Properties

Label 924.2.n.b.923.7
Level $924$
Weight $2$
Character 924.923
Analytic conductor $7.378$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [924,2,Mod(923,924)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(924, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("924.923");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 924.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.37817714677\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 8x^{6} + 13x^{4} - 12x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 923.7
Root \(-0.965926 - 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 924.923
Dual form 924.2.n.b.923.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.11803i) q^{2} -1.73205 q^{3} +(-0.500000 + 1.93649i) q^{4} -1.41421 q^{5} +(-1.50000 - 1.93649i) q^{6} +(2.12132 + 1.58114i) q^{7} +(-2.59808 + 1.11803i) q^{8} +3.00000 q^{9} +(-1.22474 - 1.58114i) q^{10} +(2.44949 + 2.23607i) q^{11} +(0.866025 - 3.35410i) q^{12} +2.44949 q^{13} +(0.0693504 + 3.74101i) q^{14} +2.44949 q^{15} +(-3.50000 - 1.93649i) q^{16} +(2.59808 + 3.35410i) q^{18} +6.32456i q^{19} +(0.707107 - 2.73861i) q^{20} +(-3.67423 - 2.73861i) q^{21} +(-0.378680 + 4.67510i) q^{22} -2.44949 q^{23} +(4.50000 - 1.93649i) q^{24} -3.00000 q^{25} +(2.12132 + 2.73861i) q^{26} -5.19615 q^{27} +(-4.12252 + 3.31735i) q^{28} -6.92820 q^{29} +(2.12132 + 2.73861i) q^{30} -3.46410 q^{31} +(-0.866025 - 5.59017i) q^{32} +(-4.24264 - 3.87298i) q^{33} +(-3.00000 - 2.23607i) q^{35} +(-1.50000 + 5.80948i) q^{36} +2.00000 q^{37} +(-7.07107 + 5.47723i) q^{38} -4.24264 q^{39} +(3.67423 - 1.58114i) q^{40} -7.74597i q^{41} +(-0.120118 - 6.47963i) q^{42} +(-5.55487 + 3.62538i) q^{44} -4.24264 q^{45} +(-2.12132 - 2.73861i) q^{46} -5.47723i q^{47} +(6.06218 + 3.35410i) q^{48} +(2.00000 + 6.70820i) q^{49} +(-2.59808 - 3.35410i) q^{50} +(-1.22474 + 4.74342i) q^{52} +9.48683i q^{53} +(-4.50000 - 5.80948i) q^{54} +(-3.46410 - 3.16228i) q^{55} +(-7.27912 - 1.73621i) q^{56} -10.9545i q^{57} +(-6.00000 - 7.74597i) q^{58} +10.9545i q^{59} +(-1.22474 + 4.74342i) q^{60} +7.34847 q^{61} +(-3.00000 - 3.87298i) q^{62} +(6.36396 + 4.74342i) q^{63} +(5.50000 - 5.80948i) q^{64} -3.46410 q^{65} +(0.655892 - 8.09752i) q^{66} +7.74597i q^{67} +4.24264 q^{69} +(-0.0980762 - 5.29059i) q^{70} -12.2474 q^{71} +(-7.79423 + 3.35410i) q^{72} +9.79796 q^{73} +(1.73205 + 2.23607i) q^{74} +5.19615 q^{75} +(-12.2474 - 3.16228i) q^{76} +(1.66062 + 8.61640i) q^{77} +(-3.67423 - 4.74342i) q^{78} -4.24264 q^{79} +(4.94975 + 2.73861i) q^{80} +9.00000 q^{81} +(8.66025 - 6.70820i) q^{82} -6.00000 q^{83} +(7.14042 - 5.74582i) q^{84} +12.0000 q^{87} +(-8.86396 - 3.07086i) q^{88} +2.82843 q^{89} +(-3.67423 - 4.74342i) q^{90} +(5.19615 + 3.87298i) q^{91} +(1.22474 - 4.74342i) q^{92} +6.00000 q^{93} +(6.12372 - 4.74342i) q^{94} -8.94427i q^{95} +(1.50000 + 9.68246i) q^{96} +13.4164i q^{97} +(-5.76795 + 8.04554i) q^{98} +(7.34847 + 6.70820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 12 q^{6} + 24 q^{9} - 28 q^{16} - 20 q^{22} + 36 q^{24} - 24 q^{25} - 24 q^{35} - 12 q^{36} + 16 q^{37} + 16 q^{49} - 36 q^{54} - 48 q^{58} - 24 q^{62} + 44 q^{64} + 20 q^{70} + 72 q^{81}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/924\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(661\) \(673\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 1.11803i 0.612372 + 0.790569i
\(3\) −1.73205 −1.00000
\(4\) −0.500000 + 1.93649i −0.250000 + 0.968246i
\(5\) −1.41421 −0.632456 −0.316228 0.948683i \(-0.602416\pi\)
−0.316228 + 0.948683i \(0.602416\pi\)
\(6\) −1.50000 1.93649i −0.612372 0.790569i
\(7\) 2.12132 + 1.58114i 0.801784 + 0.597614i
\(8\) −2.59808 + 1.11803i −0.918559 + 0.395285i
\(9\) 3.00000 1.00000
\(10\) −1.22474 1.58114i −0.387298 0.500000i
\(11\) 2.44949 + 2.23607i 0.738549 + 0.674200i
\(12\) 0.866025 3.35410i 0.250000 0.968246i
\(13\) 2.44949 0.679366 0.339683 0.940540i \(-0.389680\pi\)
0.339683 + 0.940540i \(0.389680\pi\)
\(14\) 0.0693504 + 3.74101i 0.0185347 + 0.999828i
\(15\) 2.44949 0.632456
\(16\) −3.50000 1.93649i −0.875000 0.484123i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.59808 + 3.35410i 0.612372 + 0.790569i
\(19\) 6.32456i 1.45095i 0.688247 + 0.725476i \(0.258380\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0.707107 2.73861i 0.158114 0.612372i
\(21\) −3.67423 2.73861i −0.801784 0.597614i
\(22\) −0.378680 + 4.67510i −0.0807348 + 0.996736i
\(23\) −2.44949 −0.510754 −0.255377 0.966842i \(-0.582200\pi\)
−0.255377 + 0.966842i \(0.582200\pi\)
\(24\) 4.50000 1.93649i 0.918559 0.395285i
\(25\) −3.00000 −0.600000
\(26\) 2.12132 + 2.73861i 0.416025 + 0.537086i
\(27\) −5.19615 −1.00000
\(28\) −4.12252 + 3.31735i −0.779083 + 0.626920i
\(29\) −6.92820 −1.28654 −0.643268 0.765641i \(-0.722422\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(30\) 2.12132 + 2.73861i 0.387298 + 0.500000i
\(31\) −3.46410 −0.622171 −0.311086 0.950382i \(-0.600693\pi\)
−0.311086 + 0.950382i \(0.600693\pi\)
\(32\) −0.866025 5.59017i −0.153093 0.988212i
\(33\) −4.24264 3.87298i −0.738549 0.674200i
\(34\) 0 0
\(35\) −3.00000 2.23607i −0.507093 0.377964i
\(36\) −1.50000 + 5.80948i −0.250000 + 0.968246i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −7.07107 + 5.47723i −1.14708 + 0.888523i
\(39\) −4.24264 −0.679366
\(40\) 3.67423 1.58114i 0.580948 0.250000i
\(41\) 7.74597i 1.20972i −0.796333 0.604858i \(-0.793230\pi\)
0.796333 0.604858i \(-0.206770\pi\)
\(42\) −0.120118 6.47963i −0.0185347 0.999828i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −5.55487 + 3.62538i −0.837428 + 0.546547i
\(45\) −4.24264 −0.632456
\(46\) −2.12132 2.73861i −0.312772 0.403786i
\(47\) 5.47723i 0.798935i −0.916747 0.399468i \(-0.869195\pi\)
0.916747 0.399468i \(-0.130805\pi\)
\(48\) 6.06218 + 3.35410i 0.875000 + 0.484123i
\(49\) 2.00000 + 6.70820i 0.285714 + 0.958315i
\(50\) −2.59808 3.35410i −0.367423 0.474342i
\(51\) 0 0
\(52\) −1.22474 + 4.74342i −0.169842 + 0.657794i
\(53\) 9.48683i 1.30312i 0.758599 + 0.651558i \(0.225884\pi\)
−0.758599 + 0.651558i \(0.774116\pi\)
\(54\) −4.50000 5.80948i −0.612372 0.790569i
\(55\) −3.46410 3.16228i −0.467099 0.426401i
\(56\) −7.27912 1.73621i −0.972713 0.232011i
\(57\) 10.9545i 1.45095i
\(58\) −6.00000 7.74597i −0.787839 1.01710i
\(59\) 10.9545i 1.42615i 0.701089 + 0.713074i \(0.252698\pi\)
−0.701089 + 0.713074i \(0.747302\pi\)
\(60\) −1.22474 + 4.74342i −0.158114 + 0.612372i
\(61\) 7.34847 0.940875 0.470438 0.882433i \(-0.344096\pi\)
0.470438 + 0.882433i \(0.344096\pi\)
\(62\) −3.00000 3.87298i −0.381000 0.491869i
\(63\) 6.36396 + 4.74342i 0.801784 + 0.597614i
\(64\) 5.50000 5.80948i 0.687500 0.726184i
\(65\) −3.46410 −0.429669
\(66\) 0.655892 8.09752i 0.0807348 0.996736i
\(67\) 7.74597i 0.946320i 0.880976 + 0.473160i \(0.156887\pi\)
−0.880976 + 0.473160i \(0.843113\pi\)
\(68\) 0 0
\(69\) 4.24264 0.510754
\(70\) −0.0980762 5.29059i −0.0117223 0.632347i
\(71\) −12.2474 −1.45350 −0.726752 0.686900i \(-0.758971\pi\)
−0.726752 + 0.686900i \(0.758971\pi\)
\(72\) −7.79423 + 3.35410i −0.918559 + 0.395285i
\(73\) 9.79796 1.14676 0.573382 0.819288i \(-0.305631\pi\)
0.573382 + 0.819288i \(0.305631\pi\)
\(74\) 1.73205 + 2.23607i 0.201347 + 0.259938i
\(75\) 5.19615 0.600000
\(76\) −12.2474 3.16228i −1.40488 0.362738i
\(77\) 1.66062 + 8.61640i 0.189245 + 0.981930i
\(78\) −3.67423 4.74342i −0.416025 0.537086i
\(79\) −4.24264 −0.477334 −0.238667 0.971101i \(-0.576710\pi\)
−0.238667 + 0.971101i \(0.576710\pi\)
\(80\) 4.94975 + 2.73861i 0.553399 + 0.306186i
\(81\) 9.00000 1.00000
\(82\) 8.66025 6.70820i 0.956365 0.740797i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 7.14042 5.74582i 0.779083 0.626920i
\(85\) 0 0
\(86\) 0 0
\(87\) 12.0000 1.28654
\(88\) −8.86396 3.07086i −0.944901 0.327355i
\(89\) 2.82843 0.299813 0.149906 0.988700i \(-0.452103\pi\)
0.149906 + 0.988700i \(0.452103\pi\)
\(90\) −3.67423 4.74342i −0.387298 0.500000i
\(91\) 5.19615 + 3.87298i 0.544705 + 0.405999i
\(92\) 1.22474 4.74342i 0.127688 0.494535i
\(93\) 6.00000 0.622171
\(94\) 6.12372 4.74342i 0.631614 0.489246i
\(95\) 8.94427i 0.917663i
\(96\) 1.50000 + 9.68246i 0.153093 + 0.988212i
\(97\) 13.4164i 1.36223i 0.732177 + 0.681115i \(0.238505\pi\)
−0.732177 + 0.681115i \(0.761495\pi\)
\(98\) −5.76795 + 8.04554i −0.582651 + 0.812723i
\(99\) 7.34847 + 6.70820i 0.738549 + 0.674200i
\(100\) 1.50000 5.80948i 0.150000 0.580948i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −3.46410 −0.341328 −0.170664 0.985329i \(-0.554591\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) −6.36396 + 2.73861i −0.624038 + 0.268543i
\(105\) 5.19615 + 3.87298i 0.507093 + 0.377964i
\(106\) −10.6066 + 8.21584i −1.03020 + 0.797993i
\(107\) 4.47214i 0.432338i −0.976356 0.216169i \(-0.930644\pi\)
0.976356 0.216169i \(-0.0693562\pi\)
\(108\) 2.59808 10.0623i 0.250000 0.968246i
\(109\) 5.47723i 0.524623i −0.964983 0.262312i \(-0.915515\pi\)
0.964983 0.262312i \(-0.0844848\pi\)
\(110\) 0.535534 6.61160i 0.0510612 0.630391i
\(111\) −3.46410 −0.328798
\(112\) −4.36276 9.64191i −0.412242 0.911074i
\(113\) 18.9737i 1.78489i −0.451154 0.892446i \(-0.648987\pi\)
0.451154 0.892446i \(-0.351013\pi\)
\(114\) 12.2474 9.48683i 1.14708 0.888523i
\(115\) 3.46410 0.323029
\(116\) 3.46410 13.4164i 0.321634 1.24568i
\(117\) 7.34847 0.679366
\(118\) −12.2474 + 9.48683i −1.12747 + 0.873334i
\(119\) 0 0
\(120\) −6.36396 + 2.73861i −0.580948 + 0.250000i
\(121\) 1.00000 + 10.9545i 0.0909091 + 0.995859i
\(122\) 6.36396 + 8.21584i 0.576166 + 0.743827i
\(123\) 13.4164i 1.20972i
\(124\) 1.73205 6.70820i 0.155543 0.602414i
\(125\) 11.3137 1.01193
\(126\) 0.208051 + 11.2230i 0.0185347 + 0.999828i
\(127\) 21.2132 1.88237 0.941184 0.337895i \(-0.109715\pi\)
0.941184 + 0.337895i \(0.109715\pi\)
\(128\) 11.2583 + 1.11803i 0.995105 + 0.0988212i
\(129\) 0 0
\(130\) −3.00000 3.87298i −0.263117 0.339683i
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 9.62132 6.27935i 0.837428 0.546547i
\(133\) −10.0000 + 13.4164i −0.867110 + 1.16335i
\(134\) −8.66025 + 6.70820i −0.748132 + 0.579501i
\(135\) 7.34847 0.632456
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 3.67423 + 4.74342i 0.312772 + 0.403786i
\(139\) 12.6491i 1.07288i −0.843937 0.536442i \(-0.819768\pi\)
0.843937 0.536442i \(-0.180232\pi\)
\(140\) 5.83013 4.69144i 0.492736 0.396499i
\(141\) 9.48683i 0.798935i
\(142\) −10.6066 13.6931i −0.890086 1.14910i
\(143\) 6.00000 + 5.47723i 0.501745 + 0.458029i
\(144\) −10.5000 5.80948i −0.875000 0.484123i
\(145\) 9.79796 0.813676
\(146\) 8.48528 + 10.9545i 0.702247 + 0.906597i
\(147\) −3.46410 11.6190i −0.285714 0.958315i
\(148\) −1.00000 + 3.87298i −0.0821995 + 0.318357i
\(149\) 6.92820 0.567581 0.283790 0.958886i \(-0.408408\pi\)
0.283790 + 0.958886i \(0.408408\pi\)
\(150\) 4.50000 + 5.80948i 0.367423 + 0.474342i
\(151\) 12.7279 1.03578 0.517892 0.855446i \(-0.326717\pi\)
0.517892 + 0.855446i \(0.326717\pi\)
\(152\) −7.07107 16.4317i −0.573539 1.33278i
\(153\) 0 0
\(154\) −8.19529 + 9.31865i −0.660395 + 0.750918i
\(155\) 4.89898 0.393496
\(156\) 2.12132 8.21584i 0.169842 0.657794i
\(157\) 13.4164i 1.07075i 0.844616 + 0.535373i \(0.179829\pi\)
−0.844616 + 0.535373i \(0.820171\pi\)
\(158\) −3.67423 4.74342i −0.292306 0.377366i
\(159\) 16.4317i 1.30312i
\(160\) 1.22474 + 7.90569i 0.0968246 + 0.625000i
\(161\) −5.19615 3.87298i −0.409514 0.305234i
\(162\) 7.79423 + 10.0623i 0.612372 + 0.790569i
\(163\) 15.4919i 1.21342i 0.794923 + 0.606711i \(0.207511\pi\)
−0.794923 + 0.606711i \(0.792489\pi\)
\(164\) 15.0000 + 3.87298i 1.17130 + 0.302429i
\(165\) 6.00000 + 5.47723i 0.467099 + 0.426401i
\(166\) −5.19615 6.70820i −0.403300 0.520658i
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 12.6078 + 3.00721i 0.972713 + 0.232011i
\(169\) −7.00000 −0.538462
\(170\) 0 0
\(171\) 18.9737i 1.45095i
\(172\) 0 0
\(173\) 15.4919i 1.17783i 0.808195 + 0.588915i \(0.200445\pi\)
−0.808195 + 0.588915i \(0.799555\pi\)
\(174\) 10.3923 + 13.4164i 0.787839 + 1.01710i
\(175\) −6.36396 4.74342i −0.481070 0.358569i
\(176\) −4.24309 12.5697i −0.319835 0.947473i
\(177\) 18.9737i 1.42615i
\(178\) 2.44949 + 3.16228i 0.183597 + 0.237023i
\(179\) 14.6969 1.09850 0.549250 0.835658i \(-0.314913\pi\)
0.549250 + 0.835658i \(0.314913\pi\)
\(180\) 2.12132 8.21584i 0.158114 0.612372i
\(181\) 13.4164i 0.997234i −0.866822 0.498617i \(-0.833841\pi\)
0.866822 0.498617i \(-0.166159\pi\)
\(182\) 0.169873 + 9.16358i 0.0125918 + 0.679250i
\(183\) −12.7279 −0.940875
\(184\) 6.36396 2.73861i 0.469157 0.201893i
\(185\) −2.82843 −0.207950
\(186\) 5.19615 + 6.70820i 0.381000 + 0.491869i
\(187\) 0 0
\(188\) 10.6066 + 2.73861i 0.773566 + 0.199734i
\(189\) −11.0227 8.21584i −0.801784 0.597614i
\(190\) 10.0000 7.74597i 0.725476 0.561951i
\(191\) −12.2474 −0.886194 −0.443097 0.896474i \(-0.646120\pi\)
−0.443097 + 0.896474i \(0.646120\pi\)
\(192\) −9.52628 + 10.0623i −0.687500 + 0.726184i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) −15.0000 + 11.6190i −1.07694 + 0.834192i
\(195\) 6.00000 0.429669
\(196\) −13.9904 + 0.518881i −0.999313 + 0.0370630i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) −1.13604 + 14.0253i −0.0807348 + 0.996736i
\(199\) 24.2487 1.71895 0.859473 0.511182i \(-0.170792\pi\)
0.859473 + 0.511182i \(0.170792\pi\)
\(200\) 7.79423 3.35410i 0.551135 0.237171i
\(201\) 13.4164i 0.946320i
\(202\) 0 0
\(203\) −14.6969 10.9545i −1.03152 0.768852i
\(204\) 0 0
\(205\) 10.9545i 0.765092i
\(206\) −3.00000 3.87298i −0.209020 0.269844i
\(207\) −7.34847 −0.510754
\(208\) −8.57321 4.74342i −0.594445 0.328897i
\(209\) −14.1421 + 15.4919i −0.978232 + 1.07160i
\(210\) 0.169873 + 9.16358i 0.0117223 + 0.632347i
\(211\) 8.48528 0.584151 0.292075 0.956395i \(-0.405654\pi\)
0.292075 + 0.956395i \(0.405654\pi\)
\(212\) −18.3712 4.74342i −1.26174 0.325779i
\(213\) 21.2132 1.45350
\(214\) 5.00000 3.87298i 0.341793 0.264752i
\(215\) 0 0
\(216\) 13.5000 5.80948i 0.918559 0.395285i
\(217\) −7.34847 5.47723i −0.498847 0.371818i
\(218\) 6.12372 4.74342i 0.414751 0.321265i
\(219\) −16.9706 −1.14676
\(220\) 7.85578 5.12707i 0.529636 0.345667i
\(221\) 0 0
\(222\) −3.00000 3.87298i −0.201347 0.259938i
\(223\) −17.3205 −1.15987 −0.579934 0.814664i \(-0.696921\pi\)
−0.579934 + 0.814664i \(0.696921\pi\)
\(224\) 7.00172 13.2278i 0.467822 0.883823i
\(225\) −9.00000 −0.600000
\(226\) 21.2132 16.4317i 1.41108 1.09302i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 21.2132 + 5.47723i 1.40488 + 0.362738i
\(229\) 13.4164i 0.886581i −0.896378 0.443291i \(-0.853811\pi\)
0.896378 0.443291i \(-0.146189\pi\)
\(230\) 3.00000 + 3.87298i 0.197814 + 0.255377i
\(231\) −2.87628 14.9240i −0.189245 0.981930i
\(232\) 18.0000 7.74597i 1.18176 0.508548i
\(233\) 20.7846 1.36165 0.680823 0.732448i \(-0.261622\pi\)
0.680823 + 0.732448i \(0.261622\pi\)
\(234\) 6.36396 + 8.21584i 0.416025 + 0.537086i
\(235\) 7.74597i 0.505291i
\(236\) −21.2132 5.47723i −1.38086 0.356537i
\(237\) 7.34847 0.477334
\(238\) 0 0
\(239\) 8.94427i 0.578557i −0.957245 0.289278i \(-0.906585\pi\)
0.957245 0.289278i \(-0.0934153\pi\)
\(240\) −8.57321 4.74342i −0.553399 0.306186i
\(241\) −24.4949 −1.57786 −0.788928 0.614486i \(-0.789363\pi\)
−0.788928 + 0.614486i \(0.789363\pi\)
\(242\) −11.3814 + 10.6049i −0.731626 + 0.681707i
\(243\) −15.5885 −1.00000
\(244\) −3.67423 + 14.2302i −0.235219 + 0.910998i
\(245\) −2.82843 9.48683i −0.180702 0.606092i
\(246\) −15.0000 + 11.6190i −0.956365 + 0.740797i
\(247\) 15.4919i 0.985728i
\(248\) 9.00000 3.87298i 0.571501 0.245935i
\(249\) 10.3923 0.658586
\(250\) 9.79796 + 12.6491i 0.619677 + 0.800000i
\(251\) 21.9089i 1.38288i 0.722435 + 0.691439i \(0.243023\pi\)
−0.722435 + 0.691439i \(0.756977\pi\)
\(252\) −12.3676 + 9.95205i −0.779083 + 0.626920i
\(253\) −6.00000 5.47723i −0.377217 0.344350i
\(254\) 18.3712 + 23.7171i 1.15271 + 1.48814i
\(255\) 0 0
\(256\) 8.50000 + 13.5554i 0.531250 + 0.847215i
\(257\) 14.1421 0.882162 0.441081 0.897467i \(-0.354595\pi\)
0.441081 + 0.897467i \(0.354595\pi\)
\(258\) 0 0
\(259\) 4.24264 + 3.16228i 0.263625 + 0.196494i
\(260\) 1.73205 6.70820i 0.107417 0.416025i
\(261\) −20.7846 −1.28654
\(262\) −15.5885 20.1246i −0.963058 1.24330i
\(263\) 8.94427i 0.551527i −0.961225 0.275764i \(-0.911069\pi\)
0.961225 0.275764i \(-0.0889307\pi\)
\(264\) 15.3528 + 5.31889i 0.944901 + 0.327355i
\(265\) 13.4164i 0.824163i
\(266\) −23.6603 + 0.438610i −1.45070 + 0.0268929i
\(267\) −4.89898 −0.299813
\(268\) −15.0000 3.87298i −0.916271 0.236580i
\(269\) 9.89949 0.603583 0.301791 0.953374i \(-0.402415\pi\)
0.301791 + 0.953374i \(0.402415\pi\)
\(270\) 6.36396 + 8.21584i 0.387298 + 0.500000i
\(271\) 15.8114i 0.960473i −0.877139 0.480237i \(-0.840551\pi\)
0.877139 0.480237i \(-0.159449\pi\)
\(272\) 0 0
\(273\) −9.00000 6.70820i −0.544705 0.405999i
\(274\) 0 0
\(275\) −7.34847 6.70820i −0.443129 0.404520i
\(276\) −2.12132 + 8.21584i −0.127688 + 0.494535i
\(277\) 5.47723i 0.329095i 0.986369 + 0.164547i \(0.0526163\pi\)
−0.986369 + 0.164547i \(0.947384\pi\)
\(278\) 14.1421 10.9545i 0.848189 0.657004i
\(279\) −10.3923 −0.622171
\(280\) 10.2942 + 2.45537i 0.615198 + 0.146737i
\(281\) 3.46410 0.206651 0.103325 0.994648i \(-0.467052\pi\)
0.103325 + 0.994648i \(0.467052\pi\)
\(282\) −10.6066 + 8.21584i −0.631614 + 0.489246i
\(283\) 25.2982i 1.50382i 0.659264 + 0.751912i \(0.270868\pi\)
−0.659264 + 0.751912i \(0.729132\pi\)
\(284\) 6.12372 23.7171i 0.363376 1.40735i
\(285\) 15.4919i 0.917663i
\(286\) −0.927572 + 11.4516i −0.0548485 + 0.677149i
\(287\) 12.2474 16.4317i 0.722944 0.969931i
\(288\) −2.59808 16.7705i −0.153093 0.988212i
\(289\) 17.0000 1.00000
\(290\) 8.48528 + 10.9545i 0.498273 + 0.643268i
\(291\) 23.2379i 1.36223i
\(292\) −4.89898 + 18.9737i −0.286691 + 1.11035i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 9.99038 13.9353i 0.582651 0.812723i
\(295\) 15.4919i 0.901975i
\(296\) −5.19615 + 2.23607i −0.302020 + 0.129969i
\(297\) −12.7279 11.6190i −0.738549 0.674200i
\(298\) 6.00000 + 7.74597i 0.347571 + 0.448712i
\(299\) −6.00000 −0.346989
\(300\) −2.59808 + 10.0623i −0.150000 + 0.580948i
\(301\) 0 0
\(302\) 11.0227 + 14.2302i 0.634285 + 0.818859i
\(303\) 0 0
\(304\) 12.2474 22.1359i 0.702439 1.26958i
\(305\) −10.3923 −0.595062
\(306\) 0 0
\(307\) 25.2982i 1.44385i −0.691974 0.721923i \(-0.743259\pi\)
0.691974 0.721923i \(-0.256741\pi\)
\(308\) −17.5159 1.09243i −0.998061 0.0622467i
\(309\) 6.00000 0.341328
\(310\) 4.24264 + 5.47723i 0.240966 + 0.311086i
\(311\) 16.4317i 0.931755i 0.884849 + 0.465877i \(0.154261\pi\)
−0.884849 + 0.465877i \(0.845739\pi\)
\(312\) 11.0227 4.74342i 0.624038 0.268543i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −15.0000 + 11.6190i −0.846499 + 0.655695i
\(315\) −9.00000 6.70820i −0.507093 0.377964i
\(316\) 2.12132 8.21584i 0.119334 0.462177i
\(317\) 28.4605i 1.59850i 0.600998 + 0.799250i \(0.294770\pi\)
−0.600998 + 0.799250i \(0.705230\pi\)
\(318\) 18.3712 14.2302i 1.03020 0.797993i
\(319\) −16.9706 15.4919i −0.950169 0.867382i
\(320\) −7.77817 + 8.21584i −0.434813 + 0.459279i
\(321\) 7.74597i 0.432338i
\(322\) −0.169873 9.16358i −0.00946665 0.510666i
\(323\) 0 0
\(324\) −4.50000 + 17.4284i −0.250000 + 0.968246i
\(325\) −7.34847 −0.407620
\(326\) −17.3205 + 13.4164i −0.959294 + 0.743066i
\(327\) 9.48683i 0.524623i
\(328\) 8.66025 + 20.1246i 0.478183 + 1.11120i
\(329\) 8.66025 11.6190i 0.477455 0.640573i
\(330\) −0.927572 + 11.4516i −0.0510612 + 0.630391i
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 3.00000 11.6190i 0.164646 0.637673i
\(333\) 6.00000 0.328798
\(334\) 10.3923 + 13.4164i 0.568642 + 0.734113i
\(335\) 10.9545i 0.598506i
\(336\) 7.55652 + 16.7003i 0.412242 + 0.911074i
\(337\) 10.9545i 0.596727i 0.954452 + 0.298363i \(0.0964408\pi\)
−0.954452 + 0.298363i \(0.903559\pi\)
\(338\) −6.06218 7.82624i −0.329739 0.425691i
\(339\) 32.8634i 1.78489i
\(340\) 0 0
\(341\) −8.48528 7.74597i −0.459504 0.419468i
\(342\) −21.2132 + 16.4317i −1.14708 + 0.888523i
\(343\) −6.36396 + 17.3925i −0.343622 + 0.939108i
\(344\) 0 0
\(345\) −6.00000 −0.323029
\(346\) −17.3205 + 13.4164i −0.931156 + 0.721271i
\(347\) 17.8885i 0.960307i 0.877184 + 0.480154i \(0.159419\pi\)
−0.877184 + 0.480154i \(0.840581\pi\)
\(348\) −6.00000 + 23.2379i −0.321634 + 1.24568i
\(349\) 12.2474 0.655591 0.327795 0.944749i \(-0.393694\pi\)
0.327795 + 0.944749i \(0.393694\pi\)
\(350\) −0.208051 11.2230i −0.0111208 0.599897i
\(351\) −12.7279 −0.679366
\(352\) 10.3787 15.6296i 0.553185 0.833058i
\(353\) 22.6274 1.20434 0.602168 0.798369i \(-0.294304\pi\)
0.602168 + 0.798369i \(0.294304\pi\)
\(354\) 21.2132 16.4317i 1.12747 0.873334i
\(355\) 17.3205 0.919277
\(356\) −1.41421 + 5.47723i −0.0749532 + 0.290292i
\(357\) 0 0
\(358\) 12.7279 + 16.4317i 0.672692 + 0.868441i
\(359\) 17.8885i 0.944121i 0.881566 + 0.472061i \(0.156490\pi\)
−0.881566 + 0.472061i \(0.843510\pi\)
\(360\) 11.0227 4.74342i 0.580948 0.250000i
\(361\) −21.0000 −1.10526
\(362\) 15.0000 11.6190i 0.788382 0.610678i
\(363\) −1.73205 18.9737i −0.0909091 0.995859i
\(364\) −10.0981 + 8.12581i −0.529283 + 0.425908i
\(365\) −13.8564 −0.725277
\(366\) −11.0227 14.2302i −0.576166 0.743827i
\(367\) 17.3205 0.904123 0.452062 0.891987i \(-0.350689\pi\)
0.452062 + 0.891987i \(0.350689\pi\)
\(368\) 8.57321 + 4.74342i 0.446910 + 0.247268i
\(369\) 23.2379i 1.20972i
\(370\) −2.44949 3.16228i −0.127343 0.164399i
\(371\) −15.0000 + 20.1246i −0.778761 + 1.04482i
\(372\) −3.00000 + 11.6190i −0.155543 + 0.602414i
\(373\) 5.47723i 0.283600i −0.989895 0.141800i \(-0.954711\pi\)
0.989895 0.141800i \(-0.0452890\pi\)
\(374\) 0 0
\(375\) −19.5959 −1.01193
\(376\) 6.12372 + 14.2302i 0.315807 + 0.733869i
\(377\) −16.9706 −0.874028
\(378\) −0.360355 19.4389i −0.0185347 0.999828i
\(379\) 15.4919i 0.795767i −0.917436 0.397884i \(-0.869745\pi\)
0.917436 0.397884i \(-0.130255\pi\)
\(380\) 17.3205 + 4.47214i 0.888523 + 0.229416i
\(381\) −36.7423 −1.88237
\(382\) −10.6066 13.6931i −0.542681 0.700598i
\(383\) 16.4317i 0.839619i 0.907612 + 0.419810i \(0.137903\pi\)
−0.907612 + 0.419810i \(0.862097\pi\)
\(384\) −19.5000 1.93649i −0.995105 0.0988212i
\(385\) −2.34847 12.1854i −0.119689 0.621027i
\(386\) 0 0
\(387\) 0 0
\(388\) −25.9808 6.70820i −1.31897 0.340557i
\(389\) 28.4605i 1.44300i −0.692412 0.721502i \(-0.743452\pi\)
0.692412 0.721502i \(-0.256548\pi\)
\(390\) 5.19615 + 6.70820i 0.263117 + 0.339683i
\(391\) 0 0
\(392\) −12.6962 15.1924i −0.641253 0.767330i
\(393\) 31.1769 1.57267
\(394\) 0 0
\(395\) 6.00000 0.301893
\(396\) −16.6646 + 10.8761i −0.837428 + 0.546547i
\(397\) 13.4164i 0.673350i −0.941621 0.336675i \(-0.890698\pi\)
0.941621 0.336675i \(-0.109302\pi\)
\(398\) 21.0000 + 27.1109i 1.05263 + 1.35895i
\(399\) 17.3205 23.2379i 0.867110 1.16335i
\(400\) 10.5000 + 5.80948i 0.525000 + 0.290474i
\(401\) 18.9737i 0.947500i 0.880659 + 0.473750i \(0.157100\pi\)
−0.880659 + 0.473750i \(0.842900\pi\)
\(402\) 15.0000 11.6190i 0.748132 0.579501i
\(403\) −8.48528 −0.422682
\(404\) 0 0
\(405\) −12.7279 −0.632456
\(406\) −0.480473 25.9185i −0.0238455 1.28631i
\(407\) 4.89898 + 4.47214i 0.242833 + 0.221676i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −12.2474 + 9.48683i −0.604858 + 0.468521i
\(411\) 0 0
\(412\) 1.73205 6.70820i 0.0853320 0.330489i
\(413\) −17.3205 + 23.2379i −0.852286 + 1.14346i
\(414\) −6.36396 8.21584i −0.312772 0.403786i
\(415\) 8.48528 0.416526
\(416\) −2.12132 13.6931i −0.104006 0.671358i
\(417\) 21.9089i 1.07288i
\(418\) −29.5680 2.39498i −1.44622 0.117142i
\(419\) 21.9089i 1.07032i −0.844751 0.535160i \(-0.820251\pi\)
0.844751 0.535160i \(-0.179749\pi\)
\(420\) −10.0981 + 8.12581i −0.492736 + 0.396499i
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 7.34847 + 9.48683i 0.357718 + 0.461812i
\(423\) 16.4317i 0.798935i
\(424\) −10.6066 24.6475i −0.515102 1.19699i
\(425\) 0 0
\(426\) 18.3712 + 23.7171i 0.890086 + 1.14910i
\(427\) 15.5885 + 11.6190i 0.754378 + 0.562280i
\(428\) 8.66025 + 2.23607i 0.418609 + 0.108084i
\(429\) −10.3923 9.48683i −0.501745 0.458029i
\(430\) 0 0
\(431\) 17.8885i 0.861661i −0.902433 0.430830i \(-0.858221\pi\)
0.902433 0.430830i \(-0.141779\pi\)
\(432\) 18.1865 + 10.0623i 0.875000 + 0.484123i
\(433\) 26.8328i 1.28950i −0.764392 0.644751i \(-0.776961\pi\)
0.764392 0.644751i \(-0.223039\pi\)
\(434\) −0.240237 12.9593i −0.0115317 0.622064i
\(435\) −16.9706 −0.813676
\(436\) 10.6066 + 2.73861i 0.507964 + 0.131156i
\(437\) 15.4919i 0.741080i
\(438\) −14.6969 18.9737i −0.702247 0.906597i
\(439\) 34.7851i 1.66020i −0.557615 0.830100i \(-0.688283\pi\)
0.557615 0.830100i \(-0.311717\pi\)
\(440\) 12.5355 + 4.34286i 0.597608 + 0.207037i
\(441\) 6.00000 + 20.1246i 0.285714 + 0.958315i
\(442\) 0 0
\(443\) 39.1918 1.86206 0.931030 0.364942i \(-0.118911\pi\)
0.931030 + 0.364942i \(0.118911\pi\)
\(444\) 1.73205 6.70820i 0.0821995 0.318357i
\(445\) −4.00000 −0.189618
\(446\) −15.0000 19.3649i −0.710271 0.916955i
\(447\) −12.0000 −0.567581
\(448\) 20.8528 3.62749i 0.985204 0.171383i
\(449\) 37.9473i 1.79085i 0.445217 + 0.895423i \(0.353127\pi\)
−0.445217 + 0.895423i \(0.646873\pi\)
\(450\) −7.79423 10.0623i −0.367423 0.474342i
\(451\) 17.3205 18.9737i 0.815591 0.893435i
\(452\) 36.7423 + 9.48683i 1.72821 + 0.446223i
\(453\) −22.0454 −1.03578
\(454\) 10.3923 + 13.4164i 0.487735 + 0.629663i
\(455\) −7.34847 5.47723i −0.344502 0.256776i
\(456\) 12.2474 + 28.4605i 0.573539 + 1.33278i
\(457\) 10.9545i 0.512428i 0.966620 + 0.256214i \(0.0824751\pi\)
−0.966620 + 0.256214i \(0.917525\pi\)
\(458\) 15.0000 11.6190i 0.700904 0.542918i
\(459\) 0 0
\(460\) −1.73205 + 6.70820i −0.0807573 + 0.312772i
\(461\) 30.9839i 1.44306i −0.692382 0.721531i \(-0.743439\pi\)
0.692382 0.721531i \(-0.256561\pi\)
\(462\) 14.1947 16.1404i 0.660395 0.750918i
\(463\) 7.74597i 0.359986i −0.983668 0.179993i \(-0.942393\pi\)
0.983668 0.179993i \(-0.0576074\pi\)
\(464\) 24.2487 + 13.4164i 1.12572 + 0.622841i
\(465\) −8.48528 −0.393496
\(466\) 18.0000 + 23.2379i 0.833834 + 1.07647i
\(467\) 10.9545i 0.506912i −0.967347 0.253456i \(-0.918433\pi\)
0.967347 0.253456i \(-0.0815672\pi\)
\(468\) −3.67423 + 14.2302i −0.169842 + 0.657794i
\(469\) −12.2474 + 16.4317i −0.565535 + 0.758744i
\(470\) −8.66025 + 6.70820i −0.399468 + 0.309426i
\(471\) 23.2379i 1.07075i
\(472\) −12.2474 28.4605i −0.563735 1.31000i
\(473\) 0 0
\(474\) 6.36396 + 8.21584i 0.292306 + 0.377366i
\(475\) 18.9737i 0.870572i
\(476\) 0 0
\(477\) 28.4605i 1.30312i
\(478\) 10.0000 7.74597i 0.457389 0.354292i
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) −2.12132 13.6931i −0.0968246 0.625000i
\(481\) 4.89898 0.223374
\(482\) −21.2132 27.3861i −0.966235 1.24740i
\(483\) 9.00000 + 6.70820i 0.409514 + 0.305234i
\(484\) −21.7132 3.54073i −0.986964 0.160942i
\(485\) 18.9737i 0.861550i
\(486\) −13.5000 17.4284i −0.612372 0.790569i
\(487\) 23.2379i 1.05301i 0.850172 + 0.526505i \(0.176498\pi\)
−0.850172 + 0.526505i \(0.823502\pi\)
\(488\) −19.0919 + 8.21584i −0.864249 + 0.371914i
\(489\) 26.8328i 1.21342i
\(490\) 8.15711 11.3781i 0.368501 0.514011i
\(491\) 4.47214i 0.201825i 0.994895 + 0.100912i \(0.0321762\pi\)
−0.994895 + 0.100912i \(0.967824\pi\)
\(492\) −25.9808 6.70820i −1.17130 0.302429i
\(493\) 0 0
\(494\) −17.3205 + 13.4164i −0.779287 + 0.603633i
\(495\) −10.3923 9.48683i −0.467099 0.426401i
\(496\) 12.1244 + 6.70820i 0.544400 + 0.301207i
\(497\) −25.9808 19.3649i −1.16540 0.868635i
\(498\) 9.00000 + 11.6190i 0.403300 + 0.520658i
\(499\) 30.9839i 1.38703i −0.720443 0.693514i \(-0.756061\pi\)
0.720443 0.693514i \(-0.243939\pi\)
\(500\) −5.65685 + 21.9089i −0.252982 + 0.979796i
\(501\) −20.7846 −0.928588
\(502\) −24.4949 + 18.9737i −1.09326 + 0.846836i
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) −21.8374 5.20863i −0.972713 0.232011i
\(505\) 0 0
\(506\) 0.927572 11.4516i 0.0412356 0.509087i
\(507\) 12.1244 0.538462
\(508\) −10.6066 + 41.0792i −0.470592 + 1.82259i
\(509\) −24.0416 −1.06563 −0.532813 0.846233i \(-0.678865\pi\)
−0.532813 + 0.846233i \(0.678865\pi\)
\(510\) 0 0
\(511\) 20.7846 + 15.4919i 0.919457 + 0.685323i
\(512\) −7.79423 + 21.2426i −0.344459 + 0.938801i
\(513\) 32.8634i 1.45095i
\(514\) 12.2474 + 15.8114i 0.540212 + 0.697410i
\(515\) 4.89898 0.215875
\(516\) 0 0
\(517\) 12.2474 13.4164i 0.538642 0.590053i
\(518\) 0.138701 + 7.48203i 0.00609416 + 0.328741i
\(519\) 26.8328i 1.17783i
\(520\) 9.00000 3.87298i 0.394676 0.169842i
\(521\) −19.7990 −0.867409 −0.433705 0.901055i \(-0.642794\pi\)
−0.433705 + 0.901055i \(0.642794\pi\)
\(522\) −18.0000 23.2379i −0.787839 1.01710i
\(523\) 6.32456i 0.276553i 0.990394 + 0.138277i \(0.0441563\pi\)
−0.990394 + 0.138277i \(0.955844\pi\)
\(524\) 9.00000 34.8569i 0.393167 1.52273i
\(525\) 11.0227 + 8.21584i 0.481070 + 0.358569i
\(526\) 10.0000 7.74597i 0.436021 0.337740i
\(527\) 0 0
\(528\) 7.34924 + 21.7713i 0.319835 + 0.947473i
\(529\) −17.0000 −0.739130
\(530\) 15.0000 11.6190i 0.651558 0.504695i
\(531\) 32.8634i 1.42615i
\(532\) −20.9808 26.0731i −0.909631 1.13041i
\(533\) 18.9737i 0.821841i
\(534\) −4.24264 5.47723i −0.183597 0.237023i
\(535\) 6.32456i 0.273434i
\(536\) −8.66025 20.1246i −0.374066 0.869251i
\(537\) −25.4558 −1.09850
\(538\) 8.57321 + 11.0680i 0.369618 + 0.477174i
\(539\) −10.1010 + 20.9038i −0.435082 + 0.900391i
\(540\) −3.67423 + 14.2302i −0.158114 + 0.612372i
\(541\) 38.3406i 1.64839i 0.566306 + 0.824195i \(0.308372\pi\)
−0.566306 + 0.824195i \(0.691628\pi\)
\(542\) 17.6777 13.6931i 0.759321 0.588167i
\(543\) 23.2379i 0.997234i
\(544\) 0 0
\(545\) 7.74597i 0.331801i
\(546\) −0.294229 15.8718i −0.0125918 0.679250i
\(547\) 16.9706 0.725609 0.362804 0.931865i \(-0.381819\pi\)
0.362804 + 0.931865i \(0.381819\pi\)
\(548\) 0 0
\(549\) 22.0454 0.940875
\(550\) 1.13604 14.0253i 0.0484409 0.598041i
\(551\) 43.8178i 1.86670i
\(552\) −11.0227 + 4.74342i −0.469157 + 0.201893i
\(553\) −9.00000 6.70820i −0.382719 0.285262i
\(554\) −6.12372 + 4.74342i −0.260172 + 0.201528i
\(555\) 4.89898 0.207950
\(556\) 24.4949 + 6.32456i 1.03882 + 0.268221i
\(557\) 6.92820 0.293557 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(558\) −9.00000 11.6190i −0.381000 0.491869i
\(559\) 0 0
\(560\) 6.16987 + 13.6357i 0.260725 + 0.576214i
\(561\) 0 0
\(562\) 3.00000 + 3.87298i 0.126547 + 0.163372i
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) −18.3712 4.74342i −0.773566 0.199734i
\(565\) 26.8328i 1.12887i
\(566\) −28.2843 + 21.9089i −1.18888 + 0.920900i
\(567\) 19.0919 + 14.2302i 0.801784 + 0.597614i
\(568\) 31.8198 13.6931i 1.33513 0.574548i
\(569\) 10.3923 0.435668 0.217834 0.975986i \(-0.430101\pi\)
0.217834 + 0.975986i \(0.430101\pi\)
\(570\) −17.3205 + 13.4164i −0.725476 + 0.561951i
\(571\) −8.48528 −0.355098 −0.177549 0.984112i \(-0.556817\pi\)
−0.177549 + 0.984112i \(0.556817\pi\)
\(572\) −13.6066 + 8.88034i −0.568921 + 0.371306i
\(573\) 21.2132 0.886194
\(574\) 28.9778 0.537186i 1.20951 0.0224217i
\(575\) 7.34847 0.306452
\(576\) 16.5000 17.4284i 0.687500 0.726184i
\(577\) 40.2492i 1.67560i 0.545979 + 0.837799i \(0.316158\pi\)
−0.545979 + 0.837799i \(0.683842\pi\)
\(578\) 14.7224 + 19.0066i 0.612372 + 0.790569i
\(579\) 0 0
\(580\) −4.89898 + 18.9737i −0.203419 + 0.787839i
\(581\) −12.7279 9.48683i −0.528043 0.393580i
\(582\) 25.9808 20.1246i 1.07694 0.834192i
\(583\) −21.2132 + 23.2379i −0.878561 + 0.962415i
\(584\) −25.4558 + 10.9545i −1.05337 + 0.453298i
\(585\) −10.3923 −0.429669
\(586\) 0 0
\(587\) 10.9545i 0.452139i 0.974111 + 0.226069i \(0.0725876\pi\)
−0.974111 + 0.226069i \(0.927412\pi\)
\(588\) 24.2321 0.898729i 0.999313 0.0370630i
\(589\) 21.9089i 0.902741i
\(590\) 17.3205 13.4164i 0.713074 0.552345i
\(591\) 0 0
\(592\) −7.00000 3.87298i −0.287698 0.159179i
\(593\) 30.9839i 1.27235i 0.771543 + 0.636177i \(0.219485\pi\)
−0.771543 + 0.636177i \(0.780515\pi\)
\(594\) 1.96768 24.2926i 0.0807348 0.996736i
\(595\) 0 0
\(596\) −3.46410 + 13.4164i −0.141895 + 0.549557i
\(597\) −42.0000 −1.71895
\(598\) −5.19615 6.70820i −0.212486 0.274319i
\(599\) −26.9444 −1.10092 −0.550459 0.834862i \(-0.685547\pi\)
−0.550459 + 0.834862i \(0.685547\pi\)
\(600\) −13.5000 + 5.80948i −0.551135 + 0.237171i
\(601\) 19.5959 0.799334 0.399667 0.916660i \(-0.369126\pi\)
0.399667 + 0.916660i \(0.369126\pi\)
\(602\) 0 0
\(603\) 23.2379i 0.946320i
\(604\) −6.36396 + 24.6475i −0.258946 + 1.00289i
\(605\) −1.41421 15.4919i −0.0574960 0.629837i
\(606\) 0 0
\(607\) 3.16228i 0.128353i 0.997939 + 0.0641764i \(0.0204420\pi\)
−0.997939 + 0.0641764i \(0.979558\pi\)
\(608\) 35.3553 5.47723i 1.43385 0.222131i
\(609\) 25.4558 + 18.9737i 1.03152 + 0.768852i
\(610\) −9.00000 11.6190i −0.364399 0.470438i
\(611\) 13.4164i 0.542770i
\(612\) 0 0
\(613\) 27.3861i 1.10612i −0.833143 0.553058i \(-0.813461\pi\)
0.833143 0.553058i \(-0.186539\pi\)
\(614\) 28.2843 21.9089i 1.14146 0.884171i
\(615\) 18.9737i 0.765092i
\(616\) −13.9478 20.5294i −0.561975 0.827155i
\(617\) 18.9737i 0.763851i −0.924193 0.381926i \(-0.875261\pi\)
0.924193 0.381926i \(-0.124739\pi\)
\(618\) 5.19615 + 6.70820i 0.209020 + 0.269844i
\(619\) −27.7128 −1.11387 −0.556936 0.830555i \(-0.688023\pi\)
−0.556936 + 0.830555i \(0.688023\pi\)
\(620\) −2.44949 + 9.48683i −0.0983739 + 0.381000i
\(621\) 12.7279 0.510754
\(622\) −18.3712 + 14.2302i −0.736617 + 0.570581i
\(623\) 6.00000 + 4.47214i 0.240385 + 0.179172i
\(624\) 14.8492 + 8.21584i 0.594445 + 0.328897i
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 24.4949 26.8328i 0.978232 1.07160i
\(628\) −25.9808 6.70820i −1.03675 0.267686i
\(629\) 0 0
\(630\) −0.294229 15.8718i −0.0117223 0.632347i
\(631\) 23.2379i 0.925086i 0.886597 + 0.462543i \(0.153063\pi\)
−0.886597 + 0.462543i \(0.846937\pi\)
\(632\) 11.0227 4.74342i 0.438460 0.188683i
\(633\) −14.6969 −0.584151
\(634\) −31.8198 + 24.6475i −1.26373 + 0.978878i
\(635\) −30.0000 −1.19051
\(636\) 31.8198 + 8.21584i 1.26174 + 0.325779i
\(637\) 4.89898 + 16.4317i 0.194105 + 0.651047i
\(638\) 2.62357 32.3901i 0.103868 1.28234i
\(639\) −36.7423 −1.45350
\(640\) −15.9217 1.58114i −0.629360 0.0625000i
\(641\) 18.9737i 0.749415i 0.927143 + 0.374707i \(0.122257\pi\)
−0.927143 + 0.374707i \(0.877743\pi\)
\(642\) −8.66025 + 6.70820i −0.341793 + 0.264752i
\(643\) −34.6410 −1.36611 −0.683054 0.730368i \(-0.739349\pi\)
−0.683054 + 0.730368i \(0.739349\pi\)
\(644\) 10.0981 8.12581i 0.397920 0.320202i
\(645\) 0 0
\(646\) 0 0
\(647\) 5.47723i 0.215332i 0.994187 + 0.107666i \(0.0343377\pi\)
−0.994187 + 0.107666i \(0.965662\pi\)
\(648\) −23.3827 + 10.0623i −0.918559 + 0.395285i
\(649\) −24.4949 + 26.8328i −0.961509 + 1.05328i
\(650\) −6.36396 8.21584i −0.249615 0.322252i
\(651\) 12.7279 + 9.48683i 0.498847 + 0.371818i
\(652\) −30.0000 7.74597i −1.17489 0.303355i
\(653\) 9.48683i 0.371248i 0.982621 + 0.185624i \(0.0594307\pi\)
−0.982621 + 0.185624i \(0.940569\pi\)
\(654\) −10.6066 + 8.21584i −0.414751 + 0.321265i
\(655\) 25.4558 0.994642
\(656\) −15.0000 + 27.1109i −0.585652 + 1.05850i
\(657\) 29.3939 1.14676
\(658\) 20.4904 0.379848i 0.798798 0.0148080i
\(659\) 49.1935i 1.91631i 0.286256 + 0.958153i \(0.407589\pi\)
−0.286256 + 0.958153i \(0.592411\pi\)
\(660\) −13.6066 + 8.88034i −0.529636 + 0.345667i
\(661\) 13.4164i 0.521838i −0.965361 0.260919i \(-0.915974\pi\)
0.965361 0.260919i \(-0.0840255\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 15.5885 6.70820i 0.604949 0.260329i
\(665\) 14.1421 18.9737i 0.548408 0.735767i
\(666\) 5.19615 + 6.70820i 0.201347 + 0.259938i
\(667\) 16.9706 0.657103
\(668\) −6.00000 + 23.2379i −0.232147 + 0.899101i
\(669\) 30.0000 1.15987
\(670\) 12.2474 9.48683i 0.473160 0.366508i
\(671\) 18.0000 + 16.4317i 0.694882 + 0.634338i
\(672\) −12.1273 + 22.9113i −0.467822 + 0.883823i
\(673\) 32.8634i 1.26679i 0.773829 + 0.633395i \(0.218339\pi\)
−0.773829 + 0.633395i \(0.781661\pi\)
\(674\) −12.2474 + 9.48683i −0.471754 + 0.365419i
\(675\) 15.5885 0.600000
\(676\) 3.50000 13.5554i 0.134615 0.521363i
\(677\) 30.9839i 1.19081i −0.803427 0.595403i \(-0.796992\pi\)
0.803427 0.595403i \(-0.203008\pi\)
\(678\) −36.7423 + 28.4605i −1.41108 + 1.09302i
\(679\) −21.2132 + 28.4605i −0.814088 + 1.09221i
\(680\) 0 0
\(681\) −20.7846 −0.796468
\(682\) 1.31178 16.1950i 0.0502308 0.620140i
\(683\) −9.79796 −0.374908 −0.187454 0.982273i \(-0.560024\pi\)
−0.187454 + 0.982273i \(0.560024\pi\)
\(684\) −36.7423 9.48683i −1.40488 0.362738i
\(685\) 0 0
\(686\) −24.9568 + 7.94725i −0.952855 + 0.303427i
\(687\) 23.2379i 0.886581i
\(688\) 0 0
\(689\) 23.2379i 0.885293i
\(690\) −5.19615 6.70820i −0.197814 0.255377i
\(691\) −20.7846 −0.790684 −0.395342 0.918534i \(-0.629374\pi\)
−0.395342 + 0.918534i \(0.629374\pi\)
\(692\) −30.0000 7.74597i −1.14043 0.294457i
\(693\) 4.98186 + 25.8492i 0.189245 + 0.981930i
\(694\) −20.0000 + 15.4919i −0.759190 + 0.588066i
\(695\) 17.8885i 0.678551i
\(696\) −31.1769 + 13.4164i −1.18176 + 0.508548i
\(697\) 0 0
\(698\) 10.6066 + 13.6931i 0.401466 + 0.518290i
\(699\) −36.0000 −1.36165
\(700\) 12.3676 9.95205i 0.467450 0.376152i
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) −11.0227 14.2302i −0.416025 0.537086i
\(703\) 12.6491i 0.477070i
\(704\) 26.4626 1.93188i 0.997346 0.0728103i
\(705\) 13.4164i 0.505291i
\(706\) 19.5959 + 25.2982i 0.737502 + 0.952111i
\(707\) 0 0
\(708\) 36.7423 + 9.48683i 1.38086 + 0.356537i
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 15.0000 + 19.3649i 0.562940 + 0.726752i
\(711\) −12.7279 −0.477334
\(712\) −7.34847 + 3.16228i −0.275396 + 0.118511i
\(713\) 8.48528 0.317776
\(714\) 0 0
\(715\) −8.48528 7.74597i −0.317332 0.289683i
\(716\) −7.34847 + 28.4605i −0.274625 + 1.06362i
\(717\) 15.4919i 0.578557i
\(718\) −20.0000 + 15.4919i −0.746393 + 0.578154i
\(719\) 5.47723i 0.204266i −0.994771 0.102133i \(-0.967433\pi\)
0.994771 0.102133i \(-0.0325667\pi\)
\(720\) 14.8492 + 8.21584i 0.553399 + 0.306186i
\(721\) −7.34847 5.47723i −0.273671 0.203983i
\(722\) −18.1865 23.4787i −0.676833 0.873787i
\(723\) 42.4264 1.57786
\(724\) 25.9808 + 6.70820i 0.965567 + 0.249308i
\(725\) 20.7846 0.771921
\(726\) 19.7132 18.3682i 0.731626 0.681707i
\(727\) −10.3923 −0.385429 −0.192715 0.981255i \(-0.561729\pi\)
−0.192715 + 0.981255i \(0.561729\pi\)
\(728\) −17.8301 4.25283i −0.660828 0.157620i
\(729\) 27.0000 1.00000
\(730\) −12.0000 15.4919i −0.444140 0.573382i
\(731\) 0 0
\(732\) 6.36396 24.6475i 0.235219 0.910998i
\(733\) −22.0454 −0.814266 −0.407133 0.913369i \(-0.633471\pi\)
−0.407133 + 0.913369i \(0.633471\pi\)
\(734\) 15.0000 + 19.3649i 0.553660 + 0.714772i
\(735\) 4.89898 + 16.4317i 0.180702 + 0.606092i
\(736\) 2.12132 + 13.6931i 0.0781929 + 0.504733i
\(737\) −17.3205 + 18.9737i −0.638009 + 0.698904i
\(738\) 25.9808 20.1246i 0.956365 0.740797i
\(739\) 25.4558 0.936408 0.468204 0.883620i \(-0.344901\pi\)
0.468204 + 0.883620i \(0.344901\pi\)
\(740\) 1.41421 5.47723i 0.0519875 0.201347i
\(741\) 26.8328i 0.985728i
\(742\) −35.4904 + 0.657915i −1.30289 + 0.0241528i
\(743\) 44.7214i 1.64067i −0.571885 0.820334i \(-0.693788\pi\)
0.571885 0.820334i \(-0.306212\pi\)
\(744\) −15.5885 + 6.70820i −0.571501 + 0.245935i
\(745\) −9.79796 −0.358969
\(746\) 6.12372 4.74342i 0.224205 0.173669i
\(747\) −18.0000 −0.658586
\(748\) 0 0
\(749\) 7.07107 9.48683i 0.258371 0.346641i
\(750\) −16.9706 21.9089i −0.619677 0.800000i
\(751\) 38.7298i 1.41327i −0.707577 0.706636i \(-0.750212\pi\)
0.707577 0.706636i \(-0.249788\pi\)
\(752\) −10.6066 + 19.1703i −0.386783 + 0.699069i
\(753\) 37.9473i 1.38288i
\(754\) −14.6969 18.9737i −0.535231 0.690980i
\(755\) −18.0000 −0.655087
\(756\) 21.4213 17.2375i 0.779083 0.626920i
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 17.3205 13.4164i 0.629109 0.487306i
\(759\) 10.3923 + 9.48683i 0.377217 + 0.344350i
\(760\) 10.0000 + 23.2379i 0.362738 + 0.842927i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) −31.8198 41.0792i −1.15271 1.48814i
\(763\) 8.66025 11.6190i 0.313522 0.420634i
\(764\) 6.12372 23.7171i 0.221549 0.858054i
\(765\) 0 0
\(766\) −18.3712 + 14.2302i −0.663777 + 0.514160i
\(767\) 26.8328i 0.968877i
\(768\) −14.7224 23.4787i −0.531250 0.847215i
\(769\) 24.4949 0.883309 0.441654 0.897185i \(-0.354392\pi\)
0.441654 + 0.897185i \(0.354392\pi\)
\(770\) 11.5899 13.1786i 0.417671 0.474922i
\(771\) −24.4949 −0.882162
\(772\) 0 0
\(773\) −7.07107 −0.254329 −0.127164 0.991882i \(-0.540588\pi\)
−0.127164 + 0.991882i \(0.540588\pi\)
\(774\) 0 0
\(775\) 10.3923 0.373303
\(776\) −15.0000 34.8569i −0.538469 1.25129i
\(777\) −7.34847 5.47723i −0.263625 0.196494i
\(778\) 31.8198 24.6475i 1.14080 0.883656i
\(779\) 48.9898 1.75524
\(780\) −3.00000 + 11.6190i −0.107417 + 0.416025i
\(781\) −30.0000 27.3861i −1.07348 0.979953i
\(782\) 0 0
\(783\) 36.0000 1.28654
\(784\) 5.99038 27.3517i 0.213942 0.976846i
\(785\) 18.9737i 0.677199i
\(786\) 27.0000 + 34.8569i 0.963058 + 1.24330i
\(787\) 31.6228i 1.12723i 0.826038 + 0.563615i \(0.190590\pi\)
−0.826038 + 0.563615i \(0.809410\pi\)
\(788\) 0 0
\(789\) 15.4919i 0.551527i
\(790\) 5.19615 + 6.70820i 0.184871 + 0.238667i
\(791\) 30.0000 40.2492i 1.06668 1.43110i
\(792\) −26.5919 9.21259i −0.944901 0.327355i
\(793\) 18.0000 0.639199
\(794\) 15.0000 11.6190i 0.532330 0.412341i
\(795\) 23.2379i 0.824163i
\(796\) −12.1244 + 46.9574i −0.429736 + 1.66436i
\(797\) 49.4975 1.75329 0.876645 0.481137i \(-0.159776\pi\)
0.876645 + 0.481137i \(0.159776\pi\)
\(798\) 40.9808 0.759695i 1.45070 0.0268929i
\(799\) 0 0
\(800\) 2.59808 + 16.7705i 0.0918559 + 0.592927i
\(801\) 8.48528 0.299813
\(802\) −21.2132 + 16.4317i −0.749064 + 0.580223i
\(803\) 24.0000 + 21.9089i 0.846942 + 0.773148i
\(804\) 25.9808 + 6.70820i 0.916271 + 0.236580i
\(805\) 7.34847 + 5.47723i 0.259000 + 0.193047i
\(806\) −7.34847 9.48683i −0.258839 0.334159i
\(807\) −17.1464 −0.603583
\(808\) 0 0
\(809\) 6.92820 0.243583 0.121791 0.992556i \(-0.461136\pi\)
0.121791 + 0.992556i \(0.461136\pi\)
\(810\) −11.0227 14.2302i −0.387298 0.500000i
\(811\) 6.32456i 0.222085i −0.993816 0.111043i \(-0.964581\pi\)
0.993816 0.111043i \(-0.0354190\pi\)
\(812\) 28.5617 22.9833i 1.00232 0.806555i
\(813\) 27.3861i 0.960473i
\(814\) −0.757359 + 9.35021i −0.0265454 + 0.327725i
\(815\) 21.9089i 0.767435i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 15.5885 + 11.6190i 0.544705 + 0.405999i
\(820\) −21.2132 5.47723i −0.740797 0.191273i
\(821\) 48.4974 1.69257 0.846286 0.532729i \(-0.178834\pi\)
0.846286 + 0.532729i \(0.178834\pi\)
\(822\) 0 0
\(823\) 38.7298i 1.35004i −0.737801 0.675019i \(-0.764136\pi\)
0.737801 0.675019i \(-0.235864\pi\)
\(824\) 9.00000 3.87298i 0.313530 0.134922i
\(825\) 12.7279 + 11.6190i 0.443129 + 0.404520i
\(826\) −40.9808 + 0.759695i −1.42590 + 0.0264332i
\(827\) 17.8885i 0.622046i 0.950402 + 0.311023i \(0.100672\pi\)
−0.950402 + 0.311023i \(0.899328\pi\)
\(828\) 3.67423 14.2302i 0.127688 0.494535i
\(829\) 13.4164i 0.465971i 0.972480 + 0.232986i \(0.0748495\pi\)
−0.972480 + 0.232986i \(0.925151\pi\)
\(830\) 7.34847 + 9.48683i 0.255069 + 0.329293i
\(831\) 9.48683i 0.329095i
\(832\) 13.4722 14.2302i 0.467064 0.493345i
\(833\) 0 0
\(834\) −24.4949 + 18.9737i −0.848189 + 0.657004i
\(835\) −16.9706 −0.587291
\(836\) −22.9289 35.1321i −0.793014 1.21507i
\(837\) 18.0000 0.622171
\(838\) 24.4949 18.9737i 0.846162 0.655434i
\(839\) 38.3406i 1.32366i −0.749652 0.661832i \(-0.769779\pi\)
0.749652 0.661832i \(-0.230221\pi\)
\(840\) −17.8301 4.25283i −0.615198 0.146737i
\(841\) 19.0000 0.655172
\(842\) −8.66025 11.1803i −0.298452 0.385300i
\(843\) −6.00000 −0.206651
\(844\) −4.24264 + 16.4317i −0.146038 + 0.565602i
\(845\) 9.89949 0.340553
\(846\) 18.3712 14.2302i 0.631614 0.489246i
\(847\) −15.1992 + 24.8190i −0.522250 + 0.852792i
\(848\) 18.3712 33.2039i 0.630869 1.14023i
\(849\) 43.8178i 1.50382i
\(850\) 0 0
\(851\) −4.89898 −0.167935
\(852\) −10.6066 + 41.0792i −0.363376 + 1.40735i
\(853\) 22.0454 0.754820 0.377410 0.926046i \(-0.376815\pi\)
0.377410 + 0.926046i \(0.376815\pi\)
\(854\) 0.509619 + 27.4907i 0.0174388 + 0.940713i
\(855\) 26.8328i 0.917663i
\(856\) 5.00000 + 11.6190i 0.170896 + 0.397128i
\(857\) 7.74597i 0.264597i 0.991210 + 0.132299i \(0.0422358\pi\)
−0.991210 + 0.132299i \(0.957764\pi\)
\(858\) 1.60660 19.8348i 0.0548485 0.677149i
\(859\) −45.0333 −1.53652 −0.768259 0.640140i \(-0.778876\pi\)
−0.768259 + 0.640140i \(0.778876\pi\)
\(860\) 0 0
\(861\) −21.2132 + 28.4605i −0.722944 + 0.969931i
\(862\) 20.0000 15.4919i 0.681203 0.527657i
\(863\) −51.4393 −1.75101 −0.875507 0.483206i \(-0.839472\pi\)
−0.875507 + 0.483206i \(0.839472\pi\)
\(864\) 4.50000 + 29.0474i 0.153093 + 0.988212i
\(865\) 21.9089i 0.744925i
\(866\) 30.0000 23.2379i 1.01944 0.789656i
\(867\) −29.4449 −1.00000
\(868\) 14.2808 11.4916i 0.484723 0.390052i
\(869\) −10.3923 9.48683i −0.352535 0.321819i
\(870\) −14.6969 18.9737i −0.498273 0.643268i
\(871\) 18.9737i 0.642898i
\(872\) 6.12372 + 14.2302i 0.207375 + 0.481897i
\(873\) 40.2492i 1.36223i
\(874\) 17.3205 13.4164i 0.585875 0.453817i
\(875\) 24.0000 + 17.8885i 0.811348 + 0.604743i
\(876\) 8.48528 32.8634i 0.286691 1.11035i
\(877\) 49.2950i 1.66457i −0.554344 0.832287i \(-0.687031\pi\)
0.554344 0.832287i \(-0.312969\pi\)
\(878\) 38.8909 30.1247i 1.31250 1.01666i
\(879\) 0 0
\(880\) 6.00063 + 17.7762i 0.202281 + 0.599235i
\(881\) −5.65685 −0.190584 −0.0952921 0.995449i \(-0.530379\pi\)
−0.0952921 + 0.995449i \(0.530379\pi\)
\(882\) −17.3038 + 24.1366i −0.582651 + 0.812723i
\(883\) 7.74597i 0.260673i 0.991470 + 0.130336i \(0.0416057\pi\)
−0.991470 + 0.130336i \(0.958394\pi\)
\(884\) 0 0
\(885\) 26.8328i 0.901975i
\(886\) 33.9411 + 43.8178i 1.14027 + 1.47209i
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 9.00000 3.87298i 0.302020 0.129969i
\(889\) 45.0000 + 33.5410i 1.50925 + 1.12493i
\(890\) −3.46410 4.47214i −0.116117 0.149906i
\(891\) 22.0454 + 20.1246i 0.738549 + 0.674200i
\(892\) 8.66025 33.5410i 0.289967 1.12304i
\(893\) 34.6410 1.15922
\(894\) −10.3923 13.4164i −0.347571 0.448712i
\(895\) −20.7846 −0.694753
\(896\) 22.1148 + 20.1727i 0.738802 + 0.673922i
\(897\) 10.3923 0.346989
\(898\) −42.4264 + 32.8634i −1.41579 + 1.09666i
\(899\) 24.0000 0.800445
\(900\) 4.50000 17.4284i 0.150000 0.580948i
\(901\) 0 0
\(902\) 36.2132 + 2.93324i 1.20577 + 0.0976662i
\(903\) 0 0
\(904\) 21.2132 + 49.2950i 0.705541 + 1.63953i
\(905\) 18.9737i 0.630706i
\(906\) −19.0919 24.6475i −0.634285 0.818859i
\(907\) 23.2379i 0.771602i −0.922582 0.385801i \(-0.873925\pi\)
0.922582 0.385801i \(-0.126075\pi\)
\(908\) −6.00000 + 23.2379i −0.199117 + 0.771177i
\(909\) 0 0
\(910\) −0.240237 12.9593i −0.00796377 0.429595i
\(911\) 36.7423 1.21733 0.608664 0.793428i \(-0.291706\pi\)
0.608664 + 0.793428i \(0.291706\pi\)
\(912\) −21.2132 + 38.3406i −0.702439 + 1.26958i
\(913\) −14.6969 13.4164i −0.486398 0.444018i
\(914\) −12.2474 + 9.48683i −0.405110 + 0.313797i
\(915\) 18.0000 0.595062
\(916\) 25.9808 + 6.70820i 0.858429 + 0.221645i
\(917\) −38.1838 28.4605i −1.26094 0.939848i
\(918\) 0 0
\(919\) −4.24264 −0.139952 −0.0699759 0.997549i \(-0.522292\pi\)
−0.0699759 + 0.997549i \(0.522292\pi\)
\(920\) −9.00000 + 3.87298i −0.296721 + 0.127688i
\(921\) 43.8178i 1.44385i
\(922\) 34.6410 26.8328i 1.14084 0.883692i
\(923\) −30.0000 −0.987462
\(924\) 30.3384 + 1.89214i 0.998061 + 0.0622467i
\(925\) −6.00000 −0.197279
\(926\) 8.66025 6.70820i 0.284594 0.220445i
\(927\) −10.3923 −0.341328
\(928\) 6.00000 + 38.7298i 0.196960 + 1.27137i
\(929\) 45.2548 1.48476 0.742381 0.669977i \(-0.233696\pi\)
0.742381 + 0.669977i \(0.233696\pi\)
\(930\) −7.34847 9.48683i −0.240966 0.311086i
\(931\) −42.4264 + 12.6491i −1.39047 + 0.414558i
\(932\) −10.3923 + 40.2492i −0.340411 + 1.31841i
\(933\) 28.4605i 0.931755i
\(934\) 12.2474 9.48683i 0.400749 0.310419i
\(935\) 0 0
\(936\) −19.0919 + 8.21584i −0.624038 + 0.268543i
\(937\) 44.0908 1.44038 0.720192 0.693775i \(-0.244054\pi\)
0.720192 + 0.693775i \(0.244054\pi\)
\(938\) −28.9778 + 0.537186i −0.946158 + 0.0175397i
\(939\) 0 0
\(940\) −15.0000 3.87298i −0.489246 0.126323i
\(941\) 15.4919i 0.505023i 0.967594 + 0.252511i \(0.0812565\pi\)
−0.967594 + 0.252511i \(0.918744\pi\)
\(942\) 25.9808 20.1246i 0.846499 0.655695i
\(943\) 18.9737i 0.617868i
\(944\) 21.2132 38.3406i 0.690431 1.24788i
\(945\) 15.5885 + 11.6190i 0.507093 + 0.377964i
\(946\) 0 0
\(947\) 19.5959 0.636782 0.318391 0.947960i \(-0.396858\pi\)
0.318391 + 0.947960i \(0.396858\pi\)
\(948\) −3.67423 + 14.2302i −0.119334 + 0.462177i
\(949\) 24.0000 0.779073
\(950\) 21.2132 16.4317i 0.688247 0.533114i
\(951\) 49.2950i 1.59850i
\(952\) 0 0
\(953\) −34.6410 −1.12213 −0.561066 0.827771i \(-0.689609\pi\)
−0.561066 + 0.827771i \(0.689609\pi\)
\(954\) −31.8198 + 24.6475i −1.03020 + 0.797993i
\(955\) 17.3205 0.560478
\(956\) 17.3205 + 4.47214i 0.560185 + 0.144639i
\(957\) 29.3939 + 26.8328i 0.950169 + 0.867382i
\(958\) 31.1769 + 40.2492i 1.00728 + 1.30039i
\(959\) 0 0
\(960\) 13.4722 14.2302i 0.434813 0.459279i
\(961\) −19.0000 −0.612903
\(962\) 4.24264 + 5.47723i 0.136788 + 0.176593i
\(963\) 13.4164i 0.432338i
\(964\) 12.2474 47.4342i 0.394464 1.52775i
\(965\) 0 0
\(966\) 0.294229 + 15.8718i 0.00946665 + 0.510666i
\(967\) 4.24264 0.136434 0.0682171 0.997671i \(-0.478269\pi\)
0.0682171 + 0.997671i \(0.478269\pi\)
\(968\) −14.8455 27.3425i −0.477153 0.878820i
\(969\) 0 0
\(970\) 21.2132 16.4317i 0.681115 0.527589i
\(971\) 43.8178i 1.40618i 0.711101 + 0.703090i \(0.248197\pi\)
−0.711101 + 0.703090i \(0.751803\pi\)
\(972\) 7.79423 30.1869i 0.250000 0.968246i
\(973\) 20.0000 26.8328i 0.641171 0.860221i
\(974\) −25.9808 + 20.1246i −0.832477 + 0.644834i
\(975\) 12.7279 0.407620
\(976\) −25.7196 14.2302i −0.823266 0.455499i
\(977\) 18.9737i 0.607021i 0.952828 + 0.303511i \(0.0981588\pi\)
−0.952828 + 0.303511i \(0.901841\pi\)
\(978\) 30.0000 23.2379i 0.959294 0.743066i
\(979\) 6.92820 + 6.32456i 0.221426 + 0.202134i
\(980\) 19.7854 0.733809i 0.632021 0.0234407i
\(981\) 16.4317i 0.524623i
\(982\) −5.00000 + 3.87298i −0.159556 + 0.123592i
\(983\) 49.2950i 1.57227i −0.618057 0.786134i \(-0.712080\pi\)
0.618057 0.786134i \(-0.287920\pi\)
\(984\) −15.0000 34.8569i −0.478183 1.11120i
\(985\) 0 0
\(986\) 0 0
\(987\) −15.0000 + 20.1246i −0.477455 + 0.640573i
\(988\) −30.0000 7.74597i −0.954427 0.246432i
\(989\) 0 0
\(990\) 1.60660 19.8348i 0.0510612 0.630391i
\(991\) 38.7298i 1.23029i −0.788413 0.615147i \(-0.789097\pi\)
0.788413 0.615147i \(-0.210903\pi\)
\(992\) 3.00000 + 19.3649i 0.0952501 + 0.614837i
\(993\) 0 0
\(994\) −0.849365 45.8179i −0.0269402 1.45326i
\(995\) −34.2929 −1.08716
\(996\) −5.19615 + 20.1246i −0.164646 + 0.637673i
\(997\) 7.34847 0.232728 0.116364 0.993207i \(-0.462876\pi\)
0.116364 + 0.993207i \(0.462876\pi\)
\(998\) 34.6410 26.8328i 1.09654 0.849378i
\(999\) −10.3923 −0.328798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 924.2.n.b.923.7 yes 8
3.2 odd 2 924.2.n.c.923.2 yes 8
4.3 odd 2 924.2.n.c.923.5 yes 8
7.6 odd 2 924.2.n.c.923.8 yes 8
11.10 odd 2 924.2.n.c.923.1 yes 8
12.11 even 2 inner 924.2.n.b.923.4 yes 8
21.20 even 2 inner 924.2.n.b.923.1 8
28.27 even 2 inner 924.2.n.b.923.6 yes 8
33.32 even 2 inner 924.2.n.b.923.8 yes 8
44.43 even 2 inner 924.2.n.b.923.3 yes 8
77.76 even 2 inner 924.2.n.b.923.2 yes 8
84.83 odd 2 924.2.n.c.923.3 yes 8
132.131 odd 2 924.2.n.c.923.6 yes 8
231.230 odd 2 924.2.n.c.923.7 yes 8
308.307 odd 2 924.2.n.c.923.4 yes 8
924.923 even 2 inner 924.2.n.b.923.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
924.2.n.b.923.1 8 21.20 even 2 inner
924.2.n.b.923.2 yes 8 77.76 even 2 inner
924.2.n.b.923.3 yes 8 44.43 even 2 inner
924.2.n.b.923.4 yes 8 12.11 even 2 inner
924.2.n.b.923.5 yes 8 924.923 even 2 inner
924.2.n.b.923.6 yes 8 28.27 even 2 inner
924.2.n.b.923.7 yes 8 1.1 even 1 trivial
924.2.n.b.923.8 yes 8 33.32 even 2 inner
924.2.n.c.923.1 yes 8 11.10 odd 2
924.2.n.c.923.2 yes 8 3.2 odd 2
924.2.n.c.923.3 yes 8 84.83 odd 2
924.2.n.c.923.4 yes 8 308.307 odd 2
924.2.n.c.923.5 yes 8 4.3 odd 2
924.2.n.c.923.6 yes 8 132.131 odd 2
924.2.n.c.923.7 yes 8 231.230 odd 2
924.2.n.c.923.8 yes 8 7.6 odd 2