Properties

Label 92.5.c.a.47.4
Level $92$
Weight $5$
Character 92.47
Analytic conductor $9.510$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,5,Mod(47,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.47");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 92.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.51003660371\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 47.4
Character \(\chi\) \(=\) 92.47
Dual form 92.5.c.a.47.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.78901 + 1.28195i) q^{2} -8.06260i q^{3} +(12.7132 - 9.71463i) q^{4} +47.7328 q^{5} +(10.3358 + 30.5493i) q^{6} -53.2079i q^{7} +(-35.7169 + 53.1065i) q^{8} +15.9945 q^{9} +(-180.860 + 61.1909i) q^{10} +159.374i q^{11} +(-78.3252 - 102.502i) q^{12} +33.4299 q^{13} +(68.2097 + 201.605i) q^{14} -384.850i q^{15} +(67.2520 - 247.008i) q^{16} +83.4957 q^{17} +(-60.6032 + 20.5041i) q^{18} -338.682i q^{19} +(606.837 - 463.706i) q^{20} -428.994 q^{21} +(-204.309 - 603.868i) q^{22} +110.304i q^{23} +(428.177 + 287.971i) q^{24} +1653.42 q^{25} +(-126.666 + 42.8554i) q^{26} -782.028i q^{27} +(-516.895 - 676.443i) q^{28} +323.380 q^{29} +(493.358 + 1458.20i) q^{30} +651.984i q^{31} +(61.8331 + 1022.13i) q^{32} +1284.97 q^{33} +(-316.366 + 107.037i) q^{34} -2539.76i q^{35} +(203.341 - 155.380i) q^{36} -2668.49 q^{37} +(434.172 + 1283.27i) q^{38} -269.532i q^{39} +(-1704.87 + 2534.92i) q^{40} -2087.72 q^{41} +(1625.46 - 549.948i) q^{42} -1814.93i q^{43} +(1548.25 + 2026.15i) q^{44} +763.460 q^{45} +(-141.404 - 417.944i) q^{46} -2954.38i q^{47} +(-1991.53 - 542.226i) q^{48} -430.077 q^{49} +(-6264.82 + 2119.59i) q^{50} -673.193i q^{51} +(425.002 - 324.759i) q^{52} +2231.01 q^{53} +(1002.52 + 2963.11i) q^{54} +7607.34i q^{55} +(2825.68 + 1900.42i) q^{56} -2730.66 q^{57} +(-1225.29 + 414.556i) q^{58} +4317.42i q^{59} +(-3738.68 - 4892.69i) q^{60} +533.511 q^{61} +(-835.809 - 2470.37i) q^{62} -851.031i q^{63} +(-1544.61 - 3793.60i) q^{64} +1595.70 q^{65} +(-4868.75 + 1647.26i) q^{66} +3765.26i q^{67} +(1061.50 - 811.130i) q^{68} +889.338 q^{69} +(3255.84 + 9623.18i) q^{70} -1365.59i q^{71} +(-571.273 + 849.410i) q^{72} -2073.28 q^{73} +(10110.9 - 3420.86i) q^{74} -13330.8i q^{75} +(-3290.17 - 4305.74i) q^{76} +8479.93 q^{77} +(345.526 + 1021.26i) q^{78} +10499.3i q^{79} +(3210.13 - 11790.4i) q^{80} -5009.63 q^{81} +(7910.41 - 2676.35i) q^{82} +28.3130i q^{83} +(-5453.89 + 4167.52i) q^{84} +3985.48 q^{85} +(2326.64 + 6876.77i) q^{86} -2607.28i q^{87} +(-8463.77 - 5692.33i) q^{88} +5959.71 q^{89} +(-2892.76 + 978.715i) q^{90} -1778.73i q^{91} +(1071.56 + 1402.32i) q^{92} +5256.68 q^{93} +(3787.36 + 11194.2i) q^{94} -16166.2i q^{95} +(8241.04 - 498.536i) q^{96} -4425.37 q^{97} +(1629.57 - 551.336i) q^{98} +2549.09i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 24 q^{5} + 33 q^{6} - 27 q^{8} - 1300 q^{9} - 46 q^{10} + 145 q^{12} + 472 q^{13} - 264 q^{14} + 272 q^{16} - 648 q^{17} + 1313 q^{18} + 324 q^{20} - 288 q^{21} + 796 q^{22} - 1028 q^{24} + 5604 q^{25}+ \cdots + 57204 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.78901 + 1.28195i −0.947253 + 0.320487i
\(3\) 8.06260i 0.895845i −0.894072 0.447922i \(-0.852164\pi\)
0.894072 0.447922i \(-0.147836\pi\)
\(4\) 12.7132 9.71463i 0.794576 0.607164i
\(5\) 47.7328 1.90931 0.954655 0.297713i \(-0.0962238\pi\)
0.954655 + 0.297713i \(0.0962238\pi\)
\(6\) 10.3358 + 30.5493i 0.287106 + 0.848591i
\(7\) 53.2079i 1.08587i −0.839773 0.542937i \(-0.817312\pi\)
0.839773 0.542937i \(-0.182688\pi\)
\(8\) −35.7169 + 53.1065i −0.558077 + 0.829789i
\(9\) 15.9945 0.197462
\(10\) −180.860 + 61.1909i −1.80860 + 0.611909i
\(11\) 159.374i 1.31714i 0.752521 + 0.658568i \(0.228838\pi\)
−0.752521 + 0.658568i \(0.771162\pi\)
\(12\) −78.3252 102.502i −0.543925 0.711817i
\(13\) 33.4299 0.197810 0.0989050 0.995097i \(-0.468466\pi\)
0.0989050 + 0.995097i \(0.468466\pi\)
\(14\) 68.2097 + 201.605i 0.348009 + 1.02860i
\(15\) 384.850i 1.71045i
\(16\) 67.2520 247.008i 0.262703 0.964877i
\(17\) 83.4957 0.288913 0.144456 0.989511i \(-0.453857\pi\)
0.144456 + 0.989511i \(0.453857\pi\)
\(18\) −60.6032 + 20.5041i −0.187047 + 0.0632841i
\(19\) 338.682i 0.938177i −0.883151 0.469088i \(-0.844583\pi\)
0.883151 0.469088i \(-0.155417\pi\)
\(20\) 606.837 463.706i 1.51709 1.15927i
\(21\) −428.994 −0.972775
\(22\) −204.309 603.868i −0.422125 1.24766i
\(23\) 110.304i 0.208514i
\(24\) 428.177 + 287.971i 0.743362 + 0.499950i
\(25\) 1653.42 2.64547
\(26\) −126.666 + 42.8554i −0.187376 + 0.0633955i
\(27\) 782.028i 1.07274i
\(28\) −516.895 676.443i −0.659304 0.862810i
\(29\) 323.380 0.384518 0.192259 0.981344i \(-0.438419\pi\)
0.192259 + 0.981344i \(0.438419\pi\)
\(30\) 493.358 + 1458.20i 0.548175 + 1.62022i
\(31\) 651.984i 0.678443i 0.940707 + 0.339221i \(0.110164\pi\)
−0.940707 + 0.339221i \(0.889836\pi\)
\(32\) 61.8331 + 1022.13i 0.0603839 + 0.998175i
\(33\) 1284.97 1.17995
\(34\) −316.366 + 107.037i −0.273673 + 0.0925927i
\(35\) 2539.76i 2.07327i
\(36\) 203.341 155.380i 0.156899 0.119892i
\(37\) −2668.49 −1.94923 −0.974613 0.223896i \(-0.928122\pi\)
−0.974613 + 0.223896i \(0.928122\pi\)
\(38\) 434.172 + 1283.27i 0.300673 + 0.888691i
\(39\) 269.532i 0.177207i
\(40\) −1704.87 + 2534.92i −1.06554 + 1.58433i
\(41\) −2087.72 −1.24195 −0.620977 0.783829i \(-0.713264\pi\)
−0.620977 + 0.783829i \(0.713264\pi\)
\(42\) 1625.46 549.948i 0.921464 0.311762i
\(43\) 1814.93i 0.981571i −0.871280 0.490786i \(-0.836710\pi\)
0.871280 0.490786i \(-0.163290\pi\)
\(44\) 1548.25 + 2026.15i 0.799718 + 1.04657i
\(45\) 763.460 0.377017
\(46\) −141.404 417.944i −0.0668261 0.197516i
\(47\) 2954.38i 1.33743i −0.743519 0.668715i \(-0.766845\pi\)
0.743519 0.668715i \(-0.233155\pi\)
\(48\) −1991.53 542.226i −0.864380 0.235341i
\(49\) −430.077 −0.179124
\(50\) −6264.82 + 2119.59i −2.50593 + 0.847838i
\(51\) 673.193i 0.258821i
\(52\) 425.002 324.759i 0.157175 0.120103i
\(53\) 2231.01 0.794235 0.397118 0.917768i \(-0.370010\pi\)
0.397118 + 0.917768i \(0.370010\pi\)
\(54\) 1002.52 + 2963.11i 0.343799 + 1.01616i
\(55\) 7607.34i 2.51482i
\(56\) 2825.68 + 1900.42i 0.901047 + 0.606001i
\(57\) −2730.66 −0.840461
\(58\) −1225.29 + 414.556i −0.364236 + 0.123233i
\(59\) 4317.42i 1.24028i 0.784491 + 0.620140i \(0.212924\pi\)
−0.784491 + 0.620140i \(0.787076\pi\)
\(60\) −3738.68 4892.69i −1.03852 1.35908i
\(61\) 533.511 0.143378 0.0716891 0.997427i \(-0.477161\pi\)
0.0716891 + 0.997427i \(0.477161\pi\)
\(62\) −835.809 2470.37i −0.217432 0.642657i
\(63\) 851.031i 0.214420i
\(64\) −1544.61 3793.60i −0.377101 0.926172i
\(65\) 1595.70 0.377681
\(66\) −4868.75 + 1647.26i −1.11771 + 0.378158i
\(67\) 3765.26i 0.838775i 0.907807 + 0.419387i \(0.137755\pi\)
−0.907807 + 0.419387i \(0.862245\pi\)
\(68\) 1061.50 811.130i 0.229563 0.175417i
\(69\) 889.338 0.186797
\(70\) 3255.84 + 9623.18i 0.664457 + 1.96391i
\(71\) 1365.59i 0.270896i −0.990784 0.135448i \(-0.956753\pi\)
0.990784 0.135448i \(-0.0432474\pi\)
\(72\) −571.273 + 849.410i −0.110199 + 0.163852i
\(73\) −2073.28 −0.389057 −0.194528 0.980897i \(-0.562318\pi\)
−0.194528 + 0.980897i \(0.562318\pi\)
\(74\) 10110.9 3420.86i 1.84641 0.624701i
\(75\) 13330.8i 2.36993i
\(76\) −3290.17 4305.74i −0.569627 0.745453i
\(77\) 8479.93 1.43025
\(78\) 345.526 + 1021.26i 0.0567925 + 0.167860i
\(79\) 10499.3i 1.68230i 0.540799 + 0.841152i \(0.318122\pi\)
−0.540799 + 0.841152i \(0.681878\pi\)
\(80\) 3210.13 11790.4i 0.501582 1.84225i
\(81\) −5009.63 −0.763546
\(82\) 7910.41 2676.35i 1.17644 0.398030i
\(83\) 28.3130i 0.00410989i 0.999998 + 0.00205495i \(0.000654110\pi\)
−0.999998 + 0.00205495i \(0.999346\pi\)
\(84\) −5453.89 + 4167.52i −0.772944 + 0.590634i
\(85\) 3985.48 0.551624
\(86\) 2326.64 + 6876.77i 0.314581 + 0.929796i
\(87\) 2607.28i 0.344468i
\(88\) −8463.77 5692.33i −1.09295 0.735063i
\(89\) 5959.71 0.752394 0.376197 0.926540i \(-0.377232\pi\)
0.376197 + 0.926540i \(0.377232\pi\)
\(90\) −2892.76 + 978.715i −0.357131 + 0.120829i
\(91\) 1778.73i 0.214797i
\(92\) 1071.56 + 1402.32i 0.126602 + 0.165681i
\(93\) 5256.68 0.607779
\(94\) 3787.36 + 11194.2i 0.428629 + 1.26688i
\(95\) 16166.2i 1.79127i
\(96\) 8241.04 498.536i 0.894210 0.0540946i
\(97\) −4425.37 −0.470334 −0.235167 0.971955i \(-0.575564\pi\)
−0.235167 + 0.971955i \(0.575564\pi\)
\(98\) 1629.57 551.336i 0.169676 0.0574069i
\(99\) 2549.09i 0.260085i
\(100\) 21020.3 16062.3i 2.10203 1.60623i
\(101\) −10761.3 −1.05493 −0.527463 0.849578i \(-0.676857\pi\)
−0.527463 + 0.849578i \(0.676857\pi\)
\(102\) 862.998 + 2550.74i 0.0829486 + 0.245169i
\(103\) 7156.01i 0.674523i 0.941411 + 0.337261i \(0.109501\pi\)
−0.941411 + 0.337261i \(0.890499\pi\)
\(104\) −1194.01 + 1775.35i −0.110393 + 0.164141i
\(105\) −20477.1 −1.85733
\(106\) −8453.31 + 2860.03i −0.752342 + 0.254542i
\(107\) 1241.12i 0.108404i −0.998530 0.0542022i \(-0.982738\pi\)
0.998530 0.0542022i \(-0.0172616\pi\)
\(108\) −7597.11 9942.09i −0.651330 0.852374i
\(109\) −11066.7 −0.931465 −0.465732 0.884926i \(-0.654209\pi\)
−0.465732 + 0.884926i \(0.654209\pi\)
\(110\) −9752.21 28824.3i −0.805968 2.38217i
\(111\) 21515.0i 1.74620i
\(112\) −13142.8 3578.34i −1.04774 0.285263i
\(113\) 7186.11 0.562778 0.281389 0.959594i \(-0.409205\pi\)
0.281389 + 0.959594i \(0.409205\pi\)
\(114\) 10346.5 3500.56i 0.796129 0.269357i
\(115\) 5265.12i 0.398119i
\(116\) 4111.20 3141.51i 0.305529 0.233466i
\(117\) 534.693 0.0390601
\(118\) −5534.70 16358.7i −0.397493 1.17486i
\(119\) 4442.63i 0.313723i
\(120\) 20438.1 + 13745.7i 1.41931 + 0.954560i
\(121\) −10758.9 −0.734849
\(122\) −2021.48 + 683.932i −0.135815 + 0.0459508i
\(123\) 16832.5i 1.11260i
\(124\) 6333.78 + 8288.81i 0.411926 + 0.539075i
\(125\) 49089.2 3.14171
\(126\) 1090.98 + 3224.57i 0.0687186 + 0.203110i
\(127\) 30094.9i 1.86589i 0.360019 + 0.932945i \(0.382770\pi\)
−0.360019 + 0.932945i \(0.617230\pi\)
\(128\) 10715.7 + 12393.9i 0.654036 + 0.756464i
\(129\) −14633.0 −0.879335
\(130\) −6046.13 + 2045.61i −0.357759 + 0.121042i
\(131\) 20142.7i 1.17375i 0.809678 + 0.586874i \(0.199642\pi\)
−0.809678 + 0.586874i \(0.800358\pi\)
\(132\) 16336.1 12483.0i 0.937560 0.716423i
\(133\) −18020.5 −1.01874
\(134\) −4826.86 14266.6i −0.268816 0.794532i
\(135\) 37328.3i 2.04819i
\(136\) −2982.21 + 4434.17i −0.161235 + 0.239737i
\(137\) 15776.1 0.840540 0.420270 0.907399i \(-0.361935\pi\)
0.420270 + 0.907399i \(0.361935\pi\)
\(138\) −3369.71 + 1140.08i −0.176944 + 0.0598658i
\(139\) 646.127i 0.0334417i −0.999860 0.0167208i \(-0.994677\pi\)
0.999860 0.0167208i \(-0.00532266\pi\)
\(140\) −24672.8 32288.5i −1.25882 1.64737i
\(141\) −23820.0 −1.19813
\(142\) 1750.61 + 5174.23i 0.0868186 + 0.256607i
\(143\) 5327.84i 0.260543i
\(144\) 1075.66 3950.77i 0.0518740 0.190527i
\(145\) 15435.8 0.734164
\(146\) 7855.70 2657.84i 0.368535 0.124688i
\(147\) 3467.54i 0.160467i
\(148\) −33925.1 + 25923.4i −1.54881 + 1.18350i
\(149\) −32158.9 −1.44854 −0.724268 0.689519i \(-0.757822\pi\)
−0.724268 + 0.689519i \(0.757822\pi\)
\(150\) 17089.4 + 50510.7i 0.759531 + 2.24492i
\(151\) 33709.4i 1.47842i −0.673477 0.739209i \(-0.735200\pi\)
0.673477 0.739209i \(-0.264800\pi\)
\(152\) 17986.2 + 12096.7i 0.778489 + 0.523575i
\(153\) 1335.47 0.0570494
\(154\) −32130.5 + 10870.8i −1.35480 + 0.458375i
\(155\) 31121.0i 1.29536i
\(156\) −2618.40 3426.62i −0.107594 0.140805i
\(157\) 37164.6 1.50775 0.753876 0.657016i \(-0.228182\pi\)
0.753876 + 0.657016i \(0.228182\pi\)
\(158\) −13459.5 39781.8i −0.539156 1.59357i
\(159\) 17987.7i 0.711512i
\(160\) 2951.47 + 48789.2i 0.115292 + 1.90583i
\(161\) 5869.05 0.226421
\(162\) 18981.5 6422.08i 0.723271 0.244706i
\(163\) 10018.5i 0.377074i 0.982066 + 0.188537i \(0.0603746\pi\)
−0.982066 + 0.188537i \(0.939625\pi\)
\(164\) −26541.7 + 20281.5i −0.986827 + 0.754070i
\(165\) 61335.0 2.25289
\(166\) −36.2958 107.278i −0.00131717 0.00389311i
\(167\) 17230.0i 0.617805i −0.951094 0.308902i \(-0.900038\pi\)
0.951094 0.308902i \(-0.0999616\pi\)
\(168\) 15322.3 22782.4i 0.542883 0.807198i
\(169\) −27443.4 −0.960871
\(170\) −15101.0 + 5109.18i −0.522527 + 0.176788i
\(171\) 5417.03i 0.185255i
\(172\) −17631.3 23073.5i −0.595975 0.779933i
\(173\) −27874.9 −0.931368 −0.465684 0.884951i \(-0.654192\pi\)
−0.465684 + 0.884951i \(0.654192\pi\)
\(174\) 3342.40 + 9879.02i 0.110398 + 0.326299i
\(175\) 87974.8i 2.87265i
\(176\) 39366.6 + 10718.2i 1.27087 + 0.346016i
\(177\) 34809.6 1.11110
\(178\) −22581.4 + 7640.04i −0.712707 + 0.241132i
\(179\) 44935.8i 1.40245i 0.712941 + 0.701224i \(0.247363\pi\)
−0.712941 + 0.701224i \(0.752637\pi\)
\(180\) 9706.03 7416.73i 0.299569 0.228911i
\(181\) 56780.7 1.73318 0.866590 0.499021i \(-0.166307\pi\)
0.866590 + 0.499021i \(0.166307\pi\)
\(182\) 2280.24 + 6739.64i 0.0688396 + 0.203467i
\(183\) 4301.48i 0.128445i
\(184\) −5857.87 3939.72i −0.173023 0.116367i
\(185\) −127374. −3.72168
\(186\) −19917.6 + 6738.79i −0.575721 + 0.194785i
\(187\) 13307.0i 0.380537i
\(188\) −28700.7 37559.7i −0.812039 1.06269i
\(189\) −41610.0 −1.16486
\(190\) 20724.2 + 61254.0i 0.574079 + 1.69679i
\(191\) 49264.7i 1.35042i 0.737625 + 0.675211i \(0.235947\pi\)
−0.737625 + 0.675211i \(0.764053\pi\)
\(192\) −30586.3 + 12453.5i −0.829706 + 0.337824i
\(193\) 14046.5 0.377098 0.188549 0.982064i \(-0.439621\pi\)
0.188549 + 0.982064i \(0.439621\pi\)
\(194\) 16767.8 5673.09i 0.445525 0.150736i
\(195\) 12865.5i 0.338343i
\(196\) −5467.67 + 4178.04i −0.142328 + 0.108758i
\(197\) 19636.7 0.505983 0.252991 0.967469i \(-0.418586\pi\)
0.252991 + 0.967469i \(0.418586\pi\)
\(198\) −3267.80 9658.55i −0.0833538 0.246366i
\(199\) 23070.4i 0.582572i −0.956636 0.291286i \(-0.905917\pi\)
0.956636 0.291286i \(-0.0940831\pi\)
\(200\) −59055.0 + 87807.3i −1.47637 + 2.19518i
\(201\) 30357.8 0.751412
\(202\) 40774.7 13795.4i 0.999282 0.338090i
\(203\) 17206.3i 0.417538i
\(204\) −6539.82 8558.45i −0.157147 0.205653i
\(205\) −99652.8 −2.37128
\(206\) −9173.63 27114.2i −0.216176 0.638944i
\(207\) 1764.25i 0.0411738i
\(208\) 2248.23 8257.47i 0.0519653 0.190862i
\(209\) 53976.9 1.23571
\(210\) 77587.8 26250.5i 1.75936 0.595250i
\(211\) 57411.2i 1.28953i 0.764381 + 0.644765i \(0.223045\pi\)
−0.764381 + 0.644765i \(0.776955\pi\)
\(212\) 28363.3 21673.4i 0.631081 0.482231i
\(213\) −11010.2 −0.242681
\(214\) 1591.05 + 4702.62i 0.0347422 + 0.102686i
\(215\) 86631.4i 1.87412i
\(216\) 41530.8 + 27931.6i 0.890148 + 0.598671i
\(217\) 34690.7 0.736704
\(218\) 41932.0 14187.0i 0.882333 0.298522i
\(219\) 16716.1i 0.348535i
\(220\) 73902.5 + 96713.8i 1.52691 + 1.99822i
\(221\) 2791.25 0.0571498
\(222\) −27581.1 81520.5i −0.559635 1.65410i
\(223\) 32704.9i 0.657663i −0.944389 0.328831i \(-0.893345\pi\)
0.944389 0.328831i \(-0.106655\pi\)
\(224\) 54385.4 3290.01i 1.08389 0.0655694i
\(225\) 26445.5 0.522381
\(226\) −27228.3 + 9212.22i −0.533093 + 0.180363i
\(227\) 27325.4i 0.530291i −0.964208 0.265146i \(-0.914580\pi\)
0.964208 0.265146i \(-0.0854200\pi\)
\(228\) −34715.4 + 26527.3i −0.667810 + 0.510298i
\(229\) −3463.88 −0.0660529 −0.0330264 0.999454i \(-0.510515\pi\)
−0.0330264 + 0.999454i \(0.510515\pi\)
\(230\) −6749.61 19949.6i −0.127592 0.377119i
\(231\) 68370.3i 1.28128i
\(232\) −11550.1 + 17173.6i −0.214590 + 0.319069i
\(233\) 21643.1 0.398665 0.199332 0.979932i \(-0.436123\pi\)
0.199332 + 0.979932i \(0.436123\pi\)
\(234\) −2025.96 + 685.448i −0.0369998 + 0.0125182i
\(235\) 141021.i 2.55357i
\(236\) 41942.1 + 54888.3i 0.753054 + 0.985497i
\(237\) 84651.3 1.50708
\(238\) 5695.22 + 16833.2i 0.100544 + 0.297175i
\(239\) 41382.7i 0.724474i 0.932086 + 0.362237i \(0.117987\pi\)
−0.932086 + 0.362237i \(0.882013\pi\)
\(240\) −95061.3 25882.0i −1.65037 0.449340i
\(241\) 42308.9 0.728446 0.364223 0.931312i \(-0.381335\pi\)
0.364223 + 0.931312i \(0.381335\pi\)
\(242\) 40765.7 13792.4i 0.696088 0.235510i
\(243\) 22953.6i 0.388722i
\(244\) 6782.64 5182.86i 0.113925 0.0870542i
\(245\) −20528.8 −0.342004
\(246\) −21578.4 63778.5i −0.356573 1.05391i
\(247\) 11322.1i 0.185581i
\(248\) −34624.6 23286.8i −0.562965 0.378623i
\(249\) 228.277 0.00368182
\(250\) −186000. + 62929.8i −2.97599 + 1.00688i
\(251\) 9017.01i 0.143125i −0.997436 0.0715624i \(-0.977201\pi\)
0.997436 0.0715624i \(-0.0227985\pi\)
\(252\) −8267.45 10819.3i −0.130188 0.170373i
\(253\) −17579.6 −0.274642
\(254\) −38580.1 114030.i −0.597993 1.76747i
\(255\) 32133.4i 0.494169i
\(256\) −56490.3 33223.6i −0.861974 0.506952i
\(257\) 34980.9 0.529621 0.264811 0.964300i \(-0.414691\pi\)
0.264811 + 0.964300i \(0.414691\pi\)
\(258\) 55444.7 18758.8i 0.832953 0.281815i
\(259\) 141985.i 2.11662i
\(260\) 20286.5 15501.6i 0.300096 0.229314i
\(261\) 5172.28 0.0759279
\(262\) −25821.9 76320.9i −0.376171 1.11184i
\(263\) 17659.5i 0.255310i −0.991819 0.127655i \(-0.959255\pi\)
0.991819 0.127655i \(-0.0407450\pi\)
\(264\) −45895.0 + 68240.0i −0.658502 + 0.979110i
\(265\) 106492. 1.51644
\(266\) 68280.0 23101.4i 0.965007 0.326494i
\(267\) 48050.8i 0.674028i
\(268\) 36578.1 + 47868.6i 0.509274 + 0.666470i
\(269\) 36997.7 0.511293 0.255646 0.966770i \(-0.417712\pi\)
0.255646 + 0.966770i \(0.417712\pi\)
\(270\) 47853.0 + 141438.i 0.656419 + 1.94016i
\(271\) 71704.4i 0.976354i −0.872745 0.488177i \(-0.837662\pi\)
0.872745 0.488177i \(-0.162338\pi\)
\(272\) 5615.26 20624.1i 0.0758982 0.278765i
\(273\) −14341.2 −0.192425
\(274\) −59775.8 + 20224.1i −0.796204 + 0.269382i
\(275\) 263511.i 3.48444i
\(276\) 11306.4 8639.59i 0.148424 0.113416i
\(277\) −101568. −1.32373 −0.661864 0.749624i \(-0.730234\pi\)
−0.661864 + 0.749624i \(0.730234\pi\)
\(278\) 828.300 + 2448.18i 0.0107176 + 0.0316777i
\(279\) 10428.1i 0.133967i
\(280\) 134878. + 90712.3i 1.72038 + 1.15705i
\(281\) −107572. −1.36234 −0.681171 0.732125i \(-0.738529\pi\)
−0.681171 + 0.732125i \(0.738529\pi\)
\(282\) 90254.3 30536.0i 1.13493 0.383985i
\(283\) 52709.5i 0.658136i 0.944306 + 0.329068i \(0.106735\pi\)
−0.944306 + 0.329068i \(0.893265\pi\)
\(284\) −13266.2 17361.0i −0.164478 0.215248i
\(285\) −130342. −1.60470
\(286\) −6830.01 20187.3i −0.0835006 0.246800i
\(287\) 111083.i 1.34861i
\(288\) 988.987 + 16348.4i 0.0119236 + 0.197102i
\(289\) −76549.5 −0.916530
\(290\) −58486.4 + 19787.9i −0.695439 + 0.235290i
\(291\) 35680.0i 0.421346i
\(292\) −26358.1 + 20141.2i −0.309135 + 0.236221i
\(293\) −23189.8 −0.270123 −0.135062 0.990837i \(-0.543123\pi\)
−0.135062 + 0.990837i \(0.543123\pi\)
\(294\) −4445.21 13138.6i −0.0514277 0.152003i
\(295\) 206082.i 2.36808i
\(296\) 95310.2 141714.i 1.08782 1.61745i
\(297\) 124635. 1.41295
\(298\) 121851. 41226.1i 1.37213 0.464237i
\(299\) 3687.46i 0.0412462i
\(300\) −129504. 169478.i −1.43894 1.88309i
\(301\) −96568.3 −1.06586
\(302\) 43213.7 + 127725.i 0.473813 + 1.40044i
\(303\) 86764.1i 0.945050i
\(304\) −83657.3 22777.0i −0.905225 0.246462i
\(305\) 25465.9 0.273754
\(306\) −5060.11 + 1712.00i −0.0540402 + 0.0182836i
\(307\) 45546.2i 0.483254i −0.970369 0.241627i \(-0.922319\pi\)
0.970369 0.241627i \(-0.0776810\pi\)
\(308\) 107807. 82379.3i 1.13644 0.868394i
\(309\) 57696.1 0.604268
\(310\) −39895.5 117918.i −0.415145 1.22703i
\(311\) 101998.i 1.05456i −0.849691 0.527280i \(-0.823212\pi\)
0.849691 0.527280i \(-0.176788\pi\)
\(312\) 14313.9 + 9626.85i 0.147045 + 0.0988951i
\(313\) −75462.9 −0.770273 −0.385137 0.922860i \(-0.625846\pi\)
−0.385137 + 0.922860i \(0.625846\pi\)
\(314\) −140817. + 47643.1i −1.42822 + 0.483215i
\(315\) 40622.1i 0.409394i
\(316\) 101996. + 133479.i 1.02143 + 1.33672i
\(317\) 12644.8 0.125833 0.0629165 0.998019i \(-0.479960\pi\)
0.0629165 + 0.998019i \(0.479960\pi\)
\(318\) 23059.3 + 68155.7i 0.228030 + 0.673981i
\(319\) 51538.2i 0.506463i
\(320\) −73728.3 181079.i −0.720003 1.76835i
\(321\) −10006.7 −0.0971135
\(322\) −22237.9 + 7523.81i −0.214478 + 0.0725648i
\(323\) 28278.5i 0.271051i
\(324\) −63688.5 + 48666.7i −0.606696 + 0.463598i
\(325\) 55273.6 0.523300
\(326\) −12843.2 37960.2i −0.120847 0.357185i
\(327\) 89226.6i 0.834448i
\(328\) 74567.0 110872.i 0.693105 1.03056i
\(329\) −157196. −1.45228
\(330\) −232399. + 78628.2i −2.13406 + 0.722022i
\(331\) 42516.4i 0.388062i 0.980995 + 0.194031i \(0.0621562\pi\)
−0.980995 + 0.194031i \(0.937844\pi\)
\(332\) 275.051 + 359.950i 0.00249538 + 0.00326562i
\(333\) −42681.1 −0.384899
\(334\) 22087.9 + 65284.5i 0.197998 + 0.585217i
\(335\) 179726.i 1.60148i
\(336\) −28850.7 + 105965.i −0.255551 + 0.938608i
\(337\) −127491. −1.12258 −0.561291 0.827618i \(-0.689695\pi\)
−0.561291 + 0.827618i \(0.689695\pi\)
\(338\) 103984. 35181.0i 0.910188 0.307947i
\(339\) 57938.7i 0.504162i
\(340\) 50668.3 38717.5i 0.438307 0.334926i
\(341\) −103909. −0.893602
\(342\) 6944.35 + 20525.2i 0.0593717 + 0.175483i
\(343\) 104869.i 0.891368i
\(344\) 96384.4 + 64823.5i 0.814497 + 0.547792i
\(345\) 42450.6 0.356653
\(346\) 105618. 35734.2i 0.882241 0.298491i
\(347\) 33075.9i 0.274697i −0.990523 0.137348i \(-0.956142\pi\)
0.990523 0.137348i \(-0.0438580\pi\)
\(348\) −25328.8 33146.9i −0.209149 0.273706i
\(349\) 136029. 1.11681 0.558405 0.829568i \(-0.311413\pi\)
0.558405 + 0.829568i \(0.311413\pi\)
\(350\) 112779. + 333338.i 0.920646 + 2.72112i
\(351\) 26143.1i 0.212199i
\(352\) −162901. + 9854.56i −1.31473 + 0.0795339i
\(353\) 10204.6 0.0818929 0.0409465 0.999161i \(-0.486963\pi\)
0.0409465 + 0.999161i \(0.486963\pi\)
\(354\) −131894. + 44624.1i −1.05249 + 0.356092i
\(355\) 65183.3i 0.517225i
\(356\) 75767.1 57896.4i 0.597834 0.456827i
\(357\) −35819.1 −0.281047
\(358\) −57605.4 170262.i −0.449466 1.32847i
\(359\) 28543.1i 0.221469i −0.993850 0.110734i \(-0.964680\pi\)
0.993850 0.110734i \(-0.0353203\pi\)
\(360\) −27268.4 + 40544.7i −0.210405 + 0.312845i
\(361\) 15615.6 0.119824
\(362\) −215143. + 72789.9i −1.64176 + 0.555461i
\(363\) 86744.9i 0.658311i
\(364\) −17279.7 22613.4i −0.130417 0.170673i
\(365\) −98963.6 −0.742831
\(366\) 5514.27 + 16298.4i 0.0411648 + 0.121670i
\(367\) 166509.i 1.23625i −0.786080 0.618125i \(-0.787893\pi\)
0.786080 0.618125i \(-0.212107\pi\)
\(368\) 27246.0 + 7418.18i 0.201191 + 0.0547774i
\(369\) −33392.0 −0.245239
\(370\) 482623. 163287.i 3.52537 1.19275i
\(371\) 118707.i 0.862440i
\(372\) 66829.4 51066.7i 0.482927 0.369022i
\(373\) 236231. 1.69793 0.848965 0.528448i \(-0.177226\pi\)
0.848965 + 0.528448i \(0.177226\pi\)
\(374\) −17058.9 50420.4i −0.121957 0.360465i
\(375\) 395787.i 2.81448i
\(376\) 156897. + 105521.i 1.10978 + 0.746388i
\(377\) 10810.5 0.0760615
\(378\) 157661. 53341.9i 1.10342 0.373323i
\(379\) 49309.4i 0.343282i 0.985160 + 0.171641i \(0.0549069\pi\)
−0.985160 + 0.171641i \(0.945093\pi\)
\(380\) −157049. 205525.i −1.08760 1.42330i
\(381\) 242643. 1.67155
\(382\) −63154.8 186665.i −0.432792 1.27919i
\(383\) 34149.5i 0.232802i 0.993202 + 0.116401i \(0.0371358\pi\)
−0.993202 + 0.116401i \(0.962864\pi\)
\(384\) 99927.1 86396.6i 0.677674 0.585915i
\(385\) 404770. 2.73078
\(386\) −53222.5 + 18006.9i −0.357208 + 0.120855i
\(387\) 29028.7i 0.193823i
\(388\) −56260.7 + 42990.8i −0.373716 + 0.285570i
\(389\) −169597. −1.12078 −0.560389 0.828229i \(-0.689348\pi\)
−0.560389 + 0.828229i \(0.689348\pi\)
\(390\) 16492.9 + 48747.6i 0.108435 + 0.320497i
\(391\) 9209.92i 0.0602424i
\(392\) 15361.0 22839.9i 0.0999650 0.148635i
\(393\) 162402. 1.05150
\(394\) −74403.6 + 25173.2i −0.479294 + 0.162161i
\(395\) 501158.i 3.21204i
\(396\) 24763.5 + 32407.2i 0.157914 + 0.206657i
\(397\) 197592. 1.25368 0.626842 0.779146i \(-0.284347\pi\)
0.626842 + 0.779146i \(0.284347\pi\)
\(398\) 29575.1 + 87414.1i 0.186707 + 0.551843i
\(399\) 145292.i 0.912635i
\(400\) 111196. 408408.i 0.694973 2.55255i
\(401\) −1712.54 −0.0106500 −0.00532502 0.999986i \(-0.501695\pi\)
−0.00532502 + 0.999986i \(0.501695\pi\)
\(402\) −115026. + 38917.1i −0.711777 + 0.240818i
\(403\) 21795.7i 0.134203i
\(404\) −136811. + 104542.i −0.838220 + 0.640514i
\(405\) −239123. −1.45785
\(406\) 22057.6 + 65195.0i 0.133816 + 0.395514i
\(407\) 425287.i 2.56740i
\(408\) 35750.9 + 24044.4i 0.214767 + 0.144442i
\(409\) −216801. −1.29603 −0.648015 0.761628i \(-0.724400\pi\)
−0.648015 + 0.761628i \(0.724400\pi\)
\(410\) 377586. 127750.i 2.24620 0.759963i
\(411\) 127196.i 0.752993i
\(412\) 69518.0 + 90976.0i 0.409546 + 0.535960i
\(413\) 229720. 1.34679
\(414\) −2261.68 6684.78i −0.0131957 0.0390020i
\(415\) 1351.46i 0.00784706i
\(416\) 2067.07 + 34169.8i 0.0119445 + 0.197449i
\(417\) −5209.46 −0.0299585
\(418\) −204519. + 69195.6i −1.17053 + 0.396028i
\(419\) 238060.i 1.35600i 0.735063 + 0.677999i \(0.237153\pi\)
−0.735063 + 0.677999i \(0.762847\pi\)
\(420\) −260329. + 198927.i −1.47579 + 1.12770i
\(421\) −299217. −1.68819 −0.844097 0.536190i \(-0.819863\pi\)
−0.844097 + 0.536190i \(0.819863\pi\)
\(422\) −73598.1 217532.i −0.413278 1.22151i
\(423\) 47253.7i 0.264092i
\(424\) −79684.7 + 118481.i −0.443244 + 0.659048i
\(425\) 138053. 0.764309
\(426\) 41717.7 14114.5i 0.229880 0.0777760i
\(427\) 28387.0i 0.155691i
\(428\) −12057.0 15778.7i −0.0658193 0.0861356i
\(429\) 42956.3 0.233406
\(430\) 111057. + 328247.i 0.600632 + 1.77527i
\(431\) 264960.i 1.42635i −0.700986 0.713175i \(-0.747257\pi\)
0.700986 0.713175i \(-0.252743\pi\)
\(432\) −193167. 52592.9i −1.03506 0.281812i
\(433\) −317940. −1.69578 −0.847889 0.530173i \(-0.822127\pi\)
−0.847889 + 0.530173i \(0.822127\pi\)
\(434\) −131443. + 44471.6i −0.697845 + 0.236104i
\(435\) 124453.i 0.657697i
\(436\) −140694. + 107509.i −0.740120 + 0.565552i
\(437\) 37358.0 0.195623
\(438\) −21429.1 63337.4i −0.111701 0.330150i
\(439\) 261205.i 1.35535i 0.735361 + 0.677676i \(0.237013\pi\)
−0.735361 + 0.677676i \(0.762987\pi\)
\(440\) −403999. 271711.i −2.08677 1.40346i
\(441\) −6878.85 −0.0353703
\(442\) −10576.1 + 3578.24i −0.0541353 + 0.0183158i
\(443\) 219070.i 1.11629i 0.829745 + 0.558143i \(0.188486\pi\)
−0.829745 + 0.558143i \(0.811514\pi\)
\(444\) 209010. + 273525.i 1.06023 + 1.38749i
\(445\) 284474. 1.43655
\(446\) 41926.0 + 123919.i 0.210772 + 0.622973i
\(447\) 259285.i 1.29766i
\(448\) −201849. + 82185.1i −1.00571 + 0.409484i
\(449\) 82842.7 0.410924 0.205462 0.978665i \(-0.434130\pi\)
0.205462 + 0.978665i \(0.434130\pi\)
\(450\) −100202. + 33901.8i −0.494827 + 0.167416i
\(451\) 332728.i 1.63582i
\(452\) 91358.6 69810.4i 0.447170 0.341699i
\(453\) −271785. −1.32443
\(454\) 35029.7 + 103536.i 0.169951 + 0.502320i
\(455\) 84903.9i 0.410114i
\(456\) 97530.6 145016.i 0.469041 0.697405i
\(457\) −347792. −1.66528 −0.832640 0.553815i \(-0.813172\pi\)
−0.832640 + 0.553815i \(0.813172\pi\)
\(458\) 13124.7 4440.51i 0.0625688 0.0211691i
\(459\) 65296.0i 0.309928i
\(460\) 51148.7 + 66936.7i 0.241724 + 0.316336i
\(461\) −7736.17 −0.0364019 −0.0182010 0.999834i \(-0.505794\pi\)
−0.0182010 + 0.999834i \(0.505794\pi\)
\(462\) 87647.1 + 259056.i 0.410633 + 1.21369i
\(463\) 281154.i 1.31154i −0.754960 0.655771i \(-0.772344\pi\)
0.754960 0.655771i \(-0.227656\pi\)
\(464\) 21747.9 79877.5i 0.101014 0.371012i
\(465\) 250916. 1.16044
\(466\) −82006.0 + 27745.3i −0.377636 + 0.127767i
\(467\) 227383.i 1.04262i 0.853368 + 0.521309i \(0.174556\pi\)
−0.853368 + 0.521309i \(0.825444\pi\)
\(468\) 6797.67 5194.34i 0.0310362 0.0237159i
\(469\) 200341. 0.910804
\(470\) 180781. + 534330.i 0.818385 + 2.41888i
\(471\) 299643.i 1.35071i
\(472\) −229283. 154205.i −1.02917 0.692171i
\(473\) 289251. 1.29286
\(474\) −320745. + 108519.i −1.42759 + 0.483000i
\(475\) 559983.i 2.48192i
\(476\) −43158.5 56480.1i −0.190481 0.249277i
\(477\) 35683.8 0.156832
\(478\) −53050.4 156799.i −0.232184 0.686260i
\(479\) 208710.i 0.909644i −0.890582 0.454822i \(-0.849703\pi\)
0.890582 0.454822i \(-0.150297\pi\)
\(480\) 393368. 23796.5i 1.70732 0.103283i
\(481\) −89207.4 −0.385576
\(482\) −160309. + 54237.8i −0.690023 + 0.233457i
\(483\) 47319.8i 0.202838i
\(484\) −136781. + 104519.i −0.583894 + 0.446174i
\(485\) −211235. −0.898013
\(486\) 29425.3 + 86971.5i 0.124580 + 0.368218i
\(487\) 377431.i 1.59140i −0.605689 0.795701i \(-0.707102\pi\)
0.605689 0.795701i \(-0.292898\pi\)
\(488\) −19055.3 + 28332.9i −0.0800161 + 0.118974i
\(489\) 80775.0 0.337800
\(490\) 77783.8 26316.8i 0.323964 0.109608i
\(491\) 252350.i 1.04674i 0.852104 + 0.523372i \(0.175326\pi\)
−0.852104 + 0.523372i \(0.824674\pi\)
\(492\) 163521. + 213995.i 0.675529 + 0.884044i
\(493\) 27000.8 0.111092
\(494\) 14514.3 + 42899.6i 0.0594762 + 0.175792i
\(495\) 121675.i 0.496583i
\(496\) 161045. + 43847.2i 0.654614 + 0.178229i
\(497\) −72660.0 −0.294159
\(498\) −864.943 + 292.639i −0.00348762 + 0.00117998i
\(499\) 84777.8i 0.340472i 0.985403 + 0.170236i \(0.0544530\pi\)
−0.985403 + 0.170236i \(0.945547\pi\)
\(500\) 624082. 476884.i 2.49633 1.90753i
\(501\) −138918. −0.553457
\(502\) 11559.3 + 34165.6i 0.0458696 + 0.135575i
\(503\) 134806.i 0.532811i 0.963861 + 0.266405i \(0.0858360\pi\)
−0.963861 + 0.266405i \(0.914164\pi\)
\(504\) 45195.3 + 30396.2i 0.177923 + 0.119663i
\(505\) −513667. −2.01418
\(506\) 66609.2 22536.1i 0.260155 0.0880191i
\(507\) 221266.i 0.860791i
\(508\) 292361. + 382604.i 1.13290 + 1.48259i
\(509\) 427066. 1.64839 0.824194 0.566308i \(-0.191629\pi\)
0.824194 + 0.566308i \(0.191629\pi\)
\(510\) 41193.3 + 121754.i 0.158375 + 0.468103i
\(511\) 110315.i 0.422467i
\(512\) 256633. + 53467.1i 0.978979 + 0.203961i
\(513\) −264859. −1.00642
\(514\) −132543. + 44843.7i −0.501685 + 0.169737i
\(515\) 341576.i 1.28787i
\(516\) −186033. + 142154.i −0.698699 + 0.533901i
\(517\) 470850. 1.76158
\(518\) −182017. 537982.i −0.678347 2.00497i
\(519\) 224744.i 0.834361i
\(520\) −56993.5 + 84742.2i −0.210775 + 0.313396i
\(521\) 10989.0 0.0404839 0.0202419 0.999795i \(-0.493556\pi\)
0.0202419 + 0.999795i \(0.493556\pi\)
\(522\) −19597.8 + 6630.59i −0.0719229 + 0.0243339i
\(523\) 177050.i 0.647281i 0.946180 + 0.323640i \(0.104907\pi\)
−0.946180 + 0.323640i \(0.895093\pi\)
\(524\) 195679. + 256079.i 0.712658 + 0.932633i
\(525\) −709306. −2.57345
\(526\) 22638.6 + 66912.1i 0.0818233 + 0.241843i
\(527\) 54437.8i 0.196011i
\(528\) 86416.5 317397.i 0.309977 1.13851i
\(529\) −12167.0 −0.0434783
\(530\) −403500. + 136517.i −1.43645 + 0.486000i
\(531\) 69054.7i 0.244909i
\(532\) −229099. + 175063.i −0.809469 + 0.618544i
\(533\) −69792.4 −0.245671
\(534\) 61598.6 + 182065.i 0.216017 + 0.638475i
\(535\) 59242.2i 0.206978i
\(536\) −199960. 134483.i −0.696006 0.468101i
\(537\) 362300. 1.25638
\(538\) −140185. + 47429.1i −0.484324 + 0.163863i
\(539\) 68542.9i 0.235931i
\(540\) −362631. 474564.i −1.24359 1.62745i
\(541\) −132030. −0.451107 −0.225553 0.974231i \(-0.572419\pi\)
−0.225553 + 0.974231i \(0.572419\pi\)
\(542\) 91921.3 + 271689.i 0.312908 + 0.924854i
\(543\) 457800.i 1.55266i
\(544\) 5162.80 + 85343.6i 0.0174457 + 0.288385i
\(545\) −528246. −1.77846
\(546\) 54339.1 18384.7i 0.182275 0.0616696i
\(547\) 324514.i 1.08457i 0.840193 + 0.542287i \(0.182441\pi\)
−0.840193 + 0.542287i \(0.817559\pi\)
\(548\) 200565. 153259.i 0.667873 0.510346i
\(549\) 8533.21 0.0283118
\(550\) −337807. 998446.i −1.11672 3.30065i
\(551\) 109523.i 0.360746i
\(552\) −31764.4 + 47229.7i −0.104247 + 0.155002i
\(553\) 558643. 1.82677
\(554\) 384844. 130205.i 1.25391 0.424237i
\(555\) 1.02697e6i 3.33405i
\(556\) −6276.88 8214.35i −0.0203046 0.0265720i
\(557\) 167844. 0.540998 0.270499 0.962720i \(-0.412811\pi\)
0.270499 + 0.962720i \(0.412811\pi\)
\(558\) −13368.3 39512.3i −0.0429347 0.126901i
\(559\) 60672.8i 0.194165i
\(560\) −627342. 170804.i −2.00045 0.544655i
\(561\) 107289. 0.340902
\(562\) 407591. 137901.i 1.29048 0.436613i
\(563\) 1052.70i 0.00332115i 0.999999 + 0.00166057i \(0.000528577\pi\)
−0.999999 + 0.00166057i \(0.999471\pi\)
\(564\) −302829. + 231402.i −0.952005 + 0.727461i
\(565\) 343013. 1.07452
\(566\) −67570.8 199717.i −0.210924 0.623422i
\(567\) 266552.i 0.829116i
\(568\) 72521.6 + 48774.6i 0.224787 + 0.151181i
\(569\) −298507. −0.921998 −0.460999 0.887401i \(-0.652509\pi\)
−0.460999 + 0.887401i \(0.652509\pi\)
\(570\) 493867. 167091.i 1.52006 0.514285i
\(571\) 471812.i 1.44709i −0.690275 0.723547i \(-0.742510\pi\)
0.690275 0.723547i \(-0.257490\pi\)
\(572\) 51758.0 + 67734.0i 0.158192 + 0.207021i
\(573\) 397202. 1.20977
\(574\) −142403. 420896.i −0.432211 1.27747i
\(575\) 182379.i 0.551618i
\(576\) −24705.1 60676.6i −0.0744633 0.182884i
\(577\) −199903. −0.600436 −0.300218 0.953871i \(-0.597060\pi\)
−0.300218 + 0.953871i \(0.597060\pi\)
\(578\) 290047. 98132.4i 0.868185 0.293736i
\(579\) 113252.i 0.337822i
\(580\) 196239. 149953.i 0.583350 0.445758i
\(581\) 1506.48 0.00446283
\(582\) −45739.9 135192.i −0.135036 0.399121i
\(583\) 355564.i 1.04612i
\(584\) 74051.3 110105.i 0.217124 0.322835i
\(585\) 25522.4 0.0745778
\(586\) 87866.4 29728.1i 0.255875 0.0865709i
\(587\) 328527.i 0.953443i −0.879054 0.476721i \(-0.841825\pi\)
0.879054 0.476721i \(-0.158175\pi\)
\(588\) 33685.9 + 44083.6i 0.0974301 + 0.127504i
\(589\) 220815. 0.636499
\(590\) −264187. 780848.i −0.758939 2.24317i
\(591\) 158323.i 0.453282i
\(592\) −179461. + 659140.i −0.512068 + 1.88076i
\(593\) −18298.9 −0.0520374 −0.0260187 0.999661i \(-0.508283\pi\)
−0.0260187 + 0.999661i \(0.508283\pi\)
\(594\) −472242. + 159775.i −1.33842 + 0.452830i
\(595\) 212059.i 0.598994i
\(596\) −408844. + 312412.i −1.15097 + 0.879499i
\(597\) −186008. −0.521894
\(598\) −4727.12 13971.8i −0.0132189 0.0390706i
\(599\) 98178.2i 0.273629i 0.990597 + 0.136814i \(0.0436864\pi\)
−0.990597 + 0.136814i \(0.956314\pi\)
\(600\) 707955. + 476137.i 1.96654 + 1.32260i
\(601\) 74675.7 0.206743 0.103371 0.994643i \(-0.467037\pi\)
0.103371 + 0.994643i \(0.467037\pi\)
\(602\) 365898. 123795.i 1.00964 0.341595i
\(603\) 60223.3i 0.165626i
\(604\) −327474. 428555.i −0.897642 1.17472i
\(605\) −513553. −1.40306
\(606\) −111227. 328750.i −0.302876 0.895202i
\(607\) 513233.i 1.39296i −0.717578 0.696478i \(-0.754749\pi\)
0.717578 0.696478i \(-0.245251\pi\)
\(608\) 346177. 20941.8i 0.936465 0.0566508i
\(609\) −138728. −0.374049
\(610\) −96490.7 + 32646.0i −0.259314 + 0.0877345i
\(611\) 98764.7i 0.264557i
\(612\) 16978.1 12973.6i 0.0453301 0.0346383i
\(613\) −286532. −0.762520 −0.381260 0.924468i \(-0.624510\pi\)
−0.381260 + 0.924468i \(0.624510\pi\)
\(614\) 58387.8 + 172575.i 0.154876 + 0.457763i
\(615\) 803461.i 2.12429i
\(616\) −302877. + 450339.i −0.798187 + 1.18680i
\(617\) −334406. −0.878424 −0.439212 0.898383i \(-0.644742\pi\)
−0.439212 + 0.898383i \(0.644742\pi\)
\(618\) −218611. + 73963.4i −0.572394 + 0.193660i
\(619\) 622554.i 1.62478i −0.583112 0.812392i \(-0.698165\pi\)
0.583112 0.812392i \(-0.301835\pi\)
\(620\) 302329. + 395648.i 0.786495 + 1.02926i
\(621\) 86260.9 0.223682
\(622\) 130756. + 386472.i 0.337973 + 0.998936i
\(623\) 317104.i 0.817006i
\(624\) −66576.7 18126.6i −0.170983 0.0465529i
\(625\) 1.30978e6 3.35303
\(626\) 285930. 96739.5i 0.729644 0.246862i
\(627\) 435194.i 1.10700i
\(628\) 472482. 361040.i 1.19802 0.915454i
\(629\) −222808. −0.563156
\(630\) 52075.4 + 153918.i 0.131205 + 0.387799i
\(631\) 183455.i 0.460755i 0.973101 + 0.230378i \(0.0739962\pi\)
−0.973101 + 0.230378i \(0.926004\pi\)
\(632\) −557579. 375001.i −1.39596 0.938854i
\(633\) 462883. 1.15522
\(634\) −47911.5 + 16210.0i −0.119196 + 0.0403279i
\(635\) 1.43651e6i 3.56256i
\(636\) −174744. 228682.i −0.432004 0.565350i
\(637\) −14377.4 −0.0354326
\(638\) −66069.2 195279.i −0.162315 0.479748i
\(639\) 21841.8i 0.0534918i
\(640\) 511491. + 591595.i 1.24876 + 1.44432i
\(641\) 610734. 1.48640 0.743201 0.669068i \(-0.233307\pi\)
0.743201 + 0.669068i \(0.233307\pi\)
\(642\) 37915.4 12828.0i 0.0919910 0.0311236i
\(643\) 142502.i 0.344667i −0.985039 0.172334i \(-0.944869\pi\)
0.985039 0.172334i \(-0.0551307\pi\)
\(644\) 74614.5 57015.6i 0.179908 0.137474i
\(645\) −698474. −1.67892
\(646\) 36251.5 + 107148.i 0.0868683 + 0.256754i
\(647\) 57067.6i 0.136327i 0.997674 + 0.0681633i \(0.0217139\pi\)
−0.997674 + 0.0681633i \(0.978286\pi\)
\(648\) 178928. 266044.i 0.426117 0.633582i
\(649\) −688082. −1.63362
\(650\) −209432. + 70857.8i −0.495698 + 0.167711i
\(651\) 279697.i 0.659972i
\(652\) 97325.8 + 127367.i 0.228946 + 0.299614i
\(653\) 85463.1 0.200425 0.100213 0.994966i \(-0.468048\pi\)
0.100213 + 0.994966i \(0.468048\pi\)
\(654\) −114384. 338081.i −0.267429 0.790433i
\(655\) 961467.i 2.24105i
\(656\) −140404. + 515685.i −0.326265 + 1.19833i
\(657\) −33161.1 −0.0768241
\(658\) 595619. 201517.i 1.37568 0.465437i
\(659\) 407272.i 0.937807i −0.883250 0.468903i \(-0.844649\pi\)
0.883250 0.468903i \(-0.155351\pi\)
\(660\) 779765. 595846.i 1.79009 1.36787i
\(661\) 156882. 0.359064 0.179532 0.983752i \(-0.442542\pi\)
0.179532 + 0.983752i \(0.442542\pi\)
\(662\) −54503.8 161095.i −0.124369 0.367593i
\(663\) 22504.8i 0.0511973i
\(664\) −1503.61 1011.25i −0.00341034 0.00229363i
\(665\) −860170. −1.94510
\(666\) 161719. 54714.9i 0.364597 0.123355i
\(667\) 35670.1i 0.0801775i
\(668\) −167383. 219048.i −0.375109 0.490893i
\(669\) −263687. −0.589164
\(670\) −230400. 680985.i −0.513254 1.51701i
\(671\) 85027.5i 0.188849i
\(672\) −26526.0 438488.i −0.0587400 0.971000i
\(673\) 442095. 0.976080 0.488040 0.872821i \(-0.337712\pi\)
0.488040 + 0.872821i \(0.337712\pi\)
\(674\) 483063. 163436.i 1.06337 0.359773i
\(675\) 1.29302e6i 2.83790i
\(676\) −348895. + 266603.i −0.763486 + 0.583407i
\(677\) 263274. 0.574421 0.287210 0.957867i \(-0.407272\pi\)
0.287210 + 0.957867i \(0.407272\pi\)
\(678\) 74274.4 + 219531.i 0.161577 + 0.477568i
\(679\) 235464.i 0.510723i
\(680\) −142349. + 211655.i −0.307848 + 0.457732i
\(681\) −220314. −0.475058
\(682\) 393712. 133206.i 0.846467 0.286388i
\(683\) 345585.i 0.740821i 0.928868 + 0.370410i \(0.120783\pi\)
−0.928868 + 0.370410i \(0.879217\pi\)
\(684\) −52624.5 68867.9i −0.112480 0.147199i
\(685\) 753037. 1.60485
\(686\) 134436. + 397348.i 0.285672 + 0.844351i
\(687\) 27927.9i 0.0591731i
\(688\) −448302. 122057.i −0.947095 0.257862i
\(689\) 74582.3 0.157108
\(690\) −160846. + 54419.4i −0.337840 + 0.114302i
\(691\) 232619.i 0.487179i −0.969878 0.243589i \(-0.921675\pi\)
0.969878 0.243589i \(-0.0783249\pi\)
\(692\) −354380. + 270795.i −0.740043 + 0.565494i
\(693\) 135632. 0.282420
\(694\) 42401.6 + 125325.i 0.0880367 + 0.260207i
\(695\) 30841.4i 0.0638506i
\(696\) 138464. + 93124.0i 0.285836 + 0.192240i
\(697\) −174316. −0.358816
\(698\) −515414. + 174382.i −1.05790 + 0.357923i
\(699\) 174500.i 0.357142i
\(700\) −854643. 1.11844e6i −1.74417 2.28254i
\(701\) 479883. 0.976561 0.488281 0.872687i \(-0.337624\pi\)
0.488281 + 0.872687i \(0.337624\pi\)
\(702\) 33514.1 + 99056.5i 0.0680069 + 0.201006i
\(703\) 903769.i 1.82872i
\(704\) 604600. 246169.i 1.21990 0.496693i
\(705\) −1.13699e6 −2.28760
\(706\) −38665.3 + 13081.8i −0.0775733 + 0.0262456i
\(707\) 572586.i 1.14552i
\(708\) 442542. 338162.i 0.882852 0.674619i
\(709\) 111586. 0.221983 0.110991 0.993821i \(-0.464597\pi\)
0.110991 + 0.993821i \(0.464597\pi\)
\(710\) 83561.5 + 246980.i 0.165764 + 0.489943i
\(711\) 167930.i 0.332192i
\(712\) −212863. + 316500.i −0.419894 + 0.624329i
\(713\) −71916.5 −0.141465
\(714\) 135719. 45918.3i 0.266223 0.0900718i
\(715\) 254313.i 0.497457i
\(716\) 436535. + 571279.i 0.851516 + 1.11435i
\(717\) 333652. 0.649016
\(718\) 36590.8 + 108150.i 0.0709779 + 0.209787i
\(719\) 33918.8i 0.0656119i −0.999462 0.0328059i \(-0.989556\pi\)
0.999462 0.0328059i \(-0.0104443\pi\)
\(720\) 51344.2 188581.i 0.0990436 0.363775i
\(721\) 380756. 0.732448
\(722\) −59167.7 + 20018.4i −0.113504 + 0.0384021i
\(723\) 341120.i 0.652575i
\(724\) 721866. 551603.i 1.37714 1.05232i
\(725\) 534682. 1.01723
\(726\) −111202. 328678.i −0.210980 0.623587i
\(727\) 2235.91i 0.00423043i 0.999998 + 0.00211522i \(0.000673295\pi\)
−0.999998 + 0.00211522i \(0.999327\pi\)
\(728\) 94462.4 + 63530.9i 0.178236 + 0.119873i
\(729\) −590846. −1.11178
\(730\) 374974. 126866.i 0.703649 0.238067i
\(731\) 151538.i 0.283588i
\(732\) −41787.3 54685.7i −0.0779870 0.102059i
\(733\) −518923. −0.965818 −0.482909 0.875671i \(-0.660420\pi\)
−0.482909 + 0.875671i \(0.660420\pi\)
\(734\) 213456. + 630906.i 0.396202 + 1.17104i
\(735\) 165515.i 0.306382i
\(736\) −112745. + 6820.45i −0.208134 + 0.0125909i
\(737\) −600083. −1.10478
\(738\) 126523. 42806.8i 0.232304 0.0785959i
\(739\) 417443.i 0.764378i −0.924084 0.382189i \(-0.875170\pi\)
0.924084 0.382189i \(-0.124830\pi\)
\(740\) −1.61934e6 + 1.23740e6i −2.95716 + 2.25967i
\(741\) −91285.6 −0.166252
\(742\) 152176. + 449783.i 0.276401 + 0.816949i
\(743\) 190838.i 0.345690i −0.984949 0.172845i \(-0.944704\pi\)
0.984949 0.172845i \(-0.0552960\pi\)
\(744\) −187752. + 279164.i −0.339187 + 0.504329i
\(745\) −1.53504e6 −2.76570
\(746\) −895084. + 302836.i −1.60837 + 0.544165i
\(747\) 452.852i 0.000811549i
\(748\) 129273. + 169175.i 0.231049 + 0.302366i
\(749\) −66037.4 −0.117714
\(750\) 507378. + 1.49964e6i 0.902005 + 2.66603i
\(751\) 268214.i 0.475556i −0.971319 0.237778i \(-0.923581\pi\)
0.971319 0.237778i \(-0.0764191\pi\)
\(752\) −729757. 198688.i −1.29045 0.351347i
\(753\) −72700.6 −0.128218
\(754\) −40961.3 + 13858.6i −0.0720495 + 0.0243767i
\(755\) 1.60904e6i 2.82276i
\(756\) −528997. + 404226.i −0.925572 + 0.707262i
\(757\) −516815. −0.901868 −0.450934 0.892557i \(-0.648909\pi\)
−0.450934 + 0.892557i \(0.648909\pi\)
\(758\) −63212.0 186834.i −0.110017 0.325175i
\(759\) 141737.i 0.246037i
\(760\) 858532. + 577408.i 1.48638 + 0.999667i
\(761\) 498527. 0.860834 0.430417 0.902630i \(-0.358367\pi\)
0.430417 + 0.902630i \(0.358367\pi\)
\(762\) −919379. + 311056.i −1.58338 + 0.535709i
\(763\) 588837.i 1.01145i
\(764\) 478588. + 626313.i 0.819928 + 1.07301i
\(765\) 63745.6 0.108925
\(766\) −43777.9 129393.i −0.0746100 0.220522i
\(767\) 144331.i 0.245340i
\(768\) −267869. + 455459.i −0.454151 + 0.772195i
\(769\) 338826. 0.572959 0.286480 0.958086i \(-0.407515\pi\)
0.286480 + 0.958086i \(0.407515\pi\)
\(770\) −1.53368e6 + 518894.i −2.58674 + 0.875180i
\(771\) 282037.i 0.474458i
\(772\) 178577. 136457.i 0.299634 0.228961i
\(773\) −201809. −0.337739 −0.168869 0.985638i \(-0.554012\pi\)
−0.168869 + 0.985638i \(0.554012\pi\)
\(774\) 37213.3 + 109990.i 0.0621179 + 0.183600i
\(775\) 1.07800e6i 1.79480i
\(776\) 158060. 235016.i 0.262482 0.390278i
\(777\) 1.14477e6 1.89616
\(778\) 642606. 217415.i 1.06166 0.359195i
\(779\) 707074.i 1.16517i
\(780\) −124984. 163562.i −0.205430 0.268840i
\(781\) 217638. 0.356807
\(782\) −11806.6 34896.5i −0.0193069 0.0570648i
\(783\) 252892.i 0.412488i
\(784\) −28923.6 + 106233.i −0.0470565 + 0.172833i
\(785\) 1.77397e6 2.87877
\(786\) −615345. + 208191.i −0.996033 + 0.336991i
\(787\) 998369.i 1.61191i −0.591975 0.805956i \(-0.701652\pi\)
0.591975 0.805956i \(-0.298348\pi\)
\(788\) 249645. 190763.i 0.402042 0.307215i
\(789\) −142382. −0.228718
\(790\) −642459. 1.89890e6i −1.02942 3.04261i
\(791\) 382358.i 0.611106i
\(792\) −135373. 91045.7i −0.215816 0.145147i
\(793\) 17835.2 0.0283617
\(794\) −748678. + 253302.i −1.18756 + 0.401789i
\(795\) 858604.i 1.35850i
\(796\) −224121. 293299.i −0.353717 0.462898i
\(797\) −237838. −0.374425 −0.187212 0.982319i \(-0.559945\pi\)
−0.187212 + 0.982319i \(0.559945\pi\)
\(798\) −186257. 550515.i −0.292488 0.864496i
\(799\) 246678.i 0.386400i
\(800\) 102236. + 1.69001e6i 0.159744 + 2.64064i
\(801\) 95322.4 0.148570
\(802\) 6488.83 2195.38i 0.0100883 0.00341320i
\(803\) 330427.i 0.512441i
\(804\) 385945. 294915.i 0.597054 0.456230i
\(805\) 280146. 0.432307
\(806\) −27941.0 82584.3i −0.0430102 0.127124i
\(807\) 298297.i 0.458039i
\(808\) 384361. 571495.i 0.588730 0.875367i
\(809\) 520330. 0.795027 0.397513 0.917596i \(-0.369873\pi\)
0.397513 + 0.917596i \(0.369873\pi\)
\(810\) 906041. 306544.i 1.38095 0.467221i
\(811\) 107019.i 0.162712i 0.996685 + 0.0813561i \(0.0259251\pi\)
−0.996685 + 0.0813561i \(0.974075\pi\)
\(812\) −167153. 218748.i −0.253514 0.331766i
\(813\) −578124. −0.874661
\(814\) 545195. + 1.61142e6i 0.822817 + 2.43197i
\(815\) 478210.i 0.719952i
\(816\) −166284. 45273.6i −0.249730 0.0679930i
\(817\) −614682. −0.920887
\(818\) 821462. 277928.i 1.22767 0.415360i
\(819\) 28449.9i 0.0424143i
\(820\) −1.26691e6 + 968090.i −1.88416 + 1.43975i
\(821\) 1.07705e6 1.59790 0.798950 0.601397i \(-0.205389\pi\)
0.798950 + 0.601397i \(0.205389\pi\)
\(822\) 163059. + 481948.i 0.241324 + 0.713275i
\(823\) 48998.1i 0.0723402i 0.999346 + 0.0361701i \(0.0115158\pi\)
−0.999346 + 0.0361701i \(0.988484\pi\)
\(824\) −380031. 255591.i −0.559712 0.376436i
\(825\) 2.12458e6 3.12152
\(826\) −870414. + 294490.i −1.27575 + 0.431628i
\(827\) 675667.i 0.987920i −0.869485 0.493960i \(-0.835549\pi\)
0.869485 0.493960i \(-0.164451\pi\)
\(828\) 17139.1 + 22429.4i 0.0249992 + 0.0327157i
\(829\) 353332. 0.514131 0.257065 0.966394i \(-0.417244\pi\)
0.257065 + 0.966394i \(0.417244\pi\)
\(830\) −1732.50 5120.70i −0.00251488 0.00743315i
\(831\) 818905.i 1.18585i
\(832\) −51636.0 126820.i −0.0745943 0.183206i
\(833\) −35909.6 −0.0517512
\(834\) 19738.7 6678.26i 0.0283783 0.00960132i
\(835\) 822434.i 1.17958i
\(836\) 686221. 524366.i 0.981864 0.750277i
\(837\) 509869. 0.727793
\(838\) −305181. 902014.i −0.434580 1.28447i
\(839\) 803680.i 1.14172i −0.821048 0.570860i \(-0.806610\pi\)
0.821048 0.570860i \(-0.193390\pi\)
\(840\) 731377. 1.08747e6i 1.03653 1.54119i
\(841\) −602707. −0.852146
\(842\) 1.13374e6 383581.i 1.59915 0.541044i
\(843\) 867309.i 1.22045i
\(844\) 557728. + 729881.i 0.782957 + 1.02463i
\(845\) −1.30995e6 −1.83460
\(846\) 60576.8 + 179045.i 0.0846381 + 0.250162i
\(847\) 572460.i 0.797954i
\(848\) 150040. 551078.i 0.208648 0.766339i
\(849\) 424976. 0.589588
\(850\) −523086. + 176977.i −0.723994 + 0.244951i
\(851\) 294345.i 0.406442i
\(852\) −139975. + 106960.i −0.192828 + 0.147347i
\(853\) −550338. −0.756366 −0.378183 0.925731i \(-0.623451\pi\)
−0.378183 + 0.925731i \(0.623451\pi\)
\(854\) 36390.6 + 107559.i 0.0498969 + 0.147479i
\(855\) 258570.i 0.353709i
\(856\) 65911.7 + 44329.0i 0.0899528 + 0.0604980i
\(857\) −1.36973e6 −1.86498 −0.932492 0.361192i \(-0.882370\pi\)
−0.932492 + 0.361192i \(0.882370\pi\)
\(858\) −162762. + 55067.7i −0.221094 + 0.0748035i
\(859\) 1.40361e6i 1.90222i 0.308856 + 0.951109i \(0.400054\pi\)
−0.308856 + 0.951109i \(0.599946\pi\)
\(860\) −841592. 1.10136e6i −1.13790 1.48914i
\(861\) 895621. 1.20814
\(862\) 339665. + 1.00394e6i 0.457126 + 1.35111i
\(863\) 185129.i 0.248572i −0.992246 0.124286i \(-0.960336\pi\)
0.992246 0.124286i \(-0.0396641\pi\)
\(864\) 799335. 48355.2i 1.07078 0.0647762i
\(865\) −1.33055e6 −1.77827
\(866\) 1.20468e6 407582.i 1.60633 0.543475i
\(867\) 617188.i 0.821068i
\(868\) 441030. 337007.i 0.585368 0.447300i
\(869\) −1.67330e6 −2.21582
\(870\) 159542. + 471553.i 0.210783 + 0.623006i
\(871\) 125872.i 0.165918i
\(872\) 395269. 587716.i 0.519829 0.772919i
\(873\) −70781.4 −0.0928732
\(874\) −141550. + 47891.0i −0.185305 + 0.0626947i
\(875\) 2.61193e6i 3.41150i
\(876\) 162390. + 212515.i 0.211618 + 0.276937i
\(877\) −991741. −1.28943 −0.644717 0.764421i \(-0.723025\pi\)
−0.644717 + 0.764421i \(0.723025\pi\)
\(878\) −334851. 989708.i −0.434372 1.28386i
\(879\) 186970.i 0.241988i
\(880\) 1.87908e6 + 511609.i 2.42649 + 0.660652i
\(881\) 853384. 1.09949 0.549747 0.835331i \(-0.314724\pi\)
0.549747 + 0.835331i \(0.314724\pi\)
\(882\) 26064.1 8818.33i 0.0335046 0.0113357i
\(883\) 218646.i 0.280427i 0.990121 + 0.140214i \(0.0447789\pi\)
−0.990121 + 0.140214i \(0.955221\pi\)
\(884\) 35485.8 27116.0i 0.0454099 0.0346993i
\(885\) 1.66156e6 2.12143
\(886\) −280836. 830059.i −0.357755 1.05741i
\(887\) 1.38562e6i 1.76115i −0.473908 0.880575i \(-0.657157\pi\)
0.473908 0.880575i \(-0.342843\pi\)
\(888\) −1.14259e6 768448.i −1.44898 0.974515i
\(889\) 1.60129e6 2.02612
\(890\) −1.07787e6 + 364680.i −1.36078 + 0.460397i
\(891\) 798402.i 1.00569i
\(892\) −317716. 415785.i −0.399309 0.522563i
\(893\) −1.00060e6 −1.25475
\(894\) −332389. 982433.i −0.415884 1.22921i
\(895\) 2.14491e6i 2.67771i
\(896\) 659453. 570161.i 0.821425 0.710201i
\(897\) 29730.5 0.0369502
\(898\) −313892. + 106200.i −0.389249 + 0.131696i
\(899\) 210838.i 0.260873i
\(900\) 336208. 256908.i 0.415071 0.317171i
\(901\) 186280. 0.229465
\(902\) 426540. + 1.26071e6i 0.524260 + 1.54954i
\(903\) 778592.i 0.954848i
\(904\) −256666. + 381629.i −0.314073 + 0.466987i
\(905\) 2.71030e6 3.30918
\(906\) 1.02980e6 348415.i 1.25457 0.424463i
\(907\) 210955.i 0.256434i −0.991746 0.128217i \(-0.959075\pi\)
0.991746 0.128217i \(-0.0409254\pi\)
\(908\) −265456. 347393.i −0.321974 0.421357i
\(909\) −172121. −0.208308
\(910\) 108842. + 321702.i 0.131436 + 0.388482i
\(911\) 1.09921e6i 1.32447i −0.749295 0.662236i \(-0.769607\pi\)
0.749295 0.662236i \(-0.230393\pi\)
\(912\) −183642. + 674495.i −0.220792 + 0.810941i
\(913\) −4512.35 −0.00541329
\(914\) 1.31779e6 445851.i 1.57744 0.533700i
\(915\) 205322.i 0.245241i
\(916\) −44037.1 + 33650.3i −0.0524841 + 0.0401049i
\(917\) 1.07175e6 1.27454
\(918\) 83706.0 + 247407.i 0.0993279 + 0.293580i
\(919\) 1.51580e6i 1.79478i −0.441234 0.897392i \(-0.645459\pi\)
0.441234 0.897392i \(-0.354541\pi\)
\(920\) −279612. 188054.i −0.330355 0.222181i
\(921\) −367221. −0.432920
\(922\) 29312.5 9917.37i 0.0344818 0.0116663i
\(923\) 45651.4i 0.0535860i
\(924\) −664192. 869206.i −0.777946 1.01807i
\(925\) −4.41213e6 −5.15661
\(926\) 360424. + 1.06530e6i 0.420332 + 1.24236i
\(927\) 114457.i 0.133193i
\(928\) 19995.6 + 330536.i 0.0232187 + 0.383816i
\(929\) 582526. 0.674969 0.337485 0.941331i \(-0.390424\pi\)
0.337485 + 0.941331i \(0.390424\pi\)
\(930\) −950724. + 321661.i −1.09923 + 0.371906i
\(931\) 145659.i 0.168050i
\(932\) 275154. 210255.i 0.316770 0.242055i
\(933\) −822371. −0.944722
\(934\) −291493. 861558.i −0.334145 0.987622i
\(935\) 635180.i 0.726564i
\(936\) −19097.6 + 28395.7i −0.0217985 + 0.0324116i
\(937\) −637352. −0.725939 −0.362970 0.931801i \(-0.618237\pi\)
−0.362970 + 0.931801i \(0.618237\pi\)
\(938\) −759096. + 256827.i −0.862762 + 0.291901i
\(939\) 608427.i 0.690045i
\(940\) −1.36996e6 1.79283e6i −1.55044 2.02901i
\(941\) 598400. 0.675790 0.337895 0.941184i \(-0.390285\pi\)
0.337895 + 0.941184i \(0.390285\pi\)
\(942\) 384127. + 1.13535e6i 0.432885 + 1.27947i
\(943\) 230285.i 0.258965i
\(944\) 1.06644e6 + 290355.i 1.19672 + 0.325826i
\(945\) −1.98616e6 −2.22408
\(946\) −1.09598e6 + 370805.i −1.22467 + 0.414346i
\(947\) 173533.i 0.193500i −0.995309 0.0967502i \(-0.969155\pi\)
0.995309 0.0967502i \(-0.0308448\pi\)
\(948\) 1.07619e6 822356.i 1.19749 0.915046i
\(949\) −69309.7 −0.0769594
\(950\) 717868. + 2.12178e6i 0.795422 + 2.35100i
\(951\) 101950.i 0.112727i
\(952\) 235933. + 158677.i 0.260324 + 0.175081i
\(953\) 385958. 0.424966 0.212483 0.977165i \(-0.431845\pi\)
0.212483 + 0.977165i \(0.431845\pi\)
\(954\) −135206. + 45744.7i −0.148559 + 0.0502625i
\(955\) 2.35154e6i 2.57837i
\(956\) 402017. + 526107.i 0.439875 + 0.575650i
\(957\) 415532. 0.453712
\(958\) 267555. + 790804.i 0.291529 + 0.861663i
\(959\) 839412.i 0.912721i
\(960\) −1.45997e6 + 594442.i −1.58417 + 0.645011i
\(961\) 498438. 0.539715
\(962\) 338008. 114359.i 0.365238 0.123572i
\(963\) 19851.1i 0.0214058i
\(964\) 537882. 411015.i 0.578806 0.442286i
\(965\) 670480. 0.719998
\(966\) 60661.5 + 179295.i 0.0650068 + 0.192139i
\(967\) 1.03952e6i 1.11168i 0.831290 + 0.555840i \(0.187603\pi\)
−0.831290 + 0.555840i \(0.812397\pi\)
\(968\) 384276. 571369.i 0.410102 0.609770i
\(969\) −227998. −0.242820
\(970\) 800372. 270792.i 0.850645 0.287801i
\(971\) 256268.i 0.271804i 0.990722 + 0.135902i \(0.0433933\pi\)
−0.990722 + 0.135902i \(0.956607\pi\)
\(972\) −222986. 291814.i −0.236018 0.308869i
\(973\) −34379.0 −0.0363135
\(974\) 483847. + 1.43009e6i 0.510024 + 1.50746i
\(975\) 445649.i 0.468796i
\(976\) 35879.7 131782.i 0.0376659 0.138342i
\(977\) 95494.9 0.100044 0.0500220 0.998748i \(-0.484071\pi\)
0.0500220 + 0.998748i \(0.484071\pi\)
\(978\) −306058. + 103549.i −0.319982 + 0.108260i
\(979\) 949821.i 0.991006i
\(980\) −260987. + 199429.i −0.271748 + 0.207652i
\(981\) −177006. −0.183929
\(982\) −323499. 956157.i −0.335468 0.991531i
\(983\) 252122.i 0.260918i 0.991454 + 0.130459i \(0.0416451\pi\)
−0.991454 + 0.130459i \(0.958355\pi\)
\(984\) −893915. 601204.i −0.923221 0.620915i
\(985\) 937313. 0.966078
\(986\) −102306. + 34613.6i −0.105232 + 0.0356035i
\(987\) 1.26741e6i 1.30102i
\(988\) −109990. 143940.i −0.112678 0.147458i
\(989\) 200194. 0.204672
\(990\) −155981. 461029.i −0.159148 0.470390i
\(991\) 884004.i 0.900133i 0.892995 + 0.450067i \(0.148600\pi\)
−0.892995 + 0.450067i \(0.851400\pi\)
\(992\) −666413. + 40314.2i −0.677205 + 0.0409670i
\(993\) 342793. 0.347643
\(994\) 275310. 93146.3i 0.278643 0.0942742i
\(995\) 1.10122e6i 1.11231i
\(996\) 2902.13 2217.62i 0.00292549 0.00223547i
\(997\) 26841.2 0.0270030 0.0135015 0.999909i \(-0.495702\pi\)
0.0135015 + 0.999909i \(0.495702\pi\)
\(998\) −108681. 321224.i −0.109117 0.322513i
\(999\) 2.08683e6i 2.09101i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.5.c.a.47.4 yes 44
4.3 odd 2 inner 92.5.c.a.47.3 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.5.c.a.47.3 44 4.3 odd 2 inner
92.5.c.a.47.4 yes 44 1.1 even 1 trivial