0.540141
\(118\) 15616.6 5098.10i 1.12156 0.366137i
\(119\) 2199.82i 0.155343i
\(120\) 4148.54 5760.23i 0.288093 0.400016i
\(121\) 3728.26 0.254646
\(122\) 6482.59 + 19857.6i 0.435541 + 1.33416i
\(123\) 4662.75i 0.308199i
\(124\) 2282.80 + 3123.74i 0.148465 + 0.203157i
\(125\) −9332.44 −0.597276
\(126\) 8786.27 2868.31i 0.553431 0.180670i
\(127\) 28494.1i 1.76663i 0.468775 + 0.883317i \(0.344695\pi\)
−0.468775 + 0.883317i \(0.655305\pi\)
\(128\) 13160.8 9758.53i 0.803271 0.595613i
\(129\) 7134.77 0.428746
\(130\) −4152.74 12720.8i −0.245724 0.752708i
\(131\) 18553.7i 1.08115i −0.841294 0.540577i \(-0.818206\pi\)
0.841294 0.540577i \(-0.181794\pi\)
\(132\) −4864.73 + 3555.10i −0.279197 + 0.204034i
\(133\) 8593.88 0.485832
\(134\) −10838.1 + 3538.15i −0.603593 + 0.197045i
\(135\) 16527.0i 0.906834i
\(136\) 3362.30 + 2421.54i 0.181785 + 0.130922i
\(137\) −33934.8 −1.80802 −0.904012 0.427508i \(-0.859392\pi\)
−0.904012 + 0.427508i \(0.859392\pi\)
\(138\) 493.601 + 1512.01i 0.0259190 + 0.0793955i
\(139\) 29726.7i 1.53857i 0.638907 + 0.769284i \(0.279387\pi\)
−0.638907 + 0.769284i \(0.720613\pi\)
\(140\) −9869.40 13505.1i −0.503541 0.689036i
\(141\) 2226.99 0.112016
\(142\) −28173.3 + 9197.28i −1.39721 + 0.456124i
\(143\) 11358.1i 0.555437i
\(144\) 5287.79 16586.7i 0.255005 0.799901i
\(145\) −4744.20 −0.225646
\(146\) 418.635 + 1282.37i 0.0196394 + 0.0601599i
\(147\) 4493.53i 0.207947i
\(148\) −28791.3 + 21040.4i −1.31443 + 0.960574i
\(149\) −11974.0 −0.539346 −0.269673 0.962952i \(-0.586916\pi\)
−0.269673 + 0.962952i \(0.586916\pi\)
\(150\) −4409.55 + 1439.52i −0.195980 + 0.0639785i
\(151\) 42436.3i 1.86116i 0.366092 + 0.930579i \(0.380696\pi\)
−0.366092 + 0.930579i \(0.619304\pi\)
\(152\) 9460.06 13135.3i 0.409455 0.568528i
\(153\) 4402.82 0.188082
\(154\) 4406.10 + 13496.8i 0.185786 + 0.569103i
\(155\) 7440.09i 0.309681i
\(156\) 3700.19 + 5063.28i 0.152046 + 0.208057i
\(157\) −8365.85 −0.339399 −0.169700 0.985496i \(-0.554280\pi\)
−0.169700 + 0.985496i \(0.554280\pi\)
\(158\) −10764.8 + 3514.22i −0.431214 + 0.140771i
\(159\) 11778.3i 0.465896i
\(160\) −31505.9 + 218.533i −1.23070 + 0.00853646i
\(161\) 3747.89 0.144589
\(162\) −4434.12 13582.7i −0.168958 0.517554i
\(163\) 31903.0i 1.20076i −0.799715 0.600380i \(-0.795016\pi\)
0.799715 0.600380i \(-0.204984\pi\)
\(164\) −16709.0 + 12210.7i −0.621243 + 0.453999i
\(165\) 11586.8 0.425593
\(166\) 6149.36 2007.48i 0.223159 0.0728511i
\(167\) 4438.25i 0.159140i 0.996829 + 0.0795698i \(0.0253547\pi\)
−0.996829 + 0.0795698i \(0.974645\pi\)
\(168\) 6361.10 + 4581.29i 0.225379 + 0.162319i
\(169\) −16739.3 −0.586090
\(170\) −2472.79 7574.68i −0.0855635 0.262100i
\(171\) 17200.2i 0.588221i
\(172\) −18684.4 25567.4i −0.631572 0.864232i
\(173\) −5632.56 −0.188197 −0.0940986 0.995563i \(-0.529997\pi\)
−0.0940986 + 0.995563i \(0.529997\pi\)
\(174\) 2113.60 689.993i 0.0698110 0.0227901i
\(175\) 10930.2i 0.356904i
\(176\) 25479.4 + 8122.72i 0.822552 + 0.262226i
\(177\) 14805.0 0.472565
\(178\) −6540.74 20035.7i −0.206437 0.632360i
\(179\) 17891.7i 0.558401i −0.960233 0.279200i \(-0.909931\pi\)
0.960233 0.279200i \(-0.0900694\pi\)
\(180\) −27029.7 + 19753.1i −0.834251 + 0.609663i
\(181\) 49742.6 1.51835 0.759173 0.650888i \(-0.225603\pi\)
0.759173 + 0.650888i \(0.225603\pi\)
\(182\) 14047.7 4585.93i 0.424094 0.138447i
\(183\) 18825.6i 0.562143i
\(184\) 4125.64 5728.45i 0.121859 0.169200i
\(185\) 68574.9 2.00365
\(186\) 1082.08 + 3314.65i 0.0312776 + 0.0958101i
\(187\) 6763.29i 0.193408i
\(188\) −5832.01 7980.42i −0.165007 0.225793i
\(189\) 18251.0 0.510933
\(190\) −29591.5 + 9660.26i −0.819709 + 0.267597i
\(191\) 14153.7i 0.387974i 0.981004 + 0.193987i \(0.0621419\pi\)
−0.981004 + 0.193987i \(0.937858\pi\)
\(192\) 14004.5 4679.56i 0.379896 0.126941i
\(193\) 13688.4 0.367483 0.183742 0.982975i \(-0.441179\pi\)
0.183742 + 0.982975i \(0.441179\pi\)
\(194\) 21155.0 + 64802.5i 0.562096 + 1.72182i
\(195\) 12059.7i 0.317151i
\(196\) −16102.6 + 11767.6i −0.419163 + 0.306320i
\(197\) −59813.5 −1.54123 −0.770613 0.637303i \(-0.780050\pi\)
−0.770613 + 0.637303i \(0.780050\pi\)
\(198\) 27013.2 8818.57i 0.689042 0.224941i
\(199\) 70131.2i 1.77094i 0.464693 + 0.885472i \(0.346165\pi\)
−0.464693 + 0.885472i \(0.653835\pi\)
\(200\) 16706.2 + 12031.9i 0.417655 + 0.300796i
\(201\) −10274.9 −0.254322
\(202\) −8713.89 26692.5i −0.213555 0.654165i
\(203\) 5239.09i 0.127135i
\(204\) 2203.31 + 3014.97i 0.0529438 + 0.0724474i
\(205\) 39797.2 0.946989
\(206\) −19104.7 + 6236.80i −0.450200 + 0.146970i
\(207\) 7501.21i 0.175061i
\(208\) 8454.24 26519.3i 0.195411 0.612964i
\(209\) 26421.7 0.604878
\(210\) −4678.24 14330.5i −0.106083 0.324954i
\(211\) 57004.0i 1.28038i −0.768215 0.640192i \(-0.778855\pi\)
0.768215 0.640192i \(-0.221145\pi\)
\(212\) 42207.6 30844.9i 0.939115 0.686296i
\(213\) −26709.1 −0.588708
\(214\) −67268.8 + 21960.2i −1.46888 + 0.479521i
\(215\) 60896.3i 1.31739i
\(216\) 20090.6 27895.7i 0.430611 0.597902i
\(217\) 8216.19 0.174482
\(218\) 21103.0 + 64643.2i 0.444050 + 1.36022i
\(219\) 1215.72i 0.0253482i
\(220\) −30343.3 41521.2i −0.626927 0.857875i
\(221\) 7039.33 0.144127
\(222\) −30550.9 + 9973.47i −0.619895 + 0.202367i
\(223\) 65219.3i 1.31149i −0.754981 0.655747i \(-0.772354\pi\)
0.754981 0.655747i \(-0.227646\pi\)
\(224\) −241.329 34792.4i −0.00480965 0.693408i
\(225\) 21876.2 0.432122
\(226\) 9979.07 + 30568.1i 0.195377 + 0.598482i
\(227\) 90258.1i 1.75160i −0.482675 0.875799i \(-0.660335\pi\)
0.482675 0.875799i \(-0.339665\pi\)
\(228\) 11778.4 8607.52i 0.226577 0.165580i
\(229\) 30464.1 0.580921 0.290461 0.956887i \(-0.406191\pi\)
0.290461 + 0.956887i \(0.406191\pi\)
\(230\) −12905.2 + 4212.96i −0.243955 + 0.0796400i
\(231\) 12795.4i 0.239790i
\(232\) −8007.66 5767.14i −0.148775 0.107148i
\(233\) 7820.36 0.144051 0.0720253 0.997403i \(-0.477054\pi\)
0.0720253 + 0.997403i \(0.477054\pi\)
\(234\) −9178.49 28115.7i −0.167625 0.513473i
\(235\) 19007.7i 0.344186i
\(236\) −38771.1 53053.7i −0.696120 0.952558i
\(237\) −10205.4 −0.181690
\(238\) 8364.82 2730.73i 0.147674 0.0482086i
\(239\) 34129.7i 0.597498i 0.954332 + 0.298749i \(0.0965693\pi\)
−0.954332 + 0.298749i \(0.903431\pi\)
\(240\) −27053.1 8624.42i −0.469672 0.149729i
\(241\) 58655.5 1.00989 0.504946 0.863151i \(-0.331513\pi\)
0.504946 + 0.863151i \(0.331513\pi\)
\(242\) −4628.06 14176.8i −0.0790257 0.242073i
\(243\) 56385.6i 0.954895i
\(244\) 67461.5 49300.2i 1.13312 0.828074i
\(245\) 38352.9 0.638949
\(246\) −17730.1 + 5788.08i −0.292983 + 0.0956454i
\(247\) 27500.1i 0.450754i
\(248\) 9044.30 12558.0i 0.147052 0.204182i
\(249\) 5829.78 0.0940271
\(250\) 11584.8 + 35486.7i 0.185356 + 0.567787i
\(251\) 15287.9i 0.242662i 0.992612 + 0.121331i \(0.0387162\pi\)
−0.992612 + 0.121331i \(0.961284\pi\)
\(252\) −21813.6 29849.3i −0.343499 0.470038i
\(253\) 11522.8 0.180019
\(254\) 108349. 35370.9i 1.67941 0.548250i
\(255\) 7181.03i 0.110435i
\(256\) −53444.0 37930.3i −0.815490 0.578771i
\(257\) −36674.6 −0.555263 −0.277632 0.960688i \(-0.589549\pi\)
−0.277632 + 0.960688i \(0.589549\pi\)
\(258\) −8856.70 27130.0i −0.133055 0.407578i
\(259\) 75728.2i 1.12891i
\(260\) −43215.8 + 31581.7i −0.639287 + 0.467185i
\(261\) −10485.8 −0.153928
\(262\) −70550.6 + 23031.5i −1.02777 + 0.335521i
\(263\) 13490.7i 0.195040i −0.995234 0.0975198i \(-0.968909\pi\)
0.995234 0.0975198i \(-0.0310909\pi\)
\(264\) 19557.1 + 14085.1i 0.280605 + 0.202093i
\(265\) −100530. −1.43154
\(266\) −10668.0 32678.3i −0.150771 0.461845i
\(267\) 18994.4i 0.266443i
\(268\) 26907.7 + 36820.0i 0.374633 + 0.512642i
\(269\) −72015.5 −0.995226 −0.497613 0.867399i \(-0.665790\pi\)
−0.497613 + 0.867399i \(0.665790\pi\)
\(270\) −62844.2 + 20515.8i −0.862061 + 0.281423i
\(271\) 29776.0i 0.405441i −0.979237 0.202720i \(-0.935022\pi\)
0.979237 0.202720i \(-0.0649783\pi\)
\(272\) 5034.15 15791.1i 0.0680438 0.213440i
\(273\) 13317.6 0.178691
\(274\) 42124.8 + 129037.i 0.561095 + 1.71876i
\(275\) 33604.6i 0.444359i
\(276\) 5136.69 3753.84i 0.0674319 0.0492786i
\(277\) 72268.9 0.941872 0.470936 0.882167i \(-0.343916\pi\)
0.470936 + 0.882167i \(0.343916\pi\)
\(278\) 113036. 36901.0i 1.46260 0.477473i
\(279\) 16444.3i 0.211255i
\(280\) −39101.9 + 54292.9i −0.498749 + 0.692512i
\(281\) −55660.5 −0.704911 −0.352455 0.935829i \(-0.614653\pi\)
−0.352455 + 0.935829i \(0.614653\pi\)
\(282\) −2764.46 8468.14i −0.0347626 0.106485i
\(283\) 323.584i 0.00404030i −0.999998 0.00202015i \(-0.999357\pi\)
0.999998 0.00202015i \(-0.000643035\pi\)
\(284\) 69945.5 + 95712.1i 0.867207 + 1.18667i
\(285\) −28053.6 −0.345382
\(286\) 43189.4 14099.3i 0.528013 0.172372i
\(287\) 43948.6i 0.533558i
\(288\) −69635.2 + 483.008i −0.839545 + 0.00582330i
\(289\) −79329.4 −0.949813
\(290\) 5889.19 + 18039.9i 0.0700260 + 0.214505i
\(291\) 61434.7i 0.725484i
\(292\) 4356.55 3183.72i 0.0510948 0.0373396i
\(293\) −107397. −1.25100 −0.625500 0.780224i \(-0.715105\pi\)
−0.625500 + 0.780224i \(0.715105\pi\)
\(294\) −17086.7 + 5578.02i −0.197680 + 0.0645335i
\(295\) 126363.i 1.45203i
\(296\) 115746. + 83360.9i 1.32106 + 0.951434i
\(297\) 56112.4 0.636130
\(298\) 14863.9 + 45531.3i 0.167379 + 0.512717i
\(299\) 11993.1i 0.134150i
\(300\) 10947.5 + 14980.4i 0.121639 + 0.166449i
\(301\) −67248.6 −0.742250
\(302\) 161364. 52678.0i 1.76927 0.577584i
\(303\) 25305.3i 0.275630i
\(304\) −61690.1 19666.6i −0.667527 0.212805i
\(305\) −160679. −1.72727
\(306\) −5465.41 16741.7i −0.0583687 0.178796i
\(307\) 50099.0i 0.531560i −0.964034 0.265780i \(-0.914371\pi\)
0.964034 0.265780i \(-0.0856295\pi\)
\(308\) 45852.4 33508.5i 0.483348 0.353226i
\(309\) −18111.8 −0.189690
\(310\) −28291.0 + 9235.71i −0.294391 + 0.0961052i
\(311\) 70789.5i 0.731894i −0.930636 0.365947i \(-0.880745\pi\)
0.930636 0.365947i \(-0.119255\pi\)
\(312\) 14659.9 20355.3i 0.150599 0.209107i
\(313\) −10735.9 −0.109585 −0.0547925 0.998498i \(-0.517450\pi\)
−0.0547925 + 0.998498i \(0.517450\pi\)
\(314\) 10384.9 + 31811.2i 0.105328 + 0.322642i
\(315\) 71094.8i 0.716501i
\(316\) 26725.7 + 36570.9i 0.267642 + 0.366237i
\(317\) 60581.5 0.602867 0.301434 0.953487i \(-0.402535\pi\)
0.301434 + 0.953487i \(0.402535\pi\)
\(318\) 44787.1 14620.9i 0.442893 0.144584i
\(319\) 16107.5i 0.158287i
\(320\) 39940.7 + 119530.i 0.390046 + 1.16729i
\(321\) −63772.8 −0.618907
\(322\) −4652.42 14251.4i −0.0448712 0.137450i
\(323\) 16375.1i 0.156957i
\(324\) −46144.0 + 33721.6i −0.439567 + 0.321231i
\(325\) 34976.2 0.331135
\(326\) −121311. + 39602.6i −1.14147 + 0.372639i
\(327\) 61283.7i 0.573125i
\(328\) 67173.0 + 48378.2i 0.624377 + 0.449679i
\(329\) −20990.4 −0.193923
\(330\) −14383.2 44058.7i −0.132077 0.404580i
\(331\) 6457.57i 0.0589404i 0.999566 + 0.0294702i \(0.00938202\pi\)
−0.999566 + 0.0294702i \(0.990618\pi\)
\(332\) −15266.9 20891.0i −0.138508 0.189532i
\(333\) 151566. 1.36683
\(334\) 16876.5 5509.39i 0.151282 0.0493868i
\(335\) 87697.4i 0.781443i
\(336\) 9524.06 29875.1i 0.0843614 0.264625i
\(337\) −39775.2 −0.350229 −0.175115 0.984548i \(-0.556030\pi\)
−0.175115 + 0.984548i \(0.556030\pi\)
\(338\) 20779.2 + 63651.3i 0.181885 + 0.557153i
\(339\) 28979.4i 0.252168i
\(340\) −25733.2 + 18805.6i −0.222606 + 0.162678i
\(341\) 25260.5 0.217237
\(342\) −65403.8 + 21351.3i −0.559179 + 0.182546i
\(343\) 123934.i 1.05342i
\(344\) −74026.6 + 102786.i −0.625563 + 0.868592i
\(345\) −12234.5 −0.102789
\(346\) 6991.94 + 21417.8i 0.0584044 + 0.178905i
\(347\) 153608.i 1.27572i −0.770152 0.637861i \(-0.779820\pi\)
0.770152 0.637861i \(-0.220180\pi\)
\(348\) −5247.41 7180.46i −0.0433298 0.0592917i
\(349\) −186665. −1.53254 −0.766268 0.642521i \(-0.777889\pi\)
−0.766268 + 0.642521i \(0.777889\pi\)
\(350\) 41562.1 13568.1i 0.339283 0.110760i
\(351\) 58402.6i 0.474043i
\(352\) −741.962 106969.i −0.00598820 0.863318i
\(353\) 124471. 0.998889 0.499444 0.866346i \(-0.333538\pi\)
0.499444 + 0.866346i \(0.333538\pi\)
\(354\) −18378.1 56296.1i −0.146654 0.449233i
\(355\) 227966.i 1.80890i
\(356\) −68066.6 + 49742.4i −0.537074 + 0.392488i
\(357\) 7930.10 0.0622218
\(358\) −68033.4 + 22209.8i −0.530831 + 0.173292i
\(359\) 108416.i 0.841207i 0.907245 + 0.420604i \(0.138182\pi\)
−0.907245 + 0.420604i \(0.861818\pi\)
\(360\) 108664. + 78260.5i 0.838460 + 0.603862i
\(361\) 66349.3 0.509122
\(362\) −61747.6 189146.i −0.471198 1.44338i
\(363\) 13440.0i 0.101997i
\(364\) −34876.1 47723.8i −0.263224 0.360190i
\(365\) −10376.4 −0.0778861
\(366\) 71584.5 23369.0i 0.534388 0.174453i
\(367\) 13903.7i 0.103228i −0.998667 0.0516140i \(-0.983563\pi\)
0.998667 0.0516140i \(-0.0164366\pi\)
\(368\) −26903.8 8576.82i −0.198663 0.0633331i
\(369\) 87960.8 0.646006
\(370\) −85125.0 260757.i −0.621805 1.90472i
\(371\) 111016.i 0.806563i
\(372\) 11260.7 8229.24i 0.0813731 0.0594667i
\(373\) −59439.8 −0.427228 −0.213614 0.976918i \(-0.568523\pi\)
−0.213614 + 0.976918i \(0.568523\pi\)
\(374\) 25717.5 8395.57i 0.183859 0.0600215i
\(375\) 33642.4i 0.239235i
\(376\) −23106.1 + 32082.7i −0.163437 + 0.226932i
\(377\) −16764.9 −0.117955
\(378\) −22655.8 69399.7i −0.158561 0.485707i
\(379\) 69097.4i 0.481042i −0.970644 0.240521i \(-0.922682\pi\)
0.970644 0.240521i \(-0.0773183\pi\)
\(380\) 73466.5 + 100530.i 0.508770 + 0.696192i
\(381\) 102718. 0.707614
\(382\) 53819.5 17569.6i 0.368818 0.120402i
\(383\) 42761.8i 0.291514i 0.989320 + 0.145757i \(0.0465617\pi\)
−0.989320 + 0.145757i \(0.953438\pi\)
\(384\) −35178.4 47443.2i −0.238569 0.321745i
\(385\) −109211. −0.736790
\(386\) −16992.0 52050.2i −0.114043 0.349339i
\(387\) 134594.i 0.898680i
\(388\) 220151. 160884.i 1.46237 1.06869i
\(389\) −29070.2 −0.192110 −0.0960548 0.995376i \(-0.530622\pi\)
−0.0960548 + 0.995376i \(0.530622\pi\)
\(390\) −45856.9 + 14970.2i −0.301492 + 0.0984233i
\(391\) 7141.40i 0.0467121i
\(392\) 64735.2 + 46622.5i 0.421278 + 0.303405i
\(393\) −66884.0 −0.433049
\(394\) 74249.1 + 227441.i 0.478298 + 1.46513i
\(395\) 87104.3i 0.558271i
\(396\) −67065.4 91771.1i −0.427669 0.585215i
\(397\) 137857. 0.874674 0.437337 0.899298i \(-0.355922\pi\)
0.437337 + 0.899298i \(0.355922\pi\)
\(398\) 266674. 87056.9i 1.68351 0.549588i
\(399\) 30980.0i 0.194597i
\(400\) 25013.1 78461.1i 0.156332 0.490382i
\(401\) −258595. −1.60817 −0.804083 0.594517i \(-0.797343\pi\)
−0.804083 + 0.594517i \(0.797343\pi\)
\(402\) 12754.6 + 39070.2i 0.0789253 + 0.241765i
\(403\) 26291.5i 0.161884i
\(404\) −90681.7 + 66269.3i −0.555593 + 0.406022i
\(405\) 109905. 0.670052
\(406\) −19921.7 + 6503.51i −0.120858 + 0.0394544i
\(407\) 232825.i 1.40553i
\(408\) 8729.38 12120.7i 0.0524401 0.0728129i
\(409\) 210922. 1.26089 0.630444 0.776235i \(-0.282873\pi\)
0.630444 + 0.776235i \(0.282873\pi\)
\(410\) −49402.1 151329.i −0.293885 0.900234i
\(411\) 122331.i 0.724192i
\(412\) 47431.0 + 64903.7i 0.279427 + 0.382362i
\(413\) −139544. −0.818109
\(414\) −28523.4 + 9311.58i −0.166418 + 0.0543279i
\(415\) 49758.0i 0.288913i
\(416\) −111334. + 772.244i −0.643343 + 0.00446239i
\(417\) 107161. 0.616263
\(418\) −32798.4 100469.i −0.187716 0.575014i
\(419\) 239975.i 1.36690i −0.729996 0.683451i \(-0.760478\pi\)
0.729996 0.683451i \(-0.239522\pi\)
\(420\) −48684.4 + 35578.1i −0.275989 + 0.201690i
\(421\) 241037. 1.35994 0.679969 0.733241i \(-0.261993\pi\)
0.679969 + 0.733241i \(0.261993\pi\)
\(422\) −216758. + 70761.5i −1.21717 + 0.397349i
\(423\) 42011.2i 0.234793i
\(424\) −169682. 122206.i −0.943853 0.679766i
\(425\) 20826.9 0.115304
\(426\) 33155.2 + 101562.i 0.182697 + 0.559642i
\(427\) 177440.i 0.973187i
\(428\) 167007. + 228530.i 0.911692 + 1.24754i
\(429\) 40944.8 0.222477
\(430\) 231559. 75593.2i 1.25234 0.408833i
\(431\) 137750.i 0.741547i −0.928723 0.370773i \(-0.879093\pi\)
0.928723 0.370773i \(-0.120907\pi\)
\(432\) −131013. 41766.4i −0.702015 0.223800i
\(433\) 72161.6 0.384885 0.192442 0.981308i \(-0.438359\pi\)
0.192442 + 0.981308i \(0.438359\pi\)
\(434\) −10199.1 31242.1i −0.0541481 0.165867i
\(435\) 17102.3i 0.0903810i
\(436\) 219610. 160489.i 1.15526 0.844251i
\(437\) −27898.8 −0.146091
\(438\) 4622.80 1509.13i 0.0240967 0.00786645i
\(439\) 334836.i 1.73741i 0.495326 + 0.868707i \(0.335049\pi\)
−0.495326 + 0.868707i \(0.664951\pi\)
\(440\) −120218. + 166922.i −0.620961 + 0.862203i
\(441\) 84768.5 0.435871
\(442\) −8738.23 26767.1i −0.0447279 0.137011i
\(443\) 113300.i 0.577330i −0.957430 0.288665i \(-0.906789\pi\)
0.957430 0.288665i \(-0.0932114\pi\)
\(444\) 75848.4 + 103790.i 0.384752 + 0.526487i
\(445\) 162120. 0.818686
\(446\) −247997. + 80959.5i −1.24674 + 0.407004i
\(447\) 43165.0i 0.216032i
\(448\) −131999. + 44107.0i −0.657680 + 0.219762i
\(449\) 269612. 1.33735 0.668676 0.743554i \(-0.266861\pi\)
0.668676 + 0.743554i \(0.266861\pi\)
\(450\) −27155.9 83184.4i −0.134103 0.410787i
\(451\) 135119.i 0.664299i
\(452\) 103848. 75891.0i 0.508301 0.371461i
\(453\) 152978. 0.745474
\(454\) −343207. + 112041.i −1.66512 + 0.543584i
\(455\) 113668.i 0.549054i
\(456\) −47351.2 34102.5i −0.227720 0.164005i
\(457\) 138872. 0.664937 0.332469 0.943114i \(-0.392118\pi\)
0.332469 + 0.943114i \(0.392118\pi\)
\(458\) −37816.4 115840.i −0.180281 0.552240i
\(459\) 34776.3i 0.165066i
\(460\) 32039.6 + 43842.4i 0.151416 + 0.207195i
\(461\) −45339.2 −0.213340 −0.106670 0.994294i \(-0.534019\pi\)
−0.106670 + 0.994294i \(0.534019\pi\)
\(462\) 48654.6 15883.5i 0.227950 0.0744153i
\(463\) 24680.4i 0.115131i −0.998342 0.0575653i \(-0.981666\pi\)
0.998342 0.0575653i \(-0.0183337\pi\)
\(464\) −11989.3 + 37608.2i −0.0556877 + 0.174681i
\(465\) −26820.7 −0.124041
\(466\) −9707.76 29737.0i −0.0447041 0.136938i
\(467\) 391663.i 1.79589i 0.440111 + 0.897943i \(0.354939\pi\)
−0.440111 + 0.897943i \(0.645061\pi\)
\(468\) −95516.6 + 69802.6i −0.436101 + 0.318698i
\(469\) 96845.4 0.440285
\(470\) 72276.8 23595.1i 0.327192 0.106813i
\(471\) 30158.0i 0.135944i
\(472\) −153609. + 213285.i −0.689496 + 0.957364i
\(473\) −206754. −0.924128
\(474\) 12668.4 + 38806.0i 0.0563851 + 0.172720i
\(475\) 81362.9i 0.360611i
\(476\) −20767.2 28417.5i −0.0916569 0.125422i
\(477\) −222193. −0.976548
\(478\) 129778. 42366.7i 0.567998 0.185425i
\(479\) 329706.i 1.43699i 0.695530 + 0.718497i \(0.255170\pi\)
−0.695530 + 0.718497i \(0.744830\pi\)
\(480\) 787.789 + 113575.i 0.00341922 + 0.492949i
\(481\) 242327. 1.04740
\(482\) −72811.7 223038.i −0.313406 0.960030i
\(483\) 13510.7i 0.0579142i
\(484\) −48162.2 + 35196.5i −0.205596 + 0.150248i
\(485\) −524354. −2.22916
\(486\) −214407. + 69993.9i −0.907749 + 0.296338i
\(487\) 423658.i 1.78631i −0.449748 0.893156i \(-0.648486\pi\)
0.449748 0.893156i \(-0.351514\pi\)
\(488\) −271207. 195324.i −1.13884 0.820195i
\(489\) −115007. −0.480957
\(490\) −47609.2 145837.i −0.198289 0.607402i
\(491\) 465393.i 1.93044i −0.261437 0.965221i \(-0.584196\pi\)
0.261437 0.965221i \(-0.415804\pi\)
\(492\) 44018.4 + 60234.0i 0.181846 + 0.248835i
\(493\) −9982.79 −0.0410731
\(494\) −104569. + 34137.0i −0.428499 + 0.139885i
\(495\) 218579.i 0.892070i
\(496\) −58979.0 18802.3i −0.239736 0.0764269i
\(497\) 251746. 1.01918
\(498\) −7236.76 22167.8i −0.0291800 0.0893847i
\(499\) 138927.i 0.557937i 0.960300 + 0.278968i \(0.0899925\pi\)
−0.960300 + 0.278968i \(0.910008\pi\)
\(500\) 120558. 88102.3i 0.482231 0.352409i
\(501\) 15999.4 0.0637424
\(502\) 58132.5 18977.6i 0.230681 0.0753067i
\(503\) 257169.i 1.01644i 0.861226 + 0.508222i \(0.169697\pi\)
−0.861226 + 0.508222i \(0.830303\pi\)
\(504\) −86424.1 + 120000.i −0.340231 + 0.472409i
\(505\) 215985. 0.846916
\(506\) −14303.8 43815.6i −0.0558663 0.171131i
\(507\) 60343.4i 0.234754i
\(508\) −268996. 368090.i −1.04236 1.42635i
\(509\) −316452. −1.22144 −0.610719 0.791847i \(-0.709120\pi\)
−0.610719 + 0.791847i \(0.709120\pi\)
\(510\) −27305.9 + 8914.12i −0.104982 + 0.0342719i
\(511\) 11458.8i 0.0438830i
\(512\) −77888.0 + 250306.i −0.297119 + 0.954840i
\(513\) −135858. −0.516240
\(514\) 45525.8 + 139455.i 0.172318 + 0.527848i
\(515\) 154587.i 0.582852i
\(516\) −92167.8 + 67355.3i −0.346163 + 0.252972i
\(517\) −64534.6 −0.241441
\(518\) 287957. 94004.7i 1.07317 0.350340i
\(519\) 20304.8i 0.0753812i
\(520\) 173735. + 125125.i 0.642512 + 0.462739i
\(521\) 131592. 0.484791 0.242396 0.970177i \(-0.422067\pi\)
0.242396 + 0.970177i \(0.422067\pi\)
\(522\) 13016.4 + 39872.2i 0.0477695 + 0.146328i
\(523\) 35937.5i 0.131385i −0.997840 0.0656923i \(-0.979074\pi\)
0.997840 0.0656923i \(-0.0209256\pi\)
\(524\) 175155. + 239679.i 0.637911 + 0.872906i
\(525\) 39402.1 0.142956
\(526\) −51298.5 + 16746.6i −0.185410 + 0.0605278i
\(527\) 15655.5i 0.0563696i
\(528\) 29281.5 91850.4i 0.105033 0.329468i
\(529\) −12167.0 −0.0434783
\(530\) 124792. + 382265.i 0.444257 + 1.36086i
\(531\) 279290.i 0.990527i
\(532\) −111017. + 81130.0i −0.392252 + 0.286654i
\(533\) 140634. 0.495034
\(534\) −72226.5 + 23578.6i −0.253288 + 0.0826868i
\(535\) 544310.i 1.90169i
\(536\) 106607. 148023.i 0.371069 0.515228i
\(537\) −64497.7 −0.223664
\(538\) 89396.0 + 273840.i 0.308854 + 0.946088i
\(539\) 130215.i 0.448213i
\(540\) 156023. + 213499.i 0.535057 + 0.732162i
\(541\) 459002. 1.56827 0.784134 0.620592i \(-0.213108\pi\)
0.784134 + 0.620592i \(0.213108\pi\)
\(542\) −113223. + 36962.2i −0.385423 + 0.125823i
\(543\) 179317.i 0.608164i
\(544\) −66295.0 + 459.839i −0.224018 + 0.00155385i
\(545\) −523065. −1.76101
\(546\) −16531.8 50640.4i −0.0554542 0.169868i
\(547\) 524638.i 1.75342i 0.481022 + 0.876708i \(0.340266\pi\)
−0.481022 + 0.876708i \(0.659734\pi\)
\(548\) 438374. 320359.i 1.45977 1.06678i
\(549\) −355137. −1.17829
\(550\) 127782. 41714.9i 0.422420 0.137901i
\(551\) 38999.1i 0.128455i
\(552\) −20650.4 14872.5i −0.0677721 0.0488097i
\(553\) 96190.4 0.314544
\(554\) −89710.6 274803.i −0.292297 0.895369i
\(555\) 247205.i 0.802549i
\(556\) −280633. 384013.i −0.907797 1.24221i
\(557\) −335998. −1.08299 −0.541497 0.840703i \(-0.682142\pi\)
−0.541497 + 0.840703i \(0.682142\pi\)
\(558\) −62529.4 + 20413.0i −0.200824 + 0.0655599i
\(559\) 215193.i 0.688659i
\(560\) 254988. + 81289.2i 0.813100 + 0.259213i
\(561\) 24380.9 0.0774684
\(562\) 69093.8 + 211649.i 0.218759 + 0.670107i
\(563\) 612507.i 1.93239i −0.257816 0.966194i \(-0.583003\pi\)
0.257816 0.966194i \(-0.416997\pi\)
\(564\) −28768.5 + 21023.8i −0.0904398 + 0.0660925i
\(565\) −247344. −0.774826
\(566\) −1230.43 + 401.679i −0.00384082 + 0.00125385i
\(567\) 121370.i 0.377524i
\(568\) 277120. 384780.i 0.858956 1.19266i
\(569\) 18735.8 0.0578693 0.0289347 0.999581i \(-0.490789\pi\)
0.0289347 + 0.999581i \(0.490789\pi\)
\(570\) 34824.2 + 106674.i 0.107184 + 0.328329i
\(571\) 23675.7i 0.0726158i −0.999341 0.0363079i \(-0.988440\pi\)
0.999341 0.0363079i \(-0.0115597\pi\)
\(572\) −107226. 146726.i −0.327723 0.448450i
\(573\) 51022.4 0.155400
\(574\) 167115. 54555.3i 0.507214 0.165582i
\(575\) 35483.3i 0.107322i
\(576\) 88277.9 + 264189.i 0.266077 + 0.796287i
\(577\) −350832. −1.05378 −0.526888 0.849935i \(-0.676641\pi\)
−0.526888 + 0.849935i \(0.676641\pi\)
\(578\) 98475.0 + 301651.i 0.294761 + 0.902918i
\(579\) 49345.1i 0.147193i
\(580\) 61286.3 44787.4i 0.182183 0.133137i
\(581\) −54948.4 −0.162781
\(582\) 233606. 76261.6i 0.689665 0.225144i
\(583\) 341317.i 1.00420i
\(584\) −17514.1 12613.7i −0.0513526 0.0369843i
\(585\) 227500. 0.664769
\(586\) 133317. + 408378.i 0.388230 + 1.18923i
\(587\) 476974.i 1.38426i −0.721772 0.692131i \(-0.756672\pi\)
0.721772 0.692131i \(-0.243328\pi\)
\(588\) 42420.9 + 58048.0i 0.122695 + 0.167893i
\(589\) −61160.2 −0.176294
\(590\) 480495. 156860.i 1.38034 0.450617i
\(591\) 215621.i 0.617328i
\(592\) 173299. 543606.i 0.494485 1.55110i
\(593\) −398812. −1.13412 −0.567059 0.823677i \(-0.691919\pi\)
−0.567059 + 0.823677i \(0.691919\pi\)
\(594\) −69654.8 213368.i −0.197414 0.604723i
\(595\) 67684.6i 0.191186i
\(596\) 154682. 113040.i 0.435459 0.318229i
\(597\) 252815. 0.709340
\(598\) −45603.9 + 14887.6i −0.127526 + 0.0416314i
\(599\) 506739.i 1.41231i 0.708057 + 0.706155i \(0.249572\pi\)
−0.708057 + 0.706155i \(0.750428\pi\)
\(600\) 43373.5 60224.0i 0.120482 0.167289i
\(601\) 562074. 1.55612 0.778062 0.628187i \(-0.216203\pi\)
0.778062 + 0.628187i \(0.216203\pi\)
\(602\) 83478.6 + 255713.i 0.230347 + 0.705602i
\(603\) 193831.i 0.533075i
\(604\) −400617. 548197.i −1.09813 1.50267i
\(605\) 114712. 0.313400
\(606\) −96223.7 + 31412.6i −0.262021 + 0.0855380i
\(607\) 380072.i 1.03155i 0.856725 + 0.515773i \(0.172495\pi\)
−0.856725 + 0.515773i \(0.827505\pi\)
\(608\) 1796.42 + 258990.i 0.00485961 + 0.700610i
\(609\) −18886.3 −0.0509229
\(610\) 199458. + 610984.i 0.536034 + 1.64199i
\(611\) 67168.5i 0.179922i
\(612\) −56876.2 + 41564.5i −0.151854 + 0.110974i
\(613\) 247239. 0.657955 0.328978 0.944338i \(-0.393296\pi\)
0.328978 + 0.944338i \(0.393296\pi\)
\(614\) −190502. + 62190.1i −0.505315 + 0.164962i
\(615\) 143465.i 0.379310i
\(616\) −184335. 132758.i −0.485787 0.349865i
\(617\) −94172.5 −0.247374 −0.123687 0.992321i \(-0.539472\pi\)
−0.123687 + 0.992321i \(0.539472\pi\)
\(618\) 22483.0 + 68870.3i 0.0588677 + 0.180325i
\(619\) 106928.i 0.279069i 0.990217 + 0.139534i \(0.0445606\pi\)
−0.990217 + 0.139534i \(0.955439\pi\)
\(620\) 70237.7 + 96112.0i 0.182720 + 0.250031i
\(621\) −59249.4 −0.153639
\(622\) −269178. + 87874.1i −0.695758 + 0.227133i
\(623\) 179032.i 0.461268i
\(624\) −95599.1 30476.6i −0.245519 0.0782704i
\(625\) −488197. −1.24978
\(626\) 13327.0 + 40823.5i 0.0340082 + 0.104175i
\(627\) 95247.3i 0.242280i
\(628\) 108071. 78977.4i 0.274025 0.200255i
\(629\) 144296. 0.364714
\(630\) 270338. 88253.1i 0.681125 0.222356i
\(631\) 176805.i 0.444055i −0.975040 0.222028i \(-0.928733\pi\)
0.975040 0.222028i \(-0.0712675\pi\)
\(632\) 105885. 147022.i 0.265095 0.368084i
\(633\) −205493. −0.512849
\(634\) −75202.5 230362.i −0.187091 0.573102i
\(635\) 876713.i 2.17425i
\(636\) −111192. 152154.i −0.274891 0.376156i
\(637\) 135530. 0.334008
\(638\) −61248.8 + 19994.9i −0.150472 + 0.0491222i
\(639\) 503856.i 1.23397i
\(640\) 404935. 300253.i 0.988610 0.733040i
\(641\) 356149. 0.866794 0.433397 0.901203i \(-0.357315\pi\)
0.433397 + 0.901203i \(0.357315\pi\)
\(642\) 79164.0 + 242497.i 0.192069 + 0.588350i
\(643\) 76843.8i 0.185860i −0.995673 0.0929302i \(-0.970377\pi\)
0.995673 0.0929302i \(-0.0296233\pi\)
\(644\) −48415.7 + 35381.8i −0.116739 + 0.0853115i
\(645\) 219524. 0.527671
\(646\) −62266.6 + 20327.2i −0.149207 + 0.0487093i
\(647\) 725754.i 1.73373i −0.498545 0.866864i \(-0.666132\pi\)
0.498545 0.866864i \(-0.333868\pi\)
\(648\) 185507. + 133603.i 0.441785 + 0.318175i
\(649\) −429025. −1.01858
\(650\) −43417.5 132997.i −0.102763 0.314786i
\(651\) 29618.5i 0.0698877i
\(652\) 301178. + 412127.i 0.708482 + 0.969473i
\(653\) 45577.6 0.106887 0.0534435 0.998571i \(-0.482980\pi\)
0.0534435 + 0.998571i \(0.482980\pi\)
\(654\) 233032. 76074.1i 0.544828 0.177861i
\(655\) 570865.i 1.33061i
\(656\) 100574. 315480.i 0.233710 0.733101i
\(657\) −22934.1 −0.0531314
\(658\) 26056.3 + 79816.2i 0.0601813 + 0.184348i
\(659\) 164180.i 0.378050i 0.981972 + 0.189025i \(0.0605327\pi\)
−0.981972 + 0.189025i \(0.939467\pi\)
\(660\) −149679. + 109384.i −0.343616 + 0.251111i
\(661\) −140067. −0.320576 −0.160288 0.987070i \(-0.551242\pi\)
−0.160288 + 0.987070i \(0.551242\pi\)
\(662\) 24555.0 8016.07i 0.0560304 0.0182913i
\(663\) 25376.0i 0.0577293i
\(664\) −60486.7 + 83985.6i −0.137190 + 0.190488i
\(665\) 264419. 0.597928
\(666\) −188145. 576330.i −0.424175 1.29934i
\(667\) 17008.0i 0.0382297i
\(668\) −41899.0 57333.8i −0.0938968 0.128487i
\(669\) −235108. −0.525310
\(670\) −333470. + 108863.i −0.742861 + 0.242510i
\(671\) 545536.i 1.21165i
\(672\) −125423. + 869.965i −0.277740 + 0.00192648i
\(673\) 100807. 0.222568 0.111284 0.993789i \(-0.464504\pi\)
0.111284 + 0.993789i \(0.464504\pi\)
\(674\) 49374.7 + 151245.i 0.108689 + 0.332937i
\(675\) 172792.i 0.379243i
\(676\) 216240. 158026.i 0.473199 0.345809i
\(677\) 392318. 0.855974 0.427987 0.903785i \(-0.359223\pi\)
0.427987 + 0.903785i \(0.359223\pi\)
\(678\) 110195. 35973.5i 0.239718 0.0782569i
\(679\) 579051.i 1.25596i
\(680\) 103452. + 74506.5i 0.223729 + 0.161130i
\(681\) −325371. −0.701591
\(682\) −31357.0 96053.2i −0.0674164 0.206511i
\(683\) 141613.i 0.303573i −0.988413 0.151786i \(-0.951497\pi\)
0.988413 0.151786i \(-0.0485025\pi\)
\(684\) 162377. + 222194.i 0.347067 + 0.474920i
\(685\) −1.04411e6 −2.22519
\(686\) 471261. 153845.i 1.00141 0.326916i
\(687\) 109820.i 0.232684i
\(688\) 482736. + 153894.i 1.01984 + 0.325121i
\(689\) −355247. −0.748329
\(690\) 15187.2 + 46521.9i 0.0318993 + 0.0977145i
\(691\) 575255.i 1.20477i 0.798205 + 0.602385i \(0.205783\pi\)
−0.798205 + 0.602385i \(0.794217\pi\)
\(692\) 72762.1 53173.8i 0.151947 0.111042i
\(693\) −241380. −0.502614
\(694\) −584097. + 190681.i −1.21274 + 0.395902i
\(695\) 914638.i 1.89356i
\(696\) −20789.9 + 28866.7i −0.0429175 + 0.0595908i
\(697\) 83741.6 0.172376
\(698\) 231715. + 709793.i 0.475601 + 1.45687i
\(699\) 28191.5i 0.0576985i
\(700\) −103186. 141198.i −0.210583 0.288158i
\(701\) 469781. 0.956003 0.478002 0.878359i \(-0.341361\pi\)
0.478002 + 0.878359i \(0.341361\pi\)
\(702\) −222076. + 72497.7i −0.450638 + 0.147113i
\(703\) 563710.i 1.14063i
\(704\) −405828. + 135606.i −0.818835 + 0.273611i
\(705\) 68520.6 0.137861
\(706\) −154511. 473300.i −0.309991 0.949571i
\(707\) 238515.i 0.477173i
\(708\) −191253. + 139766.i −0.381541 + 0.278826i
\(709\) −604441. −1.20243 −0.601217 0.799085i \(-0.705317\pi\)
−0.601217 + 0.799085i \(0.705317\pi\)
\(710\) −866843. + 282984.i −1.71959 + 0.561366i
\(711\) 192520.i 0.380835i
\(712\) 273640. + 197076.i 0.539783 + 0.388754i
\(713\) −26672.7 −0.0524672
\(714\) −9843.98 30154.3i −0.0193097 0.0591497i
\(715\) 349470.i 0.683593i
\(716\) 168906. + 231128.i 0.329472 + 0.450844i
\(717\) 123034. 0.239324
\(718\) 412251. 134581.i 0.799674 0.261057i
\(719\) 251213.i 0.485942i 0.970034 + 0.242971i \(0.0781219\pi\)
−0.970034 + 0.242971i \(0.921878\pi\)
\(720\) 162696. 510345.i 0.313843 0.984463i
\(721\) 170712. 0.328394
\(722\) −82362.4 252294.i −0.157999 0.483986i
\(723\) 211447.i 0.404505i
\(724\) −642581. + 469592.i −1.22589 + 0.895867i
\(725\) −49601.3 −0.0943663
\(726\) −51105.7 + 16683.6i −0.0969607 + 0.0316532i
\(727\) 323010.i 0.611148i 0.952168 + 0.305574i \(0.0988484\pi\)
−0.952168 + 0.305574i \(0.901152\pi\)
\(728\) −138177. + 191858.i −0.260719 + 0.362007i
\(729\) 86070.7 0.161957
\(730\) 12880.7 + 39456.3i 0.0241709 + 0.0740407i
\(731\) 128138.i 0.239797i
\(732\) −177722. 243191.i −0.331680 0.453865i
\(733\) −306118. −0.569745 −0.284873 0.958565i \(-0.591951\pi\)
−0.284873 + 0.958565i \(0.591951\pi\)
\(734\) −52868.8 + 17259.3i −0.0981313 + 0.0320354i
\(735\) 138258.i 0.255927i
\(736\) 783.441 + 112949.i 0.00144627 + 0.208509i
\(737\) 297749. 0.548171
\(738\) −109190. 334472.i −0.200479 0.614111i
\(739\) 508237.i 0.930631i 0.885145 + 0.465315i \(0.154059\pi\)
−0.885145 + 0.465315i \(0.845941\pi\)
\(740\) −885859. + 647377.i −1.61771 + 1.18221i
\(741\) −99134.7 −0.180547
\(742\) −422140. + 137809.i −0.766741 + 0.250306i
\(743\) 336681.i 0.609876i 0.952372 + 0.304938i \(0.0986357\pi\)
−0.952372 + 0.304938i \(0.901364\pi\)
\(744\) −45270.2 32603.7i −0.0817836 0.0589008i
\(745\) −368420. −0.663790
\(746\) 73785.2 + 226020.i 0.132584 + 0.406134i
\(747\) 109976.i 0.197087i
\(748\) −63848.5 87369.1i −0.114116 0.156155i
\(749\) 601089. 1.07146
\(750\) 127926. 41761.8i 0.227423 0.0742432i
\(751\) 303171.i 0.537537i 0.963205 + 0.268768i \(0.0866166\pi\)
−0.963205 + 0.268768i \(0.913383\pi\)
\(752\) 150677. + 48035.3i 0.266448 + 0.0849425i
\(753\) 55111.3 0.0971965
\(754\) 20811.0 + 63748.6i 0.0366058 + 0.112132i
\(755\) 1.30569e6i 2.29058i
\(756\) −235769. + 172298.i −0.412519 + 0.301465i
\(757\) 843629. 1.47218 0.736088 0.676886i \(-0.236671\pi\)
0.736088 + 0.676886i \(0.236671\pi\)
\(758\) −262743. + 85773.6i −0.457292 + 0.149285i
\(759\) 41538.5i 0.0721053i
\(760\) 291070. 404149.i 0.503929 0.699704i
\(761\) 539703. 0.931934 0.465967 0.884802i \(-0.345706\pi\)
0.465967 + 0.884802i \(0.345706\pi\)
\(762\) −127508. 390586.i −0.219598 0.672677i
\(763\) 577627.i 0.992199i
\(764\) −133617. 182839.i −0.228915 0.313244i
\(765\) 135467. 0.231479
\(766\) 162602. 53082.2i 0.277121 0.0904672i
\(767\) 446535.i 0.759041i
\(768\) −136735. + 192660.i −0.231823 + 0.326639i
\(769\) 439096. 0.742518 0.371259 0.928529i \(-0.378926\pi\)
0.371259 + 0.928529i \(0.378926\pi\)
\(770\) 135568. + 415274.i 0.228652 + 0.700412i
\(771\) 132208.i 0.222407i
\(772\) −176828. + 129224.i −0.296700 + 0.216825i
\(773\) −81700.0 −0.136730 −0.0683648 0.997660i \(-0.521778\pi\)
−0.0683648 + 0.997660i \(0.521778\pi\)
\(774\) 511796. 167078.i 0.854309 0.278893i
\(775\) 77787.1i 0.129510i
\(776\) −885048. 637414.i −1.46975 1.05852i
\(777\) 272992. 0.452176
\(778\) 36086.2 + 110540.i 0.0596186 + 0.182625i
\(779\) 327148.i 0.539099i
\(780\) 113849. + 155788.i 0.187128 + 0.256062i
\(781\) 773988. 1.26891
\(782\) −27155.2 + 8864.93i −0.0444058 + 0.0144965i
\(783\) 82823.3i 0.135092i
\(784\) 96923.7 304031.i 0.157688 0.494635i
\(785\) −257403. −0.417709
\(786\) 83026.1 + 254327.i 0.134391 + 0.411668i
\(787\) 1.08194e6i 1.74685i 0.486963 + 0.873423i \(0.338105\pi\)
−0.486963 + 0.873423i \(0.661895\pi\)
\(788\) 772678. 564665.i 1.24436 0.909366i
\(789\) −48632.5 −0.0781218
\(790\) −331215. + 108126.i −0.530708 + 0.173252i
\(791\) 273145.i 0.436556i
\(792\) −265709. + 368936.i −0.423600 + 0.588167i
\(793\) −567801. −0.902922
\(794\) −171127. 524200.i −0.271443 0.831489i
\(795\) 362398.i 0.573392i
\(796\) −662069. 905963.i −1.04491 1.42983i
\(797\) 701652. 1.10460 0.552300 0.833645i \(-0.313750\pi\)
0.552300 + 0.833645i \(0.313750\pi\)
\(798\) −117802. + 38456.8i −0.184989 + 0.0603904i
\(799\) 39996.1i 0.0626504i
\(800\) −329399. + 2284.79i −0.514686 + 0.00356999i
\(801\) 358322. 0.558481
\(802\) 321005. + 983308.i 0.499072 + 1.52877i
\(803\) 35229.8i 0.0546360i
\(804\) 132732. 96999.2i 0.205335 0.150057i
\(805\) 115316. 0.177950
\(806\) −99973.6 + 32636.8i −0.153892 + 0.0502386i
\(807\) 259608.i 0.398631i
\(808\) 364557. + 262555.i 0.558396 + 0.402158i
\(809\) 902290. 1.37863 0.689317 0.724459i \(-0.257911\pi\)
0.689317 + 0.724459i \(0.257911\pi\)
\(810\) −136430. 417916.i −0.207941 0.636969i
\(811\) 683466.i 1.03914i 0.854427 + 0.519571i \(0.173908\pi\)
−0.854427 + 0.519571i \(0.826092\pi\)
\(812\) 49459.3 + 67679.2i 0.0750129 + 0.102646i
\(813\) −107339. −0.162397
\(814\) 885317. 289015.i 1.33613 0.436187i
\(815\) 981600.i 1.47781i
\(816\) −56925.3 18147.6i −0.0854919 0.0272545i
\(817\) 500589. 0.749959
\(818\) −261827. 802034.i −0.391299 1.19863i
\(819\) 251232.i 0.374547i
\(820\) −514106. + 375703.i −0.764583 + 0.558750i
\(821\) 1.05149e6 1.55997 0.779987 0.625796i \(-0.215226\pi\)
0.779987 + 0.625796i \(0.215226\pi\)
\(822\) 465165. 151855.i 0.688436 0.224743i
\(823\) 1.02055e6i 1.50673i −0.657601 0.753366i \(-0.728429\pi\)
0.657601 0.753366i \(-0.271571\pi\)
\(824\) 187919. 260925.i 0.276768 0.384291i
\(825\) 121141. 0.177985
\(826\) 173222. + 530617.i 0.253889 + 0.777716i
\(827\) 327743.i 0.479206i −0.970871 0.239603i \(-0.922983\pi\)
0.970871 0.239603i \(-0.0770173\pi\)
\(828\) 70814.7 + 96901.5i 0.103291 + 0.141342i
\(829\) −1.17863e6 −1.71502 −0.857508 0.514471i \(-0.827988\pi\)
−0.857508 + 0.514471i \(0.827988\pi\)
\(830\) 189205. 61766.8i 0.274648 0.0896600i
\(831\) 260521.i 0.377261i
\(832\) 141141. + 422391.i 0.203895 + 0.610195i
\(833\) 80702.5 0.116305
\(834\) −133024. 407482.i −0.191249 0.585836i
\(835\) 136557.i 0.195858i
\(836\) −341319. + 249432.i −0.488369 + 0.356895i
\(837\) −129888. −0.185403
\(838\) −912505. + 297891.i −1.29941 + 0.424199i
\(839\) 738323.i 1.04887i −0.851450 0.524436i \(-0.824276\pi\)
0.851450 0.524436i \(-0.175724\pi\)
\(840\) 195720. + 140958.i 0.277381 + 0.199771i
\(841\) −683506. −0.966385
\(842\) −299210. 916545.i −0.422038 1.29279i
\(843\) 200650.i 0.282347i
\(844\) 538143. + 736385.i 0.755462 + 1.03376i
\(845\) −515039. −0.721318
\(846\) 159748. 52150.4i 0.223200 0.0728646i
\(847\) 126678.i 0.176577i
\(848\) −254054. + 796917.i −0.353292 + 1.10821i
\(849\) −1166.48 −0.00161832
\(850\) −25853.3 79194.3i −0.0357831 0.109611i
\(851\) 245841.i 0.339465i
\(852\) 345032. 252146.i 0.475313 0.347354i
\(853\) −705779. −0.969997 −0.484999 0.874515i \(-0.661180\pi\)
−0.484999 + 0.874515i \(0.661180\pi\)
\(854\) −674718. + 220264.i −0.925137 + 0.302015i
\(855\) 529220.i 0.723942i
\(856\) 661673. 918731.i 0.903017 1.25384i
\(857\) −219749. −0.299203 −0.149601 0.988746i \(-0.547799\pi\)
−0.149601 + 0.988746i \(0.547799\pi\)
\(858\) −50826.6 155693.i −0.0690425 0.211492i
\(859\) 959328.i 1.30011i −0.759886 0.650056i \(-0.774745\pi\)
0.759886 0.650056i \(-0.225255\pi\)
\(860\) −574888. 786666.i −0.777295 1.06364i
\(861\) 158430. 0.213713
\(862\) −523797. + 170996.i −0.704934 + 0.230129i
\(863\) 1.35441e6i 1.81856i −0.416181 0.909282i \(-0.636632\pi\)
0.416181 0.909282i \(-0.363368\pi\)
\(864\) 3815.11 + 550024.i 0.00511069 + 0.736808i
\(865\) −173304. −0.231620
\(866\) −89577.4 274395.i −0.119444 0.365882i
\(867\) 285974.i 0.380442i
\(868\) −106138. + 77564.4i −0.140874 + 0.102949i
\(869\) 295735. 0.391619
\(870\) 65031.8 21229.9i 0.0859186 0.0280485i
\(871\) 309902.i 0.408496i
\(872\) −882872. 635847.i −1.16109 0.836218i
\(873\) −1.15894e6 −1.52066
\(874\) 34632.0 + 106085.i 0.0453372 + 0.138878i
\(875\) 317096.i 0.414166i
\(876\) −11477.0 15704.9i −0.0149561 0.0204657i
\(877\) 428963. 0.557725 0.278863 0.960331i \(-0.410043\pi\)
0.278863 + 0.960331i \(0.410043\pi\)
\(878\) 1.27322e6 415647.i 1.65163 0.539182i
\(879\) 387155.i 0.501080i
\(880\) 783956. + 249922.i 1.01234 + 0.322730i
\(881\) −266986. −0.343983 −0.171991 0.985098i \(-0.555020\pi\)
−0.171991 + 0.985098i \(0.555020\pi\)
\(882\) −105227. 322333.i −0.135266 0.414350i
\(883\) 1.02496e6i 1.31458i 0.753638 + 0.657290i \(0.228297\pi\)
−0.753638 + 0.657290i \(0.771703\pi\)
\(884\) −90935.0 + 66454.4i −0.116366 + 0.0850392i
\(885\) 455524. 0.581600
\(886\) −430826. + 140645.i −0.548825 + 0.179166i
\(887\) 825747.i 1.04954i 0.851244 + 0.524771i \(0.175849\pi\)
−0.851244 + 0.524771i \(0.824151\pi\)
\(888\) 300507. 417253.i 0.381091 0.529143i
\(889\) −968165. −1.22503
\(890\) −201247. 616464.i −0.254068 0.778265i
\(891\) 373149.i 0.470031i
\(892\) 615699. + 842511.i 0.773817 + 1.05888i
\(893\) 156250. 0.195937
\(894\) 164135. 53582.7i 0.205365 0.0670424i
\(895\) 550497.i 0.687241i
\(896\) 331573. + 447175.i 0.413013 + 0.557008i
\(897\) −43233.8 −0.0537327
\(898\) −334681. 1.02520e6i −0.415029 1.27132i
\(899\) 37285.1i 0.0461335i
\(900\) −282600. + 206521.i −0.348888 + 0.254964i
\(901\) −211535. −0.260575
\(902\) 513791. 167729.i 0.631500 0.206156i
\(903\) 242424.i 0.297303i
\(904\) −417487. 300675.i −0.510865 0.367927i
\(905\) 1.53049e6 1.86868
\(906\) −189898. 581700.i −0.231348 0.708668i
\(907\) 1.30607e6i 1.58765i −0.608149 0.793823i \(-0.708088\pi\)
0.608149 0.793823i \(-0.291912\pi\)
\(908\) 852077. + 1.16597e6i 1.03349 + 1.41421i
\(909\) 477374. 0.577739
\(910\) 432223. 141101.i 0.521946 0.170391i
\(911\) 165146.i 0.198991i −0.995038 0.0994953i \(-0.968277\pi\)
0.995038 0.0994953i \(-0.0317228\pi\)
\(912\) −70895.8 + 222386.i −0.0852375 + 0.267373i
\(913\) −168938. −0.202668
\(914\) −172387. 528060.i −0.206354 0.632107i
\(915\) 579231.i 0.691846i
\(916\) −393539. + 287595.i −0.469026 + 0.342760i
\(917\) 630414. 0.749699
\(918\) −132237. + 43169.4i −0.156916 + 0.0512260i
\(919\) 1.36219e6i 1.61289i 0.591307 + 0.806447i \(0.298612\pi\)
−0.591307 + 0.806447i \(0.701388\pi\)
\(920\) 126939. 176254.i 0.149975 0.208240i
\(921\) −180601. −0.212913
\(922\) 56281.6 + 172403.i 0.0662071 + 0.202807i
\(923\) 805577.i 0.945592i
\(924\) −120794. 165293.i −0.141482 0.193602i
\(925\) 716959. 0.837937
\(926\) −93847.5 + 30636.9i −0.109446 + 0.0357291i
\(927\) 341672.i 0.397603i
\(928\) 157888. 1095.15i 0.183339 0.00127168i
\(929\) −189961. −0.220106 −0.110053 0.993926i \(-0.535102\pi\)
−0.110053 + 0.993926i \(0.535102\pi\)
\(930\) 33293.7 + 101986.i 0.0384943 + 0.117916i
\(931\) 315275.i 0.363739i
\(932\) −101024. + 73827.6i −0.116304 + 0.0849938i
\(933\) −255188. −0.293155
\(934\) 1.48930e6 486189.i 1.70722 0.557328i
\(935\) 208095.i 0.238033i
\(936\) 383994. + 276554.i 0.438301 + 0.315666i
\(937\) 895024. 1.01943 0.509713 0.860345i \(-0.329752\pi\)
0.509713 + 0.860345i \(0.329752\pi\)
\(938\) −120219. 368255.i −0.136636 0.418546i
\(939\) 38701.9i 0.0438936i
\(940\) −179441. 245544.i −0.203079 0.277890i
\(941\) −881205. −0.995171 −0.497586 0.867415i \(-0.665780\pi\)
−0.497586 + 0.867415i \(0.665780\pi\)
\(942\) 114676. 37436.4i 0.129232 0.0421884i
\(943\) 142673.i 0.160442i
\(944\) 1.00170e6 + 319338.i 1.12407 + 0.358349i
\(945\) 561553. 0.628821
\(946\) 256653. + 786185.i 0.286790 + 0.878501i
\(947\) 810727.i 0.904013i −0.892015 0.452006i \(-0.850708\pi\)
0.892015 0.452006i \(-0.149292\pi\)
\(948\) 131834. 96343.1i 0.146694 0.107202i
\(949\) −36667.6 −0.0407146
\(950\) −309383. + 100999.i −0.342807 + 0.111911i
\(951\) 218390.i 0.241475i
\(952\) −82278.6 + 114244.i −0.0907847 + 0.126054i
\(953\) −935492. −1.03004 −0.515020 0.857178i \(-0.672216\pi\)
−0.515020 + 0.857178i \(0.672216\pi\)
\(954\) 275818. + 844890.i 0.303058 + 0.928333i
\(955\) 435484.i 0.477491i
\(956\) −322199. 440892.i −0.352540 0.482410i
\(957\) −58065.7 −0.0634009
\(958\) 1.25371e6 409278.i 1.36605 0.445951i
\(959\) 1.15303e6i 1.25373i
\(960\) 430894. 143982.i 0.467550 0.156230i
\(961\) 865049. 0.936685
\(962\) −300811. 921451.i −0.325045 0.995685i
\(963\) 1.20305e6i 1.29727i
\(964\) −757719. + 553734.i −0.815369 + 0.595864i
\(965\) 421168. 0.452273
\(966\) −51374.7 + 16771.5i −0.0550548 + 0.0179729i
\(967\) 179856.i 0.192341i −0.995365 0.0961704i \(-0.969341\pi\)
0.995365 0.0961704i \(-0.0306594\pi\)
\(968\) 193621. + 139446.i 0.206634 + 0.148818i
\(969\) −59030.6 −0.0628680
\(970\) 650904. + 1.99386e6i 0.691789 + 2.11910i
\(971\) 1.18891e6i 1.26099i 0.776193 + 0.630495i \(0.217148\pi\)
−0.776193 + 0.630495i \(0.782852\pi\)
\(972\) 532305. + 728397.i 0.563415 + 0.770966i
\(973\) −1.01005e6 −1.06688
\(974\) −1.61096e6 + 525905.i −1.69812 + 0.554357i
\(975\) 126085.i 0.132634i
\(976\) −406061. + 1.27373e6i −0.426277 + 1.33715i
\(977\) 461739. 0.483735 0.241867 0.970309i \(-0.422240\pi\)
0.241867 + 0.970309i \(0.422240\pi\)
\(978\) 142763. + 437314.i 0.149258 + 0.457210i
\(979\) 550429.i 0.574296i
\(980\) −495448. + 362068.i −0.515877 + 0.376998i
\(981\) −1.15609e6 −1.20131
\(982\) −1.76966e6 + 577712.i −1.83513 + 0.599085i
\(983\) 1.34200e6i 1.38882i 0.719579 + 0.694410i \(0.244335\pi\)
−0.719579 + 0.694410i \(0.755665\pi\)
\(984\) 174398. 242151.i 0.180116 0.250090i
\(985\) −1.84036e6 −1.89683
\(986\) 12392.1 + 37959.6i 0.0127465 + 0.0390452i
\(987\) 75668.2i 0.0776746i
\(988\) 259613. + 355249.i 0.265957 + 0.363931i
\(989\) 218313. 0.223196
\(990\) 831150. 271332.i 0.848025 0.276841i
\(991\) 1.73102e6i 1.76261i 0.472549 + 0.881304i \(0.343334\pi\)
−0.472549 + 0.881304i \(0.656666\pi\)
\(992\) 1717.47 + 247608.i 0.00174529 + 0.251618i
\(993\) 23278.8 0.0236082
\(994\) −312503. 957266.i −0.316287 0.968858i
\(995\) 2.15781e6i 2.17956i
\(996\) −75309.8 + 55035.7i −0.0759159 + 0.0554786i
\(997\) −1.38355e6 −1.39189 −0.695945 0.718095i \(-0.745014\pi\)
−0.695945 + 0.718095i \(0.745014\pi\)
\(998\) 528270. 172456.i 0.530390 0.173148i
\(999\) 1.19717e6i 1.19956i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.5.c.a.47.17 44
4.3 odd 2 inner 92.5.c.a.47.18 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.5.c.a.47.17 44 1.1 even 1 trivial
92.5.c.a.47.18 yes 44 4.3 odd 2 inner