Properties

Label 924.2.r.d.169.1
Level $924$
Weight $2$
Character 924.169
Analytic conductor $7.378$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [924,2,Mod(169,924)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(924, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("924.169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 924.r (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.37817714677\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 169.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 924.169
Dual form 924.2.r.d.421.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{3} +(2.61803 - 1.90211i) q^{5} +(0.309017 + 0.951057i) q^{7} +(-0.809017 - 0.587785i) q^{9} +(2.19098 - 2.48990i) q^{11} +(-1.61803 - 1.17557i) q^{13} +(1.00000 + 3.07768i) q^{15} +(4.23607 - 3.07768i) q^{17} -1.00000 q^{21} -1.85410 q^{23} +(1.69098 - 5.20431i) q^{25} +(0.809017 - 0.587785i) q^{27} +(0.500000 + 1.53884i) q^{29} +(-1.00000 - 0.726543i) q^{31} +(1.69098 + 2.85317i) q^{33} +(2.61803 + 1.90211i) q^{35} +(-0.663119 - 2.04087i) q^{37} +(1.61803 - 1.17557i) q^{39} +(2.76393 - 8.50651i) q^{41} +2.85410 q^{43} -3.23607 q^{45} +(-2.61803 + 8.05748i) q^{47} +(-0.809017 + 0.587785i) q^{49} +(1.61803 + 4.97980i) q^{51} +(-1.92705 - 1.40008i) q^{53} +(1.00000 - 10.6861i) q^{55} +(4.61803 + 14.2128i) q^{59} +(5.23607 - 3.80423i) q^{61} +(0.309017 - 0.951057i) q^{63} -6.47214 q^{65} +5.32624 q^{67} +(0.572949 - 1.76336i) q^{69} +(2.92705 - 2.12663i) q^{71} +(-0.381966 - 1.17557i) q^{73} +(4.42705 + 3.21644i) q^{75} +(3.04508 + 1.31433i) q^{77} +(6.16312 + 4.47777i) q^{79} +(0.309017 + 0.951057i) q^{81} +(3.85410 - 2.80017i) q^{83} +(5.23607 - 16.1150i) q^{85} -1.61803 q^{87} -2.76393 q^{89} +(0.618034 - 1.90211i) q^{91} +(1.00000 - 0.726543i) q^{93} +(-9.85410 - 7.15942i) q^{97} +(-3.23607 + 0.726543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 6 q^{5} - q^{7} - q^{9} + 11 q^{11} - 2 q^{13} + 4 q^{15} + 8 q^{17} - 4 q^{21} + 6 q^{23} + 9 q^{25} + q^{27} + 2 q^{29} - 4 q^{31} + 9 q^{33} + 6 q^{35} + 13 q^{37} + 2 q^{39} + 20 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/924\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(661\) \(673\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0 0
\(5\) 2.61803 1.90211i 1.17082 0.850651i 0.179714 0.983719i \(-0.442483\pi\)
0.991107 + 0.133068i \(0.0424829\pi\)
\(6\) 0 0
\(7\) 0.309017 + 0.951057i 0.116797 + 0.359466i
\(8\) 0 0
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 2.19098 2.48990i 0.660606 0.750733i
\(12\) 0 0
\(13\) −1.61803 1.17557i −0.448762 0.326045i 0.340345 0.940301i \(-0.389456\pi\)
−0.789107 + 0.614256i \(0.789456\pi\)
\(14\) 0 0
\(15\) 1.00000 + 3.07768i 0.258199 + 0.794654i
\(16\) 0 0
\(17\) 4.23607 3.07768i 1.02740 0.746448i 0.0596113 0.998222i \(-0.481014\pi\)
0.967786 + 0.251774i \(0.0810139\pi\)
\(18\) 0 0
\(19\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.85410 −0.386607 −0.193303 0.981139i \(-0.561920\pi\)
−0.193303 + 0.981139i \(0.561920\pi\)
\(24\) 0 0
\(25\) 1.69098 5.20431i 0.338197 1.04086i
\(26\) 0 0
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0 0
\(29\) 0.500000 + 1.53884i 0.0928477 + 0.285756i 0.986687 0.162632i \(-0.0519984\pi\)
−0.893839 + 0.448388i \(0.851998\pi\)
\(30\) 0 0
\(31\) −1.00000 0.726543i −0.179605 0.130491i 0.494350 0.869263i \(-0.335406\pi\)
−0.673955 + 0.738772i \(0.735406\pi\)
\(32\) 0 0
\(33\) 1.69098 + 2.85317i 0.294362 + 0.496673i
\(34\) 0 0
\(35\) 2.61803 + 1.90211i 0.442529 + 0.321516i
\(36\) 0 0
\(37\) −0.663119 2.04087i −0.109016 0.335517i 0.881636 0.471930i \(-0.156443\pi\)
−0.990652 + 0.136413i \(0.956443\pi\)
\(38\) 0 0
\(39\) 1.61803 1.17557i 0.259093 0.188242i
\(40\) 0 0
\(41\) 2.76393 8.50651i 0.431654 1.32849i −0.464823 0.885403i \(-0.653882\pi\)
0.896477 0.443090i \(-0.146118\pi\)
\(42\) 0 0
\(43\) 2.85410 0.435246 0.217623 0.976033i \(-0.430170\pi\)
0.217623 + 0.976033i \(0.430170\pi\)
\(44\) 0 0
\(45\) −3.23607 −0.482405
\(46\) 0 0
\(47\) −2.61803 + 8.05748i −0.381880 + 1.17530i 0.556839 + 0.830620i \(0.312014\pi\)
−0.938719 + 0.344684i \(0.887986\pi\)
\(48\) 0 0
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) 0 0
\(51\) 1.61803 + 4.97980i 0.226570 + 0.697311i
\(52\) 0 0
\(53\) −1.92705 1.40008i −0.264701 0.192316i 0.447516 0.894276i \(-0.352309\pi\)
−0.712217 + 0.701960i \(0.752309\pi\)
\(54\) 0 0
\(55\) 1.00000 10.6861i 0.134840 1.44092i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.61803 + 14.2128i 0.601217 + 1.85036i 0.520960 + 0.853581i \(0.325574\pi\)
0.0802564 + 0.996774i \(0.474426\pi\)
\(60\) 0 0
\(61\) 5.23607 3.80423i 0.670410 0.487081i −0.199753 0.979846i \(-0.564014\pi\)
0.870162 + 0.492765i \(0.164014\pi\)
\(62\) 0 0
\(63\) 0.309017 0.951057i 0.0389325 0.119822i
\(64\) 0 0
\(65\) −6.47214 −0.802770
\(66\) 0 0
\(67\) 5.32624 0.650704 0.325352 0.945593i \(-0.394517\pi\)
0.325352 + 0.945593i \(0.394517\pi\)
\(68\) 0 0
\(69\) 0.572949 1.76336i 0.0689750 0.212283i
\(70\) 0 0
\(71\) 2.92705 2.12663i 0.347377 0.252384i −0.400391 0.916344i \(-0.631126\pi\)
0.747768 + 0.663960i \(0.231126\pi\)
\(72\) 0 0
\(73\) −0.381966 1.17557i −0.0447057 0.137590i 0.926212 0.377003i \(-0.123045\pi\)
−0.970918 + 0.239412i \(0.923045\pi\)
\(74\) 0 0
\(75\) 4.42705 + 3.21644i 0.511192 + 0.371403i
\(76\) 0 0
\(77\) 3.04508 + 1.31433i 0.347020 + 0.149782i
\(78\) 0 0
\(79\) 6.16312 + 4.47777i 0.693405 + 0.503788i 0.877778 0.479068i \(-0.159025\pi\)
−0.184373 + 0.982856i \(0.559025\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) 3.85410 2.80017i 0.423043 0.307358i −0.355818 0.934555i \(-0.615798\pi\)
0.778861 + 0.627197i \(0.215798\pi\)
\(84\) 0 0
\(85\) 5.23607 16.1150i 0.567931 1.74791i
\(86\) 0 0
\(87\) −1.61803 −0.173471
\(88\) 0 0
\(89\) −2.76393 −0.292976 −0.146488 0.989212i \(-0.546797\pi\)
−0.146488 + 0.989212i \(0.546797\pi\)
\(90\) 0 0
\(91\) 0.618034 1.90211i 0.0647876 0.199396i
\(92\) 0 0
\(93\) 1.00000 0.726543i 0.103695 0.0753390i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.85410 7.15942i −1.00053 0.726929i −0.0383302 0.999265i \(-0.512204\pi\)
−0.962202 + 0.272336i \(0.912204\pi\)
\(98\) 0 0
\(99\) −3.23607 + 0.726543i −0.325237 + 0.0730203i
\(100\) 0 0
\(101\) 13.0902 + 9.51057i 1.30252 + 0.946337i 0.999977 0.00679891i \(-0.00216418\pi\)
0.302544 + 0.953136i \(0.402164\pi\)
\(102\) 0 0
\(103\) 4.85410 + 14.9394i 0.478289 + 1.47202i 0.841470 + 0.540303i \(0.181691\pi\)
−0.363181 + 0.931718i \(0.618309\pi\)
\(104\) 0 0
\(105\) −2.61803 + 1.90211i −0.255494 + 0.185627i
\(106\) 0 0
\(107\) 0.572949 1.76336i 0.0553891 0.170470i −0.919535 0.393008i \(-0.871434\pi\)
0.974924 + 0.222538i \(0.0714343\pi\)
\(108\) 0 0
\(109\) 1.85410 0.177591 0.0887954 0.996050i \(-0.471698\pi\)
0.0887954 + 0.996050i \(0.471698\pi\)
\(110\) 0 0
\(111\) 2.14590 0.203680
\(112\) 0 0
\(113\) −2.97214 + 9.14729i −0.279595 + 0.860505i 0.708372 + 0.705839i \(0.249430\pi\)
−0.987967 + 0.154666i \(0.950570\pi\)
\(114\) 0 0
\(115\) −4.85410 + 3.52671i −0.452647 + 0.328868i
\(116\) 0 0
\(117\) 0.618034 + 1.90211i 0.0571373 + 0.175850i
\(118\) 0 0
\(119\) 4.23607 + 3.07768i 0.388320 + 0.282131i
\(120\) 0 0
\(121\) −1.39919 10.9106i −0.127199 0.991877i
\(122\) 0 0
\(123\) 7.23607 + 5.25731i 0.652454 + 0.474036i
\(124\) 0 0
\(125\) −0.472136 1.45309i −0.0422291 0.129968i
\(126\) 0 0
\(127\) −3.73607 + 2.71441i −0.331522 + 0.240865i −0.741076 0.671421i \(-0.765684\pi\)
0.409554 + 0.912286i \(0.365684\pi\)
\(128\) 0 0
\(129\) −0.881966 + 2.71441i −0.0776528 + 0.238991i
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 3.07768i 0.0860663 0.264885i
\(136\) 0 0
\(137\) −9.97214 + 7.24518i −0.851977 + 0.618998i −0.925690 0.378282i \(-0.876515\pi\)
0.0737134 + 0.997279i \(0.476515\pi\)
\(138\) 0 0
\(139\) −3.38197 10.4086i −0.286855 0.882848i −0.985837 0.167708i \(-0.946363\pi\)
0.698982 0.715139i \(-0.253637\pi\)
\(140\) 0 0
\(141\) −6.85410 4.97980i −0.577220 0.419375i
\(142\) 0 0
\(143\) −6.47214 + 1.45309i −0.541227 + 0.121513i
\(144\) 0 0
\(145\) 4.23607 + 3.07768i 0.351786 + 0.255588i
\(146\) 0 0
\(147\) −0.309017 0.951057i −0.0254873 0.0784418i
\(148\) 0 0
\(149\) −14.5623 + 10.5801i −1.19299 + 0.866758i −0.993577 0.113157i \(-0.963904\pi\)
−0.199413 + 0.979915i \(0.563904\pi\)
\(150\) 0 0
\(151\) 3.98936 12.2780i 0.324649 0.999168i −0.646949 0.762533i \(-0.723956\pi\)
0.971599 0.236635i \(-0.0760445\pi\)
\(152\) 0 0
\(153\) −5.23607 −0.423311
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 0.708204 2.17963i 0.0565208 0.173953i −0.918811 0.394699i \(-0.870849\pi\)
0.975331 + 0.220745i \(0.0708490\pi\)
\(158\) 0 0
\(159\) 1.92705 1.40008i 0.152825 0.111034i
\(160\) 0 0
\(161\) −0.572949 1.76336i −0.0451547 0.138972i
\(162\) 0 0
\(163\) −17.4443 12.6740i −1.36634 0.992705i −0.998013 0.0630087i \(-0.979930\pi\)
−0.368328 0.929696i \(-0.620070\pi\)
\(164\) 0 0
\(165\) 9.85410 + 4.25325i 0.767141 + 0.331115i
\(166\) 0 0
\(167\) 3.61803 + 2.62866i 0.279972 + 0.203411i 0.718905 0.695108i \(-0.244644\pi\)
−0.438933 + 0.898520i \(0.644644\pi\)
\(168\) 0 0
\(169\) −2.78115 8.55951i −0.213935 0.658424i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.61803 + 8.05748i −0.199045 + 0.612599i 0.800860 + 0.598852i \(0.204376\pi\)
−0.999906 + 0.0137473i \(0.995624\pi\)
\(174\) 0 0
\(175\) 5.47214 0.413655
\(176\) 0 0
\(177\) −14.9443 −1.12328
\(178\) 0 0
\(179\) −3.33688 + 10.2699i −0.249410 + 0.767606i 0.745470 + 0.666540i \(0.232225\pi\)
−0.994880 + 0.101066i \(0.967775\pi\)
\(180\) 0 0
\(181\) −19.1803 + 13.9353i −1.42566 + 1.03581i −0.434860 + 0.900498i \(0.643202\pi\)
−0.990804 + 0.135307i \(0.956798\pi\)
\(182\) 0 0
\(183\) 2.00000 + 6.15537i 0.147844 + 0.455018i
\(184\) 0 0
\(185\) −5.61803 4.08174i −0.413046 0.300096i
\(186\) 0 0
\(187\) 1.61803 17.2905i 0.118322 1.26441i
\(188\) 0 0
\(189\) 0.809017 + 0.587785i 0.0588473 + 0.0427551i
\(190\) 0 0
\(191\) −3.82624 11.7759i −0.276857 0.852078i −0.988722 0.149762i \(-0.952149\pi\)
0.711865 0.702316i \(-0.247851\pi\)
\(192\) 0 0
\(193\) −16.3992 + 11.9147i −1.18044 + 0.857639i −0.992221 0.124488i \(-0.960271\pi\)
−0.188218 + 0.982127i \(0.560271\pi\)
\(194\) 0 0
\(195\) 2.00000 6.15537i 0.143223 0.440795i
\(196\) 0 0
\(197\) −4.90983 −0.349811 −0.174905 0.984585i \(-0.555962\pi\)
−0.174905 + 0.984585i \(0.555962\pi\)
\(198\) 0 0
\(199\) −19.2361 −1.36361 −0.681804 0.731535i \(-0.738804\pi\)
−0.681804 + 0.731535i \(0.738804\pi\)
\(200\) 0 0
\(201\) −1.64590 + 5.06555i −0.116093 + 0.357297i
\(202\) 0 0
\(203\) −1.30902 + 0.951057i −0.0918750 + 0.0667511i
\(204\) 0 0
\(205\) −8.94427 27.5276i −0.624695 1.92261i
\(206\) 0 0
\(207\) 1.50000 + 1.08981i 0.104257 + 0.0757473i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −16.4443 11.9475i −1.13207 0.822497i −0.146076 0.989273i \(-0.546664\pi\)
−0.985995 + 0.166776i \(0.946664\pi\)
\(212\) 0 0
\(213\) 1.11803 + 3.44095i 0.0766064 + 0.235770i
\(214\) 0 0
\(215\) 7.47214 5.42882i 0.509595 0.370243i
\(216\) 0 0
\(217\) 0.381966 1.17557i 0.0259295 0.0798029i
\(218\) 0 0
\(219\) 1.23607 0.0835257
\(220\) 0 0
\(221\) −10.4721 −0.704432
\(222\) 0 0
\(223\) −5.90983 + 18.1886i −0.395751 + 1.21800i 0.532623 + 0.846352i \(0.321206\pi\)
−0.928375 + 0.371645i \(0.878794\pi\)
\(224\) 0 0
\(225\) −4.42705 + 3.21644i −0.295137 + 0.214429i
\(226\) 0 0
\(227\) 4.70820 + 14.4904i 0.312494 + 0.961759i 0.976774 + 0.214274i \(0.0687387\pi\)
−0.664279 + 0.747485i \(0.731261\pi\)
\(228\) 0 0
\(229\) 17.7984 + 12.9313i 1.17615 + 0.854523i 0.991732 0.128325i \(-0.0409601\pi\)
0.184418 + 0.982848i \(0.440960\pi\)
\(230\) 0 0
\(231\) −2.19098 + 2.48990i −0.144156 + 0.163823i
\(232\) 0 0
\(233\) −6.09017 4.42477i −0.398980 0.289876i 0.370145 0.928974i \(-0.379308\pi\)
−0.769126 + 0.639098i \(0.779308\pi\)
\(234\) 0 0
\(235\) 8.47214 + 26.0746i 0.552661 + 1.70092i
\(236\) 0 0
\(237\) −6.16312 + 4.47777i −0.400338 + 0.290862i
\(238\) 0 0
\(239\) 6.11803 18.8294i 0.395743 1.21797i −0.532639 0.846343i \(-0.678800\pi\)
0.928382 0.371628i \(-0.121200\pi\)
\(240\) 0 0
\(241\) 29.1246 1.87608 0.938041 0.346525i \(-0.112639\pi\)
0.938041 + 0.346525i \(0.112639\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −1.00000 + 3.07768i −0.0638877 + 0.196626i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.47214 + 4.53077i 0.0932928 + 0.287126i
\(250\) 0 0
\(251\) 19.5623 + 14.2128i 1.23476 + 0.897107i 0.997238 0.0742747i \(-0.0236642\pi\)
0.237524 + 0.971382i \(0.423664\pi\)
\(252\) 0 0
\(253\) −4.06231 + 4.61653i −0.255395 + 0.290238i
\(254\) 0 0
\(255\) 13.7082 + 9.95959i 0.858441 + 0.623694i
\(256\) 0 0
\(257\) 2.52786 + 7.77997i 0.157684 + 0.485301i 0.998423 0.0561395i \(-0.0178792\pi\)
−0.840739 + 0.541440i \(0.817879\pi\)
\(258\) 0 0
\(259\) 1.73607 1.26133i 0.107874 0.0783751i
\(260\) 0 0
\(261\) 0.500000 1.53884i 0.0309492 0.0952519i
\(262\) 0 0
\(263\) 2.09017 0.128885 0.0644427 0.997921i \(-0.479473\pi\)
0.0644427 + 0.997921i \(0.479473\pi\)
\(264\) 0 0
\(265\) −7.70820 −0.473511
\(266\) 0 0
\(267\) 0.854102 2.62866i 0.0522702 0.160871i
\(268\) 0 0
\(269\) 18.4164 13.3803i 1.12287 0.815812i 0.138227 0.990401i \(-0.455860\pi\)
0.984641 + 0.174589i \(0.0558597\pi\)
\(270\) 0 0
\(271\) −0.437694 1.34708i −0.0265880 0.0818295i 0.936882 0.349646i \(-0.113698\pi\)
−0.963470 + 0.267816i \(0.913698\pi\)
\(272\) 0 0
\(273\) 1.61803 + 1.17557i 0.0979279 + 0.0711488i
\(274\) 0 0
\(275\) −9.25329 15.6129i −0.557994 0.941495i
\(276\) 0 0
\(277\) −1.73607 1.26133i −0.104310 0.0757858i 0.534407 0.845227i \(-0.320535\pi\)
−0.638718 + 0.769441i \(0.720535\pi\)
\(278\) 0 0
\(279\) 0.381966 + 1.17557i 0.0228677 + 0.0703796i
\(280\) 0 0
\(281\) 3.92705 2.85317i 0.234268 0.170206i −0.464458 0.885595i \(-0.653751\pi\)
0.698726 + 0.715389i \(0.253751\pi\)
\(282\) 0 0
\(283\) −6.38197 + 19.6417i −0.379369 + 1.16758i 0.561115 + 0.827738i \(0.310372\pi\)
−0.940484 + 0.339839i \(0.889628\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.94427 0.527964
\(288\) 0 0
\(289\) 3.21885 9.90659i 0.189344 0.582741i
\(290\) 0 0
\(291\) 9.85410 7.15942i 0.577658 0.419693i
\(292\) 0 0
\(293\) 4.81966 + 14.8334i 0.281568 + 0.866576i 0.987407 + 0.158203i \(0.0505702\pi\)
−0.705839 + 0.708372i \(0.749430\pi\)
\(294\) 0 0
\(295\) 39.1246 + 28.4257i 2.27792 + 1.65501i
\(296\) 0 0
\(297\) 0.309017 3.30220i 0.0179310 0.191613i
\(298\) 0 0
\(299\) 3.00000 + 2.17963i 0.173494 + 0.126051i
\(300\) 0 0
\(301\) 0.881966 + 2.71441i 0.0508357 + 0.156456i
\(302\) 0 0
\(303\) −13.0902 + 9.51057i −0.752011 + 0.546368i
\(304\) 0 0
\(305\) 6.47214 19.9192i 0.370593 1.14057i
\(306\) 0 0
\(307\) −33.7082 −1.92383 −0.961914 0.273351i \(-0.911868\pi\)
−0.961914 + 0.273351i \(0.911868\pi\)
\(308\) 0 0
\(309\) −15.7082 −0.893609
\(310\) 0 0
\(311\) −6.14590 + 18.9151i −0.348502 + 1.07258i 0.611180 + 0.791491i \(0.290695\pi\)
−0.959682 + 0.281087i \(0.909305\pi\)
\(312\) 0 0
\(313\) 9.94427 7.22494i 0.562083 0.408378i −0.270137 0.962822i \(-0.587069\pi\)
0.832221 + 0.554444i \(0.187069\pi\)
\(314\) 0 0
\(315\) −1.00000 3.07768i −0.0563436 0.173408i
\(316\) 0 0
\(317\) −9.92705 7.21242i −0.557559 0.405090i 0.273006 0.962012i \(-0.411982\pi\)
−0.830565 + 0.556922i \(0.811982\pi\)
\(318\) 0 0
\(319\) 4.92705 + 2.12663i 0.275862 + 0.119068i
\(320\) 0 0
\(321\) 1.50000 + 1.08981i 0.0837218 + 0.0608275i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.85410 + 6.43288i −0.491137 + 0.356832i
\(326\) 0 0
\(327\) −0.572949 + 1.76336i −0.0316842 + 0.0975138i
\(328\) 0 0
\(329\) −8.47214 −0.467084
\(330\) 0 0
\(331\) 7.67376 0.421788 0.210894 0.977509i \(-0.432362\pi\)
0.210894 + 0.977509i \(0.432362\pi\)
\(332\) 0 0
\(333\) −0.663119 + 2.04087i −0.0363387 + 0.111839i
\(334\) 0 0
\(335\) 13.9443 10.1311i 0.761857 0.553521i
\(336\) 0 0
\(337\) −10.6631 32.8177i −0.580857 1.78769i −0.615307 0.788288i \(-0.710968\pi\)
0.0344495 0.999406i \(-0.489032\pi\)
\(338\) 0 0
\(339\) −7.78115 5.65334i −0.422614 0.307047i
\(340\) 0 0
\(341\) −4.00000 + 0.898056i −0.216612 + 0.0486325i
\(342\) 0 0
\(343\) −0.809017 0.587785i −0.0436828 0.0317374i
\(344\) 0 0
\(345\) −1.85410 5.70634i −0.0998215 0.307219i
\(346\) 0 0
\(347\) −10.6353 + 7.72696i −0.570930 + 0.414805i −0.835443 0.549577i \(-0.814789\pi\)
0.264513 + 0.964382i \(0.414789\pi\)
\(348\) 0 0
\(349\) −1.52786 + 4.70228i −0.0817847 + 0.251707i −0.983585 0.180446i \(-0.942246\pi\)
0.901800 + 0.432153i \(0.142246\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) −1.52786 −0.0813200 −0.0406600 0.999173i \(-0.512946\pi\)
−0.0406600 + 0.999173i \(0.512946\pi\)
\(354\) 0 0
\(355\) 3.61803 11.1352i 0.192025 0.590993i
\(356\) 0 0
\(357\) −4.23607 + 3.07768i −0.224196 + 0.162888i
\(358\) 0 0
\(359\) −10.2812 31.6421i −0.542618 1.67001i −0.726586 0.687076i \(-0.758894\pi\)
0.183967 0.982932i \(-0.441106\pi\)
\(360\) 0 0
\(361\) 15.3713 + 11.1679i 0.809017 + 0.587785i
\(362\) 0 0
\(363\) 10.8090 + 2.04087i 0.567326 + 0.107118i
\(364\) 0 0
\(365\) −3.23607 2.35114i −0.169384 0.123064i
\(366\) 0 0
\(367\) 7.94427 + 24.4500i 0.414688 + 1.27628i 0.912530 + 0.409010i \(0.134126\pi\)
−0.497842 + 0.867268i \(0.665874\pi\)
\(368\) 0 0
\(369\) −7.23607 + 5.25731i −0.376695 + 0.273685i
\(370\) 0 0
\(371\) 0.736068 2.26538i 0.0382147 0.117613i
\(372\) 0 0
\(373\) 10.5836 0.547998 0.273999 0.961730i \(-0.411654\pi\)
0.273999 + 0.961730i \(0.411654\pi\)
\(374\) 0 0
\(375\) 1.52786 0.0788986
\(376\) 0 0
\(377\) 1.00000 3.07768i 0.0515026 0.158509i
\(378\) 0 0
\(379\) −17.6803 + 12.8455i −0.908178 + 0.659830i −0.940553 0.339646i \(-0.889693\pi\)
0.0323754 + 0.999476i \(0.489693\pi\)
\(380\) 0 0
\(381\) −1.42705 4.39201i −0.0731100 0.225010i
\(382\) 0 0
\(383\) 24.1803 + 17.5680i 1.23556 + 0.897685i 0.997294 0.0735154i \(-0.0234218\pi\)
0.238264 + 0.971201i \(0.423422\pi\)
\(384\) 0 0
\(385\) 10.4721 2.35114i 0.533709 0.119825i
\(386\) 0 0
\(387\) −2.30902 1.67760i −0.117374 0.0852772i
\(388\) 0 0
\(389\) −3.13525 9.64932i −0.158964 0.489240i 0.839577 0.543240i \(-0.182803\pi\)
−0.998541 + 0.0540004i \(0.982803\pi\)
\(390\) 0 0
\(391\) −7.85410 + 5.70634i −0.397199 + 0.288582i
\(392\) 0 0
\(393\) 5.56231 17.1190i 0.280581 0.863540i
\(394\) 0 0
\(395\) 24.6525 1.24040
\(396\) 0 0
\(397\) −11.1246 −0.558328 −0.279164 0.960243i \(-0.590057\pi\)
−0.279164 + 0.960243i \(0.590057\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.6803 16.4782i 1.13260 0.822884i 0.146531 0.989206i \(-0.453189\pi\)
0.986071 + 0.166323i \(0.0531893\pi\)
\(402\) 0 0
\(403\) 0.763932 + 2.35114i 0.0380542 + 0.117119i
\(404\) 0 0
\(405\) 2.61803 + 1.90211i 0.130091 + 0.0945168i
\(406\) 0 0
\(407\) −6.53444 2.82041i −0.323900 0.139803i
\(408\) 0 0
\(409\) 20.9443 + 15.2169i 1.03563 + 0.752427i 0.969427 0.245379i \(-0.0789124\pi\)
0.0662003 + 0.997806i \(0.478912\pi\)
\(410\) 0 0
\(411\) −3.80902 11.7229i −0.187885 0.578250i
\(412\) 0 0
\(413\) −12.0902 + 8.78402i −0.594918 + 0.432233i
\(414\) 0 0
\(415\) 4.76393 14.6619i 0.233852 0.719723i
\(416\) 0 0
\(417\) 10.9443 0.535943
\(418\) 0 0
\(419\) −14.6525 −0.715820 −0.357910 0.933756i \(-0.616511\pi\)
−0.357910 + 0.933756i \(0.616511\pi\)
\(420\) 0 0
\(421\) 4.01064 12.3435i 0.195467 0.601585i −0.804504 0.593947i \(-0.797569\pi\)
0.999971 0.00763774i \(-0.00243119\pi\)
\(422\) 0 0
\(423\) 6.85410 4.97980i 0.333258 0.242126i
\(424\) 0 0
\(425\) −8.85410 27.2501i −0.429487 1.32183i
\(426\) 0 0
\(427\) 5.23607 + 3.80423i 0.253391 + 0.184099i
\(428\) 0 0
\(429\) 0.618034 6.60440i 0.0298390 0.318863i
\(430\) 0 0
\(431\) −4.20820 3.05744i −0.202702 0.147272i 0.481804 0.876279i \(-0.339982\pi\)
−0.684506 + 0.729008i \(0.739982\pi\)
\(432\) 0 0
\(433\) −2.85410 8.78402i −0.137159 0.422133i 0.858760 0.512378i \(-0.171235\pi\)
−0.995920 + 0.0902444i \(0.971235\pi\)
\(434\) 0 0
\(435\) −4.23607 + 3.07768i −0.203104 + 0.147564i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −2.76393 −0.131915 −0.0659576 0.997822i \(-0.521010\pi\)
−0.0659576 + 0.997822i \(0.521010\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −2.64590 + 8.14324i −0.125710 + 0.386897i −0.994030 0.109109i \(-0.965200\pi\)
0.868319 + 0.496005i \(0.165200\pi\)
\(444\) 0 0
\(445\) −7.23607 + 5.25731i −0.343023 + 0.249220i
\(446\) 0 0
\(447\) −5.56231 17.1190i −0.263088 0.809702i
\(448\) 0 0
\(449\) 15.2082 + 11.0494i 0.717720 + 0.521454i 0.885655 0.464344i \(-0.153710\pi\)
−0.167935 + 0.985798i \(0.553710\pi\)
\(450\) 0 0
\(451\) −15.1246 25.5195i −0.712190 1.20167i
\(452\) 0 0
\(453\) 10.4443 + 7.58821i 0.490715 + 0.356525i
\(454\) 0 0
\(455\) −2.00000 6.15537i −0.0937614 0.288568i
\(456\) 0 0
\(457\) 15.6803 11.3924i 0.733495 0.532916i −0.157172 0.987571i \(-0.550238\pi\)
0.890667 + 0.454656i \(0.150238\pi\)
\(458\) 0 0
\(459\) 1.61803 4.97980i 0.0755234 0.232437i
\(460\) 0 0
\(461\) −14.1803 −0.660444 −0.330222 0.943903i \(-0.607124\pi\)
−0.330222 + 0.943903i \(0.607124\pi\)
\(462\) 0 0
\(463\) −14.2705 −0.663207 −0.331603 0.943419i \(-0.607590\pi\)
−0.331603 + 0.943419i \(0.607590\pi\)
\(464\) 0 0
\(465\) 1.23607 3.80423i 0.0573213 0.176417i
\(466\) 0 0
\(467\) 16.7984 12.2047i 0.777336 0.564768i −0.126842 0.991923i \(-0.540484\pi\)
0.904178 + 0.427155i \(0.140484\pi\)
\(468\) 0 0
\(469\) 1.64590 + 5.06555i 0.0760005 + 0.233906i
\(470\) 0 0
\(471\) 1.85410 + 1.34708i 0.0854325 + 0.0620704i
\(472\) 0 0
\(473\) 6.25329 7.10642i 0.287527 0.326754i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.736068 + 2.26538i 0.0337022 + 0.103725i
\(478\) 0 0
\(479\) 19.7082 14.3188i 0.900491 0.654245i −0.0381012 0.999274i \(-0.512131\pi\)
0.938592 + 0.345029i \(0.112131\pi\)
\(480\) 0 0
\(481\) −1.32624 + 4.08174i −0.0604712 + 0.186111i
\(482\) 0 0
\(483\) 1.85410 0.0843646
\(484\) 0 0
\(485\) −39.4164 −1.78981
\(486\) 0 0
\(487\) −7.11803 + 21.9071i −0.322549 + 0.992703i 0.649986 + 0.759946i \(0.274775\pi\)
−0.972535 + 0.232757i \(0.925225\pi\)
\(488\) 0 0
\(489\) 17.4443 12.6740i 0.788857 0.573138i
\(490\) 0 0
\(491\) 4.58359 + 14.1068i 0.206855 + 0.636633i 0.999632 + 0.0271219i \(0.00863424\pi\)
−0.792778 + 0.609511i \(0.791366\pi\)
\(492\) 0 0
\(493\) 6.85410 + 4.97980i 0.308693 + 0.224279i
\(494\) 0 0
\(495\) −7.09017 + 8.05748i −0.318679 + 0.362157i
\(496\) 0 0
\(497\) 2.92705 + 2.12663i 0.131296 + 0.0953923i
\(498\) 0 0
\(499\) −2.77051 8.52675i −0.124025 0.381710i 0.869697 0.493586i \(-0.164314\pi\)
−0.993722 + 0.111876i \(0.964314\pi\)
\(500\) 0 0
\(501\) −3.61803 + 2.62866i −0.161642 + 0.117440i
\(502\) 0 0
\(503\) 12.9098 39.7324i 0.575621 1.77158i −0.0584345 0.998291i \(-0.518611\pi\)
0.634055 0.773288i \(-0.281389\pi\)
\(504\) 0 0
\(505\) 52.3607 2.33002
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) −12.2361 + 37.6587i −0.542354 + 1.66919i 0.184845 + 0.982768i \(0.440822\pi\)
−0.727199 + 0.686427i \(0.759178\pi\)
\(510\) 0 0
\(511\) 1.00000 0.726543i 0.0442374 0.0321403i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 41.1246 + 29.8788i 1.81217 + 1.31662i
\(516\) 0 0
\(517\) 14.3262 + 24.1724i 0.630067 + 1.06310i
\(518\) 0 0
\(519\) −6.85410 4.97980i −0.300862 0.218589i
\(520\) 0 0
\(521\) −12.0000 36.9322i −0.525730 1.61803i −0.762869 0.646553i \(-0.776210\pi\)
0.237139 0.971476i \(-0.423790\pi\)
\(522\) 0 0
\(523\) 5.70820 4.14725i 0.249602 0.181347i −0.455948 0.890006i \(-0.650700\pi\)
0.705551 + 0.708660i \(0.250700\pi\)
\(524\) 0 0
\(525\) −1.69098 + 5.20431i −0.0738005 + 0.227135i
\(526\) 0 0
\(527\) −6.47214 −0.281931
\(528\) 0 0
\(529\) −19.5623 −0.850535
\(530\) 0 0
\(531\) 4.61803 14.2128i 0.200406 0.616785i
\(532\) 0 0
\(533\) −14.4721 + 10.5146i −0.626858 + 0.455439i
\(534\) 0 0
\(535\) −1.85410 5.70634i −0.0801598 0.246707i
\(536\) 0 0
\(537\) −8.73607 6.34712i −0.376989 0.273899i
\(538\) 0 0
\(539\) −0.309017 + 3.30220i −0.0133103 + 0.142236i
\(540\) 0 0
\(541\) 34.9164 + 25.3683i 1.50117 + 1.09067i 0.969911 + 0.243459i \(0.0782822\pi\)
0.531262 + 0.847207i \(0.321718\pi\)
\(542\) 0 0
\(543\) −7.32624 22.5478i −0.314399 0.967621i
\(544\) 0 0
\(545\) 4.85410 3.52671i 0.207927 0.151068i
\(546\) 0 0
\(547\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(548\) 0 0
\(549\) −6.47214 −0.276224
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −2.35410 + 7.24518i −0.100107 + 0.308096i
\(554\) 0 0
\(555\) 5.61803 4.08174i 0.238472 0.173260i
\(556\) 0 0
\(557\) 7.97214 + 24.5357i 0.337790 + 1.03961i 0.965331 + 0.261028i \(0.0840615\pi\)
−0.627541 + 0.778584i \(0.715939\pi\)
\(558\) 0 0
\(559\) −4.61803 3.35520i −0.195322 0.141910i
\(560\) 0 0
\(561\) 15.9443 + 6.88191i 0.673168 + 0.290554i
\(562\) 0 0
\(563\) 22.7082 + 16.4985i 0.957037 + 0.695328i 0.952461 0.304662i \(-0.0985434\pi\)
0.00457605 + 0.999990i \(0.498543\pi\)
\(564\) 0 0
\(565\) 9.61803 + 29.6013i 0.404634 + 1.24533i
\(566\) 0 0
\(567\) −0.809017 + 0.587785i −0.0339755 + 0.0246847i
\(568\) 0 0
\(569\) −11.8541 + 36.4832i −0.496950 + 1.52945i 0.316946 + 0.948444i \(0.397343\pi\)
−0.813896 + 0.581011i \(0.802657\pi\)
\(570\) 0 0
\(571\) 9.56231 0.400170 0.200085 0.979779i \(-0.435878\pi\)
0.200085 + 0.979779i \(0.435878\pi\)
\(572\) 0 0
\(573\) 12.3820 0.517264
\(574\) 0 0
\(575\) −3.13525 + 9.64932i −0.130749 + 0.402405i
\(576\) 0 0
\(577\) 30.1246 21.8868i 1.25410 0.911160i 0.255651 0.966769i \(-0.417710\pi\)
0.998453 + 0.0556091i \(0.0177101\pi\)
\(578\) 0 0
\(579\) −6.26393 19.2784i −0.260320 0.801183i
\(580\) 0 0
\(581\) 3.85410 + 2.80017i 0.159895 + 0.116171i
\(582\) 0 0
\(583\) −7.70820 + 1.73060i −0.319241 + 0.0716741i
\(584\) 0 0
\(585\) 5.23607 + 3.80423i 0.216485 + 0.157285i
\(586\) 0 0
\(587\) −4.88854 15.0454i −0.201772 0.620990i −0.999831 0.0184101i \(-0.994140\pi\)
0.798059 0.602580i \(-0.205860\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.51722 4.66953i 0.0624101 0.192079i
\(592\) 0 0
\(593\) 38.0689 1.56330 0.781651 0.623716i \(-0.214378\pi\)
0.781651 + 0.623716i \(0.214378\pi\)
\(594\) 0 0
\(595\) 16.9443 0.694647
\(596\) 0 0
\(597\) 5.94427 18.2946i 0.243283 0.748748i
\(598\) 0 0
\(599\) 2.73607 1.98787i 0.111793 0.0812222i −0.530484 0.847695i \(-0.677990\pi\)
0.642277 + 0.766473i \(0.277990\pi\)
\(600\) 0 0
\(601\) −12.7082 39.1118i −0.518378 1.59540i −0.777050 0.629439i \(-0.783285\pi\)
0.258671 0.965965i \(-0.416715\pi\)
\(602\) 0 0
\(603\) −4.30902 3.13068i −0.175477 0.127491i
\(604\) 0 0
\(605\) −24.4164 25.9030i −0.992668 1.05311i
\(606\) 0 0
\(607\) 14.0902 + 10.2371i 0.571902 + 0.415511i 0.835796 0.549040i \(-0.185007\pi\)
−0.263893 + 0.964552i \(0.585007\pi\)
\(608\) 0 0
\(609\) −0.500000 1.53884i −0.0202610 0.0623570i
\(610\) 0 0
\(611\) 13.7082 9.95959i 0.554575 0.402922i
\(612\) 0 0
\(613\) −1.50000 + 4.61653i −0.0605844 + 0.186460i −0.976768 0.214299i \(-0.931253\pi\)
0.916184 + 0.400759i \(0.131253\pi\)
\(614\) 0 0
\(615\) 28.9443 1.16715
\(616\) 0 0
\(617\) −31.9098 −1.28464 −0.642321 0.766436i \(-0.722028\pi\)
−0.642321 + 0.766436i \(0.722028\pi\)
\(618\) 0 0
\(619\) 5.38197 16.5640i 0.216319 0.665763i −0.782738 0.622352i \(-0.786177\pi\)
0.999057 0.0434113i \(-0.0138226\pi\)
\(620\) 0 0
\(621\) −1.50000 + 1.08981i −0.0601929 + 0.0437327i
\(622\) 0 0
\(623\) −0.854102 2.62866i −0.0342189 0.105315i
\(624\) 0 0
\(625\) 18.1353 + 13.1760i 0.725410 + 0.527041i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.09017 6.60440i −0.362449 0.263334i
\(630\) 0 0
\(631\) 0.572949 + 1.76336i 0.0228087 + 0.0701981i 0.961813 0.273707i \(-0.0882500\pi\)
−0.939004 + 0.343906i \(0.888250\pi\)
\(632\) 0 0
\(633\) 16.4443 11.9475i 0.653601 0.474869i
\(634\) 0 0
\(635\) −4.61803 + 14.2128i −0.183261 + 0.564020i
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) −3.61803 −0.143127
\(640\) 0 0
\(641\) 4.50000 13.8496i 0.177739 0.547025i −0.822009 0.569475i \(-0.807147\pi\)
0.999748 + 0.0224496i \(0.00714654\pi\)
\(642\) 0 0
\(643\) −37.6525 + 27.3561i −1.48487 + 1.07882i −0.508922 + 0.860813i \(0.669956\pi\)
−0.975947 + 0.218007i \(0.930044\pi\)
\(644\) 0 0
\(645\) 2.85410 + 8.78402i 0.112380 + 0.345871i
\(646\) 0 0
\(647\) −5.38197 3.91023i −0.211587 0.153727i 0.476944 0.878933i \(-0.341744\pi\)
−0.688531 + 0.725207i \(0.741744\pi\)
\(648\) 0 0
\(649\) 45.5066 + 19.6417i 1.78629 + 0.771003i
\(650\) 0 0
\(651\) 1.00000 + 0.726543i 0.0391931 + 0.0284754i
\(652\) 0 0
\(653\) 7.33688 + 22.5806i 0.287114 + 0.883647i 0.985757 + 0.168176i \(0.0537878\pi\)
−0.698643 + 0.715471i \(0.746212\pi\)
\(654\) 0 0
\(655\) −47.1246 + 34.2380i −1.84131 + 1.33779i
\(656\) 0 0
\(657\) −0.381966 + 1.17557i −0.0149019 + 0.0458634i
\(658\) 0 0
\(659\) −38.4721 −1.49866 −0.749331 0.662196i \(-0.769625\pi\)
−0.749331 + 0.662196i \(0.769625\pi\)
\(660\) 0 0
\(661\) −27.2361 −1.05936 −0.529680 0.848197i \(-0.677688\pi\)
−0.529680 + 0.848197i \(0.677688\pi\)
\(662\) 0 0
\(663\) 3.23607 9.95959i 0.125678 0.386799i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.927051 2.85317i −0.0358956 0.110475i
\(668\) 0 0
\(669\) −15.4721 11.2412i −0.598187 0.434609i
\(670\) 0 0
\(671\) 2.00000 21.3723i 0.0772091 0.825067i
\(672\) 0 0
\(673\) 38.1074 + 27.6866i 1.46893 + 1.06724i 0.980922 + 0.194404i \(0.0622772\pi\)
0.488010 + 0.872838i \(0.337723\pi\)
\(674\) 0 0
\(675\) −1.69098 5.20431i −0.0650860 0.200314i
\(676\) 0 0
\(677\) 5.23607 3.80423i 0.201238 0.146208i −0.482602 0.875840i \(-0.660308\pi\)
0.683841 + 0.729631i \(0.260308\pi\)
\(678\) 0 0
\(679\) 3.76393 11.5842i 0.144446 0.444560i
\(680\) 0 0
\(681\) −15.2361 −0.583847
\(682\) 0 0
\(683\) 34.5066 1.32036 0.660179 0.751109i \(-0.270481\pi\)
0.660179 + 0.751109i \(0.270481\pi\)
\(684\) 0 0
\(685\) −12.3262 + 37.9363i −0.470961 + 1.44947i
\(686\) 0 0
\(687\) −17.7984 + 12.9313i −0.679050 + 0.493359i
\(688\) 0 0
\(689\) 1.47214 + 4.53077i 0.0560839 + 0.172609i
\(690\) 0 0
\(691\) −37.2705 27.0786i −1.41784 1.03012i −0.992124 0.125261i \(-0.960023\pi\)
−0.425713 0.904858i \(-0.639977\pi\)
\(692\) 0 0
\(693\) −1.69098 2.85317i −0.0642351 0.108383i
\(694\) 0 0
\(695\) −28.6525 20.8172i −1.08685 0.789643i
\(696\) 0 0
\(697\) −14.4721 44.5407i −0.548171 1.68710i
\(698\) 0 0
\(699\) 6.09017 4.42477i 0.230351 0.167360i
\(700\) 0 0
\(701\) 13.4058 41.2587i 0.506329 1.55832i −0.292196 0.956358i \(-0.594386\pi\)
0.798525 0.601961i \(-0.205614\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −27.4164 −1.03256
\(706\) 0 0
\(707\) −5.00000 + 15.3884i −0.188044 + 0.578741i
\(708\) 0 0
\(709\) −11.7812 + 8.55951i −0.442450 + 0.321459i −0.786608 0.617453i \(-0.788165\pi\)
0.344157 + 0.938912i \(0.388165\pi\)
\(710\) 0 0
\(711\) −2.35410 7.24518i −0.0882857 0.271716i
\(712\) 0 0
\(713\) 1.85410 + 1.34708i 0.0694367 + 0.0504487i
\(714\) 0 0
\(715\) −14.1803 + 16.1150i −0.530315 + 0.602665i
\(716\) 0 0
\(717\) 16.0172 + 11.6372i 0.598174 + 0.434599i
\(718\) 0 0
\(719\) 4.14590 + 12.7598i 0.154616 + 0.475859i 0.998122 0.0612611i \(-0.0195122\pi\)
−0.843506 + 0.537120i \(0.819512\pi\)
\(720\) 0 0
\(721\) −12.7082 + 9.23305i −0.473278 + 0.343857i
\(722\) 0 0
\(723\) −9.00000 + 27.6992i −0.334714 + 1.03014i
\(724\) 0 0
\(725\) 8.85410 0.328833
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) 12.0902 8.78402i 0.447171 0.324889i
\(732\) 0 0
\(733\) 3.43769 + 10.5801i 0.126974 + 0.390786i 0.994256 0.107032i \(-0.0341347\pi\)
−0.867281 + 0.497818i \(0.834135\pi\)
\(734\) 0 0
\(735\) −2.61803 1.90211i −0.0965676 0.0701605i
\(736\) 0 0
\(737\) 11.6697 13.2618i 0.429859 0.488504i
\(738\) 0 0
\(739\) −21.2533 15.4414i −0.781815 0.568022i 0.123708 0.992319i \(-0.460521\pi\)
−0.905523 + 0.424297i \(0.860521\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.1976 + 16.1275i −0.814350 + 0.591660i −0.915088 0.403253i \(-0.867879\pi\)
0.100739 + 0.994913i \(0.467879\pi\)
\(744\) 0 0
\(745\) −18.0000 + 55.3983i −0.659469 + 2.02964i
\(746\) 0 0
\(747\) −4.76393 −0.174303
\(748\) 0 0
\(749\) 1.85410 0.0677474
\(750\) 0 0
\(751\) −10.1008 + 31.0871i −0.368584 + 1.13438i 0.579122 + 0.815241i \(0.303395\pi\)
−0.947706 + 0.319144i \(0.896605\pi\)
\(752\) 0 0
\(753\) −19.5623 + 14.2128i −0.712890 + 0.517945i
\(754\) 0 0
\(755\) −12.9098 39.7324i −0.469837 1.44601i
\(756\) 0 0
\(757\) 14.3992 + 10.4616i 0.523347 + 0.380234i 0.817863 0.575412i \(-0.195158\pi\)
−0.294516 + 0.955647i \(0.595158\pi\)
\(758\) 0 0
\(759\) −3.13525 5.29007i −0.113803 0.192017i
\(760\) 0 0
\(761\) −6.52786 4.74277i −0.236635 0.171925i 0.463148 0.886281i \(-0.346720\pi\)
−0.699783 + 0.714356i \(0.746720\pi\)
\(762\) 0 0
\(763\) 0.572949 + 1.76336i 0.0207421 + 0.0638378i
\(764\) 0 0
\(765\) −13.7082 + 9.95959i −0.495621 + 0.360090i
\(766\) 0 0
\(767\) 9.23607 28.4257i 0.333495 1.02639i
\(768\) 0 0
\(769\) 0.180340 0.00650322 0.00325161 0.999995i \(-0.498965\pi\)
0.00325161 + 0.999995i \(0.498965\pi\)
\(770\) 0 0
\(771\) −8.18034 −0.294608
\(772\) 0 0
\(773\) −9.12461 + 28.0827i −0.328189 + 1.01006i 0.641791 + 0.766880i \(0.278192\pi\)
−0.969980 + 0.243184i \(0.921808\pi\)
\(774\) 0 0
\(775\) −5.47214 + 3.97574i −0.196565 + 0.142813i
\(776\) 0 0
\(777\) 0.663119 + 2.04087i 0.0237893 + 0.0732158i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 1.11803 11.9475i 0.0400064 0.427514i
\(782\) 0 0
\(783\) 1.30902 + 0.951057i 0.0467805 + 0.0339880i
\(784\) 0 0
\(785\) −2.29180 7.05342i −0.0817977 0.251747i
\(786\) 0 0
\(787\) −17.7984 + 12.9313i −0.634444 + 0.460950i −0.857937 0.513755i \(-0.828254\pi\)
0.223493 + 0.974705i \(0.428254\pi\)
\(788\) 0 0
\(789\) −0.645898 + 1.98787i −0.0229946 + 0.0707700i
\(790\) 0 0
\(791\) −9.61803 −0.341978
\(792\) 0 0
\(793\) −12.9443 −0.459665
\(794\) 0 0
\(795\) 2.38197 7.33094i 0.0844796 0.260002i
\(796\) 0 0
\(797\) 11.4721 8.33499i 0.406364 0.295241i −0.365764 0.930708i \(-0.619192\pi\)
0.772128 + 0.635467i \(0.219192\pi\)
\(798\) 0 0
\(799\) 13.7082 + 42.1895i 0.484961 + 1.49256i
\(800\) 0 0
\(801\) 2.23607 + 1.62460i 0.0790076 + 0.0574024i
\(802\) 0 0
\(803\) −3.76393 1.62460i −0.132826 0.0573308i
\(804\) 0 0
\(805\) −4.85410 3.52671i −0.171085 0.124300i
\(806\) 0 0
\(807\) 7.03444 + 21.6498i 0.247624 + 0.762109i
\(808\) 0 0
\(809\) 35.8607 26.0543i 1.26079 0.916021i 0.261998 0.965068i \(-0.415619\pi\)
0.998796 + 0.0490477i \(0.0156186\pi\)
\(810\) 0 0
\(811\) 5.50658 16.9475i 0.193362 0.595107i −0.806630 0.591057i \(-0.798711\pi\)
0.999992 0.00405022i \(-0.00128923\pi\)
\(812\) 0 0
\(813\) 1.41641 0.0496756
\(814\) 0 0
\(815\) −69.7771 −2.44418
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −1.61803 + 1.17557i −0.0565387 + 0.0410778i
\(820\) 0 0
\(821\) 14.6180 + 44.9897i 0.510173 + 1.57015i 0.791897 + 0.610655i \(0.209094\pi\)
−0.281724 + 0.959496i \(0.590906\pi\)
\(822\) 0 0
\(823\) −28.3435 20.5927i −0.987991 0.717817i −0.0285107 0.999593i \(-0.509076\pi\)
−0.959480 + 0.281776i \(0.909076\pi\)
\(824\) 0 0
\(825\) 17.7082 3.97574i 0.616521 0.138417i
\(826\) 0 0
\(827\) −27.4164 19.9192i −0.953362 0.692658i −0.00176229 0.999998i \(-0.500561\pi\)
−0.951600 + 0.307340i \(0.900561\pi\)
\(828\) 0 0
\(829\) 3.56231 + 10.9637i 0.123724 + 0.380783i 0.993666 0.112370i \(-0.0358442\pi\)
−0.869942 + 0.493153i \(0.835844\pi\)
\(830\) 0 0
\(831\) 1.73607 1.26133i 0.0602235 0.0437550i
\(832\) 0 0
\(833\) −1.61803 + 4.97980i −0.0560616 + 0.172540i
\(834\) 0 0
\(835\) 14.4721 0.500829
\(836\) 0 0
\(837\) −1.23607 −0.0427248
\(838\) 0 0
\(839\) −0.854102 + 2.62866i −0.0294869 + 0.0907513i −0.964717 0.263289i \(-0.915193\pi\)
0.935230 + 0.354041i \(0.115193\pi\)
\(840\) 0 0
\(841\) 21.3435 15.5069i 0.735981 0.534722i
\(842\) 0 0
\(843\) 1.50000 + 4.61653i 0.0516627 + 0.159002i
\(844\) 0 0
\(845\) −23.5623 17.1190i −0.810568 0.588912i
\(846\) 0 0
\(847\) 9.94427 4.70228i 0.341689 0.161572i
\(848\) 0 0
\(849\) −16.7082 12.1392i −0.573424 0.416617i
\(850\) 0 0
\(851\) 1.22949 + 3.78398i 0.0421464 + 0.129713i
\(852\) 0 0
\(853\) −29.5623 + 21.4783i −1.01219 + 0.735402i −0.964668 0.263468i \(-0.915134\pi\)
−0.0475259 + 0.998870i \(0.515134\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.41641 −0.0483836 −0.0241918 0.999707i \(-0.507701\pi\)
−0.0241918 + 0.999707i \(0.507701\pi\)
\(858\) 0 0
\(859\) 10.5836 0.361108 0.180554 0.983565i \(-0.442211\pi\)
0.180554 + 0.983565i \(0.442211\pi\)
\(860\) 0 0
\(861\) −2.76393 + 8.50651i −0.0941946 + 0.289901i
\(862\) 0 0
\(863\) 33.1246 24.0664i 1.12757 0.819231i 0.142235 0.989833i \(-0.454571\pi\)
0.985340 + 0.170602i \(0.0545712\pi\)
\(864\) 0 0
\(865\) 8.47214 + 26.0746i 0.288061 + 0.886561i
\(866\) 0 0
\(867\) 8.42705 + 6.12261i 0.286198 + 0.207935i
\(868\) 0 0
\(869\) 24.6525 5.53483i 0.836278 0.187756i
\(870\) 0 0
\(871\) −8.61803 6.26137i −0.292011 0.212158i
\(872\) 0 0
\(873\) 3.76393 + 11.5842i 0.127390 + 0.392065i
\(874\) 0 0
\(875\) 1.23607 0.898056i 0.0417867 0.0303598i
\(876\) 0 0
\(877\) 0.680340 2.09387i 0.0229734 0.0707050i −0.938913 0.344156i \(-0.888165\pi\)
0.961886 + 0.273451i \(0.0881651\pi\)
\(878\) 0 0
\(879\) −15.5967 −0.526065
\(880\) 0 0
\(881\) 24.5410 0.826808 0.413404 0.910548i \(-0.364340\pi\)
0.413404 + 0.910548i \(0.364340\pi\)
\(882\) 0 0
\(883\) 11.8197 36.3772i 0.397763 1.22419i −0.529025 0.848606i \(-0.677442\pi\)
0.926789 0.375583i \(-0.122558\pi\)
\(884\) 0 0
\(885\) −39.1246 + 28.4257i −1.31516 + 0.955519i
\(886\) 0 0
\(887\) −14.7082 45.2672i −0.493853 1.51992i −0.818736 0.574170i \(-0.805325\pi\)
0.324883 0.945754i \(-0.394675\pi\)
\(888\) 0 0
\(889\) −3.73607 2.71441i −0.125304 0.0910385i
\(890\) 0 0
\(891\) 3.04508 + 1.31433i 0.102014 + 0.0440316i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 10.7984 + 33.2340i 0.360950 + 1.11089i
\(896\) 0 0
\(897\) −3.00000 + 2.17963i −0.100167 + 0.0727756i
\(898\) 0 0
\(899\) 0.618034 1.90211i 0.0206126 0.0634390i
\(900\) 0 0
\(901\) −12.4721 −0.415507
\(902\) 0 0
\(903\) −2.85410 −0.0949786
\(904\) 0 0
\(905\) −23.7082 + 72.9663i −0.788087 + 2.42548i
\(906\) 0 0
\(907\) −11.1074 + 8.06999i −0.368815 + 0.267960i −0.756719 0.653740i \(-0.773199\pi\)
0.387904 + 0.921700i \(0.373199\pi\)
\(908\) 0 0
\(909\) −5.00000 15.3884i −0.165840 0.510402i
\(910\) 0 0
\(911\) 16.9443 + 12.3107i 0.561389 + 0.407873i 0.831967 0.554825i \(-0.187215\pi\)
−0.270578 + 0.962698i \(0.587215\pi\)
\(912\) 0 0
\(913\) 1.47214 15.7314i 0.0487206 0.520635i
\(914\) 0 0
\(915\) 16.9443 + 12.3107i 0.560160 + 0.406980i
\(916\) 0 0
\(917\) −5.56231 17.1190i −0.183684 0.565320i
\(918\) 0 0
\(919\) 28.9615 21.0418i 0.955351 0.694103i 0.00328499 0.999995i \(-0.498954\pi\)
0.952067 + 0.305891i \(0.0989544\pi\)
\(920\) 0 0
\(921\) 10.4164 32.0584i 0.343232 1.05636i
\(922\) 0 0
\(923\) −7.23607 −0.238178
\(924\) 0 0
\(925\) −11.7426 −0.386096
\(926\) 0 0
\(927\) 4.85410 14.9394i 0.159430 0.490674i
\(928\) 0 0
\(929\) −10.1459 + 7.37143i −0.332876 + 0.241849i −0.741650 0.670787i \(-0.765956\pi\)
0.408774 + 0.912636i \(0.365956\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −16.0902 11.6902i −0.526769 0.382720i
\(934\) 0 0
\(935\) −28.6525 48.3449i −0.937036 1.58105i
\(936\) 0 0
\(937\) 1.70820 + 1.24108i 0.0558046 + 0.0405444i 0.615338 0.788263i \(-0.289020\pi\)
−0.559533 + 0.828808i \(0.689020\pi\)
\(938\) 0 0
\(939\) 3.79837 + 11.6902i 0.123955 + 0.381495i
\(940\) 0 0
\(941\) 27.0902 19.6822i 0.883114 0.641620i −0.0509593 0.998701i \(-0.516228\pi\)
0.934074 + 0.357081i \(0.116228\pi\)
\(942\) 0 0
\(943\) −5.12461 + 15.7719i −0.166880 + 0.513605i
\(944\) 0 0
\(945\) 3.23607 0.105269
\(946\) 0 0
\(947\) 44.7214 1.45325 0.726624 0.687035i \(-0.241088\pi\)
0.726624 + 0.687035i \(0.241088\pi\)
\(948\) 0 0
\(949\) −0.763932 + 2.35114i −0.0247983 + 0.0763213i
\(950\) 0 0
\(951\) 9.92705 7.21242i 0.321907 0.233879i
\(952\) 0 0
\(953\) 12.8435 + 39.5281i 0.416040 + 1.28044i 0.911317 + 0.411705i \(0.135067\pi\)
−0.495277 + 0.868735i \(0.664933\pi\)
\(954\) 0 0
\(955\) −32.4164 23.5519i −1.04897 0.762122i
\(956\) 0 0
\(957\) −3.54508 + 4.02874i −0.114596 + 0.130231i
\(958\) 0 0
\(959\) −9.97214 7.24518i −0.322017 0.233959i
\(960\) 0 0
\(961\) −9.10739 28.0297i −0.293787 0.904183i
\(962\) 0 0
\(963\) −1.50000 + 1.08981i −0.0483368 + 0.0351188i
\(964\) 0 0
\(965\) −20.2705 + 62.3862i −0.652531 + 2.00828i
\(966\) 0 0
\(967\) −22.1459 −0.712164 −0.356082 0.934455i \(-0.615888\pi\)
−0.356082 + 0.934455i \(0.615888\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.74265 11.5187i 0.120107 0.369652i −0.872871 0.487952i \(-0.837744\pi\)
0.992978 + 0.118299i \(0.0377443\pi\)
\(972\) 0 0
\(973\) 8.85410 6.43288i 0.283849 0.206229i
\(974\) 0 0
\(975\) −3.38197 10.4086i −0.108310 0.333343i
\(976\) 0 0
\(977\) 35.9164 + 26.0948i 1.14907 + 0.834847i 0.988357 0.152155i \(-0.0486213\pi\)
0.160711 + 0.987002i \(0.448621\pi\)
\(978\) 0 0
\(979\) −6.05573 + 6.88191i −0.193542 + 0.219947i
\(980\) 0 0
\(981\) −1.50000 1.08981i −0.0478913 0.0347951i
\(982\) 0 0
\(983\) 15.0557 + 46.3368i 0.480203 + 1.47791i 0.838810 + 0.544425i \(0.183252\pi\)
−0.358607 + 0.933489i \(0.616748\pi\)
\(984\) 0 0
\(985\) −12.8541 + 9.33905i −0.409566 + 0.297567i
\(986\) 0 0
\(987\) 2.61803 8.05748i 0.0833329 0.256472i
\(988\) 0 0
\(989\) −5.29180 −0.168269
\(990\) 0 0
\(991\) −41.5279 −1.31918 −0.659588 0.751627i \(-0.729269\pi\)
−0.659588 + 0.751627i \(0.729269\pi\)
\(992\) 0 0
\(993\) −2.37132 + 7.29818i −0.0752517 + 0.231601i
\(994\) 0 0
\(995\) −50.3607 + 36.5892i −1.59654 + 1.15995i
\(996\) 0 0
\(997\) 11.8541 + 36.4832i 0.375423 + 1.15543i 0.943193 + 0.332246i \(0.107806\pi\)
−0.567770 + 0.823188i \(0.692194\pi\)
\(998\) 0 0
\(999\) −1.73607 1.26133i −0.0549268 0.0399066i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 924.2.r.d.169.1 4
11.3 even 5 inner 924.2.r.d.421.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
924.2.r.d.169.1 4 1.1 even 1 trivial
924.2.r.d.421.1 yes 4 11.3 even 5 inner