Properties

Label 92.5.c.a.47.22
Level $92$
Weight $5$
Character 92.47
Analytic conductor $9.510$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,5,Mod(47,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.47");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 92.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.51003660371\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 47.22
Character \(\chi\) \(=\) 92.47
Dual form 92.5.c.a.47.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0192498 + 3.99995i) q^{2} +15.0928i q^{3} +(-15.9993 + 0.153996i) q^{4} -8.67002 q^{5} +(-60.3703 + 0.290532i) q^{6} -26.8452i q^{7} +(-0.923961 - 63.9933i) q^{8} -146.791 q^{9} +(-0.166896 - 34.6797i) q^{10} +98.3454i q^{11} +(-2.32423 - 241.473i) q^{12} +12.0738 q^{13} +(107.379 - 0.516763i) q^{14} -130.855i q^{15} +(255.953 - 4.92766i) q^{16} -66.5536 q^{17} +(-2.82570 - 587.159i) q^{18} +385.008i q^{19} +(138.714 - 1.33515i) q^{20} +405.168 q^{21} +(-393.377 + 1.89313i) q^{22} -110.304i q^{23} +(965.836 - 13.9451i) q^{24} -549.831 q^{25} +(0.232419 + 48.2948i) q^{26} -992.974i q^{27} +(4.13406 + 429.503i) q^{28} +200.733 q^{29} +(523.412 - 2.51892i) q^{30} -1720.44i q^{31} +(24.6374 + 1023.70i) q^{32} -1484.30 q^{33} +(-1.28114 - 266.211i) q^{34} +232.748i q^{35} +(2348.55 - 22.6053i) q^{36} -2035.02 q^{37} +(-1540.02 + 7.41132i) q^{38} +182.227i q^{39} +(8.01076 + 554.824i) q^{40} -2014.14 q^{41} +(7.79938 + 1620.65i) q^{42} +539.916i q^{43} +(-15.1448 - 1573.45i) q^{44} +1272.69 q^{45} +(441.211 - 2.12333i) q^{46} +1913.98i q^{47} +(74.3719 + 3863.03i) q^{48} +1680.34 q^{49} +(-10.5841 - 2199.30i) q^{50} -1004.48i q^{51} +(-193.172 + 1.85933i) q^{52} +2581.83 q^{53} +(3971.85 - 19.1145i) q^{54} -852.657i q^{55} +(-1717.91 + 24.8039i) q^{56} -5810.84 q^{57} +(3.86407 + 802.924i) q^{58} +4108.44i q^{59} +(20.1511 + 2093.58i) q^{60} -4282.80 q^{61} +(6881.68 - 33.1181i) q^{62} +3940.64i q^{63} +(-4094.29 + 118.255i) q^{64} -104.680 q^{65} +(-28.5725 - 5937.15i) q^{66} +8140.75i q^{67} +(1064.81 - 10.2490i) q^{68} +1664.79 q^{69} +(-930.982 + 4.48035i) q^{70} +4364.82i q^{71} +(135.629 + 9393.67i) q^{72} -2120.81 q^{73} +(-39.1737 - 8139.99i) q^{74} -8298.46i q^{75} +(-59.2899 - 6159.85i) q^{76} +2640.10 q^{77} +(-728.901 + 3.50784i) q^{78} -2996.86i q^{79} +(-2219.12 + 42.7229i) q^{80} +3096.61 q^{81} +(-38.7717 - 8056.45i) q^{82} -9844.45i q^{83} +(-6482.38 + 62.3943i) q^{84} +577.021 q^{85} +(-2159.64 + 10.3933i) q^{86} +3029.62i q^{87} +(6293.45 - 90.8673i) q^{88} +5764.95 q^{89} +(24.4989 + 5090.68i) q^{90} -324.124i q^{91} +(16.9864 + 1764.78i) q^{92} +25966.2 q^{93} +(-7655.82 + 36.8436i) q^{94} -3338.03i q^{95} +(-15450.5 + 371.847i) q^{96} -9929.30 q^{97} +(32.3461 + 6721.27i) q^{98} -14436.3i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 24 q^{5} + 33 q^{6} - 27 q^{8} - 1300 q^{9} - 46 q^{10} + 145 q^{12} + 472 q^{13} - 264 q^{14} + 272 q^{16} - 648 q^{17} + 1313 q^{18} + 324 q^{20} - 288 q^{21} + 796 q^{22} - 1028 q^{24} + 5604 q^{25}+ \cdots + 57204 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0192498 + 3.99995i 0.00481244 + 0.999988i
\(3\) 15.0928i 1.67697i 0.544922 + 0.838487i \(0.316559\pi\)
−0.544922 + 0.838487i \(0.683441\pi\)
\(4\) −15.9993 + 0.153996i −0.999954 + 0.00962477i
\(5\) −8.67002 −0.346801 −0.173400 0.984851i \(-0.555476\pi\)
−0.173400 + 0.984851i \(0.555476\pi\)
\(6\) −60.3703 + 0.290532i −1.67695 + 0.00807034i
\(7\) 26.8452i 0.547860i −0.961750 0.273930i \(-0.911676\pi\)
0.961750 0.273930i \(-0.0883237\pi\)
\(8\) −0.923961 63.9933i −0.0144369 0.999896i
\(9\) −146.791 −1.81224
\(10\) −0.166896 34.6797i −0.00166896 0.346797i
\(11\) 98.3454i 0.812772i 0.913702 + 0.406386i \(0.133211\pi\)
−0.913702 + 0.406386i \(0.866789\pi\)
\(12\) −2.32423 241.473i −0.0161405 1.67690i
\(13\) 12.0738 0.0714428 0.0357214 0.999362i \(-0.488627\pi\)
0.0357214 + 0.999362i \(0.488627\pi\)
\(14\) 107.379 0.516763i 0.547854 0.00263655i
\(15\) 130.855i 0.581576i
\(16\) 255.953 4.92766i 0.999815 0.0192487i
\(17\) −66.5536 −0.230289 −0.115145 0.993349i \(-0.536733\pi\)
−0.115145 + 0.993349i \(0.536733\pi\)
\(18\) −2.82570 587.159i −0.00872130 1.81222i
\(19\) 385.008i 1.06651i 0.845956 + 0.533253i \(0.179030\pi\)
−0.845956 + 0.533253i \(0.820970\pi\)
\(20\) 138.714 1.33515i 0.346785 0.00333788i
\(21\) 405.168 0.918747
\(22\) −393.377 + 1.89313i −0.812763 + 0.00391142i
\(23\) 110.304i 0.208514i
\(24\) 965.836 13.9451i 1.67680 0.0242103i
\(25\) −549.831 −0.879729
\(26\) 0.232419 + 48.2948i 0.000343814 + 0.0714420i
\(27\) 992.974i 1.36210i
\(28\) 4.13406 + 429.503i 0.00527303 + 0.547835i
\(29\) 200.733 0.238684 0.119342 0.992853i \(-0.461921\pi\)
0.119342 + 0.992853i \(0.461921\pi\)
\(30\) 523.412 2.51892i 0.581569 0.00279880i
\(31\) 1720.44i 1.79026i −0.445805 0.895130i \(-0.647083\pi\)
0.445805 0.895130i \(-0.352917\pi\)
\(32\) 24.6374 + 1023.70i 0.0240600 + 0.999711i
\(33\) −1484.30 −1.36300
\(34\) −1.28114 266.211i −0.00110825 0.230287i
\(35\) 232.748i 0.189999i
\(36\) 2348.55 22.6053i 1.81216 0.0174424i
\(37\) −2035.02 −1.48650 −0.743251 0.669013i \(-0.766717\pi\)
−0.743251 + 0.669013i \(0.766717\pi\)
\(38\) −1540.02 + 7.41132i −1.06649 + 0.00513250i
\(39\) 182.227i 0.119808i
\(40\) 8.01076 + 554.824i 0.00500673 + 0.346765i
\(41\) −2014.14 −1.19818 −0.599089 0.800683i \(-0.704470\pi\)
−0.599089 + 0.800683i \(0.704470\pi\)
\(42\) 7.79938 + 1620.65i 0.00442142 + 0.918737i
\(43\) 539.916i 0.292004i 0.989284 + 0.146002i \(0.0466407\pi\)
−0.989284 + 0.146002i \(0.953359\pi\)
\(44\) −15.1448 1573.45i −0.00782275 0.812734i
\(45\) 1272.69 0.628486
\(46\) 441.211 2.12333i 0.208512 0.00100346i
\(47\) 1913.98i 0.866445i 0.901287 + 0.433222i \(0.142624\pi\)
−0.901287 + 0.433222i \(0.857376\pi\)
\(48\) 74.3719 + 3863.03i 0.0322795 + 1.67666i
\(49\) 1680.34 0.699849
\(50\) −10.5841 2199.30i −0.00423365 0.879719i
\(51\) 1004.48i 0.386189i
\(52\) −193.172 + 1.85933i −0.0714395 + 0.000687621i
\(53\) 2581.83 0.919129 0.459565 0.888144i \(-0.348005\pi\)
0.459565 + 0.888144i \(0.348005\pi\)
\(54\) 3971.85 19.1145i 1.36209 0.00655505i
\(55\) 852.657i 0.281870i
\(56\) −1717.91 + 24.8039i −0.547803 + 0.00790940i
\(57\) −5810.84 −1.78850
\(58\) 3.86407 + 802.924i 0.00114865 + 0.238681i
\(59\) 4108.44i 1.18025i 0.807313 + 0.590123i \(0.200921\pi\)
−0.807313 + 0.590123i \(0.799079\pi\)
\(60\) 20.1511 + 2093.58i 0.00559754 + 0.581549i
\(61\) −4282.80 −1.15098 −0.575490 0.817809i \(-0.695189\pi\)
−0.575490 + 0.817809i \(0.695189\pi\)
\(62\) 6881.68 33.1181i 1.79024 0.00861552i
\(63\) 3940.64i 0.992854i
\(64\) −4094.29 + 118.255i −0.999583 + 0.0288708i
\(65\) −104.680 −0.0247764
\(66\) −28.5725 5937.15i −0.00655934 1.36298i
\(67\) 8140.75i 1.81349i 0.421681 + 0.906744i \(0.361440\pi\)
−0.421681 + 0.906744i \(0.638560\pi\)
\(68\) 1064.81 10.2490i 0.230279 0.00221648i
\(69\) 1664.79 0.349673
\(70\) −930.982 + 4.48035i −0.189996 + 0.000914357i
\(71\) 4364.82i 0.865864i 0.901427 + 0.432932i \(0.142521\pi\)
−0.901427 + 0.432932i \(0.857479\pi\)
\(72\) 135.629 + 9393.67i 0.0261631 + 1.81205i
\(73\) −2120.81 −0.397975 −0.198987 0.980002i \(-0.563765\pi\)
−0.198987 + 0.980002i \(0.563765\pi\)
\(74\) −39.1737 8139.99i −0.00715371 1.48648i
\(75\) 8298.46i 1.47528i
\(76\) −59.2899 6159.85i −0.0102649 1.06646i
\(77\) 2640.10 0.445286
\(78\) −728.901 + 3.50784i −0.119806 + 0.000576568i
\(79\) 2996.86i 0.480189i −0.970750 0.240095i \(-0.922822\pi\)
0.970750 0.240095i \(-0.0771785\pi\)
\(80\) −2219.12 + 42.7229i −0.346737 + 0.00667545i
\(81\) 3096.61 0.471972
\(82\) −38.7717 8056.45i −0.00576616 1.19816i
\(83\) 9844.45i 1.42901i −0.699631 0.714505i \(-0.746652\pi\)
0.699631 0.714505i \(-0.253348\pi\)
\(84\) −6482.38 + 62.3943i −0.918705 + 0.00884273i
\(85\) 577.021 0.0798645
\(86\) −2159.64 + 10.3933i −0.292001 + 0.00140525i
\(87\) 3029.62i 0.400267i
\(88\) 6293.45 90.8673i 0.812687 0.0117339i
\(89\) 5764.95 0.727805 0.363903 0.931437i \(-0.381444\pi\)
0.363903 + 0.931437i \(0.381444\pi\)
\(90\) 24.4989 + 5090.68i 0.00302456 + 0.628479i
\(91\) 324.124i 0.0391407i
\(92\) 16.9864 + 1764.78i 0.00200690 + 0.208505i
\(93\) 25966.2 3.00222
\(94\) −7655.82 + 36.8436i −0.866435 + 0.00416972i
\(95\) 3338.03i 0.369865i
\(96\) −15450.5 + 371.847i −1.67649 + 0.0403480i
\(97\) −9929.30 −1.05530 −0.527649 0.849462i \(-0.676926\pi\)
−0.527649 + 0.849462i \(0.676926\pi\)
\(98\) 32.3461 + 6721.27i 0.00336798 + 0.699841i
\(99\) 14436.3i 1.47294i
\(100\) 8796.88 84.6719i 0.879688 0.00846719i
\(101\) 9369.14 0.918453 0.459227 0.888319i \(-0.348127\pi\)
0.459227 + 0.888319i \(0.348127\pi\)
\(102\) 4017.86 19.3360i 0.386184 0.00185851i
\(103\) 19588.7i 1.84643i 0.384287 + 0.923214i \(0.374447\pi\)
−0.384287 + 0.923214i \(0.625553\pi\)
\(104\) −11.1557 772.645i −0.00103141 0.0714354i
\(105\) −3512.81 −0.318622
\(106\) 49.6997 + 10327.2i 0.00442326 + 0.919119i
\(107\) 11414.4i 0.996981i −0.866895 0.498490i \(-0.833888\pi\)
0.866895 0.498490i \(-0.166112\pi\)
\(108\) 152.914 + 15886.8i 0.0131099 + 1.36204i
\(109\) −1964.51 −0.165349 −0.0826745 0.996577i \(-0.526346\pi\)
−0.0826745 + 0.996577i \(0.526346\pi\)
\(110\) 3410.59 16.4135i 0.281867 0.00135648i
\(111\) 30714.1i 2.49282i
\(112\) −132.284 6871.09i −0.0105456 0.547759i
\(113\) −10996.5 −0.861191 −0.430595 0.902545i \(-0.641696\pi\)
−0.430595 + 0.902545i \(0.641696\pi\)
\(114\) −111.857 23243.1i −0.00860706 1.78848i
\(115\) 956.340i 0.0723130i
\(116\) −3211.58 + 30.9122i −0.238673 + 0.00229728i
\(117\) −1772.33 −0.129471
\(118\) −16433.6 + 79.0865i −1.18023 + 0.00567987i
\(119\) 1786.64i 0.126166i
\(120\) −8373.82 + 120.904i −0.581515 + 0.00839615i
\(121\) 4969.18 0.339402
\(122\) −82.4429 17131.0i −0.00553903 1.15097i
\(123\) 30398.9i 2.00931i
\(124\) 264.942 + 27525.8i 0.0172308 + 1.79018i
\(125\) 10185.8 0.651892
\(126\) −15762.4 + 75.8564i −0.992843 + 0.00477805i
\(127\) 21897.1i 1.35762i 0.734313 + 0.678811i \(0.237505\pi\)
−0.734313 + 0.678811i \(0.762495\pi\)
\(128\) −551.827 16374.7i −0.0336809 0.999433i
\(129\) −8148.83 −0.489684
\(130\) −2.01507 418.717i −0.000119235 0.0247761i
\(131\) 24705.1i 1.43961i 0.694177 + 0.719804i \(0.255768\pi\)
−0.694177 + 0.719804i \(0.744232\pi\)
\(132\) 23747.8 228.577i 1.36293 0.0131185i
\(133\) 10335.6 0.584296
\(134\) −32562.6 + 156.708i −1.81347 + 0.00872731i
\(135\) 8609.11i 0.472379i
\(136\) 61.4929 + 4258.99i 0.00332466 + 0.230265i
\(137\) 18904.2 1.00720 0.503602 0.863936i \(-0.332008\pi\)
0.503602 + 0.863936i \(0.332008\pi\)
\(138\) 32.0469 + 6659.10i 0.00168278 + 0.349669i
\(139\) 17872.5i 0.925030i 0.886611 + 0.462515i \(0.153053\pi\)
−0.886611 + 0.462515i \(0.846947\pi\)
\(140\) −35.8424 3723.80i −0.00182869 0.189990i
\(141\) −28887.2 −1.45300
\(142\) −17459.1 + 84.0218i −0.865854 + 0.00416692i
\(143\) 1187.41i 0.0580667i
\(144\) −37571.6 + 723.338i −1.81190 + 0.0348832i
\(145\) −1740.36 −0.0827759
\(146\) −40.8251 8483.14i −0.00191523 0.397970i
\(147\) 25360.9i 1.17363i
\(148\) 32558.8 313.386i 1.48643 0.0143072i
\(149\) 20610.4 0.928355 0.464177 0.885742i \(-0.346350\pi\)
0.464177 + 0.885742i \(0.346350\pi\)
\(150\) 33193.5 159.744i 1.47527 0.00709971i
\(151\) 4962.01i 0.217622i 0.994062 + 0.108811i \(0.0347044\pi\)
−0.994062 + 0.108811i \(0.965296\pi\)
\(152\) 24638.0 355.733i 1.06639 0.0153970i
\(153\) 9769.50 0.417339
\(154\) 50.8213 + 10560.3i 0.00214291 + 0.445280i
\(155\) 14916.3i 0.620864i
\(156\) −28.0624 2915.50i −0.00115312 0.119802i
\(157\) 19704.6 0.799407 0.399703 0.916645i \(-0.369113\pi\)
0.399703 + 0.916645i \(0.369113\pi\)
\(158\) 11987.3 57.6889i 0.480184 0.00231088i
\(159\) 38967.0i 1.54136i
\(160\) −213.607 8875.54i −0.00834403 0.346701i
\(161\) −2961.13 −0.114237
\(162\) 59.6090 + 12386.3i 0.00227134 + 0.471967i
\(163\) 29177.1i 1.09816i 0.835769 + 0.549081i \(0.185022\pi\)
−0.835769 + 0.549081i \(0.814978\pi\)
\(164\) 32224.7 310.170i 1.19812 0.0115322i
\(165\) 12868.9 0.472689
\(166\) 39377.3 189.503i 1.42899 0.00687703i
\(167\) 6116.08i 0.219301i −0.993970 0.109650i \(-0.965027\pi\)
0.993970 0.109650i \(-0.0349731\pi\)
\(168\) −374.359 25928.0i −0.0132638 0.918651i
\(169\) −28415.2 −0.994896
\(170\) 11.1075 + 2308.06i 0.000384344 + 0.0798636i
\(171\) 56515.9i 1.93276i
\(172\) −83.1452 8638.26i −0.00281048 0.291991i
\(173\) 12701.3 0.424380 0.212190 0.977228i \(-0.431940\pi\)
0.212190 + 0.977228i \(0.431940\pi\)
\(174\) −12118.3 + 58.3195i −0.400262 + 0.00192626i
\(175\) 14760.3i 0.481969i
\(176\) 484.612 + 25171.8i 0.0156448 + 0.812621i
\(177\) −62007.6 −1.97924
\(178\) 110.974 + 23059.5i 0.00350252 + 0.727797i
\(179\) 13435.6i 0.419327i 0.977774 + 0.209663i \(0.0672368\pi\)
−0.977774 + 0.209663i \(0.932763\pi\)
\(180\) −20362.0 + 195.989i −0.628457 + 0.00604904i
\(181\) −36457.6 −1.11284 −0.556418 0.830903i \(-0.687825\pi\)
−0.556418 + 0.830903i \(0.687825\pi\)
\(182\) 1296.48 6.23931i 0.0391402 0.000188362i
\(183\) 64639.2i 1.93016i
\(184\) −7058.73 + 101.917i −0.208493 + 0.00301030i
\(185\) 17643.7 0.515520
\(186\) 499.843 + 103864.i 0.0144480 + 3.00218i
\(187\) 6545.24i 0.187173i
\(188\) −294.745 30622.2i −0.00833934 0.866405i
\(189\) −26656.5 −0.746243
\(190\) 13352.0 64.2564i 0.369861 0.00177995i
\(191\) 63923.6i 1.75224i −0.482090 0.876122i \(-0.660122\pi\)
0.482090 0.876122i \(-0.339878\pi\)
\(192\) −1784.79 61794.2i −0.0484155 1.67627i
\(193\) 74040.7 1.98772 0.993861 0.110634i \(-0.0352883\pi\)
0.993861 + 0.110634i \(0.0352883\pi\)
\(194\) −191.137 39716.8i −0.00507856 1.05529i
\(195\) 1579.92i 0.0415494i
\(196\) −26884.2 + 258.766i −0.699817 + 0.00673589i
\(197\) −14781.2 −0.380869 −0.190435 0.981700i \(-0.560990\pi\)
−0.190435 + 0.981700i \(0.560990\pi\)
\(198\) 57744.4 277.895i 1.47292 0.00708843i
\(199\) 42170.8i 1.06489i 0.846464 + 0.532446i \(0.178727\pi\)
−0.846464 + 0.532446i \(0.821273\pi\)
\(200\) 508.022 + 35185.5i 0.0127005 + 0.879637i
\(201\) −122866. −3.04117
\(202\) 180.354 + 37476.1i 0.00442000 + 0.918443i
\(203\) 5388.72i 0.130766i
\(204\) 154.686 + 16070.9i 0.00371698 + 0.386171i
\(205\) 17462.6 0.415529
\(206\) −78354.1 + 377.079i −1.84641 + 0.00888583i
\(207\) 16191.7i 0.377878i
\(208\) 3090.33 59.4957i 0.0714296 0.00137518i
\(209\) −37863.8 −0.866826
\(210\) −67.6208 14051.1i −0.00153335 0.318619i
\(211\) 59442.3i 1.33515i −0.744541 0.667576i \(-0.767332\pi\)
0.744541 0.667576i \(-0.232668\pi\)
\(212\) −41307.4 + 397.593i −0.919087 + 0.00884641i
\(213\) −65877.2 −1.45203
\(214\) 45657.2 219.725i 0.996969 0.00479791i
\(215\) 4681.09i 0.101267i
\(216\) −63543.7 + 917.468i −1.36196 + 0.0196645i
\(217\) −46185.5 −0.980812
\(218\) −37.8164 7857.95i −0.000795732 0.165347i
\(219\) 32008.9i 0.667393i
\(220\) 131.306 + 13641.9i 0.00271294 + 0.281857i
\(221\) −803.557 −0.0164525
\(222\) 122855. 591.239i 2.49279 0.0119966i
\(223\) 15263.3i 0.306930i −0.988154 0.153465i \(-0.950957\pi\)
0.988154 0.153465i \(-0.0490433\pi\)
\(224\) 27481.5 661.396i 0.547702 0.0131815i
\(225\) 80710.4 1.59428
\(226\) −211.681 43985.7i −0.00414443 0.861181i
\(227\) 25948.9i 0.503579i −0.967782 0.251789i \(-0.918981\pi\)
0.967782 0.251789i \(-0.0810190\pi\)
\(228\) 92969.1 894.848i 1.78842 0.0172139i
\(229\) −66572.7 −1.26948 −0.634739 0.772727i \(-0.718892\pi\)
−0.634739 + 0.772727i \(0.718892\pi\)
\(230\) −3825.31 + 18.4093i −0.0723122 + 0.000348002i
\(231\) 39846.4i 0.746732i
\(232\) −185.470 12845.6i −0.00344585 0.238659i
\(233\) 35100.3 0.646545 0.323272 0.946306i \(-0.395217\pi\)
0.323272 + 0.946306i \(0.395217\pi\)
\(234\) −34.1170 7089.26i −0.000623074 0.129470i
\(235\) 16594.2i 0.300484i
\(236\) −632.684 65731.9i −0.0113596 1.18019i
\(237\) 45230.9 0.805264
\(238\) −7146.48 + 34.3924i −0.126165 + 0.000607168i
\(239\) 34649.9i 0.606606i 0.952894 + 0.303303i \(0.0980894\pi\)
−0.952894 + 0.303303i \(0.901911\pi\)
\(240\) −644.807 33492.6i −0.0111946 0.581468i
\(241\) 40329.9 0.694374 0.347187 0.937796i \(-0.387137\pi\)
0.347187 + 0.937796i \(0.387137\pi\)
\(242\) 95.6556 + 19876.5i 0.00163335 + 0.339398i
\(243\) 33694.5i 0.570619i
\(244\) 68521.6 659.536i 1.15093 0.0110779i
\(245\) −14568.6 −0.242708
\(246\) 121594. 585.171i 2.00929 0.00966970i
\(247\) 4648.53i 0.0761941i
\(248\) −110097. + 1589.62i −1.79007 + 0.0258458i
\(249\) 148580. 2.39641
\(250\) 196.075 + 40742.8i 0.00313719 + 0.651884i
\(251\) 65425.7i 1.03849i −0.854627 0.519243i \(-0.826214\pi\)
0.854627 0.519243i \(-0.173786\pi\)
\(252\) −606.844 63047.3i −0.00955600 0.992808i
\(253\) 10847.9 0.169475
\(254\) −87587.4 + 421.514i −1.35761 + 0.00653348i
\(255\) 8708.84i 0.133931i
\(256\) 65487.4 2522.49i 0.999259 0.0384902i
\(257\) 69755.6 1.05612 0.528060 0.849207i \(-0.322920\pi\)
0.528060 + 0.849207i \(0.322920\pi\)
\(258\) −156.863 32594.9i −0.00235657 0.489678i
\(259\) 54630.5i 0.814395i
\(260\) 1674.81 16.1204i 0.0247753 0.000238468i
\(261\) −29465.9 −0.432553
\(262\) −98819.4 + 475.568i −1.43959 + 0.00692803i
\(263\) 89499.2i 1.29392i 0.762524 + 0.646960i \(0.223960\pi\)
−0.762524 + 0.646960i \(0.776040\pi\)
\(264\) 1371.44 + 94985.5i 0.0196774 + 1.36285i
\(265\) −22384.6 −0.318755
\(266\) 198.958 + 41342.0i 0.00281189 + 0.584289i
\(267\) 87008.9i 1.22051i
\(268\) −1253.65 130246.i −0.0174544 1.81340i
\(269\) −54205.7 −0.749101 −0.374551 0.927206i \(-0.622203\pi\)
−0.374551 + 0.927206i \(0.622203\pi\)
\(270\) −34436.0 + 165.723i −0.472373 + 0.00227330i
\(271\) 6644.04i 0.0904677i 0.998976 + 0.0452338i \(0.0144033\pi\)
−0.998976 + 0.0452338i \(0.985597\pi\)
\(272\) −17034.6 + 327.953i −0.230247 + 0.00443276i
\(273\) 4891.92 0.0656379
\(274\) 363.902 + 75616.0i 0.00484711 + 1.00719i
\(275\) 54073.3i 0.715019i
\(276\) −26635.5 + 256.372i −0.349657 + 0.00336552i
\(277\) 78534.5 1.02353 0.511765 0.859125i \(-0.328992\pi\)
0.511765 + 0.859125i \(0.328992\pi\)
\(278\) −71489.2 + 344.042i −0.925019 + 0.00445165i
\(279\) 252546.i 3.24438i
\(280\) 14894.3 215.050i 0.189979 0.00274299i
\(281\) −4096.80 −0.0518838 −0.0259419 0.999663i \(-0.508258\pi\)
−0.0259419 + 0.999663i \(0.508258\pi\)
\(282\) −556.072 115547.i −0.00699250 1.45299i
\(283\) 108571.i 1.35563i −0.735231 0.677817i \(-0.762926\pi\)
0.735231 0.677817i \(-0.237074\pi\)
\(284\) −672.166 69833.9i −0.00833374 0.865823i
\(285\) 50380.1 0.620254
\(286\) −4749.57 + 22.8573i −0.0580660 + 0.000279443i
\(287\) 54069.8i 0.656434i
\(288\) −3616.56 150271.i −0.0436025 1.81171i
\(289\) −79091.6 −0.946967
\(290\) −33.5016 6961.37i −0.000398354 0.0827749i
\(291\) 149861.i 1.76971i
\(292\) 33931.4 326.597i 0.397957 0.00383042i
\(293\) −128178. −1.49307 −0.746534 0.665347i \(-0.768284\pi\)
−0.746534 + 0.665347i \(0.768284\pi\)
\(294\) −101443. + 488.192i −1.17361 + 0.00564802i
\(295\) 35620.2i 0.409310i
\(296\) 1880.28 + 130228.i 0.0214605 + 1.48635i
\(297\) 97654.4 1.10708
\(298\) 396.746 + 82440.6i 0.00446765 + 0.928344i
\(299\) 1331.79i 0.0148969i
\(300\) 1277.93 + 132769.i 0.0141993 + 1.47521i
\(301\) 14494.1 0.159978
\(302\) −19847.8 + 95.5175i −0.217620 + 0.00104729i
\(303\) 141406.i 1.54022i
\(304\) 1897.19 + 98543.9i 0.0205288 + 1.06631i
\(305\) 37132.0 0.399161
\(306\) 188.061 + 39077.5i 0.00200842 + 0.417334i
\(307\) 166440.i 1.76596i 0.469406 + 0.882982i \(0.344468\pi\)
−0.469406 + 0.882982i \(0.655532\pi\)
\(308\) −42239.6 + 406.566i −0.445265 + 0.00428577i
\(309\) −295648. −3.09641
\(310\) −59664.3 + 287.135i −0.620857 + 0.00298787i
\(311\) 79055.7i 0.817358i −0.912678 0.408679i \(-0.865989\pi\)
0.912678 0.408679i \(-0.134011\pi\)
\(312\) 11661.3 168.371i 0.119795 0.00172965i
\(313\) −177145. −1.80817 −0.904087 0.427348i \(-0.859448\pi\)
−0.904087 + 0.427348i \(0.859448\pi\)
\(314\) 379.309 + 78817.4i 0.00384710 + 0.799397i
\(315\) 34165.4i 0.344323i
\(316\) 461.506 + 47947.5i 0.00462171 + 0.480167i
\(317\) 194022. 1.93078 0.965390 0.260811i \(-0.0839900\pi\)
0.965390 + 0.260811i \(0.0839900\pi\)
\(318\) −155866. + 750.106i −1.54134 + 0.00741769i
\(319\) 19741.2i 0.193996i
\(320\) 35497.6 1025.27i 0.346656 0.0100124i
\(321\) 172275. 1.67191
\(322\) −57.0011 11844.4i −0.000549758 0.114235i
\(323\) 25623.7i 0.245605i
\(324\) −49543.5 + 476.867i −0.471950 + 0.00454263i
\(325\) −6638.56 −0.0628503
\(326\) −116707. + 561.652i −1.09815 + 0.00528484i
\(327\) 29649.9i 0.277286i
\(328\) 1860.98 + 128891.i 0.0172979 + 1.19805i
\(329\) 51381.0 0.474691
\(330\) 247.724 + 51475.2i 0.00227479 + 0.472683i
\(331\) 72539.5i 0.662093i −0.943615 0.331046i \(-0.892598\pi\)
0.943615 0.331046i \(-0.107402\pi\)
\(332\) 1516.01 + 157504.i 0.0137539 + 1.42894i
\(333\) 298724. 2.69390
\(334\) 24464.0 117.733i 0.219298 0.00105537i
\(335\) 70580.5i 0.628920i
\(336\) 103704. 1996.53i 0.918577 0.0176847i
\(337\) 107960. 0.950608 0.475304 0.879822i \(-0.342338\pi\)
0.475304 + 0.879822i \(0.342338\pi\)
\(338\) −546.987 113660.i −0.00478788 0.994884i
\(339\) 165968.i 1.44419i
\(340\) −9231.91 + 88.8592i −0.0798608 + 0.000768678i
\(341\) 169197. 1.45507
\(342\) 226061. 1087.92i 1.93274 0.00930131i
\(343\) 109564.i 0.931280i
\(344\) 34551.0 498.861i 0.291974 0.00421563i
\(345\) −14433.8 −0.121267
\(346\) 244.497 + 50804.5i 0.00204231 + 0.424376i
\(347\) 34604.8i 0.287393i −0.989622 0.143697i \(-0.954101\pi\)
0.989622 0.143697i \(-0.0458990\pi\)
\(348\) −466.550 48471.7i −0.00385248 0.400248i
\(349\) −142889. −1.17314 −0.586568 0.809900i \(-0.699521\pi\)
−0.586568 + 0.809900i \(0.699521\pi\)
\(350\) −59040.5 + 284.132i −0.481963 + 0.00231945i
\(351\) 11989.0i 0.0973125i
\(352\) −100677. + 2422.98i −0.812537 + 0.0195553i
\(353\) 150543. 1.20812 0.604060 0.796939i \(-0.293549\pi\)
0.604060 + 0.796939i \(0.293549\pi\)
\(354\) −1193.63 248028.i −0.00952498 1.97922i
\(355\) 37843.1i 0.300282i
\(356\) −92234.9 + 887.781i −0.727772 + 0.00700496i
\(357\) −26965.4 −0.211578
\(358\) −53742.0 + 258.633i −0.419322 + 0.00201799i
\(359\) 39625.5i 0.307458i 0.988113 + 0.153729i \(0.0491282\pi\)
−0.988113 + 0.153729i \(0.950872\pi\)
\(360\) −1175.91 81443.4i −0.00907339 0.628421i
\(361\) −17910.5 −0.137434
\(362\) −701.800 145829.i −0.00535546 1.11282i
\(363\) 74998.7i 0.569168i
\(364\) 49.9139 + 5185.74i 0.000376720 + 0.0391389i
\(365\) 18387.5 0.138018
\(366\) 258554. 1244.29i 1.93014 0.00928880i
\(367\) 59595.5i 0.442467i 0.975221 + 0.221234i \(0.0710083\pi\)
−0.975221 + 0.221234i \(0.928992\pi\)
\(368\) −543.541 28232.6i −0.00401362 0.208476i
\(369\) 295658. 2.17138
\(370\) 339.637 + 70573.9i 0.00248091 + 0.515514i
\(371\) 69309.8i 0.503555i
\(372\) −415440. + 3998.70i −3.00208 + 0.0288957i
\(373\) −217062. −1.56015 −0.780075 0.625687i \(-0.784819\pi\)
−0.780075 + 0.625687i \(0.784819\pi\)
\(374\) 26180.7 125.994i 0.187170 0.000900758i
\(375\) 153732.i 1.09321i
\(376\) 122482. 1768.44i 0.866354 0.0125088i
\(377\) 2423.62 0.0170523
\(378\) −513.132 106625.i −0.00359125 0.746234i
\(379\) 109100.i 0.759531i −0.925083 0.379765i \(-0.876005\pi\)
0.925083 0.379765i \(-0.123995\pi\)
\(380\) 514.045 + 53406.0i 0.00355987 + 0.369848i
\(381\) −330488. −2.27670
\(382\) 255691. 1230.51i 1.75222 0.00843257i
\(383\) 153795.i 1.04844i 0.851582 + 0.524221i \(0.175643\pi\)
−0.851582 + 0.524221i \(0.824357\pi\)
\(384\) 247139. 8328.60i 1.67602 0.0564819i
\(385\) −22889.7 −0.154425
\(386\) 1425.27 + 296159.i 0.00956580 + 1.98770i
\(387\) 79255.1i 0.529182i
\(388\) 158862. 1529.08i 1.05525 0.0101570i
\(389\) −65375.8 −0.432034 −0.216017 0.976390i \(-0.569307\pi\)
−0.216017 + 0.976390i \(0.569307\pi\)
\(390\) 6319.59 30.4130i 0.0415489 0.000199954i
\(391\) 7341.14i 0.0480186i
\(392\) −1552.57 107530.i −0.0101036 0.699776i
\(393\) −372869. −2.41419
\(394\) −284.534 59123.9i −0.00183291 0.380865i
\(395\) 25982.9i 0.166530i
\(396\) 2223.13 + 230969.i 0.0141767 + 1.47287i
\(397\) 77069.3 0.488990 0.244495 0.969650i \(-0.421378\pi\)
0.244495 + 0.969650i \(0.421378\pi\)
\(398\) −168681. + 811.778i −1.06488 + 0.00512473i
\(399\) 155993.i 0.979849i
\(400\) −140731. + 2709.38i −0.879566 + 0.0169336i
\(401\) −5569.30 −0.0346347 −0.0173174 0.999850i \(-0.505513\pi\)
−0.0173174 + 0.999850i \(0.505513\pi\)
\(402\) −2365.15 491460.i −0.0146355 3.04114i
\(403\) 20772.3i 0.127901i
\(404\) −149899. + 1442.81i −0.918411 + 0.00883991i
\(405\) −26847.7 −0.163680
\(406\) 21554.6 103.732i 0.130764 0.000629302i
\(407\) 200135.i 1.20819i
\(408\) −64279.9 + 928.098i −0.386149 + 0.00557536i
\(409\) 47028.9 0.281137 0.140568 0.990071i \(-0.455107\pi\)
0.140568 + 0.990071i \(0.455107\pi\)
\(410\) 336.151 + 69849.6i 0.00199971 + 0.415524i
\(411\) 285317.i 1.68905i
\(412\) −3016.60 313405.i −0.0177714 1.84634i
\(413\) 110292. 0.646610
\(414\) −64766.0 + 311.686i −0.377874 + 0.00181852i
\(415\) 85351.6i 0.495582i
\(416\) 297.468 + 12360.0i 0.00171891 + 0.0714221i
\(417\) −269745. −1.55125
\(418\) −728.870 151453.i −0.00417155 0.866816i
\(419\) 85422.2i 0.486567i 0.969955 + 0.243283i \(0.0782245\pi\)
−0.969955 + 0.243283i \(0.921775\pi\)
\(420\) 56202.4 540.960i 0.318608 0.00306667i
\(421\) −6485.60 −0.0365920 −0.0182960 0.999833i \(-0.505824\pi\)
−0.0182960 + 0.999833i \(0.505824\pi\)
\(422\) 237767. 1144.25i 1.33514 0.00642535i
\(423\) 280955.i 1.57021i
\(424\) −2385.51 165220.i −0.0132694 0.919034i
\(425\) 36593.2 0.202592
\(426\) −1268.12 263506.i −0.00698781 1.45201i
\(427\) 114972.i 0.630577i
\(428\) 1757.78 + 182622.i 0.00959572 + 0.996935i
\(429\) −17921.2 −0.0973763
\(430\) 18724.1 90.1099i 0.101266 0.000487344i
\(431\) 131497.i 0.707885i −0.935267 0.353942i \(-0.884841\pi\)
0.935267 0.353942i \(-0.115159\pi\)
\(432\) −4893.03 254154.i −0.0262187 1.36185i
\(433\) 109324. 0.583098 0.291549 0.956556i \(-0.405829\pi\)
0.291549 + 0.956556i \(0.405829\pi\)
\(434\) −889.060 184740.i −0.00472010 0.980801i
\(435\) 26266.9i 0.138813i
\(436\) 31430.7 302.528i 0.165341 0.00159145i
\(437\) 42468.0 0.222382
\(438\) 128034. 616.163i 0.667386 0.00321179i
\(439\) 202782.i 1.05220i −0.850421 0.526102i \(-0.823653\pi\)
0.850421 0.526102i \(-0.176347\pi\)
\(440\) −54564.4 + 787.822i −0.281841 + 0.00406933i
\(441\) −246659. −1.26829
\(442\) −15.4683 3214.19i −7.91768e−5 0.0164523i
\(443\) 118804.i 0.605373i −0.953090 0.302686i \(-0.902117\pi\)
0.953090 0.302686i \(-0.0978835\pi\)
\(444\) 4729.86 + 491403.i 0.0239929 + 2.49271i
\(445\) −49982.2 −0.252404
\(446\) 61052.6 293.816i 0.306927 0.00147708i
\(447\) 311068.i 1.55683i
\(448\) 3174.56 + 109912.i 0.0158171 + 0.547632i
\(449\) 58661.9 0.290980 0.145490 0.989360i \(-0.453524\pi\)
0.145490 + 0.989360i \(0.453524\pi\)
\(450\) 1553.66 + 322838.i 0.00767238 + 1.59426i
\(451\) 198081.i 0.973845i
\(452\) 175937. 1693.43i 0.861151 0.00828877i
\(453\) −74890.4 −0.364947
\(454\) 103794. 499.511i 0.503573 0.00242344i
\(455\) 2810.16i 0.0135740i
\(456\) 5368.99 + 371855.i 0.0258204 + 1.78831i
\(457\) −223451. −1.06992 −0.534959 0.844878i \(-0.679673\pi\)
−0.534959 + 0.844878i \(0.679673\pi\)
\(458\) −1281.51 266288.i −0.00610929 1.26946i
\(459\) 66086.0i 0.313678i
\(460\) −147.273 15300.7i −0.000695996 0.0723097i
\(461\) 377443. 1.77603 0.888013 0.459819i \(-0.152086\pi\)
0.888013 + 0.459819i \(0.152086\pi\)
\(462\) −159384. + 767.033i −0.746723 + 0.00359360i
\(463\) 272861.i 1.27286i −0.771336 0.636428i \(-0.780411\pi\)
0.771336 0.636428i \(-0.219589\pi\)
\(464\) 51378.2 989.145i 0.238640 0.00459435i
\(465\) −225127. −1.04117
\(466\) 675.672 + 140399.i 0.00311146 + 0.646537i
\(467\) 267888.i 1.22834i 0.789173 + 0.614171i \(0.210510\pi\)
−0.789173 + 0.614171i \(0.789490\pi\)
\(468\) 28356.0 272.933i 0.129465 0.00124613i
\(469\) 218540. 0.993539
\(470\) 66376.1 319.435i 0.300480 0.00144606i
\(471\) 297396.i 1.34058i
\(472\) 262912. 3796.03i 1.18012 0.0170391i
\(473\) −53098.3 −0.237333
\(474\) 870.684 + 180921.i 0.00387529 + 0.805255i
\(475\) 211689.i 0.938236i
\(476\) −275.136 28584.9i −0.00121432 0.126161i
\(477\) −378991. −1.66568
\(478\) −138598. + 667.003i −0.606599 + 0.00291926i
\(479\) 34754.2i 0.151474i 0.997128 + 0.0757368i \(0.0241309\pi\)
−0.997128 + 0.0757368i \(0.975869\pi\)
\(480\) 133956. 3223.92i 0.581408 0.0139927i
\(481\) −24570.5 −0.106200
\(482\) 776.342 + 161318.i 0.00334163 + 0.694366i
\(483\) 44691.6i 0.191572i
\(484\) −79503.2 + 765.236i −0.339386 + 0.00326667i
\(485\) 86087.3 0.365979
\(486\) 134776. 648.611i 0.570612 0.00274607i
\(487\) 43208.8i 0.182186i 0.995842 + 0.0910928i \(0.0290360\pi\)
−0.995842 + 0.0910928i \(0.970964\pi\)
\(488\) 3957.14 + 274071.i 0.0166166 + 1.15086i
\(489\) −440362. −1.84159
\(490\) −280.442 58273.6i −0.00116802 0.242706i
\(491\) 8589.30i 0.0356283i −0.999841 0.0178141i \(-0.994329\pi\)
0.999841 0.0178141i \(-0.00567072\pi\)
\(492\) 4681.32 + 486359.i 0.0193392 + 2.00922i
\(493\) −13359.5 −0.0549664
\(494\) −18593.9 + 89.4831i −0.0761932 + 0.000366680i
\(495\) 125163.i 0.510816i
\(496\) −8477.74 440351.i −0.0344601 1.78993i
\(497\) 117174. 0.474372
\(498\) 2860.13 + 594313.i 0.0115326 + 2.39638i
\(499\) 60266.8i 0.242034i 0.992650 + 0.121017i \(0.0386156\pi\)
−0.992650 + 0.121017i \(0.961384\pi\)
\(500\) −162965. + 1568.58i −0.651862 + 0.00627431i
\(501\) 92308.5 0.367761
\(502\) 261700. 1259.43i 1.03847 0.00499766i
\(503\) 355156.i 1.40373i 0.712310 + 0.701865i \(0.247649\pi\)
−0.712310 + 0.701865i \(0.752351\pi\)
\(504\) 252175. 3640.99i 0.992751 0.0143337i
\(505\) −81230.7 −0.318521
\(506\) 208.820 + 43391.1i 0.000815587 + 0.169473i
\(507\) 428864.i 1.66841i
\(508\) −3372.07 350337.i −0.0130668 1.35756i
\(509\) 343577. 1.32614 0.663070 0.748558i \(-0.269253\pi\)
0.663070 + 0.748558i \(0.269253\pi\)
\(510\) −34835.0 + 167.643i −0.133929 + 0.000644534i
\(511\) 56933.4i 0.218035i
\(512\) 11350.5 + 261898.i 0.0432986 + 0.999062i
\(513\) 382303. 1.45269
\(514\) 1342.78 + 279019.i 0.00508251 + 1.05611i
\(515\) 169835.i 0.640343i
\(516\) 130375. 1254.89i 0.489661 0.00471310i
\(517\) −188231. −0.704222
\(518\) −218519. + 1051.62i −0.814386 + 0.00391923i
\(519\) 191697.i 0.711675i
\(520\) 96.7206 + 6698.85i 0.000357694 + 0.0247739i
\(521\) 108928. 0.401297 0.200649 0.979663i \(-0.435695\pi\)
0.200649 + 0.979663i \(0.435695\pi\)
\(522\) −567.212 117862.i −0.00208164 0.432548i
\(523\) 13496.1i 0.0493406i 0.999696 + 0.0246703i \(0.00785360\pi\)
−0.999696 + 0.0246703i \(0.992146\pi\)
\(524\) −3804.50 395264.i −0.0138559 1.43954i
\(525\) −222774. −0.808249
\(526\) −357993. + 1722.84i −1.29391 + 0.00622692i
\(527\) 114501.i 0.412278i
\(528\) −379911. + 7314.14i −1.36274 + 0.0262359i
\(529\) −12167.0 −0.0434783
\(530\) −430.898 89537.2i −0.00153399 0.318751i
\(531\) 603083.i 2.13889i
\(532\) −165362. + 1591.65i −0.584269 + 0.00562372i
\(533\) −24318.3 −0.0856012
\(534\) −348032. + 1674.90i −1.22050 + 0.00587363i
\(535\) 98963.4i 0.345754i
\(536\) 520954. 7521.73i 1.81330 0.0261811i
\(537\) −202781. −0.703200
\(538\) −1043.45 216820.i −0.00360501 0.749092i
\(539\) 165253.i 0.568818i
\(540\) −1325.77 137739.i −0.00454654 0.472357i
\(541\) −125339. −0.428245 −0.214122 0.976807i \(-0.568689\pi\)
−0.214122 + 0.976807i \(0.568689\pi\)
\(542\) −26575.8 + 127.896i −0.0904667 + 0.000435371i
\(543\) 550246.i 1.86619i
\(544\) −1639.71 68131.2i −0.00554076 0.230223i
\(545\) 17032.4 0.0573432
\(546\) 94.1684 + 19567.5i 0.000315879 + 0.0656371i
\(547\) 92377.0i 0.308737i 0.988013 + 0.154369i \(0.0493343\pi\)
−0.988013 + 0.154369i \(0.950666\pi\)
\(548\) −302453. + 2911.18i −1.00716 + 0.00969411i
\(549\) 628678. 2.08585
\(550\) 216291. 1040.90i 0.715011 0.00344099i
\(551\) 77284.0i 0.254558i
\(552\) −1538.20 106536.i −0.00504819 0.349637i
\(553\) −80451.2 −0.263077
\(554\) 1511.77 + 314134.i 0.00492568 + 1.02352i
\(555\) 266292.i 0.864514i
\(556\) −2752.30 285947.i −0.00890321 0.924987i
\(557\) 323942. 1.04414 0.522068 0.852904i \(-0.325161\pi\)
0.522068 + 0.852904i \(0.325161\pi\)
\(558\) −1.01017e6 + 4861.45i −3.24434 + 0.0156134i
\(559\) 6518.86i 0.0208616i
\(560\) 1146.90 + 59572.5i 0.00365722 + 0.189963i
\(561\) 98785.7 0.313884
\(562\) −78.8625 16387.0i −0.000249688 0.0518832i
\(563\) 436042.i 1.37566i 0.725871 + 0.687831i \(0.241437\pi\)
−0.725871 + 0.687831i \(0.758563\pi\)
\(564\) 462174. 4448.52i 1.45294 0.0139848i
\(565\) 95340.3 0.298662
\(566\) 434280. 2089.97i 1.35562 0.00652391i
\(567\) 83129.0i 0.258575i
\(568\) 279319. 4032.92i 0.865773 0.0125004i
\(569\) −387367. −1.19646 −0.598231 0.801324i \(-0.704129\pi\)
−0.598231 + 0.801324i \(0.704129\pi\)
\(570\) 969.806 + 201518.i 0.00298494 + 0.620247i
\(571\) 583498.i 1.78965i −0.446420 0.894824i \(-0.647301\pi\)
0.446420 0.894824i \(-0.352699\pi\)
\(572\) −182.856 18997.6i −0.000558879 0.0580640i
\(573\) 964783. 2.93846
\(574\) −216277. + 1040.83i −0.656426 + 0.00315905i
\(575\) 60648.6i 0.183436i
\(576\) 601007. 17358.8i 1.81148 0.0523207i
\(577\) −366826. −1.10182 −0.550908 0.834566i \(-0.685718\pi\)
−0.550908 + 0.834566i \(0.685718\pi\)
\(578\) −1522.50 316363.i −0.00455722 0.946956i
\(579\) 1.11748e6i 3.33336i
\(580\) 27844.5 268.010i 0.0827720 0.000796699i
\(581\) −264276. −0.782898
\(582\) 599435. 2884.78i 1.76969 0.00851662i
\(583\) 253912.i 0.747043i
\(584\) 1959.54 + 135718.i 0.00574552 + 0.397933i
\(585\) 15366.2 0.0449008
\(586\) −2467.41 512708.i −0.00718531 1.49305i
\(587\) 514906.i 1.49435i 0.664628 + 0.747175i \(0.268590\pi\)
−0.664628 + 0.747175i \(0.731410\pi\)
\(588\) −3905.49 405756.i −0.0112959 1.17357i
\(589\) 662384. 1.90932
\(590\) 142479. 685.682i 0.409306 0.00196978i
\(591\) 223088.i 0.638708i
\(592\) −520869. + 10027.9i −1.48623 + 0.0286132i
\(593\) −313256. −0.890819 −0.445409 0.895327i \(-0.646942\pi\)
−0.445409 + 0.895327i \(0.646942\pi\)
\(594\) 1879.82 + 390613.i 0.00532776 + 1.10707i
\(595\) 15490.2i 0.0437546i
\(596\) −329751. + 3173.93i −0.928312 + 0.00893520i
\(597\) −636474. −1.78580
\(598\) 5327.11 25.6367i 0.0148967 7.16903e-5i
\(599\) 129271.i 0.360286i −0.983640 0.180143i \(-0.942344\pi\)
0.983640 0.180143i \(-0.0576561\pi\)
\(600\) −531046. + 7667.45i −1.47513 + 0.0212985i
\(601\) 107075. 0.296442 0.148221 0.988954i \(-0.452645\pi\)
0.148221 + 0.988954i \(0.452645\pi\)
\(602\) 279.009 + 57975.9i 0.000769883 + 0.159976i
\(603\) 1.19499e6i 3.28648i
\(604\) −764.131 79388.4i −0.00209457 0.217612i
\(605\) −43082.9 −0.117705
\(606\) −565618. + 2722.04i −1.54020 + 0.00741223i
\(607\) 85001.9i 0.230702i 0.993325 + 0.115351i \(0.0367993\pi\)
−0.993325 + 0.115351i \(0.963201\pi\)
\(608\) −394134. + 9485.62i −1.06620 + 0.0256601i
\(609\) 81330.6 0.219290
\(610\) 714.782 + 148526.i 0.00192094 + 0.399157i
\(611\) 23109.0i 0.0619012i
\(612\) −156305. + 1504.47i −0.417320 + 0.00401680i
\(613\) 224732. 0.598058 0.299029 0.954244i \(-0.403337\pi\)
0.299029 + 0.954244i \(0.403337\pi\)
\(614\) −665754. + 3203.94i −1.76594 + 0.00849861i
\(615\) 263559.i 0.696831i
\(616\) −2439.35 168949.i −0.00642854 0.445239i
\(617\) 328259. 0.862275 0.431138 0.902286i \(-0.358112\pi\)
0.431138 + 0.902286i \(0.358112\pi\)
\(618\) −5691.16 1.18258e6i −0.0149013 3.09637i
\(619\) 425665.i 1.11093i 0.831540 + 0.555465i \(0.187460\pi\)
−0.831540 + 0.555465i \(0.812540\pi\)
\(620\) −2297.05 238649.i −0.00597568 0.620835i
\(621\) −109529. −0.284018
\(622\) 316219. 1521.80i 0.817349 0.00393349i
\(623\) 154761.i 0.398736i
\(624\) 897.954 + 46641.6i 0.00230614 + 0.119785i
\(625\) 255333. 0.653652
\(626\) −3410.00 708572.i −0.00870174 1.80815i
\(627\) 571469.i 1.45364i
\(628\) −315259. + 3034.43i −0.799370 + 0.00769411i
\(629\) 135438. 0.342325
\(630\) 136660. 657.677i 0.344319 0.00165703i
\(631\) 156911.i 0.394090i 0.980394 + 0.197045i \(0.0631345\pi\)
−0.980394 + 0.197045i \(0.936866\pi\)
\(632\) −191779. + 2768.98i −0.480139 + 0.00693243i
\(633\) 897149. 2.23902
\(634\) 3734.88 + 776080.i 0.00929177 + 1.93076i
\(635\) 189848.i 0.470825i
\(636\) −6000.78 623443.i −0.0148352 1.54128i
\(637\) 20288.1 0.0499992
\(638\) −78963.9 + 380.014i −0.193993 + 0.000933593i
\(639\) 640718.i 1.56915i
\(640\) 4784.36 + 141969.i 0.0116806 + 0.346604i
\(641\) −645391. −1.57075 −0.785374 0.619022i \(-0.787529\pi\)
−0.785374 + 0.619022i \(0.787529\pi\)
\(642\) 3316.26 + 689093.i 0.00804597 + 1.67189i
\(643\) 384517.i 0.930023i 0.885305 + 0.465012i \(0.153950\pi\)
−0.885305 + 0.465012i \(0.846050\pi\)
\(644\) 47375.9 456.004i 0.114231 0.00109950i
\(645\) 70650.5 0.169823
\(646\) 102494. 493.250i 0.245602 0.00118196i
\(647\) 112828.i 0.269530i 0.990878 + 0.134765i \(0.0430280\pi\)
−0.990878 + 0.134765i \(0.956972\pi\)
\(648\) −2861.15 198162.i −0.00681381 0.471923i
\(649\) −404046. −0.959271
\(650\) −127.791 26553.9i −0.000302464 0.0628496i
\(651\) 697066.i 1.64480i
\(652\) −4493.16 466811.i −0.0105696 1.09811i
\(653\) −269520. −0.632069 −0.316034 0.948748i \(-0.602352\pi\)
−0.316034 + 0.948748i \(0.602352\pi\)
\(654\) 118598. 570.754i 0.277283 0.00133442i
\(655\) 214194.i 0.499258i
\(656\) −515523. + 9924.97i −1.19796 + 0.0230633i
\(657\) 311316. 0.721226
\(658\) 989.073 + 205522.i 0.00228442 + 0.474685i
\(659\) 165385.i 0.380824i 0.981704 + 0.190412i \(0.0609824\pi\)
−0.981704 + 0.190412i \(0.939018\pi\)
\(660\) −205894. + 1981.77i −0.472667 + 0.00454952i
\(661\) 55446.3 0.126902 0.0634512 0.997985i \(-0.479789\pi\)
0.0634512 + 0.997985i \(0.479789\pi\)
\(662\) 290155. 1396.37i 0.662085 0.00318628i
\(663\) 12127.9i 0.0275904i
\(664\) −629979. + 9095.88i −1.42886 + 0.0206304i
\(665\) −89610.0 −0.202634
\(666\) 5750.36 + 1.19488e6i 0.0129642 + 2.69387i
\(667\) 22141.7i 0.0497691i
\(668\) 941.854 + 97852.7i 0.00211072 + 0.219290i
\(669\) 230366. 0.514714
\(670\) 282319. 1358.66i 0.628912 0.00302664i
\(671\) 421194.i 0.935485i
\(672\) 9982.28 + 414771.i 0.0221050 + 0.918481i
\(673\) 123942. 0.273645 0.136822 0.990596i \(-0.456311\pi\)
0.136822 + 0.990596i \(0.456311\pi\)
\(674\) 2078.20 + 431833.i 0.00457475 + 0.950597i
\(675\) 545967.i 1.19828i
\(676\) 454623. 4375.84i 0.994850 0.00957565i
\(677\) 642026. 1.40080 0.700399 0.713752i \(-0.253005\pi\)
0.700399 + 0.713752i \(0.253005\pi\)
\(678\) 663865. 3194.85i 1.44418 0.00695010i
\(679\) 266554.i 0.578156i
\(680\) −533.145 36925.5i −0.00115300 0.0798562i
\(681\) 391641. 0.844488
\(682\) 3257.01 + 676782.i 0.00700246 + 1.45506i
\(683\) 262866.i 0.563499i 0.959488 + 0.281750i \(0.0909148\pi\)
−0.959488 + 0.281750i \(0.909085\pi\)
\(684\) 8703.25 + 904213.i 0.0186024 + 1.93267i
\(685\) −163900. −0.349299
\(686\) 438252. 2109.08i 0.931269 0.00448173i
\(687\) 1.00477e6i 2.12888i
\(688\) 2660.52 + 138193.i 0.00562069 + 0.291950i
\(689\) 31172.6 0.0656652
\(690\) −277.847 57734.5i −0.000583590 0.121266i
\(691\) 265572.i 0.556194i −0.960553 0.278097i \(-0.910296\pi\)
0.960553 0.278097i \(-0.0897037\pi\)
\(692\) −203211. + 1955.95i −0.424361 + 0.00408457i
\(693\) −387544. −0.806964
\(694\) 138417. 666.134i 0.287390 0.00138306i
\(695\) 154955.i 0.320801i
\(696\) 193875. 2799.25i 0.400225 0.00577861i
\(697\) 134048. 0.275927
\(698\) −2750.59 571550.i −0.00564565 1.17312i
\(699\) 529760.i 1.08424i
\(700\) −2273.03 236154.i −0.00463884 0.481946i
\(701\) −915607. −1.86326 −0.931629 0.363411i \(-0.881612\pi\)
−0.931629 + 0.363411i \(0.881612\pi\)
\(702\) 47955.4 230.785i 0.0973114 0.000468311i
\(703\) 783500.i 1.58536i
\(704\) −11629.8 402655.i −0.0234653 0.812433i
\(705\) 250453. 0.503903
\(706\) 2897.91 + 602164.i 0.00581401 + 1.20811i
\(707\) 251516.i 0.503184i
\(708\) 992076. 9548.95i 1.97915 0.0190497i
\(709\) −630772. −1.25482 −0.627408 0.778691i \(-0.715884\pi\)
−0.627408 + 0.778691i \(0.715884\pi\)
\(710\) 151371. 728.471i 0.300279 0.00144509i
\(711\) 439913.i 0.870218i
\(712\) −5326.58 368918.i −0.0105072 0.727729i
\(713\) −189772. −0.373295
\(714\) −519.077 107860.i −0.00101821 0.211575i
\(715\) 10294.8i 0.0201376i
\(716\) −2069.04 214960.i −0.00403593 0.419307i
\(717\) −522963. −1.01726
\(718\) −158500. + 762.781i −0.307454 + 0.00147962i
\(719\) 529083.i 1.02345i 0.859150 + 0.511724i \(0.170993\pi\)
−0.859150 + 0.511724i \(0.829007\pi\)
\(720\) 325747. 6271.35i 0.628370 0.0120975i
\(721\) 525863. 1.01158
\(722\) −344.773 71641.1i −0.000661391 0.137432i
\(723\) 608690.i 1.16445i
\(724\) 583294. 5614.34i 1.11278 0.0107108i
\(725\) −110369. −0.209977
\(726\) −299991. + 1443.71i −0.569161 + 0.00273909i
\(727\) 110867.i 0.209765i 0.994485 + 0.104883i \(0.0334467\pi\)
−0.994485 + 0.104883i \(0.966553\pi\)
\(728\) −20741.8 + 299.478i −0.0391366 + 0.000565069i
\(729\) 759368. 1.42888
\(730\) 353.954 + 73549.0i 0.000664204 + 0.138017i
\(731\) 35933.4i 0.0672455i
\(732\) 9954.21 + 1.03418e6i 0.0185774 + 1.93007i
\(733\) 782648. 1.45666 0.728330 0.685226i \(-0.240297\pi\)
0.728330 + 0.685226i \(0.240297\pi\)
\(734\) −238379. + 1147.20i −0.442462 + 0.00212935i
\(735\) 219880.i 0.407015i
\(736\) 112919. 2717.61i 0.208454 0.00501685i
\(737\) −800605. −1.47395
\(738\) 5691.35 + 1.18262e6i 0.0104497 + 2.17136i
\(739\) 720072.i 1.31852i 0.751914 + 0.659261i \(0.229131\pi\)
−0.751914 + 0.659261i \(0.770869\pi\)
\(740\) −282286. + 2717.06i −0.515496 + 0.00496177i
\(741\) −70159.1 −0.127776
\(742\) 277236. 1334.20i 0.503549 0.00242333i
\(743\) 602226.i 1.09089i −0.838146 0.545447i \(-0.816360\pi\)
0.838146 0.545447i \(-0.183640\pi\)
\(744\) −23991.7 1.66166e6i −0.0433427 3.00191i
\(745\) −178693. −0.321954
\(746\) −4178.39 868238.i −0.00750813 1.56013i
\(747\) 1.44508e6i 2.58971i
\(748\) 1007.94 + 104719.i 0.00180149 + 0.187164i
\(749\) −306422. −0.546206
\(750\) −614921. + 2959.31i −1.09319 + 0.00526099i
\(751\) 101175.i 0.179389i 0.995969 + 0.0896943i \(0.0285890\pi\)
−0.995969 + 0.0896943i \(0.971411\pi\)
\(752\) 9431.42 + 489887.i 0.0166779 + 0.866284i
\(753\) 987454. 1.74151
\(754\) 46.6541 + 9694.37i 8.20630e−5 + 0.0170521i
\(755\) 43020.7i 0.0754716i
\(756\) 426485. 4105.01i 0.746208 0.00718242i
\(757\) −922318. −1.60949 −0.804746 0.593619i \(-0.797699\pi\)
−0.804746 + 0.593619i \(0.797699\pi\)
\(758\) 436394. 2100.15i 0.759522 0.00365520i
\(759\) 163725.i 0.284204i
\(760\) −213612. + 3084.21i −0.369827 + 0.00533970i
\(761\) −232213. −0.400974 −0.200487 0.979696i \(-0.564253\pi\)
−0.200487 + 0.979696i \(0.564253\pi\)
\(762\) −6361.81 1.32193e6i −0.0109565 2.27667i
\(763\) 52737.6i 0.0905881i
\(764\) 9844.00 + 1.02273e6i 0.0168649 + 1.75216i
\(765\) −84701.8 −0.144734
\(766\) −615172. + 2960.52i −1.04843 + 0.00504557i
\(767\) 49604.6i 0.0843201i
\(768\) 38071.4 + 988386.i 0.0645470 + 1.67573i
\(769\) 286510. 0.484492 0.242246 0.970215i \(-0.422116\pi\)
0.242246 + 0.970215i \(0.422116\pi\)
\(770\) −440.622 91557.8i −0.000743164 0.154424i
\(771\) 1.05281e6i 1.77108i
\(772\) −1.18460e6 + 11402.0i −1.98763 + 0.0191314i
\(773\) 715722. 1.19780 0.598902 0.800822i \(-0.295604\pi\)
0.598902 + 0.800822i \(0.295604\pi\)
\(774\) 317017. 1525.64i 0.529176 0.00254666i
\(775\) 945951.i 1.57494i
\(776\) 9174.29 + 635409.i 0.0152352 + 1.05519i
\(777\) −824524. −1.36572
\(778\) −1258.47 261500.i −0.00207914 0.432029i
\(779\) 775459.i 1.27786i
\(780\) 243.301 + 25277.5i 0.000399904 + 0.0415475i
\(781\) −429260. −0.703750
\(782\) −29364.2 + 141.315i −0.0480181 + 0.000231087i
\(783\) 199323.i 0.325112i
\(784\) 430087. 8280.13i 0.699719 0.0134712i
\(785\) −170839. −0.277235
\(786\) −7177.63 1.49146e6i −0.0116181 2.41416i
\(787\) 58952.2i 0.0951811i −0.998867 0.0475905i \(-0.984846\pi\)
0.998867 0.0475905i \(-0.0151543\pi\)
\(788\) 236488. 2276.24i 0.380852 0.00366578i
\(789\) −1.35079e6 −2.16987
\(790\) −103930. + 500.164i −0.166528 + 0.000801417i
\(791\) 295204.i 0.471812i
\(792\) −923824. + 13338.5i −1.47278 + 0.0212646i
\(793\) −51709.8 −0.0822293
\(794\) 1483.57 + 308274.i 0.00235324 + 0.488985i
\(795\) 337845.i 0.534544i
\(796\) −6494.15 674701.i −0.0102493 1.06484i
\(797\) −520467. −0.819364 −0.409682 0.912228i \(-0.634360\pi\)
−0.409682 + 0.912228i \(0.634360\pi\)
\(798\) −623964. + 3002.83i −0.979837 + 0.00471547i
\(799\) 127382.i 0.199533i
\(800\) −13546.4 562864.i −0.0211663 0.879474i
\(801\) −846244. −1.31896
\(802\) −107.208 22276.9i −0.000166678 0.0346343i
\(803\) 208572.i 0.323463i
\(804\) 1.96577e6 18921.0i 3.04103 0.0292706i
\(805\) 25673.1 0.0396174
\(806\) 83088.2 399.862i 0.127900 0.000615517i
\(807\) 818114.i 1.25622i
\(808\) −8656.72 599563.i −0.0132596 0.918358i
\(809\) −1.21393e6 −1.85479 −0.927396 0.374081i \(-0.877958\pi\)
−0.927396 + 0.374081i \(0.877958\pi\)
\(810\) −516.812 107390.i −0.000787703 0.163679i
\(811\) 890630.i 1.35412i 0.735930 + 0.677058i \(0.236745\pi\)
−0.735930 + 0.677058i \(0.763255\pi\)
\(812\) 829.843 + 86215.5i 0.00125859 + 0.130759i
\(813\) −100277. −0.151712
\(814\) 800531. 3852.55i 1.20817 0.00581433i
\(815\) 252966.i 0.380844i
\(816\) −4949.72 257099.i −0.00743362 0.386117i
\(817\) −207872. −0.311424
\(818\) 905.295 + 188113.i 0.00135296 + 0.281134i
\(819\) 47578.6i 0.0709323i
\(820\) −279389. + 2689.18i −0.415510 + 0.00399937i
\(821\) 570780. 0.846804 0.423402 0.905942i \(-0.360836\pi\)
0.423402 + 0.905942i \(0.360836\pi\)
\(822\) −1.14125e6 + 5492.28i −1.68903 + 0.00812848i
\(823\) 512644.i 0.756861i −0.925630 0.378431i \(-0.876464\pi\)
0.925630 0.378431i \(-0.123536\pi\)
\(824\) 1.25355e6 18099.2i 1.84623 0.0266567i
\(825\) 816116. 1.19907
\(826\) 2123.09 + 441161.i 0.00311177 + 0.646602i
\(827\) 887671.i 1.29790i −0.760831 0.648950i \(-0.775208\pi\)
0.760831 0.648950i \(-0.224792\pi\)
\(828\) −2493.46 259055.i −0.00363699 0.377861i
\(829\) 573777. 0.834899 0.417450 0.908700i \(-0.362924\pi\)
0.417450 + 0.908700i \(0.362924\pi\)
\(830\) −341402. + 1643.00i −0.495576 + 0.00238496i
\(831\) 1.18530e6i 1.71643i
\(832\) −49433.8 + 1427.79i −0.0714130 + 0.00206261i
\(833\) −111833. −0.161168
\(834\) −5192.54 1.07897e6i −0.00746531 1.55123i
\(835\) 53026.5i 0.0760537i
\(836\) 605793. 5830.89i 0.866785 0.00834300i
\(837\) −1.70835e6 −2.43852
\(838\) −341685. + 1644.36i −0.486561 + 0.00234158i
\(839\) 543571.i 0.772204i −0.922456 0.386102i \(-0.873821\pi\)
0.922456 0.386102i \(-0.126179\pi\)
\(840\) 3245.70 + 224797.i 0.00459992 + 0.318589i
\(841\) −666987. −0.943030
\(842\) −124.846 25942.1i −0.000176097 0.0365915i
\(843\) 61832.0i 0.0870078i
\(844\) 9153.90 + 951033.i 0.0128505 + 1.33509i
\(845\) 246361. 0.345031
\(846\) 1.12381e6 5408.32i 1.57019 0.00755652i
\(847\) 133398.i 0.185945i
\(848\) 660827. 12722.4i 0.918959 0.0176920i
\(849\) 1.63864e6 2.27336
\(850\) 704.411 + 146371.i 0.000974963 + 0.202590i
\(851\) 224471.i 0.309957i
\(852\) 1.05399e6 10144.8i 1.45196 0.0139755i
\(853\) 231144. 0.317676 0.158838 0.987305i \(-0.449225\pi\)
0.158838 + 0.987305i \(0.449225\pi\)
\(854\) −459884. + 2213.19i −0.630569 + 0.00303461i
\(855\) 489994.i 0.670284i
\(856\) −730448. + 10546.5i −0.996877 + 0.0143933i
\(857\) 1.24547e6 1.69579 0.847894 0.530165i \(-0.177870\pi\)
0.847894 + 0.530165i \(0.177870\pi\)
\(858\) −344.980 71684.1i −0.000468618 0.0973752i
\(859\) 229570.i 0.311120i −0.987826 0.155560i \(-0.950282\pi\)
0.987826 0.155560i \(-0.0497182\pi\)
\(860\) 720.871 + 74893.9i 0.000974676 + 0.101263i
\(861\) −816063. −1.10082
\(862\) 525983. 2531.29i 0.707877 0.00340666i
\(863\) 616334.i 0.827551i 0.910379 + 0.413775i \(0.135790\pi\)
−0.910379 + 0.413775i \(0.864210\pi\)
\(864\) 1.01651e6 24464.3i 1.36171 0.0327722i
\(865\) −110120. −0.147176
\(866\) 2104.47 + 437293.i 0.00280613 + 0.583091i
\(867\) 1.19371e6i 1.58804i
\(868\) 738933. 7112.40i 0.980767 0.00944010i
\(869\) 294727. 0.390284
\(870\) 105066. 505.631i 0.138811 0.000668029i
\(871\) 98290.1i 0.129561i
\(872\) 1815.13 + 125716.i 0.00238712 + 0.165332i
\(873\) 1.45754e6 1.91245
\(874\) 817.500 + 169870.i 0.00107020 + 0.222379i
\(875\) 273440.i 0.357146i
\(876\) 4929.25 + 512118.i 0.00642351 + 0.667362i
\(877\) 968470. 1.25918 0.629589 0.776929i \(-0.283224\pi\)
0.629589 + 0.776929i \(0.283224\pi\)
\(878\) 811118. 3903.50i 1.05219 0.00506367i
\(879\) 1.93457e6i 2.50384i
\(880\) −4201.60 218240.i −0.00542562 0.281818i
\(881\) 195988. 0.252509 0.126254 0.991998i \(-0.459704\pi\)
0.126254 + 0.991998i \(0.459704\pi\)
\(882\) −4748.13 986625.i −0.00610359 1.26828i
\(883\) 67516.7i 0.0865943i −0.999062 0.0432972i \(-0.986214\pi\)
0.999062 0.0432972i \(-0.0137862\pi\)
\(884\) 12856.3 123.745i 0.0164517 0.000158352i
\(885\) 537608. 0.686403
\(886\) 475210. 2286.95i 0.605366 0.00291332i
\(887\) 169572.i 0.215529i 0.994176 + 0.107765i \(0.0343693\pi\)
−0.994176 + 0.107765i \(0.965631\pi\)
\(888\) −1.96550e6 + 28378.6i −2.49256 + 0.0359886i
\(889\) 587831. 0.743788
\(890\) −962.146 199927.i −0.00121468 0.252401i
\(891\) 304537.i 0.383606i
\(892\) 2350.50 + 244202.i 0.00295413 + 0.306916i
\(893\) −736897. −0.924068
\(894\) −1.24426e6 + 5987.98i −1.55681 + 0.00749214i
\(895\) 116487.i 0.145423i
\(896\) −439582. + 14813.9i −0.547550 + 0.0184524i
\(897\) 20100.4 0.0249816
\(898\) 1129.23 + 234645.i 0.00140033 + 0.290977i
\(899\) 345350.i 0.427307i
\(900\) −1.29131e6 + 12429.1i −1.59421 + 0.0153446i
\(901\) −171830. −0.211666
\(902\) 792315. 3813.02i 0.973834 0.00468657i
\(903\) 218757.i 0.268278i
\(904\) 10160.4 + 703705.i 0.0124329 + 0.861101i
\(905\) 316088. 0.385932
\(906\) −1441.62 299558.i −0.00175629 0.364943i
\(907\) 102703.i 0.124844i −0.998050 0.0624220i \(-0.980118\pi\)
0.998050 0.0624220i \(-0.0198825\pi\)
\(908\) 3996.04 + 415163.i 0.00484683 + 0.503555i
\(909\) −1.37531e6 −1.66446
\(910\) −11240.5 + 54.0950i −0.0135739 + 6.53242e-5i
\(911\) 459170.i 0.553270i −0.960975 0.276635i \(-0.910781\pi\)
0.960975 0.276635i \(-0.0892193\pi\)
\(912\) −1.48730e6 + 28633.8i −1.78817 + 0.0344262i
\(913\) 968156. 1.16146
\(914\) −4301.39 893795.i −0.00514892 1.06991i
\(915\) 560424.i 0.669383i
\(916\) 1.06511e6 10252.0i 1.26942 0.0122184i
\(917\) 663213. 0.788705
\(918\) −264341. + 1272.14i −0.313674 + 0.00150956i
\(919\) 1.41323e6i 1.67333i −0.547717 0.836664i \(-0.684503\pi\)
0.547717 0.836664i \(-0.315497\pi\)
\(920\) 61199.4 883.620i 0.0723055 0.00104397i
\(921\) −2.51205e6 −2.96148
\(922\) 7265.69 + 1.50975e6i 0.00854702 + 1.77600i
\(923\) 52700.1i 0.0618597i
\(924\) −6136.20 637512.i −0.00718713 0.746697i
\(925\) 1.11892e6 1.30772
\(926\) 1.09143e6 5252.51i 1.27284 0.00612555i
\(927\) 2.87546e6i 3.34617i
\(928\) 4945.55 + 205491.i 0.00574274 + 0.238615i
\(929\) −1.04495e6 −1.21077 −0.605387 0.795931i \(-0.706982\pi\)
−0.605387 + 0.795931i \(0.706982\pi\)
\(930\) −4333.65 900499.i −0.00501058 1.04116i
\(931\) 646944.i 0.746393i
\(932\) −561578. + 5405.31i −0.646515 + 0.00622285i
\(933\) 1.19317e6 1.37069
\(934\) −1.07154e6 + 5156.78i −1.22833 + 0.00591133i
\(935\) 56747.4i 0.0649117i
\(936\) 1637.57 + 113418.i 0.00186916 + 0.129458i
\(937\) 1.13447e6 1.29215 0.646075 0.763274i \(-0.276409\pi\)
0.646075 + 0.763274i \(0.276409\pi\)
\(938\) 4206.84 + 874149.i 0.00478135 + 0.993527i
\(939\) 2.67361e6i 3.03226i
\(940\) 2555.45 + 265495.i 0.00289209 + 0.300470i
\(941\) −721077. −0.814334 −0.407167 0.913354i \(-0.633483\pi\)
−0.407167 + 0.913354i \(0.633483\pi\)
\(942\) −1.18957e6 + 5724.81i −1.34057 + 0.00645148i
\(943\) 222168.i 0.249837i
\(944\) 20245.0 + 1.05156e6i 0.0227181 + 1.18003i
\(945\) 231113. 0.258798
\(946\) −1022.13 212391.i −0.00114215 0.237330i
\(947\) 1.47121e6i 1.64049i 0.572012 + 0.820245i \(0.306163\pi\)
−0.572012 + 0.820245i \(0.693837\pi\)
\(948\) −723661. + 6965.39i −0.805227 + 0.00775049i
\(949\) −25606.3 −0.0284324
\(950\) 846748. 4074.97i 0.938225 0.00451521i
\(951\) 2.92833e6i 3.23787i
\(952\) 114333. 1650.79i 0.126153 0.00182145i
\(953\) 444730. 0.489678 0.244839 0.969564i \(-0.421265\pi\)
0.244839 + 0.969564i \(0.421265\pi\)
\(954\) −7295.49 1.51595e6i −0.00801600 1.66566i
\(955\) 554219.i 0.607680i
\(956\) −5335.97 554373.i −0.00583845 0.606578i
\(957\) −297949. −0.325326
\(958\) −139015. + 669.011i −0.151472 + 0.000728958i
\(959\) 507487.i 0.551807i
\(960\) 15474.2 + 535757.i 0.0167905 + 0.581334i
\(961\) −2.03639e6 −2.20503
\(962\) −472.977 98280.9i −0.000511081 0.106199i
\(963\) 1.67554e6i 1.80677i
\(964\) −645249. + 6210.66i −0.694342 + 0.00668319i
\(965\) −641934. −0.689344
\(966\) 178765. 860.304i 0.191570 0.000921930i
\(967\) 736685.i 0.787823i −0.919148 0.393911i \(-0.871122\pi\)
0.919148 0.393911i \(-0.128878\pi\)
\(968\) −4591.33 317994.i −0.00489990 0.339366i
\(969\) 386732. 0.411873
\(970\) 1657.16 + 344345.i 0.00176125 + 0.365974i
\(971\) 520873.i 0.552450i 0.961093 + 0.276225i \(0.0890835\pi\)
−0.961093 + 0.276225i \(0.910916\pi\)
\(972\) 5188.83 + 539087.i 0.00549208 + 0.570592i
\(973\) 479790. 0.506787
\(974\) −172833. + 831.759i −0.182184 + 0.000876758i
\(975\) 100194.i 0.105398i
\(976\) −1.09619e6 + 21104.2i −1.15077 + 0.0221548i
\(977\) −914224. −0.957775 −0.478887 0.877876i \(-0.658960\pi\)
−0.478887 + 0.877876i \(0.658960\pi\)
\(978\) −8476.88 1.76143e6i −0.00886254 1.84157i
\(979\) 566956.i 0.591540i
\(980\) 233086. 2243.51i 0.242697 0.00233601i
\(981\) 288373. 0.299652
\(982\) 34356.8 165.342i 0.0356279 0.000171459i
\(983\) 996679.i 1.03145i −0.856754 0.515725i \(-0.827523\pi\)
0.856754 0.515725i \(-0.172477\pi\)
\(984\) −1.94533e6 + 28087.4i −2.00910 + 0.0290082i
\(985\) 128153. 0.132086
\(986\) −257.168 53437.5i −0.000264523 0.0549657i
\(987\) 775481.i 0.796044i
\(988\) −715.856 74373.0i −0.000733351 0.0761906i
\(989\) 59555.0 0.0608871
\(990\) −500645. + 2409.35i −0.510810 + 0.00245827i
\(991\) 905919.i 0.922448i −0.887284 0.461224i \(-0.847410\pi\)
0.887284 0.461224i \(-0.152590\pi\)
\(992\) 1.76122e6 42387.2i 1.78974 0.0430736i
\(993\) 1.09482e6 1.11031
\(994\) 2255.58 + 468692.i 0.00228289 + 0.474367i
\(995\) 365622.i 0.369306i
\(996\) −2.37717e6 + 22880.8i −2.39630 + 0.0230649i
\(997\) 160611. 0.161579 0.0807895 0.996731i \(-0.474256\pi\)
0.0807895 + 0.996731i \(0.474256\pi\)
\(998\) −241064. + 1160.12i −0.242031 + 0.00116478i
\(999\) 2.02072e6i 2.02477i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.5.c.a.47.22 yes 44
4.3 odd 2 inner 92.5.c.a.47.21 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.5.c.a.47.21 44 4.3 odd 2 inner
92.5.c.a.47.22 yes 44 1.1 even 1 trivial